mmu.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064
  1. /*
  2. * linux/arch/arm/mm/mmu.c
  3. *
  4. * Copyright (C) 1995-2005 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/errno.h>
  13. #include <linux/init.h>
  14. #include <linux/bootmem.h>
  15. #include <linux/mman.h>
  16. #include <linux/nodemask.h>
  17. #include <asm/cputype.h>
  18. #include <asm/mach-types.h>
  19. #include <asm/sections.h>
  20. #include <asm/cachetype.h>
  21. #include <asm/setup.h>
  22. #include <asm/sizes.h>
  23. #include <asm/smp_plat.h>
  24. #include <asm/tlb.h>
  25. #include <asm/highmem.h>
  26. #include <asm/mach/arch.h>
  27. #include <asm/mach/map.h>
  28. #include "mm.h"
  29. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  30. /*
  31. * empty_zero_page is a special page that is used for
  32. * zero-initialized data and COW.
  33. */
  34. struct page *empty_zero_page;
  35. EXPORT_SYMBOL(empty_zero_page);
  36. /*
  37. * The pmd table for the upper-most set of pages.
  38. */
  39. pmd_t *top_pmd;
  40. #define CPOLICY_UNCACHED 0
  41. #define CPOLICY_BUFFERED 1
  42. #define CPOLICY_WRITETHROUGH 2
  43. #define CPOLICY_WRITEBACK 3
  44. #define CPOLICY_WRITEALLOC 4
  45. static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  46. static unsigned int ecc_mask __initdata = 0;
  47. pgprot_t pgprot_user;
  48. pgprot_t pgprot_kernel;
  49. EXPORT_SYMBOL(pgprot_user);
  50. EXPORT_SYMBOL(pgprot_kernel);
  51. struct cachepolicy {
  52. const char policy[16];
  53. unsigned int cr_mask;
  54. unsigned int pmd;
  55. unsigned int pte;
  56. };
  57. static struct cachepolicy cache_policies[] __initdata = {
  58. {
  59. .policy = "uncached",
  60. .cr_mask = CR_W|CR_C,
  61. .pmd = PMD_SECT_UNCACHED,
  62. .pte = L_PTE_MT_UNCACHED,
  63. }, {
  64. .policy = "buffered",
  65. .cr_mask = CR_C,
  66. .pmd = PMD_SECT_BUFFERED,
  67. .pte = L_PTE_MT_BUFFERABLE,
  68. }, {
  69. .policy = "writethrough",
  70. .cr_mask = 0,
  71. .pmd = PMD_SECT_WT,
  72. .pte = L_PTE_MT_WRITETHROUGH,
  73. }, {
  74. .policy = "writeback",
  75. .cr_mask = 0,
  76. .pmd = PMD_SECT_WB,
  77. .pte = L_PTE_MT_WRITEBACK,
  78. }, {
  79. .policy = "writealloc",
  80. .cr_mask = 0,
  81. .pmd = PMD_SECT_WBWA,
  82. .pte = L_PTE_MT_WRITEALLOC,
  83. }
  84. };
  85. /*
  86. * These are useful for identifying cache coherency
  87. * problems by allowing the cache or the cache and
  88. * writebuffer to be turned off. (Note: the write
  89. * buffer should not be on and the cache off).
