kvm_main.c 67 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "x86_emulate.h"
  20. #include "irq.h"
  21. #include <linux/kvm.h>
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/mm.h>
  27. #include <linux/miscdevice.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/reboot.h>
  30. #include <linux/debugfs.h>
  31. #include <linux/highmem.h>
  32. #include <linux/file.h>
  33. #include <linux/sysdev.h>
  34. #include <linux/cpu.h>
  35. #include <linux/sched.h>
  36. #include <linux/cpumask.h>
  37. #include <linux/smp.h>
  38. #include <linux/anon_inodes.h>
  39. #include <linux/profile.h>
  40. #include <linux/kvm_para.h>
  41. #include <linux/pagemap.h>
  42. #include <linux/mman.h>
  43. #include <asm/processor.h>
  44. #include <asm/msr.h>
  45. #include <asm/io.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/desc.h>
  48. MODULE_AUTHOR("Qumranet");
  49. MODULE_LICENSE("GPL");
  50. static DEFINE_SPINLOCK(kvm_lock);
  51. static LIST_HEAD(vm_list);
  52. static cpumask_t cpus_hardware_enabled;
  53. struct kvm_x86_ops *kvm_x86_ops;
  54. struct kmem_cache *kvm_vcpu_cache;
  55. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  56. static __read_mostly struct preempt_ops kvm_preempt_ops;
  57. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  58. static struct kvm_stats_debugfs_item {
  59. const char *name;
  60. int offset;
  61. struct dentry *dentry;
  62. } debugfs_entries[] = {
  63. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  64. { "pf_guest", STAT_OFFSET(pf_guest) },
  65. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  66. { "invlpg", STAT_OFFSET(invlpg) },
  67. { "exits", STAT_OFFSET(exits) },
  68. { "io_exits", STAT_OFFSET(io_exits) },
  69. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  70. { "signal_exits", STAT_OFFSET(signal_exits) },
  71. { "irq_window", STAT_OFFSET(irq_window_exits) },
  72. { "halt_exits", STAT_OFFSET(halt_exits) },
  73. { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
  74. { "request_irq", STAT_OFFSET(request_irq_exits) },
  75. { "irq_exits", STAT_OFFSET(irq_exits) },
  76. { "light_exits", STAT_OFFSET(light_exits) },
  77. { "efer_reload", STAT_OFFSET(efer_reload) },
  78. { NULL }
  79. };
  80. static struct dentry *debugfs_dir;
  81. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  82. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  83. unsigned long arg);
  84. static inline int valid_vcpu(int n)
  85. {
  86. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  87. }
  88. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  89. {
  90. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  91. return;
  92. vcpu->guest_fpu_loaded = 1;
  93. fx_save(&vcpu->host_fx_image);
  94. fx_restore(&vcpu->guest_fx_image);
  95. }
  96. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  97. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  98. {
  99. if (!vcpu->guest_fpu_loaded)
  100. return;
  101. vcpu->guest_fpu_loaded = 0;
  102. fx_save(&vcpu->guest_fx_image);
  103. fx_restore(&vcpu->host_fx_image);
  104. }
  105. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  106. /*
  107. * Switches to specified vcpu, until a matching vcpu_put()
  108. */
  109. void vcpu_load(struct kvm_vcpu *vcpu)
  110. {
  111. int cpu;
  112. mutex_lock(&vcpu->mutex);
  113. cpu = get_cpu();
  114. preempt_notifier_register(&vcpu->preempt_notifier);
  115. kvm_arch_vcpu_load(vcpu, cpu);
  116. put_cpu();
  117. }
  118. void vcpu_put(struct kvm_vcpu *vcpu)
  119. {
  120. preempt_disable();
  121. kvm_arch_vcpu_put(vcpu);
  122. preempt_notifier_unregister(&vcpu->preempt_notifier);
  123. preempt_enable();
  124. mutex_unlock(&vcpu->mutex);
  125. }
  126. static void ack_flush(void *_completed)
  127. {
  128. }
  129. void kvm_flush_remote_tlbs(struct kvm *kvm)
  130. {
  131. int i, cpu;
  132. cpumask_t cpus;
  133. struct kvm_vcpu *vcpu;
  134. cpus_clear(cpus);
  135. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  136. vcpu = kvm->vcpus[i];
  137. if (!vcpu)
  138. continue;
  139. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  140. continue;
  141. cpu = vcpu->cpu;
  142. if (cpu != -1 && cpu != raw_smp_processor_id())
  143. cpu_set(cpu, cpus);
  144. }
  145. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  146. }
  147. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  148. {
  149. struct page *page;
  150. int r;
  151. mutex_init(&vcpu->mutex);
  152. vcpu->cpu = -1;
  153. vcpu->mmu.root_hpa = INVALID_PAGE;
  154. vcpu->kvm = kvm;
  155. vcpu->vcpu_id = id;
  156. if (!irqchip_in_kernel(kvm) || id == 0)
  157. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  158. else
  159. vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
  160. init_waitqueue_head(&vcpu->wq);
  161. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  162. if (!page) {
  163. r = -ENOMEM;
  164. goto fail;
  165. }
  166. vcpu->run = page_address(page);
  167. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  168. if (!page) {
  169. r = -ENOMEM;
  170. goto fail_free_run;
  171. }
  172. vcpu->pio_data = page_address(page);
  173. r = kvm_mmu_create(vcpu);
  174. if (r < 0)
  175. goto fail_free_pio_data;
  176. if (irqchip_in_kernel(kvm)) {
  177. r = kvm_create_lapic(vcpu);
  178. if (r < 0)
  179. goto fail_mmu_destroy;
  180. }
  181. return 0;
  182. fail_mmu_destroy:
  183. kvm_mmu_destroy(vcpu);
  184. fail_free_pio_data:
  185. free_page((unsigned long)vcpu->pio_data);
  186. fail_free_run:
  187. free_page((unsigned long)vcpu->run);
  188. fail:
  189. return r;
  190. }
  191. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  192. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  193. {
  194. kvm_free_lapic(vcpu);
  195. kvm_mmu_destroy(vcpu);
  196. free_page((unsigned long)vcpu->pio_data);
  197. free_page((unsigned long)vcpu->run);
  198. }
  199. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  200. static struct kvm *kvm_create_vm(void)
  201. {
  202. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  203. if (!kvm)
  204. return ERR_PTR(-ENOMEM);
  205. kvm_io_bus_init(&kvm->pio_bus);
  206. mutex_init(&kvm->lock);
  207. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  208. kvm_io_bus_init(&kvm->mmio_bus);
  209. spin_lock(&kvm_lock);
  210. list_add(&kvm->vm_list, &vm_list);
  211. spin_unlock(&kvm_lock);
  212. return kvm;
  213. }
  214. /*
  215. * Free any memory in @free but not in @dont.
