i915_gem.c 101 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  40. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  41. unsigned alignment,
  42. bool map_and_fenceable);
  43. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  44. struct drm_i915_fence_reg *reg);
  45. static int i915_gem_phys_pwrite(struct drm_device *dev,
  46. struct drm_i915_gem_object *obj,
  47. struct drm_i915_gem_pwrite *args,
  48. struct drm_file *file);
  49. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  50. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  51. struct shrink_control *sc);
  52. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  53. /* some bookkeeping */
  54. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  55. size_t size)
  56. {
  57. dev_priv->mm.object_count++;
  58. dev_priv->mm.object_memory += size;
  59. }
  60. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  61. size_t size)
  62. {
  63. dev_priv->mm.object_count--;
  64. dev_priv->mm.object_memory -= size;
  65. }
  66. static int
  67. i915_gem_wait_for_error(struct drm_device *dev)
  68. {
  69. struct drm_i915_private *dev_priv = dev->dev_private;
  70. struct completion *x = &dev_priv->error_completion;
  71. unsigned long flags;
  72. int ret;
  73. if (!atomic_read(&dev_priv->mm.wedged))
  74. return 0;
  75. ret = wait_for_completion_interruptible(x);
  76. if (ret)
  77. return ret;
  78. if (atomic_read(&dev_priv->mm.wedged)) {
  79. /* GPU is hung, bump the completion count to account for
  80. * the token we just consumed so that we never hit zero and
  81. * end up waiting upon a subsequent completion event that
  82. * will never happen.
  83. */
  84. spin_lock_irqsave(&x->wait.lock, flags);
  85. x->done++;
  86. spin_unlock_irqrestore(&x->wait.lock, flags);
  87. }
  88. return 0;
  89. }
  90. int i915_mutex_lock_interruptible(struct drm_device *dev)
  91. {
  92. int ret;
  93. ret = i915_gem_wait_for_error(dev);
  94. if (ret)
  95. return ret;
  96. ret = mutex_lock_interruptible(&dev->struct_mutex);
  97. if (ret)
  98. return ret;
  99. WARN_ON(i915_verify_lists(dev));
  100. return 0;
  101. }
  102. static inline bool
  103. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  104. {
  105. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  106. }
  107. int
  108. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  109. struct drm_file *file)
  110. {
  111. struct drm_i915_gem_init *args = data;
  112. if (args->gtt_start >= args->gtt_end ||
  113. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  114. return -EINVAL;
  115. mutex_lock(&dev->struct_mutex);
  116. i915_gem_init_global_gtt(dev, args->gtt_start,
  117. args->gtt_end, args->gtt_end);
  118. mutex_unlock(&dev->struct_mutex);
  119. return 0;
  120. }
  121. int
  122. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  123. struct drm_file *file)
  124. {
  125. struct drm_i915_private *dev_priv = dev->dev_private;
  126. struct drm_i915_gem_get_aperture *args = data;
  127. struct drm_i915_gem_object *obj;
  128. size_t pinned;
  129. if (!(dev->driver->driver_features & DRIVER_GEM))
  130. return -ENODEV;
  131. pinned = 0;
  132. mutex_lock(&dev->struct_mutex);
  133. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  134. pinned += obj->gtt_space->size;
  135. mutex_unlock(&dev->struct_mutex);
  136. args->aper_size = dev_priv->mm.gtt_total;
  137. args->aper_available_size = args->aper_size - pinned;
  138. return 0;
  139. }
  140. static int
  141. i915_gem_create(struct drm_file *file,
  142. struct drm_device *dev,
  143. uint64_t size,
  144. uint32_t *handle_p)
  145. {
  146. struct drm_i915_gem_object *obj;
  147. int ret;
  148. u32 handle;
  149. size = roundup(size, PAGE_SIZE);
  150. if (size == 0)
  151. return -EINVAL;
  152. /* Allocate the new object */
  153. obj = i915_gem_alloc_object(dev, size);
  154. if (obj == NULL)
  155. return -ENOMEM;
  156. ret = drm_gem_handle_create(file, &obj->base, &handle);
  157. if (ret) {
  158. drm_gem_object_release(&obj->base);
  159. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  160. kfree(obj);
  161. return ret;
  162. }
  163. /* drop reference from allocate - handle holds it now */
  164. drm_gem_object_unreference(&obj->base);
  165. trace_i915_gem_object_create(obj);
  166. *handle_p = handle;
  167. return 0;
  168. }
  169. int
  170. i915_gem_dumb_create(struct drm_file *file,
  171. struct drm_device *dev,
  172. struct drm_mode_create_dumb *args)
  173. {
  174. /* have to work out size/pitch and return them */
  175. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  176. args->size = args->pitch * args->height;
  177. return i915_gem_create(file, dev,
  178. args->size, &args->handle);
  179. }
  180. int i915_gem_dumb_destroy(struct drm_file *file,
  181. struct drm_device *dev,
  182. uint32_t handle)
  183. {
  184. return drm_gem_handle_delete(file, handle);
  185. }
  186. /**
  187. * Creates a new mm object and returns a handle to it.
  188. */
  189. int
  190. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  191. struct drm_file *file)
  192. {
  193. struct drm_i915_gem_create *args = data;
  194. return i915_gem_create(file, dev,
  195. args->size, &args->handle);
  196. }
  197. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  198. {
  199. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  200. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  201. obj->tiling_mode != I915_TILING_NONE;
  202. }
  203. static inline int
  204. __copy_to_user_swizzled(char __user *cpu_vaddr,
  205. const char *gpu_vaddr, int gpu_offset,
  206. int length)
  207. {
  208. int ret, cpu_offset = 0;
  209. while (length > 0) {
  210. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  211. int this_length = min(cacheline_end - gpu_offset, length);
  212. int swizzled_gpu_offset = gpu_offset ^ 64;
  213. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  214. gpu_vaddr + swizzled_gpu_offset,
  215. this_length);
  216. if (ret)
  217. return ret + length;
  218. cpu_offset += this_length;
  219. gpu_offset += this_length;
  220. length -= this_length;
  221. }
  222. return 0;
  223. }
  224. static inline int
  225. __copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
  226. const char *cpu_vaddr,
  227. int length)
  228. {
  229. int ret, cpu_offset = 0;
  230. while (length > 0) {
  231. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  232. int this_length = min(cacheline_end - gpu_offset, length);
  233. int swizzled_gpu_offset = gpu_offset ^ 64;
  234. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  235. cpu_vaddr + cpu_offset,
  236. this_length);
  237. if (ret)
  238. return ret + length;
  239. cpu_offset += this_length;
  240. gpu_offset += this_length;
  241. length -= this_length;
  242. }
  243. return 0;
  244. }
  245. static int
  246. i915_gem_shmem_pread(struct drm_device *dev,
  247. struct drm_i915_gem_object *obj,
  248. struct drm_i915_gem_pread *args,
  249. struct drm_file *file)
  250. {
  251. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  252. char __user *user_data;
  253. ssize_t remain;
  254. loff_t offset;
  255. int shmem_page_offset, page_length, ret = 0;
  256. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  257. int hit_slowpath = 0;
  258. int needs_clflush = 0;
  259. user_data = (char __user *) (uintptr_t) args->data_ptr;
  260. remain = args->size;
  261. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  262. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  263. /* If we're not in the cpu read domain, set ourself into the gtt
  264. * read domain and manually flush cachelines (if required). This
  265. * optimizes for the case when the gpu will dirty the data
  266. * anyway again before the next pread happens. */
  267. if (obj->cache_level == I915_CACHE_NONE)
  268. needs_clflush = 1;
  269. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  270. if (ret)
  271. return ret;
  272. }
  273. offset = args->offset;
  274. while (remain > 0) {
  275. struct page *page;
  276. char *vaddr;
  277. /* Operation in this page
  278. *
  279. * shmem_page_offset = offset within page in shmem file
  280. * page_length = bytes to copy for this page
  281. */
  282. shmem_page_offset = offset_in_page(offset);
  283. page_length = remain;
  284. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  285. page_length = PAGE_SIZE - shmem_page_offset;
  286. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  287. if (IS_ERR(page)) {
  288. ret = PTR_ERR(page);
  289. goto out;
  290. }
  291. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  292. (page_to_phys(page) & (1 << 17)) != 0;
  293. if (!page_do_bit17_swizzling) {
  294. vaddr = kmap_atomic(page);
  295. if (needs_clflush)
  296. drm_clflush_virt_range(vaddr + shmem_page_offset,
  297. page_length);
  298. ret = __copy_to_user_inatomic(user_data,
  299. vaddr + shmem_page_offset,
  300. page_length);
  301. kunmap_atomic(vaddr);
  302. if (ret == 0)
  303. goto next_page;
  304. }
  305. hit_slowpath = 1;
  306. mutex_unlock(&dev->struct_mutex);
  307. vaddr = kmap(page);
  308. if (needs_clflush)
  309. drm_clflush_virt_range(vaddr + shmem_page_offset,
  310. page_length);
  311. if (page_do_bit17_swizzling)
  312. ret = __copy_to_user_swizzled(user_data,
  313. vaddr, shmem_page_offset,
  314. page_length);
  315. else
  316. ret = __copy_to_user(user_data,
  317. vaddr + shmem_page_offset,
  318. page_length);
  319. kunmap(page);
  320. mutex_lock(&dev->struct_mutex);
  321. next_page:
  322. mark_page_accessed(page);
  323. page_cache_release(page);
  324. if (ret) {
  325. ret = -EFAULT;
  326. goto out;
  327. }
  328. remain -= page_length;
  329. user_data += page_length;
  330. offset += page_length;
  331. }
  332. out:
  333. if (hit_slowpath) {
  334. /* Fixup: Kill any reinstated backing storage pages */
  335. if (obj->madv == __I915_MADV_PURGED)
  336. i915_gem_object_truncate(obj);
  337. }
  338. return ret;
  339. }
  340. /**
  341. * Reads data from the object referenced by handle.
  342. *
  343. * On error, the contents of *data are undefined.
  344. */
  345. int
  346. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  347. struct drm_file *file)
  348. {
  349. struct drm_i915_gem_pread *args = data;
  350. struct drm_i915_gem_object *obj;
  351. int ret = 0;
  352. if (args->size == 0)
  353. return 0;
  354. if (!access_ok(VERIFY_WRITE,
  355. (char __user *)(uintptr_t)args->data_ptr,
  356. args->size))
  357. return -EFAULT;
  358. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  359. args->size);
  360. if (ret)
  361. return -EFAULT;
  362. ret = i915_mutex_lock_interruptible(dev);
  363. if (ret)
  364. return ret;
  365. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  366. if (&obj->base == NULL) {
  367. ret = -ENOENT;
  368. goto unlock;
  369. }
  370. /* Bounds check source. */
  371. if (args->offset > obj->base.size ||
  372. args->size > obj->base.size - args->offset) {
  373. ret = -EINVAL;
  374. goto out;
  375. }
  376. trace_i915_gem_object_pread(obj, args->offset, args->size);
  377. ret = i915_gem_shmem_pread(dev, obj, args, file);
  378. out:
  379. drm_gem_object_unreference(&obj->base);
  380. unlock:
  381. mutex_unlock(&dev->struct_mutex);
  382. return ret;
  383. }
  384. /* This is the fast write path which cannot handle
  385. * page faults in the source data
  386. */
  387. static inline int
  388. fast_user_write(struct io_mapping *mapping,
  389. loff_t page_base, int page_offset,
  390. char __user *user_data,
  391. int length)
  392. {
  393. char *vaddr_atomic;
  394. unsigned long unwritten;
  395. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  396. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  397. user_data, length);
  398. io_mapping_unmap_atomic(vaddr_atomic);
  399. return unwritten;
  400. }
  401. /* Here's the write path which can sleep for
  402. * page faults
  403. */
  404. static inline void
  405. slow_kernel_write(struct io_mapping *mapping,
  406. loff_t gtt_base, int gtt_offset,
  407. struct page *user_page, int user_offset,
  408. int length)
  409. {
  410. char __iomem *dst_vaddr;
  411. char *src_vaddr;
  412. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  413. src_vaddr = kmap(user_page);
  414. memcpy_toio(dst_vaddr + gtt_offset,
  415. src_vaddr + user_offset,
  416. length);
  417. kunmap(user_page);
  418. io_mapping_unmap(dst_vaddr);
  419. }
  420. /**
  421. * This is the fast pwrite path, where we copy the data directly from the
  422. * user into the GTT, uncached.
  423. */
  424. static int
  425. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  426. struct drm_i915_gem_object *obj,
  427. struct drm_i915_gem_pwrite *args,
  428. struct drm_file *file)
  429. {
  430. drm_i915_private_t *dev_priv = dev->dev_private;
  431. ssize_t remain;
  432. loff_t offset, page_base;
  433. char __user *user_data;
  434. int page_offset, page_length;
  435. user_data = (char __user *) (uintptr_t) args->data_ptr;
  436. remain = args->size;
  437. offset = obj->gtt_offset + args->offset;
  438. while (remain > 0) {
  439. /* Operation in this page
  440. *
  441. * page_base = page offset within aperture
  442. * page_offset = offset within page
  443. * page_length = bytes to copy for this page
  444. */
  445. page_base = offset & PAGE_MASK;
  446. page_offset = offset_in_page(offset);
  447. page_length = remain;
  448. if ((page_offset + remain) > PAGE_SIZE)
  449. page_length = PAGE_SIZE - page_offset;
  450. /* If we get a fault while copying data, then (presumably) our
  451. * source page isn't available. Return the error and we'll
  452. * retry in the slow path.
  453. */
  454. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  455. page_offset, user_data, page_length))
  456. return -EFAULT;
  457. remain -= page_length;
  458. user_data += page_length;
  459. offset += page_length;
  460. }
  461. return 0;
  462. }
  463. /**
  464. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  465. * the memory and maps it using kmap_atomic for copying.
  466. *
  467. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  468. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  469. */
  470. static int
  471. i915_gem_gtt_pwrite_slow(struct drm_device *dev,
  472. struct drm_i915_gem_object *obj,
  473. struct drm_i915_gem_pwrite *args,
  474. struct drm_file *file)
  475. {
  476. drm_i915_private_t *dev_priv = dev->dev_private;
  477. ssize_t remain;
  478. loff_t gtt_page_base, offset;
  479. loff_t first_data_page, last_data_page, num_pages;
  480. loff_t pinned_pages, i;
  481. struct page **user_pages;
  482. struct mm_struct *mm = current->mm;
  483. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  484. int ret;
  485. uint64_t data_ptr = args->data_ptr;
  486. remain = args->size;
  487. /* Pin the user pages containing the data. We can't fault while
  488. * holding the struct mutex, and all of the pwrite implementations
  489. * want to hold it while dereferencing the user data.