  90. */
  91. static void __init early_cachepolicy(char **p)
  92. {
  93. int i;
  94. for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
  95. int len = strlen(cache_policies[i].policy);
  96. if (memcmp(*p, cache_policies[i].policy, len) == 0) {
  97. cachepolicy = i;
  98. cr_alignment &= ~cache_policies[i].cr_mask;
  99. cr_no_alignment &= ~cache_policies[i].cr_mask;
  100. *p += len;
  101. break;
  102. }
  103. }
  104. if (i == ARRAY_SIZE(cache_policies))
  105. printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
  106. if (cpu_architecture() >= CPU_ARCH_ARMv6) {
  107. printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
  108. cachepolicy = CPOLICY_WRITEBACK;
  109. }
  110. flush_cache_all();
  111. set_cr(cr_alignment);
  112. }
  113. __early_param("cachepolicy=", early_cachepolicy);
  114. static void __init early_nocache(char **__unused)
  115. {
  116. char *p = "buffered";
  117. printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
  118. early_cachepolicy(&p);
  119. }
  120. __early_param("nocache", early_nocache);
  121. static void __init early_nowrite(char **__unused)
  122. {
  123. char *p = "uncached";
  124. printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
  125. early_cachepolicy(&p);
  126. }
  127. __early_param("nowb", early_nowrite);
  128. static void __init early_ecc(char **p)
  129. {
  130. if (memcmp(*p, "on", 2) == 0) {
  131. ecc_mask = PMD_PROTECTION;
  132. *p += 2;
  133. } else if (memcmp(*p, "off", 3) == 0) {
  134. ecc_mask = 0;
  135. *p += 3;
  136. }
  137. }
  138. __early_param("ecc=", early_ecc);
  139. static int __init noalign_setup(char *__unused)
  140. {
  141. cr_alignment &= ~CR_A;
  142. cr_no_alignment &= ~CR_A;
  143. set_cr(cr_alignment);
  144. return 1;
  145. }
  146. __setup("noalign", noalign_setup);
  147. #ifndef CONFIG_SMP
  148. void adjust_cr(unsigned long mask, unsigned long set)
  149. {
  150. unsigned long flags;
  151. mask &= ~CR_A;
  152. set &= mask;
  153. local_irq_save(flags);
  154. cr_no_alignment = (cr_no_alignment & ~mask) | set;
  155. cr_alignment = (cr_alignment & ~mask) | set;
  156. set_cr((get_cr() & ~mask) | set);
  157. local_irq_restore(flags);
  158. }
  159. #endif
  160. #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
  161. #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
  162. static struct mem_type mem_types[] = {
  163. [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
  164. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
  165. L_PTE_SHARED,
  166. .prot_l1 = PMD_TYPE_TABLE,
  167. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
  168. .domain = DOMAIN_IO,
  169. },
  170. [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
  171. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
  172. .prot_l1 = PMD_TYPE_TABLE,
  173. .prot_sect = PROT_SECT_DEVICE,
  174. .domain = DOMAIN_IO,
  175. },
  176. [MT_DEVICE_CACHED] = { /* ioremap_cached */
  177. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
  178. .prot_l1 = PMD_TYPE_TABLE,
  179. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
  180. .domain = DOMAIN_IO,
  181. },
  182. [MT_DEVICE_WC] = { /* ioremap_wc */
  183. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
  184. .prot_l1 = PMD_TYPE_TABLE,
  185. .prot_sect = PROT_SECT_DEVICE,
  186. .domain = DOMAIN_IO,
  187. },
  188. [MT_UNCACHED] = {
  189. .prot_pte = PROT_PTE_DEVICE,
  190. .prot_l1 = PMD_TYPE_TABLE,
  191. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  192. .domain = DOMAIN_IO,
  193. },
  194. [MT_CACHECLEAN] = {
  195. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  196. .domain = DOMAIN_KERNEL,
  197. },
  198. [MT_MINICLEAN] = {
  199. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
  200. .domain = DOMAIN_KERNEL,
  201. },
  202. [MT_LOW_VECTORS] = {
  203. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  204. L_PTE_EXEC,
  205. .prot_l1 = PMD_TYPE_TABLE,
  206. .domain = DOMAIN_USER,
  207. },
  208. [MT_HIGH_VECTORS] = {
  209. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  210. L_PTE_USER | L_PTE_EXEC,
  211. .prot_l1 = PMD_TYPE_TABLE,
  212. .domain = DOMAIN_USER,
  213. },
  214. [MT_MEMORY] = {
  215. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  216. .domain = DOMAIN_KERNEL,
  217. },
  218. [MT_ROM] = {
  219. .prot_sect = PMD_TYPE_SECT,
  220. .domain = DOMAIN_KERNEL,
  221. },
  222. [MT_MEMORY_NONCACHED] = {
  223. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  224. .domain = DOMAIN_KERNEL,
  225. },
  226. };
  227. const struct mem_type *get_mem_type(unsigned int type)
  228. {
  229. return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
  230. }
  231. EXPORT_SYMBOL(get_mem_type);
  232. /*
  233. * Adjust the PMD section entries according to the CPU in use.
