em28xx-input.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592
  1. /*
  2. handle em28xx IR remotes via linux kernel input layer.
  3. Copyright (C) 2005 Ludovico Cavedon <cavedon@sssup.it>
  4. Markus Rechberger <mrechberger@gmail.com>
  5. Mauro Carvalho Chehab <mchehab@infradead.org>
  6. Sascha Sommer <saschasommer@freenet.de>
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/module.h>
  20. #include <linux/init.h>
  21. #include <linux/delay.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/input.h>
  24. #include <linux/usb.h>
  25. #include <linux/slab.h>
  26. #include "em28xx.h"
  27. #define EM28XX_SNAPSHOT_KEY KEY_CAMERA
  28. #define EM28XX_SBUTTON_QUERY_INTERVAL 500
  29. #define EM28XX_R0C_USBSUSP_SNAPSHOT 0x20
  30. static unsigned int ir_debug;
  31. module_param(ir_debug, int, 0644);
  32. MODULE_PARM_DESC(ir_debug, "enable debug messages [IR]");
  33. #define i2cdprintk(fmt, arg...) \
  34. if (ir_debug) { \
  35. printk(KERN_DEBUG "%s/ir: " fmt, ir->name , ## arg); \
  36. }
  37. #define dprintk(fmt, arg...) \
  38. if (ir_debug) { \
  39. printk(KERN_DEBUG "%s/ir: " fmt, ir->name , ## arg); \
  40. }
  41. /**********************************************************
  42. Polling structure used by em28xx IR's
  43. **********************************************************/
  44. struct em28xx_ir_poll_result {
  45. unsigned int toggle_bit:1;
  46. unsigned int read_count:7;
  47. u8 rc_address;
  48. u8 rc_data[4]; /* 1 byte on em2860/2880, 4 on em2874 */
  49. };
  50. struct em28xx_IR {
  51. struct em28xx *dev;
  52. struct input_dev *input;
  53. struct ir_input_state ir;
  54. char name[32];
  55. char phys[32];
  56. /* poll external decoder */
  57. int polling;
  58. struct delayed_work work;
  59. unsigned int last_toggle:1;
  60. unsigned int full_code:1;
  61. unsigned int last_readcount;
  62. unsigned int repeat_interval;
  63. int (*get_key)(struct em28xx_IR *, struct em28xx_ir_poll_result *);
  64. /* IR device properties */
  65. struct ir_dev_props props;
  66. };
  67. /**********************************************************
  68. I2C IR based get keycodes - should be used with ir-kbd-i2c
  69. **********************************************************/
  70. int em28xx_get_key_terratec(struct IR_i2c *ir, u32 *ir_key, u32 *ir_raw)
  71. {
  72. unsigned char b;
  73. /* poll IR chip */
  74. if (1 != i2c_master_recv(ir->c, &b, 1)) {
  75. i2cdprintk("read error\n");
  76. return -EIO;
  77. }
  78. /* it seems that 0xFE indicates that a button is still hold
  79. down, while 0xff indicates that no button is hold
  80. down. 0xfe sequences are sometimes interrupted by 0xFF */
  81. i2cdprintk("key %02x\n", b);
  82. if (b == 0xff)
  83. return 0;
  84. if (b == 0xfe)
  85. /* keep old data */
  86. return 1;
  87. *ir_key = b;
  88. *ir_raw = b;
  89. return 1;
  90. }
  91. int em28xx_get_key_em_haup(struct IR_i2c *ir, u32 *ir_key, u32 *ir_raw)
  92. {
  93. unsigned char buf[2];
  94. u16 code;
  95. int size;
  96. /* poll IR chip */
  97. size = i2c_master_recv(ir->c, buf, sizeof(buf));
  98. if (size != 2)
  99. return -EIO;
  100. /* Does eliminate repeated parity code */
  101. if (buf[1] == 0xff)
  102. return 0;
  103. ir->old = buf[1];
  104. /*
  105. * Rearranges bits to the right order.
  106. * The bit order were determined experimentally by using
  107. * The original Hauppauge Grey IR and another RC5 that uses addr=0x08
  108. * The RC5 code has 14 bits, but we've experimentally determined
  109. * the meaning for only 11 bits.
  110. * So, the code translation is not complete. Yet, it is enough to
  111. * work with the provided RC5 IR.