  490. */
  491. first_data_page = data_ptr / PAGE_SIZE;
  492. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  493. num_pages = last_data_page - first_data_page + 1;
  494. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  495. if (user_pages == NULL)
  496. return -ENOMEM;
  497. mutex_unlock(&dev->struct_mutex);
  498. down_read(&mm->mmap_sem);
  499. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  500. num_pages, 0, 0, user_pages, NULL);
  501. up_read(&mm->mmap_sem);
  502. mutex_lock(&dev->struct_mutex);
  503. if (pinned_pages < num_pages) {
  504. ret = -EFAULT;
  505. goto out_unpin_pages;
  506. }
  507. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  508. if (ret)
  509. goto out_unpin_pages;
  510. ret = i915_gem_object_put_fence(obj);
  511. if (ret)
  512. goto out_unpin_pages;
  513. offset = obj->gtt_offset + args->offset;
  514. while (remain > 0) {
  515. /* Operation in this page
  516. *
  517. * gtt_page_base = page offset within aperture
  518. * gtt_page_offset = offset within page in aperture
  519. * data_page_index = page number in get_user_pages return
  520. * data_page_offset = offset with data_page_index page.
  521. * page_length = bytes to copy for this page
  522. */
  523. gtt_page_base = offset & PAGE_MASK;
  524. gtt_page_offset = offset_in_page(offset);
  525. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  526. data_page_offset = offset_in_page(data_ptr);
  527. page_length = remain;
  528. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  529. page_length = PAGE_SIZE - gtt_page_offset;
  530. if ((data_page_offset + page_length) > PAGE_SIZE)
  531. page_length = PAGE_SIZE - data_page_offset;
  532. slow_kernel_write(dev_priv->mm.gtt_mapping,
  533. gtt_page_base, gtt_page_offset,
  534. user_pages[data_page_index],
  535. data_page_offset,
  536. page_length);
  537. remain -= page_length;
  538. offset += page_length;
  539. data_ptr += page_length;
  540. }
  541. out_unpin_pages:
  542. for (i = 0; i < pinned_pages; i++)
  543. page_cache_release(user_pages[i]);
  544. drm_free_large(user_pages);
  545. return ret;
  546. }
  547. static int
  548. i915_gem_shmem_pwrite(struct drm_device *dev,
  549. struct drm_i915_gem_object *obj,
  550. struct drm_i915_gem_pwrite *args,
  551. struct drm_file *file)
  552. {
  553. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  554. ssize_t remain;
  555. loff_t offset;
  556. char __user *user_data;
  557. int shmem_page_offset, page_length, ret = 0;
  558. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  559. int hit_slowpath = 0;
  560. user_data = (char __user *) (uintptr_t) args->data_ptr;
  561. remain = args->size;
  562. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  563. offset = args->offset;
  564. obj->dirty = 1;
  565. while (remain > 0) {
  566. struct page *page;
  567. char *vaddr;
  568. /* Operation in this page
  569. *
  570. * shmem_page_offset = offset within page in shmem file
  571. * page_length = bytes to copy for this page
  572. */
  573. shmem_page_offset = offset_in_page(offset);
  574. page_length = remain;
  575. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  576. page_length = PAGE_SIZE - shmem_page_offset;
  577. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  578. if (IS_ERR(page)) {
  579. ret = PTR_ERR(page);
  580. goto out;
  581. }
  582. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  583. (page_to_phys(page) & (1 << 17)) != 0;
  584. if (!page_do_bit17_swizzling) {
  585. vaddr = kmap_atomic(page);
  586. ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
  587. user_data,
  588. page_length);
  589. kunmap_atomic(vaddr);
  590. if (ret == 0)
  591. goto next_page;
  592. }
  593. hit_slowpath = 1;
  594. mutex_unlock(&dev->struct_mutex);
  595. vaddr = kmap(page);
  596. if (page_do_bit17_swizzling)
  597. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  598. user_data,
  599. page_length);
  600. else
  601. ret = __copy_from_user(vaddr + shmem_page_offset,
  602. user_data,
  603. page_length);
  604. kunmap(page);
  605. mutex_lock(&dev->struct_mutex);
  606. next_page:
  607. set_page_dirty(page);
  608. mark_page_accessed(page);
  609. page_cache_release(page);
  610. if (ret) {
  611. ret = -EFAULT;
  612. goto out;
  613. }
  614. remain -= page_length;
  615. user_data += page_length;
  616. offset += page_length;
  617. }
  618. out:
  619. if (hit_slowpath) {
  620. /* Fixup: Kill any reinstated backing storage pages */
  621. if (obj->madv == __I915_MADV_PURGED)
  622. i915_gem_object_truncate(obj);
  623. /* and flush dirty cachelines in case the object isn't in the cpu write
  624. * domain anymore. */
  625. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  626. i915_gem_clflush_object(obj);
  627. intel_gtt_chipset_flush();
  628. }
  629. }
  630. return ret;
  631. }
  632. /**
  633. * Writes data to the object referenced by handle.
  634. *
  635. * On error, the contents of the buffer that were to be modified are undefined.
  636. */
  637. int
  638. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  639. struct drm_file *file)
  640. {
  641. struct drm_i915_gem_pwrite *args = data;
  642. struct drm_i915_gem_object *obj;
  643. int ret;
  644. if (args->size == 0)
  645. return 0;
  646. if (!access_ok(VERIFY_READ,
  647. (char __user *)(uintptr_t)args->data_ptr,
  648. args->size))
  649. return -EFAULT;
  650. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  651. args->size);
  652. if (ret)
  653. return -EFAULT;
  654. ret = i915_mutex_lock_interruptible(dev);
  655. if (ret)
  656. return ret;
  657. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  658. if (&obj->base == NULL) {
  659. ret = -ENOENT;
  660. goto unlock;
  661. }
  662. /* Bounds check destination. */
  663. if (args->offset > obj->base.size ||
  664. args->size > obj->base.size - args->offset) {
  665. ret = -EINVAL;
  666. goto out;
  667. }
  668. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  669. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  670. * it would end up going through the fenced access, and we'll get
  671. * different detiling behavior between reading and writing.
  672. * pread/pwrite currently are reading and writing from the CPU
  673. * perspective, requiring manual detiling by the client.
  674. */
  675. if (obj->phys_obj) {
  676. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  677. goto out;
  678. }
  679. if (obj->gtt_space &&
  680. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  681. ret = i915_gem_object_pin(obj, 0, true);
  682. if (ret)
  683. goto out;
  684. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  685. if (ret)
  686. goto out_unpin;
  687. ret = i915_gem_object_put_fence(obj);
  688. if (ret)
  689. goto out_unpin;
  690. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  691. if (ret == -EFAULT)
  692. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  693. out_unpin:
  694. i915_gem_object_unpin(obj);
  695. if (ret != -EFAULT)
  696. goto out;
  697. /* Fall through to the shmfs paths because the gtt paths might
  698. * fail with non-page-backed user pointers (e.g. gtt mappings
  699. * when moving data between textures). */
  700. }
  701. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  702. if (ret)
  703. goto out;
  704. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  705. out:
  706. drm_gem_object_unreference(&obj->base);
  707. unlock:
  708. mutex_unlock(&dev->struct_mutex);
  709. return ret;
  710. }
  711. /**
  712. * Called when user space prepares to use an object with the CPU, either
  713. * through the mmap ioctl's mapping or a GTT mapping.
  714. */
  715. int
  716. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  717. struct drm_file *file)
  718. {
  719. struct drm_i915_gem_set_domain *args = data;
  720. struct drm_i915_gem_object *obj;
  721. uint32_t read_domains = args->read_domains;
  722. uint32_t write_domain = args->write_domain;
  723. int ret;
  724. if (!(dev->driver->driver_features & DRIVER_GEM))
  725. return -ENODEV;
  726. /* Only handle setting domains to types used by the CPU. */
  727. if (write_domain & I915_GEM_GPU_DOMAINS)
  728. return -EINVAL;
  729. if (read_domains & I915_GEM_GPU_DOMAINS)
  730. return -EINVAL;
  731. /* Having something in the write domain implies it's in the read
  732. * domain, and only that read domain. Enforce that in the request.
  733. */
  734. if (write_domain != 0 && read_domains != write_domain)
  735. return -EINVAL;
  736. ret = i915_mutex_lock_interruptible(dev);
  737. if (ret)
  738. return ret;
  739. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  740. if (&obj->base == NULL) {
  741. ret = -ENOENT;
  742. goto unlock;
  743. }
  744. if (read_domains & I915_GEM_DOMAIN_GTT) {
  745. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  746. /* Silently promote "you're not bound, there was nothing to do"
  747. * to success, since the client was just asking us to
  748. * make sure everything was done.
  749. */
  750. if (ret == -EINVAL)
  751. ret = 0;
  752. } else {
  753. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  754. }
  755. drm_gem_object_unreference(&obj->base);
  756. unlock:
  757. mutex_unlock(&dev->struct_mutex);
  758. return ret;
  759. }
  760. /**
  761. * Called when user space has done writes to this buffer
  762. */
  763. int
  764. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  765. struct drm_file *file)
  766. {
  767. struct drm_i915_gem_sw_finish *args = data;
  768. struct drm_i915_gem_object *obj;
  769. int ret = 0;
  770. if (!(dev->driver->driver_features & DRIVER_GEM))
  771. return -ENODEV;
  772. ret = i915_mutex_lock_interruptible(dev);
  773. if (ret)
  774. return ret;
  775. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  776. if (&obj->base == NULL) {
  777. ret = -ENOENT;
  778. goto unlock;
  779. }
  780. /* Pinned buffers may be scanout, so flush the cache */
  781. if (obj->pin_count)
  782. i915_gem_object_flush_cpu_write_domain(obj);
  783. drm_gem_object_unreference(&obj->base);
  784. unlock:
  785. mutex_unlock(&dev->struct_mutex);
  786. return ret;
  787. }
  788. /**
  789. * Maps the contents of an object, returning the address it is mapped
  790. * into.
  791. *
  792. * While the mapping holds a reference on the contents of the object, it doesn't
  793. * imply a ref on the object itself.
  794. */
  795. int
  796. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  797. struct drm_file *file)
  798. {
  799. struct drm_i915_gem_mmap *args = data;
  800. struct drm_gem_object *obj;
  801. unsigned long addr;
  802. if (!(dev->driver->driver_features & DRIVER_GEM))
  803. return -ENODEV;
  804. obj = drm_gem_object_lookup(dev, file, args->handle);
  805. if (obj == NULL)
  806. return -ENOENT;
  807. down_write(&current->mm->mmap_sem);
  808. addr = do_mmap(obj->filp, 0, args->size,
  809. PROT_READ | PROT_WRITE, MAP_SHARED,
  810. args->offset);
  811. up_write(&current->mm->mmap_sem);
  812. drm_gem_object_unreference_unlocked(obj);
  813. if (IS_ERR((void *)addr))
  814. return addr;
  815. args->addr_ptr = (uint64_t) addr;
  816. return 0;
  817. }
  818. /**
  819. * i915_gem_fault - fault a page into the GTT
  820. * vma: VMA in question
  821. * vmf: fault info
  822. *
  823. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  824. * from userspace. The fault handler takes care of binding the object to
  825. * the GTT (if needed), allocating and programming a fence register (again,
  826. * only if needed based on whether the old reg is still valid or the object
  827. * is tiled) and inserting a new PTE into the faulting process.
  828. *
  829. * Note that the faulting process may involve evicting existing objects
  830. * from the GTT and/or fence registers to make room. So performance may
  831. * suffer if the GTT working set is large or there are few fence registers
  832. * left.
  833. */
  834. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  835. {
  836. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  837. struct drm_device *dev = obj->base.dev;
  838. drm_i915_private_t *dev_priv = dev->dev_private;
  839. pgoff_t page_offset;
  840. unsigned long pfn;
  841. int ret = 0;
  842. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  843. /* We don't use vmf->pgoff since that has the fake offset */
  844. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  845. PAGE_SHIFT;
  846. ret = i915_mutex_lock_interruptible(dev);
  847. if (ret)
  848. goto out;
  849. trace_i915_gem_object_fault(obj, page_offset, true, write);
  850. /* Now bind it into the GTT if needed */
  851. if (!obj->map_and_fenceable) {
  852. ret = i915_gem_object_unbind(obj);
  853. if (ret)
  854. goto unlock;
  855. }
  856. if (!obj->gtt_space) {
  857. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  858. if (ret)
  859. goto unlock;
  860. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  861. if (ret)
  862. goto unlock;
  863. }
  864. if (!obj->has_global_gtt_mapping)
  865. i915_gem_gtt_bind_object(obj, obj->cache_level);
  866. if (obj->tiling_mode == I915_TILING_NONE)
  867. ret = i915_gem_object_put_fence(obj);
  868. else
  869. ret = i915_gem_object_get_fence(obj, NULL);
  870. if (ret)
  871. goto unlock;
  872. if (i915_gem_object_is_inactive(obj))
  873. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  874. obj->fault_mappable = true;
  875. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  876. page_offset;
  877. /* Finally, remap it using the new GTT offset */
  878. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  879. unlock:
  880. mutex_unlock(&dev->struct_mutex);
  881. out:
  882. switch (ret) {
  883. case -EIO:
  884. case -EAGAIN:
  885. /* Give the error handler a chance to run and move the
  886. * objects off the GPU active list. Next time we service the
  887. * fault, we should be able to transition the page into the
  888. * GTT without touching the GPU (and so avoid further
  889. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  890. * with coherency, just lost writes.
  891. */
  892. set_need_resched();
  893. case 0:
  894. case -ERESTARTSYS:
  895. case -EINTR:
  896. return VM_FAULT_NOPAGE;
  897. case -ENOMEM:
  898. return VM_FAULT_OOM;
  899. default:
  900. return VM_FAULT_SIGBUS;
  901. }
  902. }
  903. /**
  904. * i915_gem_release_mmap - remove physical page mappings
  905. * @obj: obj in question
  906. *
  907. * Preserve the reservation of the mmapping with the DRM core code, but
  908. * relinquish ownership of the pages back to the system.