  234. */
  235. static void __init build_mem_type_table(void)
  236. {
  237. struct cachepolicy *cp;
  238. unsigned int cr = get_cr();
  239. unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
  240. int cpu_arch = cpu_architecture();
  241. int i;
  242. if (cpu_arch < CPU_ARCH_ARMv6) {
  243. #if defined(CONFIG_CPU_DCACHE_DISABLE)
  244. if (cachepolicy > CPOLICY_BUFFERED)
  245. cachepolicy = CPOLICY_BUFFERED;
  246. #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
  247. if (cachepolicy > CPOLICY_WRITETHROUGH)
  248. cachepolicy = CPOLICY_WRITETHROUGH;
  249. #endif
  250. }
  251. if (cpu_arch < CPU_ARCH_ARMv5) {
  252. if (cachepolicy >= CPOLICY_WRITEALLOC)
  253. cachepolicy = CPOLICY_WRITEBACK;
  254. ecc_mask = 0;
  255. }
  256. #ifdef CONFIG_SMP
  257. cachepolicy = CPOLICY_WRITEALLOC;
  258. #endif
  259. /*
  260. * Strip out features not present on earlier architectures.
  261. * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
  262. * without extended page tables don't have the 'Shared' bit.
  263. */
  264. if (cpu_arch < CPU_ARCH_ARMv5)
  265. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  266. mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
  267. if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
  268. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  269. mem_types[i].prot_sect &= ~PMD_SECT_S;
  270. /*
  271. * ARMv5 and lower, bit 4 must be set for page tables (was: cache
  272. * "update-able on write" bit on ARM610). However, Xscale and
  273. * Xscale3 require this bit to be cleared.
  274. */
  275. if (cpu_is_xscale() || cpu_is_xsc3()) {
  276. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  277. mem_types[i].prot_sect &= ~PMD_BIT4;
  278. mem_types[i].prot_l1 &= ~PMD_BIT4;
  279. }
  280. } else if (cpu_arch < CPU_ARCH_ARMv6) {
  281. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  282. if (mem_types[i].prot_l1)
  283. mem_types[i].prot_l1 |= PMD_BIT4;
  284. if (mem_types[i].prot_sect)
  285. mem_types[i].prot_sect |= PMD_BIT4;
  286. }
  287. }
  288. /*
  289. * Mark the device areas according to the CPU/architecture.
  290. */
  291. if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
  292. if (!cpu_is_xsc3()) {
  293. /*
  294. * Mark device regions on ARMv6+ as execute-never
  295. * to prevent speculative instruction fetches.
  296. */
  297. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
  298. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
  299. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
  300. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
  301. }
  302. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  303. /*
  304. * For ARMv7 with TEX remapping,
  305. * - shared device is SXCB=1100
  306. * - nonshared device is SXCB=0100
  307. * - write combine device mem is SXCB=0001
  308. * (Uncached Normal memory)
  309. */
  310. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
  311. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
  312. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  313. } else if (cpu_is_xsc3()) {
  314. /*
  315. * For Xscale3,
  316. * - shared device is TEXCB=00101
  317. * - nonshared device is TEXCB=01000
  318. * - write combine device mem is TEXCB=00100
  319. * (Inner/Outer Uncacheable in xsc3 parlance)
  320. */
  321. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
  322. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  323. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  324. } else {
  325. /*
  326. * For ARMv6 and ARMv7 without TEX remapping,
  327. * - shared device is TEXCB=00001
  328. * - nonshared device is TEXCB=01000
  329. * - write combine device mem is TEXCB=00100
  330. * (Uncached Normal in ARMv6 parlance).
  331. */
  332. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
  333. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  334. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  335. }
  336. } else {
  337. /*
  338. * On others, write combining is "Uncached/Buffered"
  339. */
  340. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  341. }
  342. /*
  343. * Now deal with the memory-type mappings
  344. */
  345. cp = &cache_policies[cachepolicy];
  346. vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
  347. #ifndef CONFIG_SMP
  348. /*
  349. * Only use write-through for non-SMP systems
  350. */
  351. if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
  352. vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
  353. #endif
  354. /*
  355. * Enable CPU-specific coherency if supported.
  356. * (Only available on XSC3 at the moment.)
  357. */
  358. if (arch_is_coherent() && cpu_is_xsc3())
  359. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  360. /*
  361. * ARMv6 and above have extended page tables.