  112. */
  113. code =
  114. ((buf[0] & 0x01) ? 0x0020 : 0) | /* 0010 0000 */
  115. ((buf[0] & 0x02) ? 0x0010 : 0) | /* 0001 0000 */
  116. ((buf[0] & 0x04) ? 0x0008 : 0) | /* 0000 1000 */
  117. ((buf[0] & 0x08) ? 0x0004 : 0) | /* 0000 0100 */
  118. ((buf[0] & 0x10) ? 0x0002 : 0) | /* 0000 0010 */
  119. ((buf[0] & 0x20) ? 0x0001 : 0) | /* 0000 0001 */
  120. ((buf[1] & 0x08) ? 0x1000 : 0) | /* 0001 0000 */
  121. ((buf[1] & 0x10) ? 0x0800 : 0) | /* 0000 1000 */
  122. ((buf[1] & 0x20) ? 0x0400 : 0) | /* 0000 0100 */
  123. ((buf[1] & 0x40) ? 0x0200 : 0) | /* 0000 0010 */
  124. ((buf[1] & 0x80) ? 0x0100 : 0); /* 0000 0001 */
  125. i2cdprintk("ir hauppauge (em2840): code=0x%02x (rcv=0x%02x%02x)\n",
  126. code, buf[1], buf[0]);
  127. /* return key */
  128. *ir_key = code;
  129. *ir_raw = code;
  130. return 1;
  131. }
  132. int em28xx_get_key_pinnacle_usb_grey(struct IR_i2c *ir, u32 *ir_key,
  133. u32 *ir_raw)
  134. {
  135. unsigned char buf[3];
  136. /* poll IR chip */
  137. if (3 != i2c_master_recv(ir->c, buf, 3)) {
  138. i2cdprintk("read error\n");
  139. return -EIO;
  140. }
  141. i2cdprintk("key %02x\n", buf[2]&0x3f);
  142. if (buf[0] != 0x00)
  143. return 0;
  144. *ir_key = buf[2]&0x3f;
  145. *ir_raw = buf[2]&0x3f;
  146. return 1;
  147. }
  148. int em28xx_get_key_winfast_usbii_deluxe(struct IR_i2c *ir, u32 *ir_key, u32 *ir_raw)
  149. {
  150. unsigned char subaddr, keydetect, key;
  151. struct i2c_msg msg[] = { { .addr = ir->c->addr, .flags = 0, .buf = &subaddr, .len = 1},
  152. { .addr = ir->c->addr, .flags = I2C_M_RD, .buf = &keydetect, .len = 1} };
  153. subaddr = 0x10;
  154. if (2 != i2c_transfer(ir->c->adapter, msg, 2)) {
  155. i2cdprintk("read error\n");
  156. return -EIO;
  157. }
  158. if (keydetect == 0x00)
  159. return 0;
  160. subaddr = 0x00;
  161. msg[1].buf = &key;
  162. if (2 != i2c_transfer(ir->c->adapter, msg, 2)) {
  163. i2cdprintk("read error\n");
  164. return -EIO;
  165. }
  166. if (key == 0x00)
  167. return 0;
  168. *ir_key = key;
  169. *ir_raw = key;
  170. return 1;
  171. }
  172. /**********************************************************
  173. Poll based get keycode functions
  174. **********************************************************/
  175. /* This is for the em2860/em2880 */
  176. static int default_polling_getkey(struct em28xx_IR *ir,
  177. struct em28xx_ir_poll_result *poll_result)
  178. {
  179. struct em28xx *dev = ir->dev;
  180. int rc;
  181. u8 msg[3] = { 0, 0, 0 };
  182. /* Read key toggle, brand, and key code
  183. on registers 0x45, 0x46 and 0x47
  184. */
  185. rc = dev->em28xx_read_reg_req_len(dev, 0, EM28XX_R45_IR,
  186. msg, sizeof(msg));
  187. if (rc < 0)
  188. return rc;
  189. /* Infrared toggle (Reg 0x45[7]) */
  190. poll_result->toggle_bit = (msg[0] >> 7);
  191. /* Infrared read count (Reg 0x45[6:0] */
  192. poll_result->read_count = (msg[0] & 0x7f);
  193. /* Remote Control Address (Reg 0x46) */
  194. poll_result->rc_address = msg[1];
  195. /* Remote Control Data (Reg 0x47) */
  196. poll_result->rc_data[0] = msg[2];
  197. return 0;
  198. }
  199. static int em2874_polling_getkey(struct em28xx_IR *ir,
  200. struct em28xx_ir_poll_result *poll_result)
  201. {
  202. struct em28xx *dev = ir->dev;
  203. int rc;
  204. u8 msg[5] = { 0, 0, 0, 0, 0 };
  205. /* Read key toggle, brand, and key code