  909. *
  910. * It is vital that we remove the page mapping if we have mapped a tiled
  911. * object through the GTT and then lose the fence register due to
  912. * resource pressure. Similarly if the object has been moved out of the
  913. * aperture, than pages mapped into userspace must be revoked. Removing the
  914. * mapping will then trigger a page fault on the next user access, allowing
  915. * fixup by i915_gem_fault().
  916. */
  917. void
  918. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  919. {
  920. if (!obj->fault_mappable)
  921. return;
  922. if (obj->base.dev->dev_mapping)
  923. unmap_mapping_range(obj->base.dev->dev_mapping,
  924. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  925. obj->base.size, 1);
  926. obj->fault_mappable = false;
  927. }
  928. static uint32_t
  929. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  930. {
  931. uint32_t gtt_size;
  932. if (INTEL_INFO(dev)->gen >= 4 ||
  933. tiling_mode == I915_TILING_NONE)
  934. return size;
  935. /* Previous chips need a power-of-two fence region when tiling */
  936. if (INTEL_INFO(dev)->gen == 3)
  937. gtt_size = 1024*1024;
  938. else
  939. gtt_size = 512*1024;
  940. while (gtt_size < size)
  941. gtt_size <<= 1;
  942. return gtt_size;
  943. }
  944. /**
  945. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  946. * @obj: object to check
  947. *
  948. * Return the required GTT alignment for an object, taking into account
  949. * potential fence register mapping.
  950. */
  951. static uint32_t
  952. i915_gem_get_gtt_alignment(struct drm_device *dev,
  953. uint32_t size,
  954. int tiling_mode)
  955. {
  956. /*
  957. * Minimum alignment is 4k (GTT page size), but might be greater
  958. * if a fence register is needed for the object.
  959. */
  960. if (INTEL_INFO(dev)->gen >= 4 ||
  961. tiling_mode == I915_TILING_NONE)
  962. return 4096;
  963. /*
  964. * Previous chips need to be aligned to the size of the smallest
  965. * fence register that can contain the object.
  966. */
  967. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  968. }
  969. /**
  970. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  971. * unfenced object
  972. * @dev: the device
  973. * @size: size of the object
  974. * @tiling_mode: tiling mode of the object
  975. *
  976. * Return the required GTT alignment for an object, only taking into account
  977. * unfenced tiled surface requirements.
  978. */
  979. uint32_t
  980. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  981. uint32_t size,
  982. int tiling_mode)
  983. {
  984. /*
  985. * Minimum alignment is 4k (GTT page size) for sane hw.
  986. */
  987. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  988. tiling_mode == I915_TILING_NONE)
  989. return 4096;
  990. /* Previous hardware however needs to be aligned to a power-of-two
  991. * tile height. The simplest method for determining this is to reuse
  992. * the power-of-tile object size.
  993. */
  994. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  995. }
  996. int
  997. i915_gem_mmap_gtt(struct drm_file *file,
  998. struct drm_device *dev,
  999. uint32_t handle,
  1000. uint64_t *offset)
  1001. {
  1002. struct drm_i915_private *dev_priv = dev->dev_private;
  1003. struct drm_i915_gem_object *obj;
  1004. int ret;
  1005. if (!(dev->driver->driver_features & DRIVER_GEM))
  1006. return -ENODEV;
  1007. ret = i915_mutex_lock_interruptible(dev);
  1008. if (ret)
  1009. return ret;
  1010. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1011. if (&obj->base == NULL) {
  1012. ret = -ENOENT;
  1013. goto unlock;
  1014. }
  1015. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1016. ret = -E2BIG;
  1017. goto out;
  1018. }
  1019. if (obj->madv != I915_MADV_WILLNEED) {
  1020. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1021. ret = -EINVAL;
  1022. goto out;
  1023. }
  1024. if (!obj->base.map_list.map) {
  1025. ret = drm_gem_create_mmap_offset(&obj->base);
  1026. if (ret)
  1027. goto out;
  1028. }
  1029. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1030. out:
  1031. drm_gem_object_unreference(&obj->base);
  1032. unlock:
  1033. mutex_unlock(&dev->struct_mutex);
  1034. return ret;
  1035. }
  1036. /**
  1037. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1038. * @dev: DRM device
  1039. * @data: GTT mapping ioctl data
  1040. * @file: GEM object info
  1041. *
  1042. * Simply returns the fake offset to userspace so it can mmap it.
  1043. * The mmap call will end up in drm_gem_mmap(), which will set things
  1044. * up so we can get faults in the handler above.
  1045. *
  1046. * The fault handler will take care of binding the object into the GTT
  1047. * (since it may have been evicted to make room for something), allocating
  1048. * a fence register, and mapping the appropriate aperture address into
  1049. * userspace.
  1050. */
  1051. int
  1052. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1053. struct drm_file *file)
  1054. {
  1055. struct drm_i915_gem_mmap_gtt *args = data;
  1056. if (!(dev->driver->driver_features & DRIVER_GEM))
  1057. return -ENODEV;
  1058. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1059. }
  1060. static int
  1061. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1062. gfp_t gfpmask)
  1063. {
  1064. int page_count, i;
  1065. struct address_space *mapping;
  1066. struct inode *inode;
  1067. struct page *page;
  1068. /* Get the list of pages out of our struct file. They'll be pinned
  1069. * at this point until we release them.
  1070. */
  1071. page_count = obj->base.size / PAGE_SIZE;
  1072. BUG_ON(obj->pages != NULL);
  1073. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1074. if (obj->pages == NULL)
  1075. return -ENOMEM;
  1076. inode = obj->base.filp->f_path.dentry->d_inode;
  1077. mapping = inode->i_mapping;
  1078. gfpmask |= mapping_gfp_mask(mapping);
  1079. for (i = 0; i < page_count; i++) {
  1080. page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
  1081. if (IS_ERR(page))
  1082. goto err_pages;
  1083. obj->pages[i] = page;
  1084. }
  1085. if (i915_gem_object_needs_bit17_swizzle(obj))
  1086. i915_gem_object_do_bit_17_swizzle(obj);
  1087. return 0;
  1088. err_pages:
  1089. while (i--)
  1090. page_cache_release(obj->pages[i]);
  1091. drm_free_large(obj->pages);
  1092. obj->pages = NULL;
  1093. return PTR_ERR(page);
  1094. }
  1095. static void
  1096. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1097. {
  1098. int page_count = obj->base.size / PAGE_SIZE;
  1099. int i;
  1100. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1101. if (i915_gem_object_needs_bit17_swizzle(obj))
  1102. i915_gem_object_save_bit_17_swizzle(obj);
  1103. if (obj->madv == I915_MADV_DONTNEED)
  1104. obj->dirty = 0;
  1105. for (i = 0; i < page_count; i++) {
  1106. if (obj->dirty)
  1107. set_page_dirty(obj->pages[i]);
  1108. if (obj->madv == I915_MADV_WILLNEED)
  1109. mark_page_accessed(obj->pages[i]);
  1110. page_cache_release(obj->pages[i]);
  1111. }
  1112. obj->dirty = 0;
  1113. drm_free_large(obj->pages);
  1114. obj->pages = NULL;
  1115. }
  1116. void
  1117. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1118. struct intel_ring_buffer *ring,
  1119. u32 seqno)
  1120. {
  1121. struct drm_device *dev = obj->base.dev;
  1122. struct drm_i915_private *dev_priv = dev->dev_private;
  1123. BUG_ON(ring == NULL);
  1124. obj->ring = ring;
  1125. /* Add a reference if we're newly entering the active list. */
  1126. if (!obj->active) {
  1127. drm_gem_object_reference(&obj->base);
  1128. obj->active = 1;
  1129. }
  1130. /* Move from whatever list we were on to the tail of execution. */
  1131. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1132. list_move_tail(&obj->ring_list, &ring->active_list);
  1133. obj->last_rendering_seqno = seqno;
  1134. if (obj->fenced_gpu_access) {
  1135. struct drm_i915_fence_reg *reg;
  1136. BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
  1137. obj->last_fenced_seqno = seqno;
  1138. obj->last_fenced_ring = ring;
  1139. reg = &dev_priv->fence_regs[obj->fence_reg];
  1140. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1141. }
  1142. }
  1143. static void
  1144. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1145. {
  1146. list_del_init(&obj->ring_list);
  1147. obj->last_rendering_seqno = 0;
  1148. }
  1149. static void
  1150. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1151. {
  1152. struct drm_device *dev = obj->base.dev;
  1153. drm_i915_private_t *dev_priv = dev->dev_private;
  1154. BUG_ON(!obj->active);
  1155. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1156. i915_gem_object_move_off_active(obj);
  1157. }
  1158. static void
  1159. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1160. {
  1161. struct drm_device *dev = obj->base.dev;
  1162. struct drm_i915_private *dev_priv = dev->dev_private;
  1163. if (obj->pin_count != 0)
  1164. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1165. else
  1166. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1167. BUG_ON(!list_empty(&obj->gpu_write_list));
  1168. BUG_ON(!obj->active);
  1169. obj->ring = NULL;
  1170. i915_gem_object_move_off_active(obj);
  1171. obj->fenced_gpu_access = false;
  1172. obj->active = 0;
  1173. obj->pending_gpu_write = false;
  1174. drm_gem_object_unreference(&obj->base);
  1175. WARN_ON(i915_verify_lists(dev));
  1176. }
  1177. /* Immediately discard the backing storage */
  1178. static void
  1179. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1180. {
  1181. struct inode *inode;
  1182. /* Our goal here is to return as much of the memory as
  1183. * is possible back to the system as we are called from OOM.
  1184. * To do this we must instruct the shmfs to drop all of its
  1185. * backing pages, *now*.
  1186. */
  1187. inode = obj->base.filp->f_path.dentry->d_inode;
  1188. shmem_truncate_range(inode, 0, (loff_t)-1);
  1189. if (obj->base.map_list.map)
  1190. drm_gem_free_mmap_offset(&obj->base);
  1191. obj->madv = __I915_MADV_PURGED;
  1192. }
  1193. static inline int
  1194. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1195. {
  1196. return obj->madv == I915_MADV_DONTNEED;
  1197. }
  1198. static void
  1199. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1200. uint32_t flush_domains)
  1201. {
  1202. struct drm_i915_gem_object *obj, *next;
  1203. list_for_each_entry_safe(obj, next,
  1204. &ring->gpu_write_list,
  1205. gpu_write_list) {
  1206. if (obj->base.write_domain & flush_domains) {
  1207. uint32_t old_write_domain = obj->base.write_domain;
  1208. obj->base.write_domain = 0;
  1209. list_del_init(&obj->gpu_write_list);
  1210. i915_gem_object_move_to_active(obj, ring,
  1211. i915_gem_next_request_seqno(ring));
  1212. trace_i915_gem_object_change_domain(obj,
  1213. obj->base.read_domains,
  1214. old_write_domain);
  1215. }
  1216. }
  1217. }
  1218. static u32
  1219. i915_gem_get_seqno(struct drm_device *dev)
  1220. {
  1221. drm_i915_private_t *dev_priv = dev->dev_private;
  1222. u32 seqno = dev_priv->next_seqno;
  1223. /* reserve 0 for non-seqno */
  1224. if (++dev_priv->next_seqno == 0)
  1225. dev_priv->next_seqno = 1;
  1226. return seqno;
  1227. }
  1228. u32
  1229. i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
  1230. {
  1231. if (ring->outstanding_lazy_request == 0)
  1232. ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
  1233. return ring->outstanding_lazy_request;
  1234. }
  1235. int
  1236. i915_add_request(struct intel_ring_buffer *ring,
  1237. struct drm_file *file,
  1238. struct drm_i915_gem_request *request)
  1239. {
  1240. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1241. uint32_t seqno;
  1242. u32 request_ring_position;
  1243. int was_empty;
  1244. int ret;
  1245. BUG_ON(request == NULL);
  1246. seqno = i915_gem_next_request_seqno(ring);
  1247. /* Record the position of the start of the request so that
  1248. * should we detect the updated seqno part-way through the
  1249. * GPU processing the request, we never over-estimate the
  1250. * position of the head.
  1251. */
  1252. request_ring_position = intel_ring_get_tail(ring);
  1253. ret = ring->add_request(ring, &seqno);
  1254. if (ret)
  1255. return ret;
  1256. trace_i915_gem_request_add(ring, seqno);
  1257. request->seqno = seqno;
  1258. request->ring = ring;
  1259. request->tail = request_ring_position;
  1260. request->emitted_jiffies = jiffies;
  1261. was_empty = list_empty(&ring->request_list);
  1262. list_add_tail(&request->list, &ring->request_list);
  1263. if (file) {
  1264. struct drm_i915_file_private *file_priv = file->driver_priv;
  1265. spin_lock(&file_priv->mm.lock);
  1266. request->file_priv = file_priv;
  1267. list_add_tail(&request->client_list,
  1268. &file_priv->mm.request_list);
  1269. spin_unlock(&file_priv->mm.lock);
  1270. }
  1271. ring->outstanding_lazy_request = 0;
  1272. if (!dev_priv->mm.suspended) {
  1273. if (i915_enable_hangcheck) {
  1274. mod_timer(&dev_priv->hangcheck_timer,
  1275. jiffies +
  1276. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1277. }
  1278. if (was_empty)
  1279. queue_delayed_work(dev_priv->wq,
  1280. &dev_priv->mm.retire_work, HZ);
  1281. }
  1282. return 0;
  1283. }
  1284. static inline void
  1285. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1286. {
  1287. struct drm_i915_file_private *file_priv = request->file_priv;
  1288. if (!file_priv)
  1289. return;
  1290. spin_lock(&file_priv->mm.lock);
  1291. if (request->file_priv) {
  1292. list_del(&request->client_list);
  1293. request->file_priv = NULL;
  1294. }
  1295. spin_unlock(&file_priv->mm.lock);
  1296. }
  1297. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1298. struct intel_ring_buffer *ring)
  1299. {
  1300. while (!list_empty(&ring->request_list)) {
  1301. struct drm_i915_gem_request *request;
  1302. request = list_first_entry(&ring->request_list,
  1303. struct drm_i915_gem_request,
  1304. list);
  1305. list_del(&request->list);
  1306. i915_gem_request_remove_from_client(request);
  1307. kfree(request);
  1308. }
  1309. while (!list_empty(&ring->active_list)) {
  1310. struct drm_i915_gem_object *obj;
  1311. obj = list_first_entry(&ring->active_list,
  1312. struct drm_i915_gem_object,
  1313. ring_list);
  1314. obj->base.write_domain = 0;
  1315. list_del_init(&obj->gpu_write_list);
  1316. i915_gem_object_move_to_inactive(obj);
  1317. }
  1318. }
  1319. static void i915_gem_reset_fences(struct drm_device *dev)
  1320. {
  1321. struct drm_i915_private *dev_priv = dev->dev_private;
  1322. int i;
  1323. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1324. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1325. struct drm_i915_gem_object *obj = reg->obj;
  1326. if (!obj)
  1327. continue;
  1328. if (obj->tiling_mode)
  1329. i915_gem_release_mmap(obj);
  1330. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1331. reg->obj->fenced_gpu_access = false;
  1332. reg->obj->last_fenced_seqno = 0;
  1333. reg->obj->last_fenced_ring = NULL;
  1334. i915_gem_clear_fence_reg(dev, reg);
  1335. }
  1336. }
  1337. void i915_gem_reset(struct drm_device *dev)
  1338. {
  1339. struct drm_i915_private *dev_priv = dev->dev_private;
  1340. struct drm_i915_gem_object *obj;
  1341. int i;
  1342. for (i = 0; i < I915_NUM_RINGS; i++)
  1343. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1344. /* Remove anything from the flushing lists. The GPU cache is likely
  1345. * to be lost on reset along with the data, so simply move the
  1346. * lost bo to the inactive list.