  362. */
  363. if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
  364. /*
  365. * Mark cache clean areas and XIP ROM read only
  366. * from SVC mode and no access from userspace.
  367. */
  368. mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  369. mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  370. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  371. #ifdef CONFIG_SMP
  372. /*
  373. * Mark memory with the "shared" attribute for SMP systems
  374. */
  375. user_pgprot |= L_PTE_SHARED;
  376. kern_pgprot |= L_PTE_SHARED;
  377. vecs_pgprot |= L_PTE_SHARED;
  378. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  379. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  380. #endif
  381. }
  382. /*
  383. * Non-cacheable Normal - intended for memory areas that must
  384. * not cause dirty cache line writebacks when used
  385. */
  386. if (cpu_arch >= CPU_ARCH_ARMv6) {
  387. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  388. /* Non-cacheable Normal is XCB = 001 */
  389. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  390. PMD_SECT_BUFFERED;
  391. } else {
  392. /* For both ARMv6 and non-TEX-remapping ARMv7 */
  393. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  394. PMD_SECT_TEX(1);
  395. }
  396. } else {
  397. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
  398. }
  399. for (i = 0; i < 16; i++) {
  400. unsigned long v = pgprot_val(protection_map[i]);
  401. protection_map[i] = __pgprot(v | user_pgprot);
  402. }
  403. mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
  404. mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
  405. pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
  406. pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
  407. L_PTE_DIRTY | L_PTE_WRITE |
  408. L_PTE_EXEC | kern_pgprot);
  409. mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
  410. mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
  411. mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
  412. mem_types[MT_ROM].prot_sect |= cp->pmd;
  413. switch (cp->pmd) {
  414. case PMD_SECT_WT:
  415. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
  416. break;
  417. case PMD_SECT_WB:
  418. case PMD_SECT_WBWA:
  419. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
  420. break;
  421. }
  422. printk("Memory policy: ECC %sabled, Data cache %s\n",
  423. ecc_mask ? "en" : "dis", cp->policy);
  424. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  425. struct mem_type *t = &mem_types[i];
  426. if (t->prot_l1)
  427. t->prot_l1 |= PMD_DOMAIN(t->domain);
  428. if (t->prot_sect)
  429. t->prot_sect |= PMD_DOMAIN(t->domain);
  430. }
  431. }
  432. #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
  433. static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
  434. unsigned long end, unsigned long pfn,
  435. const struct mem_type *type)
  436. {
  437. pte_t *pte;
  438. if (pmd_none(*pmd)) {
  439. pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
  440. __pmd_populate(pmd, __pa(pte) | type->prot_l1);
  441. }
  442. pte = pte_offset_kernel(pmd, addr);
  443. do {
  444. set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
  445. pfn++;
  446. } while (pte++, addr += PAGE_SIZE, addr != end);
  447. }
  448. static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
  449. unsigned long end, unsigned long phys,
  450. const struct mem_type *type)
  451. {
  452. pmd_t *pmd = pmd_offset(pgd, addr);
  453. /*
  454. * Try a section mapping - end, addr and phys must all be aligned
  455. * to a section boundary. Note that PMDs refer to the individual
  456. * L1 entries, whereas PGDs refer to a group of L1 entries making
  457. * up one logical pointer to an L2 table.
  458. */
  459. if (((addr | end | phys) & ~SECTION_MASK) == 0) {
  460. pmd_t *p = pmd;
  461. if (addr & SECTION_SIZE)
  462. pmd++;
  463. do {
  464. *pmd = __pmd(phys | type->prot_sect);
  465. phys += SECTION_SIZE;
  466. } while (pmd++, addr += SECTION_SIZE, addr != end);
  467. flush_pmd_entry(p);
  468. } else {
  469. /*
  470. * No need to loop; pte's aren't interested in the
  471. * individual L1 entries.
  472. */
  473. alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
  474. }
  475. }
  476. static void __init create_36bit_mapping(struct map_desc *md,
  477. const struct mem_type *type)
  478. {
  479. unsigned long phys, addr, length, end;
  480. pgd_t *pgd;
  481. addr = md->virtual;
  482. phys = (unsigned long)__pfn_to_phys(md->pfn);
  483. length = PAGE_ALIGN(md->length);
  484. if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
  485. printk(KERN_ERR "MM: CPU does not support supersection "
  486. "mapping for 0x%08llx at 0x%08lx\n",
  487. __pfn_to_phys((u64)md->pfn), addr);
  488. return;
  489. }
  490. /* N.B. ARMv6 supersections are only defined to work with domain 0.