  216. */
  217. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  218. struct kvm_memory_slot *dont)
  219. {
  220. if (!dont || free->rmap != dont->rmap)
  221. vfree(free->rmap);
  222. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  223. vfree(free->dirty_bitmap);
  224. free->npages = 0;
  225. free->dirty_bitmap = NULL;
  226. free->rmap = NULL;
  227. }
  228. static void kvm_free_physmem(struct kvm *kvm)
  229. {
  230. int i;
  231. for (i = 0; i < kvm->nmemslots; ++i)
  232. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  233. }
  234. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  235. {
  236. int i;
  237. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  238. if (vcpu->pio.guest_pages[i]) {
  239. kvm_release_page(vcpu->pio.guest_pages[i]);
  240. vcpu->pio.guest_pages[i] = NULL;
  241. }
  242. }
  243. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  244. {
  245. vcpu_load(vcpu);
  246. kvm_mmu_unload(vcpu);
  247. vcpu_put(vcpu);
  248. }
  249. static void kvm_free_vcpus(struct kvm *kvm)
  250. {
  251. unsigned int i;
  252. /*
  253. * Unpin any mmu pages first.
  254. */
  255. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  256. if (kvm->vcpus[i])
  257. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  258. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  259. if (kvm->vcpus[i]) {
  260. kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
  261. kvm->vcpus[i] = NULL;
  262. }
  263. }
  264. }
  265. static void kvm_destroy_vm(struct kvm *kvm)
  266. {
  267. spin_lock(&kvm_lock);
  268. list_del(&kvm->vm_list);
  269. spin_unlock(&kvm_lock);
  270. kvm_io_bus_destroy(&kvm->pio_bus);
  271. kvm_io_bus_destroy(&kvm->mmio_bus);
  272. kfree(kvm->vpic);
  273. kfree(kvm->vioapic);
  274. kvm_free_vcpus(kvm);
  275. kvm_free_physmem(kvm);
  276. kfree(kvm);
  277. }
  278. static int kvm_vm_release(struct inode *inode, struct file *filp)
  279. {
  280. struct kvm *kvm = filp->private_data;
  281. kvm_destroy_vm(kvm);
  282. return 0;
  283. }
  284. static void inject_gp(struct kvm_vcpu *vcpu)
  285. {
  286. kvm_x86_ops->inject_gp(vcpu, 0);
  287. }
  288. void fx_init(struct kvm_vcpu *vcpu)
  289. {
  290. unsigned after_mxcsr_mask;
  291. /* Initialize guest FPU by resetting ours and saving into guest's */
  292. preempt_disable();
  293. fx_save(&vcpu->host_fx_image);
  294. fpu_init();
  295. fx_save(&vcpu->guest_fx_image);
  296. fx_restore(&vcpu->host_fx_image);
  297. preempt_enable();
  298. vcpu->cr0 |= X86_CR0_ET;
  299. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  300. vcpu->guest_fx_image.mxcsr = 0x1f80;
  301. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  302. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  303. }
  304. EXPORT_SYMBOL_GPL(fx_init);
  305. /*
  306. * Allocate some memory and give it an address in the guest physical address
  307. * space.
  308. *
  309. * Discontiguous memory is allowed, mostly for framebuffers.