  1347. */
  1348. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1349. obj = list_first_entry(&dev_priv->mm.flushing_list,
  1350. struct drm_i915_gem_object,
  1351. mm_list);
  1352. obj->base.write_domain = 0;
  1353. list_del_init(&obj->gpu_write_list);
  1354. i915_gem_object_move_to_inactive(obj);
  1355. }
  1356. /* Move everything out of the GPU domains to ensure we do any
  1357. * necessary invalidation upon reuse.
  1358. */
  1359. list_for_each_entry(obj,
  1360. &dev_priv->mm.inactive_list,
  1361. mm_list)
  1362. {
  1363. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1364. }
  1365. /* The fence registers are invalidated so clear them out */
  1366. i915_gem_reset_fences(dev);
  1367. }
  1368. /**
  1369. * This function clears the request list as sequence numbers are passed.
  1370. */
  1371. void
  1372. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1373. {
  1374. uint32_t seqno;
  1375. int i;
  1376. if (list_empty(&ring->request_list))
  1377. return;
  1378. WARN_ON(i915_verify_lists(ring->dev));
  1379. seqno = ring->get_seqno(ring);
  1380. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1381. if (seqno >= ring->sync_seqno[i])
  1382. ring->sync_seqno[i] = 0;
  1383. while (!list_empty(&ring->request_list)) {
  1384. struct drm_i915_gem_request *request;
  1385. request = list_first_entry(&ring->request_list,
  1386. struct drm_i915_gem_request,
  1387. list);
  1388. if (!i915_seqno_passed(seqno, request->seqno))
  1389. break;
  1390. trace_i915_gem_request_retire(ring, request->seqno);
  1391. /* We know the GPU must have read the request to have
  1392. * sent us the seqno + interrupt, so use the position
  1393. * of tail of the request to update the last known position
  1394. * of the GPU head.
  1395. */
  1396. ring->last_retired_head = request->tail;
  1397. list_del(&request->list);
  1398. i915_gem_request_remove_from_client(request);
  1399. kfree(request);
  1400. }
  1401. /* Move any buffers on the active list that are no longer referenced
  1402. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1403. */
  1404. while (!list_empty(&ring->active_list)) {
  1405. struct drm_i915_gem_object *obj;
  1406. obj = list_first_entry(&ring->active_list,
  1407. struct drm_i915_gem_object,
  1408. ring_list);
  1409. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1410. break;
  1411. if (obj->base.write_domain != 0)
  1412. i915_gem_object_move_to_flushing(obj);
  1413. else
  1414. i915_gem_object_move_to_inactive(obj);
  1415. }
  1416. if (unlikely(ring->trace_irq_seqno &&
  1417. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1418. ring->irq_put(ring);
  1419. ring->trace_irq_seqno = 0;
  1420. }
  1421. WARN_ON(i915_verify_lists(ring->dev));
  1422. }
  1423. void
  1424. i915_gem_retire_requests(struct drm_device *dev)
  1425. {
  1426. drm_i915_private_t *dev_priv = dev->dev_private;
  1427. int i;
  1428. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1429. struct drm_i915_gem_object *obj, *next;
  1430. /* We must be careful that during unbind() we do not
  1431. * accidentally infinitely recurse into retire requests.
  1432. * Currently:
  1433. * retire -> free -> unbind -> wait -> retire_ring
  1434. */
  1435. list_for_each_entry_safe(obj, next,
  1436. &dev_priv->mm.deferred_free_list,
  1437. mm_list)
  1438. i915_gem_free_object_tail(obj);
  1439. }
  1440. for (i = 0; i < I915_NUM_RINGS; i++)
  1441. i915_gem_retire_requests_ring(&dev_priv->ring[i]);
  1442. }
  1443. static void
  1444. i915_gem_retire_work_handler(struct work_struct *work)
  1445. {
  1446. drm_i915_private_t *dev_priv;
  1447. struct drm_device *dev;
  1448. bool idle;
  1449. int i;
  1450. dev_priv = container_of(work, drm_i915_private_t,
  1451. mm.retire_work.work);
  1452. dev = dev_priv->dev;
  1453. /* Come back later if the device is busy... */
  1454. if (!mutex_trylock(&dev->struct_mutex)) {
  1455. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1456. return;
  1457. }
  1458. i915_gem_retire_requests(dev);
  1459. /* Send a periodic flush down the ring so we don't hold onto GEM
  1460. * objects indefinitely.
  1461. */
  1462. idle = true;
  1463. for (i = 0; i < I915_NUM_RINGS; i++) {
  1464. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1465. if (!list_empty(&ring->gpu_write_list)) {
  1466. struct drm_i915_gem_request *request;
  1467. int ret;
  1468. ret = i915_gem_flush_ring(ring,
  1469. 0, I915_GEM_GPU_DOMAINS);
  1470. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1471. if (ret || request == NULL ||
  1472. i915_add_request(ring, NULL, request))
  1473. kfree(request);
  1474. }
  1475. idle &= list_empty(&ring->request_list);
  1476. }
  1477. if (!dev_priv->mm.suspended && !idle)
  1478. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1479. mutex_unlock(&dev->struct_mutex);
  1480. }
  1481. /**
  1482. * Waits for a sequence number to be signaled, and cleans up the
  1483. * request and object lists appropriately for that event.
  1484. */
  1485. int
  1486. i915_wait_request(struct intel_ring_buffer *ring,
  1487. uint32_t seqno,
  1488. bool do_retire)
  1489. {
  1490. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1491. u32 ier;
  1492. int ret = 0;
  1493. BUG_ON(seqno == 0);
  1494. if (atomic_read(&dev_priv->mm.wedged)) {
  1495. struct completion *x = &dev_priv->error_completion;
  1496. bool recovery_complete;
  1497. unsigned long flags;
  1498. /* Give the error handler a chance to run. */
  1499. spin_lock_irqsave(&x->wait.lock, flags);
  1500. recovery_complete = x->done > 0;
  1501. spin_unlock_irqrestore(&x->wait.lock, flags);
  1502. return recovery_complete ? -EIO : -EAGAIN;
  1503. }
  1504. if (seqno == ring->outstanding_lazy_request) {
  1505. struct drm_i915_gem_request *request;
  1506. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1507. if (request == NULL)
  1508. return -ENOMEM;
  1509. ret = i915_add_request(ring, NULL, request);
  1510. if (ret) {
  1511. kfree(request);
  1512. return ret;
  1513. }
  1514. seqno = request->seqno;
  1515. }
  1516. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1517. if (HAS_PCH_SPLIT(ring->dev))
  1518. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1519. else
  1520. ier = I915_READ(IER);
  1521. if (!ier) {
  1522. DRM_ERROR("something (likely vbetool) disabled "
  1523. "interrupts, re-enabling\n");
  1524. ring->dev->driver->irq_preinstall(ring->dev);
  1525. ring->dev->driver->irq_postinstall(ring->dev);
  1526. }
  1527. trace_i915_gem_request_wait_begin(ring, seqno);
  1528. ring->waiting_seqno = seqno;
  1529. if (ring->irq_get(ring)) {
  1530. if (dev_priv->mm.interruptible)
  1531. ret = wait_event_interruptible(ring->irq_queue,
  1532. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1533. || atomic_read(&dev_priv->mm.wedged));
  1534. else
  1535. wait_event(ring->irq_queue,
  1536. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1537. || atomic_read(&dev_priv->mm.wedged));
  1538. ring->irq_put(ring);
  1539. } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
  1540. seqno) ||
  1541. atomic_read(&dev_priv->mm.wedged), 3000))
  1542. ret = -EBUSY;
  1543. ring->waiting_seqno = 0;
  1544. trace_i915_gem_request_wait_end(ring, seqno);
  1545. }
  1546. if (atomic_read(&dev_priv->mm.wedged))
  1547. ret = -EAGAIN;
  1548. /* Directly dispatch request retiring. While we have the work queue
  1549. * to handle this, the waiter on a request often wants an associated
  1550. * buffer to have made it to the inactive list, and we would need
  1551. * a separate wait queue to handle that.
  1552. */
  1553. if (ret == 0 && do_retire)
  1554. i915_gem_retire_requests_ring(ring);
  1555. return ret;
  1556. }
  1557. /**
  1558. * Ensures that all rendering to the object has completed and the object is
  1559. * safe to unbind from the GTT or access from the CPU.
  1560. */
  1561. int
  1562. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1563. {
  1564. int ret;
  1565. /* This function only exists to support waiting for existing rendering,
  1566. * not for emitting required flushes.
  1567. */
  1568. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1569. /* If there is rendering queued on the buffer being evicted, wait for
  1570. * it.
  1571. */
  1572. if (obj->active) {
  1573. ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
  1574. true);
  1575. if (ret)
  1576. return ret;
  1577. }
  1578. return 0;
  1579. }
  1580. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1581. {
  1582. u32 old_write_domain, old_read_domains;
  1583. /* Act a barrier for all accesses through the GTT */
  1584. mb();
  1585. /* Force a pagefault for domain tracking on next user access */
  1586. i915_gem_release_mmap(obj);
  1587. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1588. return;
  1589. old_read_domains = obj->base.read_domains;
  1590. old_write_domain = obj->base.write_domain;
  1591. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1592. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1593. trace_i915_gem_object_change_domain(obj,
  1594. old_read_domains,
  1595. old_write_domain);
  1596. }
  1597. /**
  1598. * Unbinds an object from the GTT aperture.
  1599. */
  1600. int
  1601. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1602. {
  1603. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  1604. int ret = 0;
  1605. if (obj->gtt_space == NULL)
  1606. return 0;
  1607. if (obj->pin_count != 0) {
  1608. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1609. return -EINVAL;
  1610. }
  1611. ret = i915_gem_object_finish_gpu(obj);
  1612. if (ret == -ERESTARTSYS)
  1613. return ret;
  1614. /* Continue on if we fail due to EIO, the GPU is hung so we
  1615. * should be safe and we need to cleanup or else we might
  1616. * cause memory corruption through use-after-free.
  1617. */
  1618. i915_gem_object_finish_gtt(obj);
  1619. /* Move the object to the CPU domain to ensure that
  1620. * any possible CPU writes while it's not in the GTT
  1621. * are flushed when we go to remap it.
  1622. */
  1623. if (ret == 0)
  1624. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1625. if (ret == -ERESTARTSYS)
  1626. return ret;
  1627. if (ret) {
  1628. /* In the event of a disaster, abandon all caches and
  1629. * hope for the best.