  491. * Since domain assignments can in fact be arbitrary, the
  492. * 'domain == 0' check below is required to insure that ARMv6
  493. * supersections are only allocated for domain 0 regardless
  494. * of the actual domain assignments in use.
  495. */
  496. if (type->domain) {
  497. printk(KERN_ERR "MM: invalid domain in supersection "
  498. "mapping for 0x%08llx at 0x%08lx\n",
  499. __pfn_to_phys((u64)md->pfn), addr);
  500. return;
  501. }
  502. if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
  503. printk(KERN_ERR "MM: cannot create mapping for "
  504. "0x%08llx at 0x%08lx invalid alignment\n",
  505. __pfn_to_phys((u64)md->pfn), addr);
  506. return;
  507. }
  508. /*
  509. * Shift bits [35:32] of address into bits [23:20] of PMD
  510. * (See ARMv6 spec).
  511. */
  512. phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
  513. pgd = pgd_offset_k(addr);
  514. end = addr + length;
  515. do {
  516. pmd_t *pmd = pmd_offset(pgd, addr);
  517. int i;
  518. for (i = 0; i < 16; i++)
  519. *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
  520. addr += SUPERSECTION_SIZE;
  521. phys += SUPERSECTION_SIZE;
  522. pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
  523. } while (addr != end);
  524. }
  525. /*
  526. * Create the page directory entries and any necessary
  527. * page tables for the mapping specified by `md'. We
  528. * are able to cope here with varying sizes and address
  529. * offsets, and we take full advantage of sections and
  530. * supersections.
  531. */
  532. void __init create_mapping(struct map_desc *md)
  533. {
  534. unsigned long phys, addr, length, end;
  535. const struct mem_type *type;
  536. pgd_t *pgd;
  537. if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
  538. printk(KERN_WARNING "BUG: not creating mapping for "
  539. "0x%08llx at 0x%08lx in user region\n",
  540. __pfn_to_phys((u64)md->pfn), md->virtual);
  541. return;
  542. }
  543. if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
  544. md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
  545. printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
  546. "overlaps vmalloc space\n",
  547. __pfn_to_phys((u64)md->pfn), md->virtual);
  548. }
  549. type = &mem_types[md->type];
  550. /*
  551. * Catch 36-bit addresses
  552. */
  553. if (md->pfn >= 0x100000) {
  554. create_36bit_mapping(md, type);
  555. return;
  556. }
  557. addr = md->virtual & PAGE_MASK;
  558. phys = (unsigned long)__pfn_to_phys(md->pfn);
  559. length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
  560. if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
  561. printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
  562. "be mapped using pages, ignoring.\n",
  563. __pfn_to_phys(md->pfn), addr);
  564. return;
  565. }
  566. pgd = pgd_offset_k(addr);
  567. end = addr + length;
  568. do {
  569. unsigned long next = pgd_addr_end(addr, end);
  570. alloc_init_section(pgd, addr, next, phys, type);
  571. phys += next - addr;
  572. addr = next;
  573. } while (pgd++, addr != end);
  574. }
  575. /*
  576. * Create the architecture specific mappings
  577. */
  578. void __init iotable_init(struct map_desc *io_desc, int nr)
  579. {
  580. int i;
  581. for (i = 0; i < nr; i++)
  582. create_mapping(io_desc + i);
  583. }
  584. static unsigned long __initdata vmalloc_reserve = SZ_128M;
  585. /*
  586. * vmalloc=size forces the vmalloc area to be exactly 'size'
  587. * bytes. This can be used to increase (or decrease) the vmalloc
  588. * area - the default is 128m.