  310. */
  311. int kvm_set_memory_region(struct kvm *kvm,
  312. struct kvm_userspace_memory_region *mem,
  313. int user_alloc)
  314. {
  315. int r;
  316. gfn_t base_gfn;
  317. unsigned long npages;
  318. unsigned long i;
  319. struct kvm_memory_slot *memslot;
  320. struct kvm_memory_slot old, new;
  321. r = -EINVAL;
  322. /* General sanity checks */
  323. if (mem->memory_size & (PAGE_SIZE - 1))
  324. goto out;
  325. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  326. goto out;
  327. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  328. goto out;
  329. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  330. goto out;
  331. memslot = &kvm->memslots[mem->slot];
  332. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  333. npages = mem->memory_size >> PAGE_SHIFT;
  334. if (!npages)
  335. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  336. mutex_lock(&kvm->lock);
  337. new = old = *memslot;
  338. new.base_gfn = base_gfn;
  339. new.npages = npages;
  340. new.flags = mem->flags;
  341. /* Disallow changing a memory slot's size. */
  342. r = -EINVAL;
  343. if (npages && old.npages && npages != old.npages)
  344. goto out_unlock;
  345. /* Check for overlaps */
  346. r = -EEXIST;
  347. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  348. struct kvm_memory_slot *s = &kvm->memslots[i];
  349. if (s == memslot)
  350. continue;
  351. if (!((base_gfn + npages <= s->base_gfn) ||
  352. (base_gfn >= s->base_gfn + s->npages)))
  353. goto out_unlock;
  354. }
  355. /* Free page dirty bitmap if unneeded */
  356. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  357. new.dirty_bitmap = NULL;
  358. r = -ENOMEM;
  359. /* Allocate if a slot is being created */
  360. if (npages && !new.rmap) {
  361. new.rmap = vmalloc(npages * sizeof(struct page *));
  362. if (!new.rmap)
  363. goto out_unlock;
  364. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  365. new.user_alloc = user_alloc;
  366. if (user_alloc)
  367. new.userspace_addr = mem->userspace_addr;
  368. else {
  369. down_write(&current->mm->mmap_sem);
  370. new.userspace_addr = do_mmap(NULL, 0,
  371. npages * PAGE_SIZE,
  372. PROT_READ | PROT_WRITE,
  373. MAP_SHARED | MAP_ANONYMOUS,
  374. 0);
  375. up_write(&current->mm->mmap_sem);
  376. if (IS_ERR((void *)new.userspace_addr))
  377. goto out_unlock;
  378. }
  379. } else {
  380. if (!old.user_alloc && old.rmap) {
  381. int ret;
  382. down_write(&current->mm->mmap_sem);
  383. ret = do_munmap(current->mm, old.userspace_addr,
  384. old.npages * PAGE_SIZE);
  385. up_write(&current->mm->mmap_sem);
  386. if (ret < 0)
  387. printk(KERN_WARNING
  388. "kvm_vm_ioctl_set_memory_region: "
  389. "failed to munmap memory\n");
  390. }
  391. }
  392. /* Allocate page dirty bitmap if needed */
  393. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  394. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  395. new.dirty_bitmap = vmalloc(dirty_bytes);
  396. if (!new.dirty_bitmap)
  397. goto out_unlock;
  398. memset(new.dirty_bitmap, 0, dirty_bytes);
  399. }
  400. if (mem->slot >= kvm->nmemslots)
  401. kvm->nmemslots = mem->slot + 1;
  402. if (!kvm->n_requested_mmu_pages) {
  403. unsigned int n_pages;
  404. if (npages) {
  405. n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
  406. kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
  407. n_pages);
  408. } else {
  409. unsigned int nr_mmu_pages;
  410. n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
  411. nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
  412. nr_mmu_pages = max(nr_mmu_pages,
  413. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  414. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  415. }
  416. }
  417. *memslot = new;
  418. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  419. kvm_flush_remote_tlbs(kvm);
  420. mutex_unlock(&kvm->lock);
  421. kvm_free_physmem_slot(&old, &new);
  422. return 0;
  423. out_unlock:
  424. mutex_unlock(&kvm->lock);
  425. kvm_free_physmem_slot(&new, &old);
  426. out:
  427. return r;
  428. }
  429. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  430. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  431. struct
  432. kvm_userspace_memory_region *mem,
  433. int user_alloc)
  434. {
  435. if (mem->slot >= KVM_MEMORY_SLOTS)
  436. return -EINVAL;
  437. return kvm_set_memory_region(kvm, mem, user_alloc);
  438. }
  439. /*
  440. * Get (and clear) the dirty memory log for a memory slot.
  441. */
  442. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  443. struct kvm_dirty_log *log)
  444. {
  445. struct kvm_memory_slot *memslot;
  446. int r, i;
  447. int n;
  448. unsigned long any = 0;
  449. mutex_lock(&kvm->lock);
  450. r = -EINVAL;
  451. if (log->slot >= KVM_MEMORY_SLOTS)
  452. goto out;
  453. memslot = &kvm->memslots[log->slot];
  454. r = -ENOENT;
  455. if (!memslot->dirty_bitmap)
  456. goto out;
  457. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  458. for (i = 0; !any && i < n/sizeof(long); ++i)
  459. any = memslot->dirty_bitmap[i];
  460. r = -EFAULT;
  461. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  462. goto out;
  463. /* If nothing is dirty, don't bother messing with page tables. */
  464. if (any) {
  465. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  466. kvm_flush_remote_tlbs(kvm);
  467. memset(memslot->dirty_bitmap, 0, n);
  468. }
  469. r = 0;
  470. out:
  471. mutex_unlock(&kvm->lock);
  472. return r;
  473. }
  474. int is_error_page(struct page *page)
  475. {
  476. return page == bad_page;
  477. }
  478. EXPORT_SYMBOL_GPL(is_error_page);
  479. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  480. {
  481. int i;
  482. struct kvm_mem_alias *alias;
  483. for (i = 0; i < kvm->naliases; ++i) {
  484. alias = &kvm->aliases[i];
  485. if (gfn >= alias->base_gfn
  486. && gfn < alias->base_gfn + alias->npages)
  487. return alias->target_gfn + gfn - alias->base_gfn;
  488. }
  489. return gfn;
  490. }
  491. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  492. {
  493. int i;
  494. for (i = 0; i < kvm->nmemslots; ++i) {
  495. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  496. if (gfn >= memslot->base_gfn
  497. && gfn < memslot->base_gfn + memslot->npages)