  1630. */
  1631. i915_gem_clflush_object(obj);
  1632. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1633. }
  1634. /* release the fence reg _after_ flushing */
  1635. ret = i915_gem_object_put_fence(obj);
  1636. if (ret == -ERESTARTSYS)
  1637. return ret;
  1638. trace_i915_gem_object_unbind(obj);
  1639. if (obj->has_global_gtt_mapping)
  1640. i915_gem_gtt_unbind_object(obj);
  1641. if (obj->has_aliasing_ppgtt_mapping) {
  1642. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  1643. obj->has_aliasing_ppgtt_mapping = 0;
  1644. }
  1645. i915_gem_gtt_finish_object(obj);
  1646. i915_gem_object_put_pages_gtt(obj);
  1647. list_del_init(&obj->gtt_list);
  1648. list_del_init(&obj->mm_list);
  1649. /* Avoid an unnecessary call to unbind on rebind. */
  1650. obj->map_and_fenceable = true;
  1651. drm_mm_put_block(obj->gtt_space);
  1652. obj->gtt_space = NULL;
  1653. obj->gtt_offset = 0;
  1654. if (i915_gem_object_is_purgeable(obj))
  1655. i915_gem_object_truncate(obj);
  1656. return ret;
  1657. }
  1658. int
  1659. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1660. uint32_t invalidate_domains,
  1661. uint32_t flush_domains)
  1662. {
  1663. int ret;
  1664. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1665. return 0;
  1666. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1667. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1668. if (ret)
  1669. return ret;
  1670. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1671. i915_gem_process_flushing_list(ring, flush_domains);
  1672. return 0;
  1673. }
  1674. static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
  1675. {
  1676. int ret;
  1677. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1678. return 0;
  1679. if (!list_empty(&ring->gpu_write_list)) {
  1680. ret = i915_gem_flush_ring(ring,
  1681. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1682. if (ret)
  1683. return ret;
  1684. }
  1685. return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
  1686. do_retire);
  1687. }
  1688. int i915_gpu_idle(struct drm_device *dev, bool do_retire)
  1689. {
  1690. drm_i915_private_t *dev_priv = dev->dev_private;
  1691. int ret, i;
  1692. /* Flush everything onto the inactive list. */
  1693. for (i = 0; i < I915_NUM_RINGS; i++) {
  1694. ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
  1695. if (ret)
  1696. return ret;
  1697. }
  1698. return 0;
  1699. }
  1700. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1701. struct intel_ring_buffer *pipelined)
  1702. {
  1703. struct drm_device *dev = obj->base.dev;
  1704. drm_i915_private_t *dev_priv = dev->dev_private;
  1705. u32 size = obj->gtt_space->size;
  1706. int regnum = obj->fence_reg;
  1707. uint64_t val;
  1708. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1709. 0xfffff000) << 32;
  1710. val |= obj->gtt_offset & 0xfffff000;
  1711. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1712. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1713. if (obj->tiling_mode == I915_TILING_Y)
  1714. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1715. val |= I965_FENCE_REG_VALID;
  1716. if (pipelined) {
  1717. int ret = intel_ring_begin(pipelined, 6);
  1718. if (ret)
  1719. return ret;
  1720. intel_ring_emit(pipelined, MI_NOOP);
  1721. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1722. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1723. intel_ring_emit(pipelined, (u32)val);
  1724. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1725. intel_ring_emit(pipelined, (u32)(val >> 32));
  1726. intel_ring_advance(pipelined);
  1727. } else
  1728. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1729. return 0;
  1730. }
  1731. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1732. struct intel_ring_buffer *pipelined)
  1733. {
  1734. struct drm_device *dev = obj->base.dev;
  1735. drm_i915_private_t *dev_priv = dev->dev_private;
  1736. u32 size = obj->gtt_space->size;
  1737. int regnum = obj->fence_reg;
  1738. uint64_t val;
  1739. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1740. 0xfffff000) << 32;
  1741. val |= obj->gtt_offset & 0xfffff000;
  1742. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1743. if (obj->tiling_mode == I915_TILING_Y)
  1744. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1745. val |= I965_FENCE_REG_VALID;
  1746. if (pipelined) {
  1747. int ret = intel_ring_begin(pipelined, 6);
  1748. if (ret)
  1749. return ret;
  1750. intel_ring_emit(pipelined, MI_NOOP);
  1751. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1752. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1753. intel_ring_emit(pipelined, (u32)val);
  1754. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1755. intel_ring_emit(pipelined, (u32)(val >> 32));
  1756. intel_ring_advance(pipelined);
  1757. } else
  1758. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1759. return 0;
  1760. }
  1761. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1762. struct intel_ring_buffer *pipelined)
  1763. {
  1764. struct drm_device *dev = obj->base.dev;
  1765. drm_i915_private_t *dev_priv = dev->dev_private;
  1766. u32 size = obj->gtt_space->size;
  1767. u32 fence_reg, val, pitch_val;
  1768. int tile_width;
  1769. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1770. (size & -size) != size ||
  1771. (obj->gtt_offset & (size - 1)),
  1772. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1773. obj->gtt_offset, obj->map_and_fenceable, size))
  1774. return -EINVAL;
  1775. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1776. tile_width = 128;
  1777. else
  1778. tile_width = 512;
  1779. /* Note: pitch better be a power of two tile widths */
  1780. pitch_val = obj->stride / tile_width;
  1781. pitch_val = ffs(pitch_val) - 1;
  1782. val = obj->gtt_offset;
  1783. if (obj->tiling_mode == I915_TILING_Y)
  1784. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1785. val |= I915_FENCE_SIZE_BITS(size);
  1786. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1787. val |= I830_FENCE_REG_VALID;
  1788. fence_reg = obj->fence_reg;
  1789. if (fence_reg < 8)
  1790. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  1791. else
  1792. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  1793. if (pipelined) {
  1794. int ret = intel_ring_begin(pipelined, 4);
  1795. if (ret)
  1796. return ret;
  1797. intel_ring_emit(pipelined, MI_NOOP);
  1798. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1799. intel_ring_emit(pipelined, fence_reg);
  1800. intel_ring_emit(pipelined, val);
  1801. intel_ring_advance(pipelined);
  1802. } else
  1803. I915_WRITE(fence_reg, val);
  1804. return 0;
  1805. }
  1806. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  1807. struct intel_ring_buffer *pipelined)
  1808. {
  1809. struct drm_device *dev = obj->base.dev;
  1810. drm_i915_private_t *dev_priv = dev->dev_private;
  1811. u32 size = obj->gtt_space->size;
  1812. int regnum = obj->fence_reg;
  1813. uint32_t val;
  1814. uint32_t pitch_val;
  1815. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  1816. (size & -size) != size ||
  1817. (obj->gtt_offset & (size - 1)),
  1818. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  1819. obj->gtt_offset, size))
  1820. return -EINVAL;
  1821. pitch_val = obj->stride / 128;
  1822. pitch_val = ffs(pitch_val) - 1;
  1823. val = obj->gtt_offset;
  1824. if (obj->tiling_mode == I915_TILING_Y)
  1825. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1826. val |= I830_FENCE_SIZE_BITS(size);
  1827. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1828. val |= I830_FENCE_REG_VALID;
  1829. if (pipelined) {
  1830. int ret = intel_ring_begin(pipelined, 4);
  1831. if (ret)
  1832. return ret;
  1833. intel_ring_emit(pipelined, MI_NOOP);
  1834. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1835. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  1836. intel_ring_emit(pipelined, val);
  1837. intel_ring_advance(pipelined);
  1838. } else
  1839. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  1840. return 0;
  1841. }
  1842. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1843. {
  1844. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  1845. }
  1846. static int
  1847. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  1848. struct intel_ring_buffer *pipelined)
  1849. {
  1850. int ret;
  1851. if (obj->fenced_gpu_access) {
  1852. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  1853. ret = i915_gem_flush_ring(obj->last_fenced_ring,
  1854. 0, obj->base.write_domain);
  1855. if (ret)
  1856. return ret;
  1857. }
  1858. obj->fenced_gpu_access = false;
  1859. }
  1860. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  1861. if (!ring_passed_seqno(obj->last_fenced_ring,
  1862. obj->last_fenced_seqno)) {
  1863. ret = i915_wait_request(obj->last_fenced_ring,
  1864. obj->last_fenced_seqno,
  1865. true);
  1866. if (ret)
  1867. return ret;
  1868. }
  1869. obj->last_fenced_seqno = 0;
  1870. obj->last_fenced_ring = NULL;
  1871. }
  1872. /* Ensure that all CPU reads are completed before installing a fence
  1873. * and all writes before removing the fence.
  1874. */
  1875. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  1876. mb();
  1877. return 0;
  1878. }
  1879. int
  1880. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  1881. {
  1882. int ret;
  1883. if (obj->tiling_mode)
  1884. i915_gem_release_mmap(obj);
  1885. ret = i915_gem_object_flush_fence(obj, NULL);
  1886. if (ret)
  1887. return ret;
  1888. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1889. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1890. WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
  1891. i915_gem_clear_fence_reg(obj->base.dev,
  1892. &dev_priv->fence_regs[obj->fence_reg]);
  1893. obj->fence_reg = I915_FENCE_REG_NONE;
  1894. }
  1895. return 0;
  1896. }
  1897. static struct drm_i915_fence_reg *
  1898. i915_find_fence_reg(struct drm_device *dev,
  1899. struct intel_ring_buffer *pipelined)
  1900. {
  1901. struct drm_i915_private *dev_priv = dev->dev_private;
  1902. struct drm_i915_fence_reg *reg, *first, *avail;
  1903. int i;
  1904. /* First try to find a free reg */
  1905. avail = NULL;
  1906. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1907. reg = &dev_priv->fence_regs[i];
  1908. if (!reg->obj)
  1909. return reg;
  1910. if (!reg->pin_count)
  1911. avail = reg;
  1912. }
  1913. if (avail == NULL)
  1914. return NULL;
  1915. /* None available, try to steal one or wait for a user to finish */
  1916. avail = first = NULL;
  1917. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  1918. if (reg->pin_count)
  1919. continue;
  1920. if (first == NULL)
  1921. first = reg;
  1922. if (!pipelined ||
  1923. !reg->obj->last_fenced_ring ||
  1924. reg->obj->last_fenced_ring == pipelined) {
  1925. avail = reg;
  1926. break;
  1927. }
  1928. }
  1929. if (avail == NULL)
  1930. avail = first;
  1931. return avail;
  1932. }
  1933. /**
  1934. * i915_gem_object_get_fence - set up a fence reg for an object
  1935. * @obj: object to map through a fence reg
  1936. * @pipelined: ring on which to queue the change, or NULL for CPU access
  1937. * @interruptible: must we wait uninterruptibly for the register to retire?
  1938. *
  1939. * When mapping objects through the GTT, userspace wants to be able to write
  1940. * to them without having to worry about swizzling if the object is tiled.
  1941. *
  1942. * This function walks the fence regs looking for a free one for @obj,
  1943. * stealing one if it can't find any.
  1944. *
  1945. * It then sets up the reg based on the object's properties: address, pitch
  1946. * and tiling format.
  1947. */
  1948. int
  1949. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  1950. struct intel_ring_buffer *pipelined)
  1951. {
  1952. struct drm_device *dev = obj->base.dev;
  1953. struct drm_i915_private *dev_priv = dev->dev_private;
  1954. struct drm_i915_fence_reg *reg;
  1955. int ret;
  1956. /* XXX disable pipelining. There are bugs. Shocking. */
  1957. pipelined = NULL;
  1958. /* Just update our place in the LRU if our fence is getting reused. */
  1959. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1960. reg = &dev_priv->fence_regs[obj->fence_reg];
  1961. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1962. if (obj->tiling_changed) {
  1963. ret = i915_gem_object_flush_fence(obj, pipelined);
  1964. if (ret)
  1965. return ret;
  1966. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  1967. pipelined = NULL;
  1968. if (pipelined) {
  1969. reg->setup_seqno =
  1970. i915_gem_next_request_seqno(pipelined);
  1971. obj->last_fenced_seqno = reg->setup_seqno;
  1972. obj->last_fenced_ring = pipelined;
  1973. }
  1974. goto update;
  1975. }
  1976. if (!pipelined) {
  1977. if (reg->setup_seqno) {
  1978. if (!ring_passed_seqno(obj->last_fenced_ring,
  1979. reg->setup_seqno)) {
  1980. ret = i915_wait_request(obj->last_fenced_ring,
  1981. reg->setup_seqno,
  1982. true);
  1983. if (ret)
  1984. return ret;
  1985. }
  1986. reg->setup_seqno = 0;
  1987. }
  1988. } else if (obj->last_fenced_ring &&
  1989. obj->last_fenced_ring != pipelined) {
  1990. ret = i915_gem_object_flush_fence(obj, pipelined);
  1991. if (ret)
  1992. return ret;
  1993. }
  1994. return 0;
  1995. }
  1996. reg = i915_find_fence_reg(dev, pipelined);
  1997. if (reg == NULL)
  1998. return -EDEADLK;
  1999. ret = i915_gem_object_flush_fence(obj, pipelined);
  2000. if (ret)
  2001. return ret;
  2002. if (reg->obj) {
  2003. struct drm_i915_gem_object *old = reg->obj;
  2004. drm_gem_object_reference(&old->base);
  2005. if (old->tiling_mode)
  2006. i915_gem_release_mmap(old);
  2007. ret = i915_gem_object_flush_fence(old, pipelined);
  2008. if (ret) {
  2009. drm_gem_object_unreference(&old->base);
  2010. return ret;
  2011. }
  2012. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  2013. pipelined = NULL;
  2014. old->fence_reg = I915_FENCE_REG_NONE;
  2015. old->last_fenced_ring = pipelined;
  2016. old->last_fenced_seqno =
  2017. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2018. drm_gem_object_unreference(&old->base);
  2019. } else if (obj->last_fenced_seqno == 0)
  2020. pipelined = NULL;
  2021. reg->obj = obj;
  2022. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2023. obj->fence_reg = reg - dev_priv->fence_regs;
  2024. obj->last_fenced_ring = pipelined;
  2025. reg->setup_seqno =
  2026. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2027. obj->last_fenced_seqno = reg->setup_seqno;
  2028. update:
  2029. obj->tiling_changed = false;
  2030. switch (INTEL_INFO(dev)->gen) {
  2031. case 7:
  2032. case 6:
  2033. ret = sandybridge_write_fence_reg(obj, pipelined);
  2034. break;
  2035. case 5:
  2036. case 4:
  2037. ret = i965_write_fence_reg(obj, pipelined);
  2038. break;
  2039. case 3:
  2040. ret = i915_write_fence_reg(obj, pipelined);
  2041. break;
  2042. case 2:
  2043. ret = i830_write_fence_reg(obj, pipelined);
  2044. break;
  2045. }
  2046. return ret;
  2047. }
  2048. /**
  2049. * i915_gem_clear_fence_reg - clear out fence register info
  2050. * @obj: object to clear
  2051. *
  2052. * Zeroes out the fence register itself and clears out the associated
  2053. * data structures in dev_priv and obj.
  2054. */
  2055. static void
  2056. i915_gem_clear_fence_reg(struct drm_device *dev,
  2057. struct drm_i915_fence_reg *reg)
  2058. {
  2059. drm_i915_private_t *dev_priv = dev->dev_private;
  2060. uint32_t fence_reg = reg - dev_priv->fence_regs;
  2061. switch (INTEL_INFO(dev)->gen) {
  2062. case 7:
  2063. case 6:
  2064. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  2065. break;
  2066. case 5:
  2067. case 4:
  2068. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  2069. break;
  2070. case 3:
  2071. if (fence_reg >= 8)
  2072. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2073. else
  2074. case 2:
  2075. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2076. I915_WRITE(fence_reg, 0);
  2077. break;
  2078. }
  2079. list_del_init(&reg->lru_list);
  2080. reg->obj = NULL;
  2081. reg->setup_seqno = 0;
  2082. reg->pin_count = 0;
  2083. }
  2084. /**
  2085. * Finds free space in the GTT aperture and binds the object there.