  589. */
  590. static void __init early_vmalloc(char **arg)
  591. {
  592. vmalloc_reserve = memparse(*arg, arg);
  593. if (vmalloc_reserve < SZ_16M) {
  594. vmalloc_reserve = SZ_16M;
  595. printk(KERN_WARNING
  596. "vmalloc area too small, limiting to %luMB\n",
  597. vmalloc_reserve >> 20);
  598. }
  599. if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
  600. vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
  601. printk(KERN_WARNING
  602. "vmalloc area is too big, limiting to %luMB\n",
  603. vmalloc_reserve >> 20);
  604. }
  605. }
  606. __early_param("vmalloc=", early_vmalloc);
  607. #define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve)
  608. static void __init sanity_check_meminfo(void)
  609. {
  610. int i, j, highmem = 0;
  611. for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
  612. struct membank *bank = &meminfo.bank[j];
  613. *bank = meminfo.bank[i];
  614. #ifdef CONFIG_HIGHMEM
  615. if (__va(bank->start) > VMALLOC_MIN ||
  616. __va(bank->start) < (void *)PAGE_OFFSET)
  617. highmem = 1;
  618. bank->highmem = highmem;
  619. /*
  620. * Split those memory banks which are partially overlapping
  621. * the vmalloc area greatly simplifying things later.
  622. */
  623. if (__va(bank->start) < VMALLOC_MIN &&
  624. bank->size > VMALLOC_MIN - __va(bank->start)) {
  625. if (meminfo.nr_banks >= NR_BANKS) {
  626. printk(KERN_CRIT "NR_BANKS too low, "
  627. "ignoring high memory\n");
  628. } else {
  629. memmove(bank + 1, bank,
  630. (meminfo.nr_banks - i) * sizeof(*bank));
  631. meminfo.nr_banks++;
  632. i++;
  633. bank[1].size -= VMALLOC_MIN - __va(bank->start);
  634. bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
  635. bank[1].highmem = highmem = 1;
  636. j++;
  637. }
  638. bank->size = VMALLOC_MIN - __va(bank->start);
  639. }
  640. #else
  641. bank->highmem = highmem;
  642. /*
  643. * Check whether this memory bank would entirely overlap
  644. * the vmalloc area.
  645. */
  646. if (__va(bank->start) >= VMALLOC_MIN ||
  647. __va(bank->start) < (void *)PAGE_OFFSET) {
  648. printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
  649. "(vmalloc region overlap).\n",
  650. bank->start, bank->start + bank->size - 1);
  651. continue;
  652. }
  653. /*
  654. * Check whether this memory bank would partially overlap
  655. * the vmalloc area.
  656. */
  657. if (__va(bank->start + bank->size) > VMALLOC_MIN ||
  658. __va(bank->start + bank->size) < __va(bank->start)) {
  659. unsigned long newsize = VMALLOC_MIN - __va(bank->start);
  660. printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
  661. "to -%.8lx (vmalloc region overlap).\n",
  662. bank->start, bank->start + bank->size - 1,
  663. bank->start + newsize - 1);
  664. bank->size = newsize;
  665. }
  666. #endif
  667. j++;
  668. }
  669. #ifdef CONFIG_HIGHMEM
  670. if (highmem) {
  671. const char *reason = NULL;
  672. if (cache_is_vipt_aliasing()) {
  673. /*
  674. * Interactions between kmap and other mappings
  675. * make highmem support with aliasing VIPT caches
  676. * rather difficult.
  677. */
  678. reason = "with VIPT aliasing cache";
  679. #ifdef CONFIG_SMP
  680. } else if (tlb_ops_need_broadcast()) {
  681. /*
  682. * kmap_high needs to occasionally flush TLB entries,
  683. * however, if the TLB entries need to be broadcast
  684. * we may deadlock:
  685. * kmap_high(irqs off)->flush_all_zero_pkmaps->
  686. * flush_tlb_kernel_range->smp_call_function_many
  687. * (must not be called with irqs off)
  688. */
  689. reason = "without hardware TLB ops broadcasting";
  690. #endif
  691. }
  692. if (reason) {
  693. printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
  694. reason);
  695. while (j > 0 && meminfo.bank[j - 1].highmem)
  696. j--;
  697. }
  698. }
  699. #endif
  700. meminfo.nr_banks = j;
  701. }
  702. static inline void prepare_page_table(void)
  703. {
  704. unsigned long addr;
  705. /*
  706. * Clear out all the mappings below the kernel image.