  498. return memslot;
  499. }
  500. return NULL;
  501. }
  502. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  503. {
  504. gfn = unalias_gfn(kvm, gfn);
  505. return __gfn_to_memslot(kvm, gfn);
  506. }
  507. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  508. {
  509. int i;
  510. gfn = unalias_gfn(kvm, gfn);
  511. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  512. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  513. if (gfn >= memslot->base_gfn
  514. && gfn < memslot->base_gfn + memslot->npages)
  515. return 1;
  516. }
  517. return 0;
  518. }
  519. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  520. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  521. {
  522. struct kvm_memory_slot *slot;
  523. struct page *page[1];
  524. int npages;
  525. might_sleep();
  526. gfn = unalias_gfn(kvm, gfn);
  527. slot = __gfn_to_memslot(kvm, gfn);
  528. if (!slot) {
  529. get_page(bad_page);
  530. return bad_page;
  531. }
  532. down_read(&current->mm->mmap_sem);
  533. npages = get_user_pages(current, current->mm,
  534. slot->userspace_addr
  535. + (gfn - slot->base_gfn) * PAGE_SIZE, 1,
  536. 1, 1, page, NULL);
  537. up_read(&current->mm->mmap_sem);
  538. if (npages != 1) {
  539. get_page(bad_page);
  540. return bad_page;
  541. }
  542. return page[0];
  543. }
  544. EXPORT_SYMBOL_GPL(gfn_to_page);
  545. void kvm_release_page(struct page *page)
  546. {
  547. if (!PageReserved(page))
  548. SetPageDirty(page);
  549. put_page(page);
  550. }
  551. EXPORT_SYMBOL_GPL(kvm_release_page);
  552. static int next_segment(unsigned long len, int offset)
  553. {
  554. if (len > PAGE_SIZE - offset)
  555. return PAGE_SIZE - offset;
  556. else
  557. return len;
  558. }
  559. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  560. int len)
  561. {
  562. void *page_virt;
  563. struct page *page;
  564. page = gfn_to_page(kvm, gfn);
  565. if (is_error_page(page)) {
  566. kvm_release_page(page);
  567. return -EFAULT;
  568. }
  569. page_virt = kmap_atomic(page, KM_USER0);
  570. memcpy(data, page_virt + offset, len);
  571. kunmap_atomic(page_virt, KM_USER0);
  572. kvm_release_page(page);
  573. return 0;
  574. }
  575. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  576. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  577. {
  578. gfn_t gfn = gpa >> PAGE_SHIFT;
  579. int seg;
  580. int offset = offset_in_page(gpa);
  581. int ret;
  582. while ((seg = next_segment(len, offset)) != 0) {
  583. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  584. if (ret < 0)
  585. return ret;
  586. offset = 0;
  587. len -= seg;
  588. data += seg;
  589. ++gfn;
  590. }
  591. return 0;
  592. }
  593. EXPORT_SYMBOL_GPL(kvm_read_guest);
  594. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  595. int offset, int len)
  596. {
  597. void *page_virt;
  598. struct page *page;
  599. page = gfn_to_page(kvm, gfn);
  600. if (is_error_page(page)) {
  601. kvm_release_page(page);
  602. return -EFAULT;
  603. }
  604. page_virt = kmap_atomic(page, KM_USER0);
  605. memcpy(page_virt + offset, data, len);
  606. kunmap_atomic(page_virt, KM_USER0);
  607. mark_page_dirty(kvm, gfn);
  608. kvm_release_page(page);
  609. return 0;
  610. }
  611. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  612. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  613. unsigned long len)
  614. {
  615. gfn_t gfn = gpa >> PAGE_SHIFT;
  616. int seg;
  617. int offset = offset_in_page(gpa);
  618. int ret;
  619. while ((seg = next_segment(len, offset)) != 0) {
  620. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  621. if (ret < 0)
  622. return ret;
  623. offset = 0;
  624. len -= seg;
  625. data += seg;
  626. ++gfn;
  627. }
  628. return 0;
  629. }
  630. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  631. {
  632. void *page_virt;
  633. struct page *page;
  634. page = gfn_to_page(kvm, gfn);
  635. if (is_error_page(page)) {
  636. kvm_release_page(page);
  637. return -EFAULT;
  638. }
  639. page_virt = kmap_atomic(page, KM_USER0);
  640. memset(page_virt + offset, 0, len);
  641. kunmap_atomic(page_virt, KM_USER0);
  642. kvm_release_page(page);
  643. return 0;
  644. }
  645. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  646. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  647. {
  648. gfn_t gfn = gpa >> PAGE_SHIFT;
  649. int seg;
  650. int offset = offset_in_page(gpa);
  651. int ret;
  652. while ((seg = next_segment(len, offset)) != 0) {
  653. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  654. if (ret < 0)
  655. return ret;
  656. offset = 0;
  657. len -= seg;
  658. ++gfn;
  659. }
  660. return 0;
  661. }
  662. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  663. /* WARNING: Does not work on aliased pages. */
  664. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  665. {
  666. struct kvm_memory_slot *memslot;
  667. memslot = __gfn_to_memslot(kvm, gfn);
  668. if (memslot && memslot->dirty_bitmap) {
  669. unsigned long rel_gfn = gfn - memslot->base_gfn;
  670. /* avoid RMW */
  671. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  672. set_bit(rel_gfn, memslot->dirty_bitmap);
  673. }
  674. }
  675. int emulator_read_std(unsigned long addr,
  676. void *val,
  677. unsigned int bytes,
  678. struct kvm_vcpu *vcpu)
  679. {
  680. void *data = val;
  681. while (bytes) {
  682. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  683. unsigned offset = addr & (PAGE_SIZE-1);
  684. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  685. int ret;
  686. if (gpa == UNMAPPED_GVA)
  687. return X86EMUL_PROPAGATE_FAULT;
  688. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  689. if (ret < 0)
  690. return X86EMUL_UNHANDLEABLE;
  691. bytes -= tocopy;
  692. data += tocopy;
  693. addr += tocopy;
  694. }
  695. return X86EMUL_CONTINUE;
  696. }
  697. EXPORT_SYMBOL_GPL(emulator_read_std);
  698. static int emulator_write_std(unsigned long addr,
  699. const void *val,
  700. unsigned int bytes,
  701. struct kvm_vcpu *vcpu)
  702. {
  703. pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
  704. return X86EMUL_UNHANDLEABLE;
  705. }
  706. /*
  707. * Only apic need an MMIO device hook, so shortcut now..