  206. on registers 0x51-55
  207. */
  208. rc = dev->em28xx_read_reg_req_len(dev, 0, EM2874_R51_IR,
  209. msg, sizeof(msg));
  210. if (rc < 0)
  211. return rc;
  212. /* Infrared toggle (Reg 0x51[7]) */
  213. poll_result->toggle_bit = (msg[0] >> 7);
  214. /* Infrared read count (Reg 0x51[6:0] */
  215. poll_result->read_count = (msg[0] & 0x7f);
  216. /* Remote Control Address (Reg 0x52) */
  217. poll_result->rc_address = msg[1];
  218. /* Remote Control Data (Reg 0x53-55) */
  219. poll_result->rc_data[0] = msg[2];
  220. poll_result->rc_data[1] = msg[3];
  221. poll_result->rc_data[2] = msg[4];
  222. return 0;
  223. }
  224. /**********************************************************
  225. Polling code for em28xx
  226. **********************************************************/
  227. static void em28xx_ir_handle_key(struct em28xx_IR *ir)
  228. {
  229. int result;
  230. int do_sendkey = 0;
  231. struct em28xx_ir_poll_result poll_result;
  232. /* read the registers containing the IR status */
  233. result = ir->get_key(ir, &poll_result);
  234. if (result < 0) {
  235. dprintk("ir->get_key() failed %d\n", result);
  236. return;
  237. }
  238. dprintk("ir->get_key result tb=%02x rc=%02x lr=%02x data=%02x%02x\n",
  239. poll_result.toggle_bit, poll_result.read_count,
  240. ir->last_readcount, poll_result.rc_address,
  241. poll_result.rc_data[0]);
  242. if (ir->dev->chip_id == CHIP_ID_EM2874) {
  243. /* The em2874 clears the readcount field every time the
  244. register is read. The em2860/2880 datasheet says that it
  245. is supposed to clear the readcount, but it doesn't. So with
  246. the em2874, we are looking for a non-zero read count as
  247. opposed to a readcount that is incrementing */
  248. ir->last_readcount = 0;
  249. }
  250. if (poll_result.read_count == 0) {
  251. /* The button has not been pressed since the last read */
  252. } else if (ir->last_toggle != poll_result.toggle_bit) {
  253. /* A button has been pressed */
  254. dprintk("button has been pressed\n");
  255. ir->last_toggle = poll_result.toggle_bit;
  256. ir->repeat_interval = 0;
  257. do_sendkey = 1;
  258. } else if (poll_result.toggle_bit == ir->last_toggle &&
  259. poll_result.read_count > 0 &&
  260. poll_result.read_count != ir->last_readcount) {
  261. /* The button is still being held down */
  262. dprintk("button being held down\n");
  263. /* Debouncer for first keypress */
  264. if (ir->repeat_interval++ > 9) {
  265. /* Start repeating after 1 second */
  266. do_sendkey = 1;
  267. }
  268. }
  269. if (do_sendkey) {
  270. dprintk("sending keypress\n");
  271. if (ir->full_code)
  272. ir_input_keydown(ir->input, &ir->ir,
  273. poll_result.rc_address << 8 |
  274. poll_result.rc_data[0]);
  275. else
  276. ir_input_keydown(ir->input, &ir->ir,
  277. poll_result.rc_data[0]);
  278. ir_input_nokey(ir->input, &ir->ir);
  279. }
  280. ir->last_readcount = poll_result.read_count;
  281. return;
  282. }
  283. static void em28xx_ir_work(struct work_struct *work)
  284. {
  285. struct em28xx_IR *ir = container_of(work, struct em28xx_IR, work.work);
  286. em28xx_ir_handle_key(ir);
  287. schedule_delayed_work(&ir->work, msecs_to_jiffies(ir->polling));
  288. }
  289. static void em28xx_ir_start(struct em28xx_IR *ir)
  290. {
  291. INIT_DELAYED_WORK(&ir->work, em28xx_ir_work);
  292. schedule_delayed_work(&ir->work, 0);