  2086. */
  2087. static int
  2088. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2089. unsigned alignment,
  2090. bool map_and_fenceable)
  2091. {
  2092. struct drm_device *dev = obj->base.dev;
  2093. drm_i915_private_t *dev_priv = dev->dev_private;
  2094. struct drm_mm_node *free_space;
  2095. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2096. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2097. bool mappable, fenceable;
  2098. int ret;
  2099. if (obj->madv != I915_MADV_WILLNEED) {
  2100. DRM_ERROR("Attempting to bind a purgeable object\n");
  2101. return -EINVAL;
  2102. }
  2103. fence_size = i915_gem_get_gtt_size(dev,
  2104. obj->base.size,
  2105. obj->tiling_mode);
  2106. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2107. obj->base.size,
  2108. obj->tiling_mode);
  2109. unfenced_alignment =
  2110. i915_gem_get_unfenced_gtt_alignment(dev,
  2111. obj->base.size,
  2112. obj->tiling_mode);
  2113. if (alignment == 0)
  2114. alignment = map_and_fenceable ? fence_alignment :
  2115. unfenced_alignment;
  2116. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2117. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2118. return -EINVAL;
  2119. }
  2120. size = map_and_fenceable ? fence_size : obj->base.size;
  2121. /* If the object is bigger than the entire aperture, reject it early
  2122. * before evicting everything in a vain attempt to find space.
  2123. */
  2124. if (obj->base.size >
  2125. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2126. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2127. return -E2BIG;
  2128. }
  2129. search_free:
  2130. if (map_and_fenceable)
  2131. free_space =
  2132. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2133. size, alignment, 0,
  2134. dev_priv->mm.gtt_mappable_end,
  2135. 0);
  2136. else
  2137. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2138. size, alignment, 0);
  2139. if (free_space != NULL) {
  2140. if (map_and_fenceable)
  2141. obj->gtt_space =
  2142. drm_mm_get_block_range_generic(free_space,
  2143. size, alignment, 0,
  2144. dev_priv->mm.gtt_mappable_end,
  2145. 0);
  2146. else
  2147. obj->gtt_space =
  2148. drm_mm_get_block(free_space, size, alignment);
  2149. }
  2150. if (obj->gtt_space == NULL) {
  2151. /* If the gtt is empty and we're still having trouble
  2152. * fitting our object in, we're out of memory.
  2153. */
  2154. ret = i915_gem_evict_something(dev, size, alignment,
  2155. map_and_fenceable);
  2156. if (ret)
  2157. return ret;
  2158. goto search_free;
  2159. }
  2160. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2161. if (ret) {
  2162. drm_mm_put_block(obj->gtt_space);
  2163. obj->gtt_space = NULL;
  2164. if (ret == -ENOMEM) {
  2165. /* first try to reclaim some memory by clearing the GTT */
  2166. ret = i915_gem_evict_everything(dev, false);
  2167. if (ret) {
  2168. /* now try to shrink everyone else */
  2169. if (gfpmask) {
  2170. gfpmask = 0;
  2171. goto search_free;
  2172. }
  2173. return -ENOMEM;
  2174. }
  2175. goto search_free;
  2176. }
  2177. return ret;
  2178. }
  2179. ret = i915_gem_gtt_prepare_object(obj);
  2180. if (ret) {
  2181. i915_gem_object_put_pages_gtt(obj);
  2182. drm_mm_put_block(obj->gtt_space);
  2183. obj->gtt_space = NULL;
  2184. if (i915_gem_evict_everything(dev, false))
  2185. return ret;
  2186. goto search_free;
  2187. }
  2188. if (!dev_priv->mm.aliasing_ppgtt)
  2189. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2190. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2191. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2192. /* Assert that the object is not currently in any GPU domain. As it
  2193. * wasn't in the GTT, there shouldn't be any way it could have been in
  2194. * a GPU cache
  2195. */
  2196. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2197. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2198. obj->gtt_offset = obj->gtt_space->start;
  2199. fenceable =
  2200. obj->gtt_space->size == fence_size &&
  2201. (obj->gtt_space->start & (fence_alignment - 1)) == 0;
  2202. mappable =
  2203. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2204. obj->map_and_fenceable = mappable && fenceable;
  2205. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2206. return 0;
  2207. }
  2208. void
  2209. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2210. {
  2211. /* If we don't have a page list set up, then we're not pinned
  2212. * to GPU, and we can ignore the cache flush because it'll happen
  2213. * again at bind time.
  2214. */
  2215. if (obj->pages == NULL)
  2216. return;
  2217. /* If the GPU is snooping the contents of the CPU cache,
  2218. * we do not need to manually clear the CPU cache lines. However,
  2219. * the caches are only snooped when the render cache is
  2220. * flushed/invalidated. As we always have to emit invalidations
  2221. * and flushes when moving into and out of the RENDER domain, correct
  2222. * snooping behaviour occurs naturally as the result of our domain
  2223. * tracking.
  2224. */
  2225. if (obj->cache_level != I915_CACHE_NONE)
  2226. return;
  2227. trace_i915_gem_object_clflush(obj);
  2228. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2229. }
  2230. /** Flushes any GPU write domain for the object if it's dirty. */
  2231. static int
  2232. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2233. {
  2234. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2235. return 0;
  2236. /* Queue the GPU write cache flushing we need. */
  2237. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2238. }
  2239. /** Flushes the GTT write domain for the object if it's dirty. */
  2240. static void
  2241. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2242. {
  2243. uint32_t old_write_domain;
  2244. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2245. return;
  2246. /* No actual flushing is required for the GTT write domain. Writes
  2247. * to it immediately go to main memory as far as we know, so there's
  2248. * no chipset flush. It also doesn't land in render cache.
  2249. *
  2250. * However, we do have to enforce the order so that all writes through
  2251. * the GTT land before any writes to the device, such as updates to
  2252. * the GATT itself.
  2253. */
  2254. wmb();
  2255. old_write_domain = obj->base.write_domain;
  2256. obj->base.write_domain = 0;
  2257. trace_i915_gem_object_change_domain(obj,
  2258. obj->base.read_domains,
  2259. old_write_domain);
  2260. }
  2261. /** Flushes the CPU write domain for the object if it's dirty. */
  2262. static void
  2263. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2264. {
  2265. uint32_t old_write_domain;
  2266. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2267. return;
  2268. i915_gem_clflush_object(obj);
  2269. intel_gtt_chipset_flush();
  2270. old_write_domain = obj->base.write_domain;
  2271. obj->base.write_domain = 0;
  2272. trace_i915_gem_object_change_domain(obj,
  2273. obj->base.read_domains,
  2274. old_write_domain);
  2275. }
  2276. /**
  2277. * Moves a single object to the GTT read, and possibly write domain.
  2278. *
  2279. * This function returns when the move is complete, including waiting on
  2280. * flushes to occur.
  2281. */
  2282. int
  2283. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2284. {
  2285. uint32_t old_write_domain, old_read_domains;
  2286. int ret;
  2287. /* Not valid to be called on unbound objects. */
  2288. if (obj->gtt_space == NULL)
  2289. return -EINVAL;
  2290. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2291. return 0;
  2292. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2293. if (ret)
  2294. return ret;
  2295. if (obj->pending_gpu_write || write) {
  2296. ret = i915_gem_object_wait_rendering(obj);
  2297. if (ret)
  2298. return ret;
  2299. }
  2300. i915_gem_object_flush_cpu_write_domain(obj);
  2301. old_write_domain = obj->base.write_domain;
  2302. old_read_domains = obj->base.read_domains;
  2303. /* It should now be out of any other write domains, and we can update
  2304. * the domain values for our changes.
  2305. */
  2306. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2307. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2308. if (write) {
  2309. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2310. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2311. obj->dirty = 1;
  2312. }
  2313. trace_i915_gem_object_change_domain(obj,
  2314. old_read_domains,
  2315. old_write_domain);
  2316. return 0;
  2317. }
  2318. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2319. enum i915_cache_level cache_level)
  2320. {
  2321. struct drm_device *dev = obj->base.dev;
  2322. drm_i915_private_t *dev_priv = dev->dev_private;
  2323. int ret;
  2324. if (obj->cache_level == cache_level)
  2325. return 0;
  2326. if (obj->pin_count) {
  2327. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2328. return -EBUSY;
  2329. }
  2330. if (obj->gtt_space) {
  2331. ret = i915_gem_object_finish_gpu(obj);
  2332. if (ret)
  2333. return ret;
  2334. i915_gem_object_finish_gtt(obj);
  2335. /* Before SandyBridge, you could not use tiling or fence
  2336. * registers with snooped memory, so relinquish any fences
  2337. * currently pointing to our region in the aperture.
  2338. */
  2339. if (INTEL_INFO(obj->base.dev)->gen < 6) {
  2340. ret = i915_gem_object_put_fence(obj);
  2341. if (ret)
  2342. return ret;
  2343. }
  2344. if (obj->has_global_gtt_mapping)
  2345. i915_gem_gtt_bind_object(obj, cache_level);
  2346. if (obj->has_aliasing_ppgtt_mapping)
  2347. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2348. obj, cache_level);
  2349. }
  2350. if (cache_level == I915_CACHE_NONE) {
  2351. u32 old_read_domains, old_write_domain;
  2352. /* If we're coming from LLC cached, then we haven't
  2353. * actually been tracking whether the data is in the
  2354. * CPU cache or not, since we only allow one bit set
  2355. * in obj->write_domain and have been skipping the clflushes.
  2356. * Just set it to the CPU cache for now.
  2357. */
  2358. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2359. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2360. old_read_domains = obj->base.read_domains;
  2361. old_write_domain = obj->base.write_domain;
  2362. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2363. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2364. trace_i915_gem_object_change_domain(obj,
  2365. old_read_domains,
  2366. old_write_domain);
  2367. }
  2368. obj->cache_level = cache_level;
  2369. return 0;
  2370. }
  2371. /*
  2372. * Prepare buffer for display plane (scanout, cursors, etc).
  2373. * Can be called from an uninterruptible phase (modesetting) and allows
  2374. * any flushes to be pipelined (for pageflips).
  2375. *
  2376. * For the display plane, we want to be in the GTT but out of any write
  2377. * domains. So in many ways this looks like set_to_gtt_domain() apart from the
  2378. * ability to pipeline the waits, pinning and any additional subtleties
  2379. * that may differentiate the display plane from ordinary buffers.
  2380. */
  2381. int
  2382. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2383. u32 alignment,
  2384. struct intel_ring_buffer *pipelined)
  2385. {
  2386. u32 old_read_domains, old_write_domain;
  2387. int ret;
  2388. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2389. if (ret)
  2390. return ret;
  2391. if (pipelined != obj->ring) {
  2392. ret = i915_gem_object_wait_rendering(obj);
  2393. if (ret == -ERESTARTSYS)
  2394. return ret;
  2395. }
  2396. /* The display engine is not coherent with the LLC cache on gen6. As
  2397. * a result, we make sure that the pinning that is about to occur is
  2398. * done with uncached PTEs. This is lowest common denominator for all
  2399. * chipsets.
  2400. *
  2401. * However for gen6+, we could do better by using the GFDT bit instead
  2402. * of uncaching, which would allow us to flush all the LLC-cached data
  2403. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2404. */
  2405. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2406. if (ret)
  2407. return ret;
  2408. /* As the user may map the buffer once pinned in the display plane
  2409. * (e.g. libkms for the bootup splash), we have to ensure that we
  2410. * always use map_and_fenceable for all scanout buffers.
  2411. */
  2412. ret = i915_gem_object_pin(obj, alignment, true);
  2413. if (ret)
  2414. return ret;
  2415. i915_gem_object_flush_cpu_write_domain(obj);
  2416. old_write_domain = obj->base.write_domain;
  2417. old_read_domains = obj->base.read_domains;
  2418. /* It should now be out of any other write domains, and we can update
  2419. * the domain values for our changes.
  2420. */
  2421. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2422. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2423. trace_i915_gem_object_change_domain(obj,
  2424. old_read_domains,
  2425. old_write_domain);
  2426. return 0;
  2427. }
  2428. int
  2429. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2430. {
  2431. int ret;
  2432. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2433. return 0;
  2434. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2435. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2436. if (ret)
  2437. return ret;
  2438. }
  2439. ret = i915_gem_object_wait_rendering(obj);
  2440. if (ret)
  2441. return ret;
  2442. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2443. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2444. return 0;
  2445. }
  2446. /**
  2447. * Moves a single object to the CPU read, and possibly write domain.
  2448. *
  2449. * This function returns when the move is complete, including waiting on
  2450. * flushes to occur.
  2451. */
  2452. int
  2453. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2454. {
  2455. uint32_t old_write_domain, old_read_domains;
  2456. int ret;
  2457. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2458. return 0;
  2459. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2460. if (ret)
  2461. return ret;
  2462. ret = i915_gem_object_wait_rendering(obj);
  2463. if (ret)
  2464. return ret;
  2465. i915_gem_object_flush_gtt_write_domain(obj);
  2466. old_write_domain = obj->base.write_domain;
  2467. old_read_domains = obj->base.read_domains;
  2468. /* Flush the CPU cache if it's still invalid. */
  2469. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2470. i915_gem_clflush_object(obj);
  2471. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2472. }
  2473. /* It should now be out of any other write domains, and we can update
  2474. * the domain values for our changes.
  2475. */
  2476. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2477. /* If we're writing through the CPU, then the GPU read domains will
  2478. * need to be invalidated at next use.
  2479. */
  2480. if (write) {
  2481. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2482. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2483. }
  2484. trace_i915_gem_object_change_domain(obj,
  2485. old_read_domains,
  2486. old_write_domain);
  2487. return 0;
  2488. }
  2489. /* Throttle our rendering by waiting until the ring has completed our requests
  2490. * emitted over 20 msec ago.
  2491. *
  2492. * Note that if we were to use the current jiffies each time around the loop,
  2493. * we wouldn't escape the function with any frames outstanding if the time to
  2494. * render a frame was over 20ms.
  2495. *
  2496. * This should get us reasonable parallelism between CPU and GPU but also
  2497. * relatively low latency when blocking on a particular request to finish.
  2498. */
  2499. static int
  2500. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2501. {
  2502. struct drm_i915_private *dev_priv = dev->dev_private;
  2503. struct drm_i915_file_private *file_priv = file->driver_priv;
  2504. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2505. struct drm_i915_gem_request *request;
  2506. struct intel_ring_buffer *ring = NULL;
  2507. u32 seqno = 0;
  2508. int ret;
  2509. if (atomic_read(&dev_priv->mm.wedged))
  2510. return -EIO;
  2511. spin_lock(&file_priv->mm.lock);
  2512. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2513. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2514. break;
  2515. ring = request->ring;
  2516. seqno = request->seqno;
  2517. }
  2518. spin_unlock(&file_priv->mm.lock);
  2519. if (seqno == 0)
  2520. return 0;
  2521. ret = 0;
  2522. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2523. /* And wait for the seqno passing without holding any locks and
  2524. * causing extra latency for others. This is safe as the irq
  2525. * generation is designed to be run atomically and so is
  2526. * lockless.