  708. */
  709. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  710. gpa_t addr)
  711. {
  712. struct kvm_io_device *dev;
  713. if (vcpu->apic) {
  714. dev = &vcpu->apic->dev;
  715. if (dev->in_range(dev, addr))
  716. return dev;
  717. }
  718. return NULL;
  719. }
  720. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  721. gpa_t addr)
  722. {
  723. struct kvm_io_device *dev;
  724. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  725. if (dev == NULL)
  726. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  727. return dev;
  728. }
  729. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  730. gpa_t addr)
  731. {
  732. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  733. }
  734. static int emulator_read_emulated(unsigned long addr,
  735. void *val,
  736. unsigned int bytes,
  737. struct kvm_vcpu *vcpu)
  738. {
  739. struct kvm_io_device *mmio_dev;
  740. gpa_t gpa;
  741. if (vcpu->mmio_read_completed) {
  742. memcpy(val, vcpu->mmio_data, bytes);
  743. vcpu->mmio_read_completed = 0;
  744. return X86EMUL_CONTINUE;
  745. } else if (emulator_read_std(addr, val, bytes, vcpu)
  746. == X86EMUL_CONTINUE)
  747. return X86EMUL_CONTINUE;
  748. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  749. if (gpa == UNMAPPED_GVA)
  750. return X86EMUL_PROPAGATE_FAULT;
  751. /*
  752. * Is this MMIO handled locally?
  753. */
  754. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  755. if (mmio_dev) {
  756. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  757. return X86EMUL_CONTINUE;
  758. }
  759. vcpu->mmio_needed = 1;
  760. vcpu->mmio_phys_addr = gpa;
  761. vcpu->mmio_size = bytes;
  762. vcpu->mmio_is_write = 0;
  763. return X86EMUL_UNHANDLEABLE;
  764. }
  765. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  766. const void *val, int bytes)
  767. {
  768. int ret;
  769. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  770. if (ret < 0)
  771. return 0;
  772. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  773. return 1;
  774. }
  775. static int emulator_write_emulated_onepage(unsigned long addr,
  776. const void *val,
  777. unsigned int bytes,
  778. struct kvm_vcpu *vcpu)
  779. {
  780. struct kvm_io_device *mmio_dev;
  781. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  782. if (gpa == UNMAPPED_GVA) {
  783. kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
  784. return X86EMUL_PROPAGATE_FAULT;
  785. }
  786. if (emulator_write_phys(vcpu, gpa, val, bytes))
  787. return X86EMUL_CONTINUE;
  788. /*
  789. * Is this MMIO handled locally?
  790. */
  791. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  792. if (mmio_dev) {
  793. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  794. return X86EMUL_CONTINUE;
  795. }
  796. vcpu->mmio_needed = 1;
  797. vcpu->mmio_phys_addr = gpa;
  798. vcpu->mmio_size = bytes;
  799. vcpu->mmio_is_write = 1;
  800. memcpy(vcpu->mmio_data, val, bytes);
  801. return X86EMUL_CONTINUE;
  802. }
  803. int emulator_write_emulated(unsigned long addr,
  804. const void *val,
  805. unsigned int bytes,
  806. struct kvm_vcpu *vcpu)
  807. {
  808. /* Crossing a page boundary? */
  809. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  810. int rc, now;
  811. now = -addr & ~PAGE_MASK;
  812. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  813. if (rc != X86EMUL_CONTINUE)
  814. return rc;
  815. addr += now;
  816. val += now;
  817. bytes -= now;
  818. }
  819. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  820. }
  821. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  822. static int emulator_cmpxchg_emulated(unsigned long addr,
  823. const void *old,
  824. const void *new,
  825. unsigned int bytes,
  826. struct kvm_vcpu *vcpu)
  827. {
  828. static int reported;
  829. if (!reported) {
  830. reported = 1;
  831. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  832. }
  833. return emulator_write_emulated(addr, new, bytes, vcpu);
  834. }
  835. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  836. {
  837. return kvm_x86_ops->get_segment_base(vcpu, seg);
  838. }
  839. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  840. {
  841. return X86EMUL_CONTINUE;
  842. }
  843. int emulate_clts(struct kvm_vcpu *vcpu)
  844. {
  845. kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS);
  846. return X86EMUL_CONTINUE;
  847. }
  848. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  849. {
  850. struct kvm_vcpu *vcpu = ctxt->vcpu;
  851. switch (dr) {
  852. case 0 ... 3:
  853. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  854. return X86EMUL_CONTINUE;
  855. default:
  856. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  857. return X86EMUL_UNHANDLEABLE;
  858. }
  859. }
  860. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  861. {
  862. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  863. int exception;
  864. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  865. if (exception) {
  866. /* FIXME: better handling */
  867. return X86EMUL_UNHANDLEABLE;
  868. }
  869. return X86EMUL_CONTINUE;
  870. }
  871. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  872. {
  873. static int reported;
  874. u8 opcodes[4];
  875. unsigned long rip = vcpu->rip;
  876. unsigned long rip_linear;
  877. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  878. if (reported)
  879. return;
  880. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  881. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  882. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  883. reported = 1;