  293. }
  294. static void em28xx_ir_stop(struct em28xx_IR *ir)
  295. {
  296. cancel_delayed_work_sync(&ir->work);
  297. }
  298. int em28xx_ir_change_protocol(void *priv, u64 ir_type)
  299. {
  300. int rc = 0;
  301. struct em28xx_IR *ir = priv;
  302. struct em28xx *dev = ir->dev;
  303. u8 ir_config = EM2874_IR_RC5;
  304. /* Adjust xclk based o IR table for RC5/NEC tables */
  305. dev->board.ir_codes->ir_type = IR_TYPE_OTHER;
  306. if (ir_type == IR_TYPE_RC5) {
  307. dev->board.xclk |= EM28XX_XCLK_IR_RC5_MODE;
  308. ir->full_code = 1;
  309. } else if (ir_type == IR_TYPE_NEC) {
  310. dev->board.xclk &= ~EM28XX_XCLK_IR_RC5_MODE;
  311. ir_config = EM2874_IR_NEC;
  312. ir->full_code = 1;
  313. } else
  314. rc = -EINVAL;
  315. dev->board.ir_codes->ir_type = ir_type;
  316. em28xx_write_reg_bits(dev, EM28XX_R0F_XCLK, dev->board.xclk,
  317. EM28XX_XCLK_IR_RC5_MODE);
  318. /* Setup the proper handler based on the chip */
  319. switch (dev->chip_id) {
  320. case CHIP_ID_EM2860:
  321. case CHIP_ID_EM2883:
  322. ir->get_key = default_polling_getkey;
  323. break;
  324. case CHIP_ID_EM2874:
  325. ir->get_key = em2874_polling_getkey;
  326. em28xx_write_regs(dev, EM2874_R50_IR_CONFIG, &ir_config, 1);
  327. break;
  328. default:
  329. printk("Unrecognized em28xx chip id: IR not supported\n");
  330. rc = -EINVAL;
  331. }
  332. return rc;
  333. }
  334. int em28xx_ir_init(struct em28xx *dev)
  335. {
  336. struct em28xx_IR *ir;
  337. struct input_dev *input_dev;
  338. int err = -ENOMEM;
  339. if (dev->board.ir_codes == NULL) {
  340. /* No remote control support */
  341. return 0;
  342. }
  343. ir = kzalloc(sizeof(*ir), GFP_KERNEL);
  344. input_dev = input_allocate_device();
  345. if (!ir || !input_dev)
  346. goto err_out_free;
  347. /* record handles to ourself */
  348. ir->dev = dev;
  349. dev->ir = ir;
  350. ir->input = input_dev;
  351. /*
  352. * em2874 supports more protocols. For now, let's just announce
  353. * the two protocols that were already tested
  354. */
  355. ir->props.allowed_protos = IR_TYPE_RC5 | IR_TYPE_NEC;
  356. ir->props.priv = ir;
  357. ir->props.change_protocol = em28xx_ir_change_protocol;
  358. /* This is how often we ask the chip for IR information */
  359. ir->polling = 100; /* ms */
  360. /* init input device */
  361. snprintf(ir->name, sizeof(ir->name), "em28xx IR (%s)",
  362. dev->name);
  363. usb_make_path(dev->udev, ir->phys, sizeof(ir->phys));
  364. strlcat(ir->phys, "/input0", sizeof(ir->phys));
  365. /* Set IR protocol */
  366. em28xx_ir_change_protocol(ir, dev->board.ir_codes->ir_type);
  367. err = ir_input_init(input_dev, &ir->ir, IR_TYPE_OTHER);
  368. if (err < 0)
  369. goto err_out_free;
  370. input_dev->name = ir->name;
  371. input_dev->phys = ir->phys;
  372. input_dev->id.bustype = BUS_USB;
  373. input_dev->id.version = 1;
  374. input_dev->id.vendor = le16_to_cpu(dev->udev->descriptor.idVendor);
  375. input_dev->id.product = le16_to_cpu(dev->udev->descriptor.idProduct);
  376. input_dev->dev.parent = &dev->udev->dev;
  377. em28xx_ir_start(ir);
  378. /* all done */
  379. err = ir_input_register(ir->input, dev->board.ir_codes,
  380. &ir->props);
  381. if (err)
  382. goto err_out_stop;
  383. return 0;
  384. err_out_stop:
  385. em28xx_ir_stop(ir);
  386. dev->ir = NULL;
  387. err_out_free:
  388. kfree(ir);
  389. return err;
  390. }
  391. int em28xx_ir_fini(struct em28xx *dev)
  392. {
  393. struct em28xx_IR *ir = dev->ir;
  394. /* skip detach on non attached boards */
  395. if (!ir)
  396. return 0;
  397. em28xx_ir_stop(ir);
  398. ir_input_unregister(ir->input);
  399. kfree(ir);
  400. /* done */
  401. dev->ir = NULL;
  402. return 0;
  403. }
  404. /**********************************************************
  405. Handle Webcam snapshot button
  406. **********************************************************/
  407. static void em28xx_query_sbutton(struct work_struct *work)
  408. {
  409. /* Poll the register and see if the button is depressed */
  410. struct em28xx *dev =
  411. container_of(work, struct em28xx, sbutton_query_work.work);
  412. int ret;
  413. ret = em28xx_read_reg(dev, EM28XX_R0C_USBSUSP);
  414. if (ret & EM28XX_R0C_USBSUSP_SNAPSHOT) {
  415. u8 cleared;
  416. /* Button is depressed, clear the register */
  417. cleared = ((u8) ret) & ~EM28XX_R0C_USBSUSP_SNAPSHOT;
  418. em28xx_write_regs(dev, EM28XX_R0C_USBSUSP, &cleared, 1);
  419. /* Not emulate the keypress */
  420. input_report_key(dev->sbutton_input_dev, EM28XX_SNAPSHOT_KEY,
  421. 1);
  422. /* Now unpress the key */
  423. input_report_key(dev->sbutton_input_dev, EM28XX_SNAPSHOT_KEY,
  424. 0);
  425. }
  426. /* Schedule next poll */
  427. schedule_delayed_work(&dev->sbutton_query_work,
  428. msecs_to_jiffies(EM28XX_SBUTTON_QUERY_INTERVAL));
  429. }
  430. void em28xx_register_snapshot_button(struct em28xx *dev)
  431. {
  432. struct input_dev *input_dev;
  433. int err;
  434. em28xx_info("Registering snapshot button...\n");
  435. input_dev = input_allocate_device();
  436. if (!input_dev) {
  437. em28xx_errdev("input_allocate_device failed\n");
  438. return;
  439. }
  440. usb_make_path(dev->udev, dev->snapshot_button_path,
  441. sizeof(dev->snapshot_button_path));
  442. strlcat(dev->snapshot_button_path, "/sbutton",
  443. sizeof(dev->snapshot_button_path));
  444. INIT_DELAYED_WORK(&dev->sbutton_query_work, em28xx_query_sbutton);
  445. input_dev->name = "em28xx snapshot button";
  446. input_dev->phys = dev->snapshot_button_path;
  447. input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REP);
  448. set_bit(EM28XX_SNAPSHOT_KEY, input_dev->keybit);
  449. input_dev->keycodesize = 0;
  450. input_dev->keycodemax = 0;
  451. input_dev->id.bustype = BUS_USB;
  452. input_dev->id.vendor = le16_to_cpu(dev->udev->descriptor.idVendor);
  453. input_dev->id.product = le16_to_cpu(dev->udev->descriptor.idProduct);
  454. input_dev->id.version = 1;
  455. input_dev->dev.parent = &dev->udev->dev;
  456. err = input_register_device(input_dev);
  457. if (err) {
  458. em28xx_errdev("input_register_device failed\n");
  459. input_free_device(input_dev);
  460. return;
  461. }
  462. dev->sbutton_input_dev = input_dev;
  463. schedule_delayed_work(&dev->sbutton_query_work,
  464. msecs_to_jiffies(EM28XX_SBUTTON_QUERY_INTERVAL));
  465. return;
  466. }
  467. void em28xx_deregister_snapshot_button(struct em28xx *dev)
  468. {
  469. if (dev->sbutton_input_dev != NULL) {
  470. em28xx_info("Deregistering snapshot button\n");
  471. cancel_rearming_delayed_work(&dev->sbutton_query_work);
  472. input_unregister_device(dev->sbutton_input_dev);
  473. dev->sbutton_input_dev = NULL;
  474. }
  475. return;
  476. }