  707. */
  708. for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
  709. pmd_clear(pmd_off_k(addr));
  710. #ifdef CONFIG_XIP_KERNEL
  711. /* The XIP kernel is mapped in the module area -- skip over it */
  712. addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
  713. #endif
  714. for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
  715. pmd_clear(pmd_off_k(addr));
  716. /*
  717. * Clear out all the kernel space mappings, except for the first
  718. * memory bank, up to the end of the vmalloc region.
  719. */
  720. for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
  721. addr < VMALLOC_END; addr += PGDIR_SIZE)
  722. pmd_clear(pmd_off_k(addr));
  723. }
  724. /*
  725. * Reserve the various regions of node 0
  726. */
  727. void __init reserve_node_zero(pg_data_t *pgdat)
  728. {
  729. unsigned long res_size = 0;
  730. /*
  731. * Register the kernel text and data with bootmem.
  732. * Note that this can only be in node 0.
  733. */
  734. #ifdef CONFIG_XIP_KERNEL
  735. reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
  736. BOOTMEM_DEFAULT);
  737. #else
  738. reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
  739. BOOTMEM_DEFAULT);
  740. #endif
  741. /*
  742. * Reserve the page tables. These are already in use,
  743. * and can only be in node 0.
  744. */
  745. reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
  746. PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
  747. /*
  748. * Hmm... This should go elsewhere, but we really really need to
  749. * stop things allocating the low memory; ideally we need a better
  750. * implementation of GFP_DMA which does not assume that DMA-able
  751. * memory starts at zero.
  752. */
  753. if (machine_is_integrator() || machine_is_cintegrator())
  754. res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
  755. /*
  756. * These should likewise go elsewhere. They pre-reserve the
  757. * screen memory region at the start of main system memory.
  758. */
  759. if (machine_is_edb7211())
  760. res_size = 0x00020000;
  761. if (machine_is_p720t())
  762. res_size = 0x00014000;
  763. /* H1940 and RX3715 need to reserve this for suspend */
  764. if (machine_is_h1940() || machine_is_rx3715()) {
  765. reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
  766. BOOTMEM_DEFAULT);
  767. reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
  768. BOOTMEM_DEFAULT);
  769. }
  770. if (machine_is_palmld() || machine_is_palmtx()) {
  771. reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
  772. BOOTMEM_EXCLUSIVE);
  773. reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
  774. BOOTMEM_EXCLUSIVE);
  775. }
  776. if (machine_is_treo680()) {
  777. reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
  778. BOOTMEM_EXCLUSIVE);
  779. reserve_bootmem_node(pgdat, 0xa2000000, 0x1000,
  780. BOOTMEM_EXCLUSIVE);
  781. }
  782. if (machine_is_palmt5())
  783. reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
  784. BOOTMEM_EXCLUSIVE);
  785. /*
  786. * U300 - This platform family can share physical memory
  787. * between two ARM cpus, one running Linux and the other
  788. * running another OS.
  789. */
  790. if (machine_is_u300()) {
  791. #ifdef CONFIG_MACH_U300_SINGLE_RAM
  792. #if ((CONFIG_MACH_U300_ACCESS_MEM_SIZE & 1) == 1) && \
  793. CONFIG_MACH_U300_2MB_ALIGNMENT_FIX
  794. res_size = 0x00100000;
  795. #endif
  796. #endif
  797. }
  798. #ifdef CONFIG_SA1111
  799. /*
  800. * Because of the SA1111 DMA bug, we want to preserve our
  801. * precious DMA-able memory...
  802. */
  803. res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
  804. #endif
  805. if (res_size)
  806. reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
  807. BOOTMEM_DEFAULT);
  808. }
  809. /*
  810. * Set up device the mappings. Since we clear out the page tables for all
  811. * mappings above VMALLOC_END, we will remove any debug device mappings.
  812. * This means you have to be careful how you debug this function, or any
  813. * called function. This means you can't use any function or debugging
  814. * method which may touch any device, otherwise the kernel _will_ crash.
  815. */
  816. static void __init devicemaps_init(struct machine_desc *mdesc)
  817. {
  818. struct map_desc map;
  819. unsigned long addr;
  820. void *vectors;
  821. /*
  822. * Allocate the vector page early.