  2527. */
  2528. if (ring->irq_get(ring)) {
  2529. ret = wait_event_interruptible(ring->irq_queue,
  2530. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2531. || atomic_read(&dev_priv->mm.wedged));
  2532. ring->irq_put(ring);
  2533. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2534. ret = -EIO;
  2535. } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
  2536. seqno) ||
  2537. atomic_read(&dev_priv->mm.wedged), 3000)) {
  2538. ret = -EBUSY;
  2539. }
  2540. }
  2541. if (ret == 0)
  2542. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2543. return ret;
  2544. }
  2545. int
  2546. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2547. uint32_t alignment,
  2548. bool map_and_fenceable)
  2549. {
  2550. struct drm_device *dev = obj->base.dev;
  2551. struct drm_i915_private *dev_priv = dev->dev_private;
  2552. int ret;
  2553. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2554. WARN_ON(i915_verify_lists(dev));
  2555. if (obj->gtt_space != NULL) {
  2556. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2557. (map_and_fenceable && !obj->map_and_fenceable)) {
  2558. WARN(obj->pin_count,
  2559. "bo is already pinned with incorrect alignment:"
  2560. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2561. " obj->map_and_fenceable=%d\n",
  2562. obj->gtt_offset, alignment,
  2563. map_and_fenceable,
  2564. obj->map_and_fenceable);
  2565. ret = i915_gem_object_unbind(obj);
  2566. if (ret)
  2567. return ret;
  2568. }
  2569. }
  2570. if (obj->gtt_space == NULL) {
  2571. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2572. map_and_fenceable);
  2573. if (ret)
  2574. return ret;
  2575. }
  2576. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  2577. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2578. if (obj->pin_count++ == 0) {
  2579. if (!obj->active)
  2580. list_move_tail(&obj->mm_list,
  2581. &dev_priv->mm.pinned_list);
  2582. }
  2583. obj->pin_mappable |= map_and_fenceable;
  2584. WARN_ON(i915_verify_lists(dev));
  2585. return 0;
  2586. }
  2587. void
  2588. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2589. {
  2590. struct drm_device *dev = obj->base.dev;
  2591. drm_i915_private_t *dev_priv = dev->dev_private;
  2592. WARN_ON(i915_verify_lists(dev));
  2593. BUG_ON(obj->pin_count == 0);
  2594. BUG_ON(obj->gtt_space == NULL);
  2595. if (--obj->pin_count == 0) {
  2596. if (!obj->active)
  2597. list_move_tail(&obj->mm_list,
  2598. &dev_priv->mm.inactive_list);
  2599. obj->pin_mappable = false;
  2600. }
  2601. WARN_ON(i915_verify_lists(dev));
  2602. }
  2603. int
  2604. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2605. struct drm_file *file)
  2606. {
  2607. struct drm_i915_gem_pin *args = data;
  2608. struct drm_i915_gem_object *obj;
  2609. int ret;
  2610. ret = i915_mutex_lock_interruptible(dev);
  2611. if (ret)
  2612. return ret;
  2613. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2614. if (&obj->base == NULL) {
  2615. ret = -ENOENT;
  2616. goto unlock;
  2617. }
  2618. if (obj->madv != I915_MADV_WILLNEED) {
  2619. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2620. ret = -EINVAL;
  2621. goto out;
  2622. }
  2623. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2624. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2625. args->handle);
  2626. ret = -EINVAL;
  2627. goto out;
  2628. }
  2629. obj->user_pin_count++;
  2630. obj->pin_filp = file;
  2631. if (obj->user_pin_count == 1) {
  2632. ret = i915_gem_object_pin(obj, args->alignment, true);
  2633. if (ret)
  2634. goto out;
  2635. }
  2636. /* XXX - flush the CPU caches for pinned objects
  2637. * as the X server doesn't manage domains yet
  2638. */
  2639. i915_gem_object_flush_cpu_write_domain(obj);
  2640. args->offset = obj->gtt_offset;
  2641. out:
  2642. drm_gem_object_unreference(&obj->base);
  2643. unlock:
  2644. mutex_unlock(&dev->struct_mutex);
  2645. return ret;
  2646. }
  2647. int
  2648. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2649. struct drm_file *file)
  2650. {
  2651. struct drm_i915_gem_pin *args = data;
  2652. struct drm_i915_gem_object *obj;
  2653. int ret;
  2654. ret = i915_mutex_lock_interruptible(dev);
  2655. if (ret)
  2656. return ret;
  2657. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2658. if (&obj->base == NULL) {
  2659. ret = -ENOENT;
  2660. goto unlock;
  2661. }
  2662. if (obj->pin_filp != file) {
  2663. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2664. args->handle);
  2665. ret = -EINVAL;
  2666. goto out;
  2667. }
  2668. obj->user_pin_count--;
  2669. if (obj->user_pin_count == 0) {
  2670. obj->pin_filp = NULL;
  2671. i915_gem_object_unpin(obj);
  2672. }
  2673. out:
  2674. drm_gem_object_unreference(&obj->base);
  2675. unlock:
  2676. mutex_unlock(&dev->struct_mutex);
  2677. return ret;
  2678. }
  2679. int
  2680. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2681. struct drm_file *file)
  2682. {
  2683. struct drm_i915_gem_busy *args = data;
  2684. struct drm_i915_gem_object *obj;
  2685. int ret;
  2686. ret = i915_mutex_lock_interruptible(dev);
  2687. if (ret)
  2688. return ret;
  2689. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2690. if (&obj->base == NULL) {
  2691. ret = -ENOENT;
  2692. goto unlock;
  2693. }
  2694. /* Count all active objects as busy, even if they are currently not used
  2695. * by the gpu. Users of this interface expect objects to eventually
  2696. * become non-busy without any further actions, therefore emit any
  2697. * necessary flushes here.
  2698. */
  2699. args->busy = obj->active;
  2700. if (args->busy) {
  2701. /* Unconditionally flush objects, even when the gpu still uses this
  2702. * object. Userspace calling this function indicates that it wants to
  2703. * use this buffer rather sooner than later, so issuing the required
  2704. * flush earlier is beneficial.
  2705. */
  2706. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2707. ret = i915_gem_flush_ring(obj->ring,
  2708. 0, obj->base.write_domain);
  2709. } else if (obj->ring->outstanding_lazy_request ==
  2710. obj->last_rendering_seqno) {
  2711. struct drm_i915_gem_request *request;
  2712. /* This ring is not being cleared by active usage,
  2713. * so emit a request to do so.
  2714. */
  2715. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2716. if (request) {
  2717. ret = i915_add_request(obj->ring, NULL, request);
  2718. if (ret)
  2719. kfree(request);
  2720. } else
  2721. ret = -ENOMEM;
  2722. }
  2723. /* Update the active list for the hardware's current position.
  2724. * Otherwise this only updates on a delayed timer or when irqs
  2725. * are actually unmasked, and our working set ends up being
  2726. * larger than required.
  2727. */
  2728. i915_gem_retire_requests_ring(obj->ring);
  2729. args->busy = obj->active;
  2730. }
  2731. drm_gem_object_unreference(&obj->base);
  2732. unlock:
  2733. mutex_unlock(&dev->struct_mutex);
  2734. return ret;
  2735. }
  2736. int
  2737. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2738. struct drm_file *file_priv)
  2739. {
  2740. return i915_gem_ring_throttle(dev, file_priv);
  2741. }
  2742. int
  2743. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2744. struct drm_file *file_priv)
  2745. {
  2746. struct drm_i915_gem_madvise *args = data;
  2747. struct drm_i915_gem_object *obj;
  2748. int ret;
  2749. switch (args->madv) {
  2750. case I915_MADV_DONTNEED:
  2751. case I915_MADV_WILLNEED:
  2752. break;
  2753. default:
  2754. return -EINVAL;
  2755. }
  2756. ret = i915_mutex_lock_interruptible(dev);
  2757. if (ret)
  2758. return ret;
  2759. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2760. if (&obj->base == NULL) {
  2761. ret = -ENOENT;
  2762. goto unlock;
  2763. }
  2764. if (obj->pin_count) {
  2765. ret = -EINVAL;
  2766. goto out;
  2767. }
  2768. if (obj->madv != __I915_MADV_PURGED)
  2769. obj->madv = args->madv;
  2770. /* if the object is no longer bound, discard its backing storage */
  2771. if (i915_gem_object_is_purgeable(obj) &&
  2772. obj->gtt_space == NULL)
  2773. i915_gem_object_truncate(obj);
  2774. args->retained = obj->madv != __I915_MADV_PURGED;
  2775. out:
  2776. drm_gem_object_unreference(&obj->base);
  2777. unlock:
  2778. mutex_unlock(&dev->struct_mutex);
  2779. return ret;
  2780. }
  2781. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2782. size_t size)
  2783. {
  2784. struct drm_i915_private *dev_priv = dev->dev_private;
  2785. struct drm_i915_gem_object *obj;
  2786. struct address_space *mapping;
  2787. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2788. if (obj == NULL)
  2789. return NULL;
  2790. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2791. kfree(obj);
  2792. return NULL;
  2793. }
  2794. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  2795. mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
  2796. i915_gem_info_add_obj(dev_priv, size);
  2797. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2798. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2799. if (HAS_LLC(dev)) {
  2800. /* On some devices, we can have the GPU use the LLC (the CPU
  2801. * cache) for about a 10% performance improvement
  2802. * compared to uncached. Graphics requests other than
  2803. * display scanout are coherent with the CPU in
  2804. * accessing this cache. This means in this mode we
  2805. * don't need to clflush on the CPU side, and on the
  2806. * GPU side we only need to flush internal caches to
  2807. * get data visible to the CPU.
  2808. *
  2809. * However, we maintain the display planes as UC, and so
  2810. * need to rebind when first used as such.
  2811. */
  2812. obj->cache_level = I915_CACHE_LLC;
  2813. } else
  2814. obj->cache_level = I915_CACHE_NONE;
  2815. obj->base.driver_private = NULL;
  2816. obj->fence_reg = I915_FENCE_REG_NONE;
  2817. INIT_LIST_HEAD(&obj->mm_list);
  2818. INIT_LIST_HEAD(&obj->gtt_list);
  2819. INIT_LIST_HEAD(&obj->ring_list);
  2820. INIT_LIST_HEAD(&obj->exec_list);
  2821. INIT_LIST_HEAD(&obj->gpu_write_list);
  2822. obj->madv = I915_MADV_WILLNEED;
  2823. /* Avoid an unnecessary call to unbind on the first bind. */
  2824. obj->map_and_fenceable = true;
  2825. return obj;
  2826. }
  2827. int i915_gem_init_object(struct drm_gem_object *obj)
  2828. {
  2829. BUG();
  2830. return 0;
  2831. }
  2832. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  2833. {
  2834. struct drm_device *dev = obj->base.dev;
  2835. drm_i915_private_t *dev_priv = dev->dev_private;
  2836. int ret;
  2837. ret = i915_gem_object_unbind(obj);
  2838. if (ret == -ERESTARTSYS) {
  2839. list_move(&obj->mm_list,
  2840. &dev_priv->mm.deferred_free_list);
  2841. return;
  2842. }
  2843. trace_i915_gem_object_destroy(obj);
  2844. if (obj->base.map_list.map)
  2845. drm_gem_free_mmap_offset(&obj->base);
  2846. drm_gem_object_release(&obj->base);
  2847. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  2848. kfree(obj->bit_17);
  2849. kfree(obj);
  2850. }
  2851. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  2852. {
  2853. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  2854. struct drm_device *dev = obj->base.dev;
  2855. while (obj->pin_count > 0)
  2856. i915_gem_object_unpin(obj);
  2857. if (obj->phys_obj)
  2858. i915_gem_detach_phys_object(dev, obj);
  2859. i915_gem_free_object_tail(obj);
  2860. }
  2861. int
  2862. i915_gem_idle(struct drm_device *dev)
  2863. {
  2864. drm_i915_private_t *dev_priv = dev->dev_private;
  2865. int ret;
  2866. mutex_lock(&dev->struct_mutex);
  2867. if (dev_priv->mm.suspended) {
  2868. mutex_unlock(&dev->struct_mutex);
  2869. return 0;
  2870. }
  2871. ret = i915_gpu_idle(dev, true);
  2872. if (ret) {
  2873. mutex_unlock(&dev->struct_mutex);
  2874. return ret;
  2875. }
  2876. /* Under UMS, be paranoid and evict. */
  2877. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  2878. ret = i915_gem_evict_inactive(dev, false);
  2879. if (ret) {
  2880. mutex_unlock(&dev->struct_mutex);
  2881. return ret;
  2882. }
  2883. }
  2884. i915_gem_reset_fences(dev);
  2885. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  2886. * We need to replace this with a semaphore, or something.
  2887. * And not confound mm.suspended!