  884. }
  885. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  886. struct x86_emulate_ops emulate_ops = {
  887. .read_std = emulator_read_std,
  888. .write_std = emulator_write_std,
  889. .read_emulated = emulator_read_emulated,
  890. .write_emulated = emulator_write_emulated,
  891. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  892. };
  893. int emulate_instruction(struct kvm_vcpu *vcpu,
  894. struct kvm_run *run,
  895. unsigned long cr2,
  896. u16 error_code,
  897. int no_decode)
  898. {
  899. int r;
  900. vcpu->mmio_fault_cr2 = cr2;
  901. kvm_x86_ops->cache_regs(vcpu);
  902. vcpu->mmio_is_write = 0;
  903. vcpu->pio.string = 0;
  904. if (!no_decode) {
  905. int cs_db, cs_l;
  906. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  907. vcpu->emulate_ctxt.vcpu = vcpu;
  908. vcpu->emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  909. vcpu->emulate_ctxt.cr2 = cr2;
  910. vcpu->emulate_ctxt.mode =
  911. (vcpu->emulate_ctxt.eflags & X86_EFLAGS_VM)
  912. ? X86EMUL_MODE_REAL : cs_l
  913. ? X86EMUL_MODE_PROT64 : cs_db
  914. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  915. if (vcpu->emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  916. vcpu->emulate_ctxt.cs_base = 0;
  917. vcpu->emulate_ctxt.ds_base = 0;
  918. vcpu->emulate_ctxt.es_base = 0;
  919. vcpu->emulate_ctxt.ss_base = 0;
  920. } else {
  921. vcpu->emulate_ctxt.cs_base =
  922. get_segment_base(vcpu, VCPU_SREG_CS);
  923. vcpu->emulate_ctxt.ds_base =
  924. get_segment_base(vcpu, VCPU_SREG_DS);
  925. vcpu->emulate_ctxt.es_base =
  926. get_segment_base(vcpu, VCPU_SREG_ES);
  927. vcpu->emulate_ctxt.ss_base =
  928. get_segment_base(vcpu, VCPU_SREG_SS);
  929. }
  930. vcpu->emulate_ctxt.gs_base =
  931. get_segment_base(vcpu, VCPU_SREG_GS);
  932. vcpu->emulate_ctxt.fs_base =
  933. get_segment_base(vcpu, VCPU_SREG_FS);
  934. r = x86_decode_insn(&vcpu->emulate_ctxt, &emulate_ops);
  935. if (r) {
  936. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  937. return EMULATE_DONE;
  938. return EMULATE_FAIL;
  939. }
  940. }
  941. r = x86_emulate_insn(&vcpu->emulate_ctxt, &emulate_ops);
  942. if (vcpu->pio.string)
  943. return EMULATE_DO_MMIO;
  944. if ((r || vcpu->mmio_is_write) && run) {
  945. run->exit_reason = KVM_EXIT_MMIO;
  946. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  947. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  948. run->mmio.len = vcpu->mmio_size;
  949. run->mmio.is_write = vcpu->mmio_is_write;
  950. }
  951. if (r) {
  952. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  953. return EMULATE_DONE;
  954. if (!vcpu->mmio_needed) {
  955. kvm_report_emulation_failure(vcpu, "mmio");
  956. return EMULATE_FAIL;
  957. }
  958. return EMULATE_DO_MMIO;
  959. }
  960. kvm_x86_ops->decache_regs(vcpu);
  961. kvm_x86_ops->set_rflags(vcpu, vcpu->emulate_ctxt.eflags);
  962. if (vcpu->mmio_is_write) {
  963. vcpu->mmio_needed = 0;
  964. return EMULATE_DO_MMIO;
  965. }
  966. return EMULATE_DONE;
  967. }
  968. EXPORT_SYMBOL_GPL(emulate_instruction);
  969. /*
  970. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  971. */
  972. static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  973. {
  974. DECLARE_WAITQUEUE(wait, current);
  975. add_wait_queue(&vcpu->wq, &wait);
  976. /*
  977. * We will block until either an interrupt or a signal wakes us up
  978. */
  979. while (!kvm_cpu_has_interrupt(vcpu)
  980. && !signal_pending(current)
  981. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  982. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  983. set_current_state(TASK_INTERRUPTIBLE);
  984. vcpu_put(vcpu);
  985. schedule();
  986. vcpu_load(vcpu);
  987. }
  988. __set_current_state(TASK_RUNNING);
  989. remove_wait_queue(&vcpu->wq, &wait);
  990. }
  991. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  992. {
  993. ++vcpu->stat.halt_exits;
  994. if (irqchip_in_kernel(vcpu->kvm)) {
  995. vcpu->mp_state = VCPU_MP_STATE_HALTED;
  996. kvm_vcpu_block(vcpu);
  997. if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
  998. return -EINTR;
  999. return 1;
  1000. } else {
  1001. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1002. return 0;
  1003. }
  1004. }
  1005. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1006. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  1007. {
  1008. unsigned long nr, a0, a1, a2, a3, ret;
  1009. kvm_x86_ops->cache_regs(vcpu);
  1010. nr = vcpu->regs[VCPU_REGS_RAX];
  1011. a0 = vcpu->regs[VCPU_REGS_RBX];
  1012. a1 = vcpu->regs[VCPU_REGS_RCX];
  1013. a2 = vcpu->regs[VCPU_REGS_RDX];
  1014. a3 = vcpu->regs[VCPU_REGS_RSI];
  1015. if (!is_long_mode(vcpu)) {
  1016. nr &= 0xFFFFFFFF;
  1017. a0 &= 0xFFFFFFFF;
  1018. a1 &= 0xFFFFFFFF;
  1019. a2 &= 0xFFFFFFFF;
  1020. a3 &= 0xFFFFFFFF;
  1021. }
  1022. switch (nr) {
  1023. default:
  1024. ret = -KVM_ENOSYS;
  1025. break;
  1026. }
  1027. vcpu->regs[VCPU_REGS_RAX] = ret;
  1028. kvm_x86_ops->decache_regs(vcpu);
  1029. return 0;
  1030. }
  1031. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  1032. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  1033. {
  1034. char instruction[3];
  1035. int ret = 0;
  1036. mutex_lock(&vcpu->kvm->lock);
  1037. /*
  1038. * Blow out the MMU to ensure that no other VCPU has an active mapping
  1039. * to ensure that the updated hypercall appears atomically across all
  1040. * VCPUs.