  823. */
  824. vectors = alloc_bootmem_low_pages(PAGE_SIZE);
  825. for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
  826. pmd_clear(pmd_off_k(addr));
  827. /*
  828. * Map the kernel if it is XIP.
  829. * It is always first in the modulearea.
  830. */
  831. #ifdef CONFIG_XIP_KERNEL
  832. map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
  833. map.virtual = MODULES_VADDR;
  834. map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
  835. map.type = MT_ROM;
  836. create_mapping(&map);
  837. #endif
  838. /*
  839. * Map the cache flushing regions.
  840. */
  841. #ifdef FLUSH_BASE
  842. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
  843. map.virtual = FLUSH_BASE;
  844. map.length = SZ_1M;
  845. map.type = MT_CACHECLEAN;
  846. create_mapping(&map);
  847. #endif
  848. #ifdef FLUSH_BASE_MINICACHE
  849. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
  850. map.virtual = FLUSH_BASE_MINICACHE;
  851. map.length = SZ_1M;
  852. map.type = MT_MINICLEAN;
  853. create_mapping(&map);
  854. #endif
  855. /*
  856. * Create a mapping for the machine vectors at the high-vectors
  857. * location (0xffff0000). If we aren't using high-vectors, also
  858. * create a mapping at the low-vectors virtual address.
  859. */
  860. map.pfn = __phys_to_pfn(virt_to_phys(vectors));
  861. map.virtual = 0xffff0000;
  862. map.length = PAGE_SIZE;
  863. map.type = MT_HIGH_VECTORS;
  864. create_mapping(&map);
  865. if (!vectors_high()) {
  866. map.virtual = 0;
  867. map.type = MT_LOW_VECTORS;
  868. create_mapping(&map);
  869. }
  870. /*
  871. * Ask the machine support to map in the statically mapped devices.
  872. */
  873. if (mdesc->map_io)
  874. mdesc->map_io();
  875. /*
  876. * Finally flush the caches and tlb to ensure that we're in a
  877. * consistent state wrt the writebuffer. This also ensures that
  878. * any write-allocated cache lines in the vector page are written
  879. * back. After this point, we can start to touch devices again.
  880. */
  881. local_flush_tlb_all();
  882. flush_cache_all();
  883. }
  884. static void __init kmap_init(void)
  885. {
  886. #ifdef CONFIG_HIGHMEM
  887. pmd_t *pmd = pmd_off_k(PKMAP_BASE);
  888. pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
  889. BUG_ON(!pmd_none(*pmd) || !pte);
  890. __pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE);
  891. pkmap_page_table = pte + PTRS_PER_PTE;
  892. #endif
  893. }
  894. /*
  895. * paging_init() sets up the page tables, initialises the zone memory
  896. * maps, and sets up the zero page, bad page and bad page tables.
  897. */
  898. void __init paging_init(struct machine_desc *mdesc)
  899. {
  900. void *zero_page;
  901. build_mem_type_table();
  902. sanity_check_meminfo();
  903. prepare_page_table();
  904. bootmem_init();
  905. devicemaps_init(mdesc);
  906. kmap_init();
  907. top_pmd = pmd_off_k(0xffff0000);
  908. /*
  909. * allocate the zero page. Note that this always succeeds and
  910. * returns a zeroed result.
  911. */
  912. zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
  913. empty_zero_page = virt_to_page(zero_page);
  914. flush_dcache_page(empty_zero_page);
  915. }
  916. /*
  917. * In order to soft-boot, we need to insert a 1:1 mapping in place of
  918. * the user-mode pages. This will then ensure that we have predictable
  919. * results when turning the mmu off
  920. */
  921. void setup_mm_for_reboot(char mode)
  922. {
  923. unsigned long base_pmdval;
  924. pgd_t *pgd;
  925. int i;
  926. if (current->mm && current->mm->pgd)
  927. pgd = current->mm->pgd;
  928. else
  929. pgd = init_mm.pgd;
  930. base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
  931. if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
  932. base_pmdval |= PMD_BIT4;
  933. for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
  934. unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
  935. pmd_t *pmd;
  936. pmd = pmd_off(pgd, i << PGDIR_SHIFT);
  937. pmd[0] = __pmd(pmdval);
  938. pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
  939. flush_pmd_entry(pmd);
  940. }
  941. }