  2888. */
  2889. dev_priv->mm.suspended = 1;
  2890. del_timer_sync(&dev_priv->hangcheck_timer);
  2891. i915_kernel_lost_context(dev);
  2892. i915_gem_cleanup_ringbuffer(dev);
  2893. mutex_unlock(&dev->struct_mutex);
  2894. /* Cancel the retire work handler, which should be idle now. */
  2895. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  2896. return 0;
  2897. }
  2898. void i915_gem_init_swizzling(struct drm_device *dev)
  2899. {
  2900. drm_i915_private_t *dev_priv = dev->dev_private;
  2901. if (INTEL_INFO(dev)->gen < 5 ||
  2902. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  2903. return;
  2904. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  2905. DISP_TILE_SURFACE_SWIZZLING);
  2906. if (IS_GEN5(dev))
  2907. return;
  2908. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  2909. if (IS_GEN6(dev))
  2910. I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
  2911. else
  2912. I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
  2913. }
  2914. void i915_gem_init_ppgtt(struct drm_device *dev)
  2915. {
  2916. drm_i915_private_t *dev_priv = dev->dev_private;
  2917. uint32_t pd_offset;
  2918. struct intel_ring_buffer *ring;
  2919. int i;
  2920. if (!dev_priv->mm.aliasing_ppgtt)
  2921. return;
  2922. pd_offset = dev_priv->mm.aliasing_ppgtt->pd_offset;
  2923. pd_offset /= 64; /* in cachelines, */
  2924. pd_offset <<= 16;
  2925. if (INTEL_INFO(dev)->gen == 6) {
  2926. uint32_t ecochk = I915_READ(GAM_ECOCHK);
  2927. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  2928. ECOCHK_PPGTT_CACHE64B);
  2929. I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
  2930. } else if (INTEL_INFO(dev)->gen >= 7) {
  2931. I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
  2932. /* GFX_MODE is per-ring on gen7+ */
  2933. }
  2934. for (i = 0; i < I915_NUM_RINGS; i++) {
  2935. ring = &dev_priv->ring[i];
  2936. if (INTEL_INFO(dev)->gen >= 7)
  2937. I915_WRITE(RING_MODE_GEN7(ring),
  2938. GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
  2939. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  2940. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  2941. }
  2942. }
  2943. int
  2944. i915_gem_init_hw(struct drm_device *dev)
  2945. {
  2946. drm_i915_private_t *dev_priv = dev->dev_private;
  2947. int ret;
  2948. i915_gem_init_swizzling(dev);
  2949. ret = intel_init_render_ring_buffer(dev);
  2950. if (ret)
  2951. return ret;
  2952. if (HAS_BSD(dev)) {
  2953. ret = intel_init_bsd_ring_buffer(dev);
  2954. if (ret)
  2955. goto cleanup_render_ring;
  2956. }
  2957. if (HAS_BLT(dev)) {
  2958. ret = intel_init_blt_ring_buffer(dev);
  2959. if (ret)
  2960. goto cleanup_bsd_ring;
  2961. }
  2962. dev_priv->next_seqno = 1;
  2963. i915_gem_init_ppgtt(dev);
  2964. return 0;
  2965. cleanup_bsd_ring:
  2966. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  2967. cleanup_render_ring:
  2968. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  2969. return ret;
  2970. }
  2971. void
  2972. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  2973. {
  2974. drm_i915_private_t *dev_priv = dev->dev_private;
  2975. int i;
  2976. for (i = 0; i < I915_NUM_RINGS; i++)
  2977. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  2978. }
  2979. int
  2980. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  2981. struct drm_file *file_priv)
  2982. {
  2983. drm_i915_private_t *dev_priv = dev->dev_private;
  2984. int ret, i;
  2985. if (drm_core_check_feature(dev, DRIVER_MODESET))
  2986. return 0;
  2987. if (atomic_read(&dev_priv->mm.wedged)) {
  2988. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  2989. atomic_set(&dev_priv->mm.wedged, 0);
  2990. }
  2991. mutex_lock(&dev->struct_mutex);
  2992. dev_priv->mm.suspended = 0;
  2993. ret = i915_gem_init_hw(dev);
  2994. if (ret != 0) {
  2995. mutex_unlock(&dev->struct_mutex);
  2996. return ret;
  2997. }
  2998. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  2999. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3000. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3001. for (i = 0; i < I915_NUM_RINGS; i++) {
  3002. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  3003. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  3004. }
  3005. mutex_unlock(&dev->struct_mutex);
  3006. ret = drm_irq_install(dev);
  3007. if (ret)
  3008. goto cleanup_ringbuffer;
  3009. return 0;
  3010. cleanup_ringbuffer:
  3011. mutex_lock(&dev->struct_mutex);
  3012. i915_gem_cleanup_ringbuffer(dev);
  3013. dev_priv->mm.suspended = 1;
  3014. mutex_unlock(&dev->struct_mutex);
  3015. return ret;
  3016. }
  3017. int
  3018. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3019. struct drm_file *file_priv)
  3020. {
  3021. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3022. return 0;
  3023. drm_irq_uninstall(dev);
  3024. return i915_gem_idle(dev);
  3025. }
  3026. void
  3027. i915_gem_lastclose(struct drm_device *dev)
  3028. {
  3029. int ret;
  3030. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3031. return;
  3032. ret = i915_gem_idle(dev);
  3033. if (ret)
  3034. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3035. }
  3036. static void
  3037. init_ring_lists(struct intel_ring_buffer *ring)
  3038. {
  3039. INIT_LIST_HEAD(&ring->active_list);
  3040. INIT_LIST_HEAD(&ring->request_list);
  3041. INIT_LIST_HEAD(&ring->gpu_write_list);
  3042. }
  3043. void
  3044. i915_gem_load(struct drm_device *dev)
  3045. {
  3046. int i;
  3047. drm_i915_private_t *dev_priv = dev->dev_private;
  3048. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3049. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3050. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3051. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3052. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3053. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3054. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3055. for (i = 0; i < I915_NUM_RINGS; i++)
  3056. init_ring_lists(&dev_priv->ring[i]);
  3057. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3058. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3059. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3060. i915_gem_retire_work_handler);
  3061. init_completion(&dev_priv->error_completion);
  3062. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3063. if (IS_GEN3(dev)) {
  3064. u32 tmp = I915_READ(MI_ARB_STATE);
  3065. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3066. /* arb state is a masked write, so set bit + bit in mask */
  3067. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3068. I915_WRITE(MI_ARB_STATE, tmp);
  3069. }
  3070. }
  3071. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3072. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3073. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3074. dev_priv->fence_reg_start = 3;
  3075. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3076. dev_priv->num_fence_regs = 16;
  3077. else
  3078. dev_priv->num_fence_regs = 8;
  3079. /* Initialize fence registers to zero */
  3080. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  3081. i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
  3082. }
  3083. i915_gem_detect_bit_6_swizzle(dev);
  3084. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3085. dev_priv->mm.interruptible = true;
  3086. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3087. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3088. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3089. }
  3090. /*
  3091. * Create a physically contiguous memory object for this object
  3092. * e.g. for cursor + overlay regs
  3093. */
  3094. static int i915_gem_init_phys_object(struct drm_device *dev,
  3095. int id, int size, int align)
  3096. {
  3097. drm_i915_private_t *dev_priv = dev->dev_private;
  3098. struct drm_i915_gem_phys_object *phys_obj;
  3099. int ret;
  3100. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3101. return 0;
  3102. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3103. if (!phys_obj)
  3104. return -ENOMEM;
  3105. phys_obj->id = id;
  3106. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3107. if (!phys_obj->handle) {
  3108. ret = -ENOMEM;
  3109. goto kfree_obj;
  3110. }
  3111. #ifdef CONFIG_X86
  3112. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3113. #endif
  3114. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3115. return 0;
  3116. kfree_obj:
  3117. kfree(phys_obj);
  3118. return ret;
  3119. }
  3120. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3121. {
  3122. drm_i915_private_t *dev_priv = dev->dev_private;
  3123. struct drm_i915_gem_phys_object *phys_obj;
  3124. if (!dev_priv->mm.phys_objs[id - 1])
  3125. return;
  3126. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3127. if (phys_obj->cur_obj) {
  3128. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3129. }
  3130. #ifdef CONFIG_X86
  3131. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3132. #endif
  3133. drm_pci_free(dev, phys_obj->handle);
  3134. kfree(phys_obj);
  3135. dev_priv->mm.phys_objs[id - 1] = NULL;
  3136. }
  3137. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3138. {
  3139. int i;
  3140. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3141. i915_gem_free_phys_object(dev, i);
  3142. }
  3143. void i915_gem_detach_phys_object(struct drm_device *dev,
  3144. struct drm_i915_gem_object *obj)
  3145. {
  3146. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3147. char *vaddr;
  3148. int i;
  3149. int page_count;
  3150. if (!obj->phys_obj)
  3151. return;
  3152. vaddr = obj->phys_obj->handle->vaddr;
  3153. page_count = obj->base.size / PAGE_SIZE;
  3154. for (i = 0; i < page_count; i++) {
  3155. struct page *page = shmem_read_mapping_page(mapping, i);
  3156. if (!IS_ERR(page)) {
  3157. char *dst = kmap_atomic(page);
  3158. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3159. kunmap_atomic(dst);
  3160. drm_clflush_pages(&page, 1);
  3161. set_page_dirty(page);
  3162. mark_page_accessed(page);
  3163. page_cache_release(page);
  3164. }
  3165. }
  3166. intel_gtt_chipset_flush();
  3167. obj->phys_obj->cur_obj = NULL;
  3168. obj->phys_obj = NULL;
  3169. }
  3170. int
  3171. i915_gem_attach_phys_object(struct drm_device *dev,
  3172. struct drm_i915_gem_object *obj,
  3173. int id,
  3174. int align)
  3175. {
  3176. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3177. drm_i915_private_t *dev_priv = dev->dev_private;
  3178. int ret = 0;
  3179. int page_count;
  3180. int i;
  3181. if (id > I915_MAX_PHYS_OBJECT)
  3182. return -EINVAL;
  3183. if (obj->phys_obj) {
  3184. if (obj->phys_obj->id == id)
  3185. return 0;
  3186. i915_gem_detach_phys_object(dev, obj);
  3187. }
  3188. /* create a new object */
  3189. if (!dev_priv->mm.phys_objs[id - 1]) {
  3190. ret = i915_gem_init_phys_object(dev, id,
  3191. obj->base.size, align);
  3192. if (ret) {
  3193. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3194. id, obj->base.size);
  3195. return ret;
  3196. }
  3197. }
  3198. /* bind to the object */
  3199. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3200. obj->phys_obj->cur_obj = obj;
  3201. page_count = obj->base.size / PAGE_SIZE;
  3202. for (i = 0; i < page_count; i++) {
  3203. struct page *page;
  3204. char *dst, *src;
  3205. page = shmem_read_mapping_page(mapping, i);
  3206. if (IS_ERR(page))
  3207. return PTR_ERR(page);
  3208. src = kmap_atomic(page);
  3209. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3210. memcpy(dst, src, PAGE_SIZE);
  3211. kunmap_atomic(src);
  3212. mark_page_accessed(page);
  3213. page_cache_release(page);
  3214. }
  3215. return 0;
  3216. }
  3217. static int
  3218. i915_gem_phys_pwrite(struct drm_device *dev,
  3219. struct drm_i915_gem_object *obj,
  3220. struct drm_i915_gem_pwrite *args,
  3221. struct drm_file *file_priv)
  3222. {
  3223. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3224. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3225. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3226. unsigned long unwritten;
  3227. /* The physical object once assigned is fixed for the lifetime
  3228. * of the obj, so we can safely drop the lock and continue
  3229. * to access vaddr.
  3230. */
  3231. mutex_unlock(&dev->struct_mutex);
  3232. unwritten = copy_from_user(vaddr, user_data, args->size);
  3233. mutex_lock(&dev->struct_mutex);
  3234. if (unwritten)
  3235. return -EFAULT;
  3236. }
  3237. intel_gtt_chipset_flush();
  3238. return 0;
  3239. }
  3240. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3241. {
  3242. struct drm_i915_file_private *file_priv = file->driver_priv;
  3243. /* Clean up our request list when the client is going away, so that
  3244. * later retire_requests won't dereference our soon-to-be-gone
  3245. * file_priv.
  3246. */
  3247. spin_lock(&file_priv->mm.lock);
  3248. while (!list_empty(&file_priv->mm.request_list)) {
  3249. struct drm_i915_gem_request *request;
  3250. request = list_first_entry(&file_priv->mm.request_list,
  3251. struct drm_i915_gem_request,
  3252. client_list);
  3253. list_del(&request->client_list);
  3254. request->file_priv = NULL;
  3255. }
  3256. spin_unlock(&file_priv->mm.lock);
  3257. }
  3258. static int
  3259. i915_gpu_is_active(struct drm_device *dev)
  3260. {
  3261. drm_i915_private_t *dev_priv = dev->dev_private;
  3262. int lists_empty;
  3263. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3264. list_empty(&dev_priv->mm.active_list);
  3265. return !lists_empty;
  3266. }
  3267. static int
  3268. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3269. {
  3270. struct drm_i915_private *dev_priv =
  3271. container_of(shrinker,
  3272. struct drm_i915_private,
  3273. mm.inactive_shrinker);
  3274. struct drm_device *dev = dev_priv->dev;
  3275. struct drm_i915_gem_object *obj, *next;
  3276. int nr_to_scan = sc->nr_to_scan;
  3277. int cnt;
  3278. if (!mutex_trylock(&dev->struct_mutex))
  3279. return 0;
  3280. /* "fast-path" to count number of available objects */
  3281. if (nr_to_scan == 0) {
  3282. cnt = 0;
  3283. list_for_each_entry(obj,
  3284. &dev_priv->mm.inactive_list,
  3285. mm_list)
  3286. cnt++;
  3287. mutex_unlock(&dev->struct_mutex);
  3288. return cnt / 100 * sysctl_vfs_cache_pressure;
  3289. }
  3290. rescan:
  3291. /* first scan for clean buffers */
  3292. i915_gem_retire_requests(dev);
  3293. list_for_each_entry_safe(obj, next,
  3294. &dev_priv->mm.inactive_list,
  3295. mm_list) {
  3296. if (i915_gem_object_is_purgeable(obj)) {
  3297. if (i915_gem_object_unbind(obj) == 0 &&
  3298. --nr_to_scan == 0)
  3299. break;
  3300. }
  3301. }
  3302. /* second pass, evict/count anything still on the inactive list */
  3303. cnt = 0;
  3304. list_for_each_entry_safe(obj, next,
  3305. &dev_priv->mm.inactive_list,
  3306. mm_list) {
  3307. if (nr_to_scan &&
  3308. i915_gem_object_unbind(obj) == 0)
  3309. nr_to_scan--;
  3310. else
  3311. cnt++;
  3312. }
  3313. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3314. /*
  3315. * We are desperate for pages, so as a last resort, wait
  3316. * for the GPU to finish and discard whatever we can.
  3317. * This has a dramatic impact to reduce the number of
  3318. * OOM-killer events whilst running the GPU aggressively.
  3319. */
  3320. if (i915_gpu_idle(dev, true) == 0)
  3321. goto rescan;
  3322. }
  3323. mutex_unlock(&dev->struct_mutex);
  3324. return cnt / 100 * sysctl_vfs_cache_pressure;
  3325. }