  1041. */
  1042. kvm_mmu_zap_all(vcpu->kvm);
  1043. kvm_x86_ops->cache_regs(vcpu);
  1044. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  1045. if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
  1046. != X86EMUL_CONTINUE)
  1047. ret = -EFAULT;
  1048. mutex_unlock(&vcpu->kvm->lock);
  1049. return ret;
  1050. }
  1051. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1052. {
  1053. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1054. }
  1055. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1056. {
  1057. struct descriptor_table dt = { limit, base };
  1058. kvm_x86_ops->set_gdt(vcpu, &dt);
  1059. }
  1060. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1061. {
  1062. struct descriptor_table dt = { limit, base };
  1063. kvm_x86_ops->set_idt(vcpu, &dt);
  1064. }
  1065. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1066. unsigned long *rflags)
  1067. {
  1068. lmsw(vcpu, msw);
  1069. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1070. }
  1071. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1072. {
  1073. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1074. switch (cr) {
  1075. case 0:
  1076. return vcpu->cr0;
  1077. case 2:
  1078. return vcpu->cr2;
  1079. case 3:
  1080. return vcpu->cr3;
  1081. case 4:
  1082. return vcpu->cr4;
  1083. default:
  1084. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1085. return 0;
  1086. }
  1087. }
  1088. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1089. unsigned long *rflags)
  1090. {
  1091. switch (cr) {
  1092. case 0:
  1093. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1094. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1095. break;
  1096. case 2:
  1097. vcpu->cr2 = val;
  1098. break;
  1099. case 3:
  1100. set_cr3(vcpu, val);
  1101. break;
  1102. case 4:
  1103. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1104. break;
  1105. default:
  1106. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1107. }
  1108. }
  1109. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1110. {
  1111. u64 data;
  1112. switch (msr) {
  1113. case 0xc0010010: /* SYSCFG */
  1114. case 0xc0010015: /* HWCR */
  1115. case MSR_IA32_PLATFORM_ID:
  1116. case MSR_IA32_P5_MC_ADDR:
  1117. case MSR_IA32_P5_MC_TYPE:
  1118. case MSR_IA32_MC0_CTL:
  1119. case MSR_IA32_MCG_STATUS:
  1120. case MSR_IA32_MCG_CAP:
  1121. case MSR_IA32_MC0_MISC:
  1122. case MSR_IA32_MC0_MISC+4:
  1123. case MSR_IA32_MC0_MISC+8:
  1124. case MSR_IA32_MC0_MISC+12:
  1125. case MSR_IA32_MC0_MISC+16:
  1126. case MSR_IA32_UCODE_REV:
  1127. case MSR_IA32_PERF_STATUS:
  1128. case MSR_IA32_EBL_CR_POWERON:
  1129. /* MTRR registers */
  1130. case 0xfe:
  1131. case 0x200 ... 0x2ff:
  1132. data = 0;
  1133. break;
  1134. case 0xcd: /* fsb frequency */
  1135. data = 3;
  1136. break;
  1137. case MSR_IA32_APICBASE:
  1138. data = kvm_get_apic_base(vcpu);
  1139. break;
  1140. case MSR_IA32_MISC_ENABLE:
  1141. data = vcpu->ia32_misc_enable_msr;
  1142. break;
  1143. #ifdef CONFIG_X86_64
  1144. case MSR_EFER:
  1145. data = vcpu->shadow_efer;
  1146. break;
  1147. #endif
  1148. default:
  1149. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1150. return 1;
  1151. }
  1152. *pdata = data;
  1153. return 0;
  1154. }
  1155. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1156. /*
  1157. * Reads an msr value (of 'msr_index') into 'pdata'.
  1158. * Returns 0 on success, non-0 otherwise.
  1159. * Assumes vcpu_load() was already called.
  1160. */
  1161. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1162. {
  1163. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1164. }
  1165. #ifdef CONFIG_X86_64
  1166. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1167. {
  1168. if (efer & EFER_RESERVED_BITS) {
  1169. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1170. efer);
  1171. inject_gp(vcpu);
  1172. return;
  1173. }
  1174. if (is_paging(vcpu)
  1175. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1176. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1177. inject_gp(vcpu);
  1178. return;
  1179. }
  1180. kvm_x86_ops->set_efer(vcpu, efer);
  1181. efer &= ~EFER_LMA;
  1182. efer |= vcpu->shadow_efer & EFER_LMA;
  1183. vcpu->shadow_efer = efer;
  1184. }
  1185. #endif
  1186. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1187. {
  1188. switch (msr) {
  1189. #ifdef CONFIG_X86_64
  1190. case MSR_EFER:
  1191. set_efer(vcpu, data);
  1192. break;
  1193. #endif
  1194. case MSR_IA32_MC0_STATUS:
  1195. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1196. __FUNCTION__, data);
  1197. break;
  1198. case MSR_IA32_MCG_STATUS:
  1199. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1200. __FUNCTION__, data);
  1201. break;
  1202. case MSR_IA32_UCODE_REV:
  1203. case MSR_IA32_UCODE_WRITE:
  1204. case 0x200 ... 0x2ff: /* MTRRs */
  1205. break;
  1206. case MSR_IA32_APICBASE:
  1207. kvm_set_apic_base(vcpu, data);
  1208. break;
  1209. case MSR_IA32_MISC_ENABLE:
  1210. vcpu->ia32_misc_enable_msr = data;
  1211. break;
  1212. default:
  1213. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
  1214. return 1;
  1215. }
  1216. return 0;
  1217. }
  1218. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1219. /*
  1220. * Writes msr value into into the appropriate "register".
  1221. * Returns 0 on success, non-0 otherwise.
  1222. * Assumes vcpu_load() was already called.
  1223. */
  1224. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1225. {
  1226. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  1227. }
  1228. void kvm_resched(struct kvm_vcpu *vcpu)
  1229. {
  1230. if (!need_resched())
  1231. return;
  1232. cond_resched();
  1233. }
  1234. EXPORT_SYMBOL_GPL(kvm_resched);
  1235. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1236. {
  1237. int i;
  1238. u32 function;
  1239. struct kvm_cpuid_entry *e, *best;
  1240. kvm_x86_ops->cache_regs(vcpu);
  1241. function = vcpu->regs[VCPU_REGS_RAX];
  1242. vcpu->regs[VCPU_REGS_RAX] = 0;
  1243. vcpu->regs[VCPU_REGS_RBX] = 0;
  1244. vcpu->regs[VCPU_REGS_RCX] = 0;
  1245. vcpu->regs[VCPU_REGS_RDX] = 0;
  1246. best = NULL;
  1247. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1248. e = &vcpu->cpuid_entries[i];
  1249. if (e->function == function) {
  1250. best = e;
  1251. break;
  1252. }
  1253. /*
  1254. * Both basic or both extended?
  1255. */
  1256. if (((e->function ^ function) & 0x80000000) == 0)
  1257. if (!best || e->function > best->function)
  1258. best = e;
  1259. }
  1260. if (best) {
  1261. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1262. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1263. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1264. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1265. }
  1266. kvm_x86_ops->decache_regs(vcpu);
  1267. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1268. }
  1269. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1270. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1271. {
  1272. void *p = vcpu->pio_data;
  1273. void *q;
  1274. unsigned bytes;
  1275. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1276. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1277. PAGE_KERNEL);
  1278. if (!q) {
  1279. free_pio_guest_pages(vcpu);
  1280. return -ENOMEM;
  1281. }
  1282. q += vcpu->pio.guest_page_offset;
  1283. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1284. if (vcpu->pio.in)
  1285. memcpy(q, p, bytes);
  1286. else
  1287. memcpy(p, q, bytes);
  1288. q -= vcpu->pio.guest_page_offset;
  1289. vunmap(q);
  1290. free_pio_guest_pages(vcpu);
  1291. return 0;
  1292. }
  1293. static int complete_pio(struct kvm_vcpu *vcpu)
  1294. {
  1295. struct kvm_pio_request *io = &vcpu->pio;
  1296. long delta;
  1297. int r;
  1298. kvm_x86_ops->cache_regs(vcpu);
  1299. if (!io->string) {
  1300. if (io->in)
  1301. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1302. io->size);
  1303. } else {
  1304. if (io->in) {
  1305. r = pio_copy_data(vcpu);
  1306. if (r) {
  1307. kvm_x86_ops->cache_regs(vcpu);
  1308. return r;
  1309. }
  1310. }
  1311. delta = 1;
  1312. if (io->rep) {
  1313. delta *= io->cur_count;
  1314. /*
  1315. * The size of the register should really depend on
  1316. * current address size.
  1317. */
  1318. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1319. }
  1320. if (io->down)
  1321. delta = -delta;
  1322. delta *= io->size;
  1323. if (io->in)
  1324. vcpu->regs[VCPU_REGS_RDI] += delta;
  1325. else
  1326. vcpu->regs[VCPU_REGS_RSI] += delta;
  1327. }
  1328. kvm_x86_ops->decache_regs(vcpu);
  1329. io->count -= io->cur_count;
  1330. io->cur_count = 0;
  1331. return 0;
  1332. }
  1333. static void kernel_pio(struct kvm_io_device *pio_dev,
  1334. struct kvm_vcpu *vcpu,
  1335. void *pd)
  1336. {
  1337. /* TODO: String I/O for in kernel device */
  1338. mutex_lock(&vcpu->kvm->lock);
  1339. if (vcpu->pio.in)
  1340. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1341. vcpu->pio.size,
  1342. pd);
  1343. else
  1344. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1345. vcpu->pio.size,
  1346. pd);
  1347. mutex_unlock(&vcpu->kvm->lock);
  1348. }
  1349. static void pio_string_write(struct kvm_io_device *pio_dev,
  1350. struct kvm_vcpu *vcpu)
  1351. {
  1352. struct kvm_pio_request *io = &vcpu->pio;
  1353. void *pd = vcpu->pio_data;
  1354. int i;
  1355. mutex_lock(&vcpu->kvm->lock);
  1356. for (i = 0; i < io->cur_count; i++) {
  1357. kvm_iodevice_write(pio_dev, io->port,
  1358. io->size,
  1359. pd);
  1360. pd += io->size;
  1361. }
  1362. mutex_unlock(&vcpu->kvm->lock);
  1363. }
  1364. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1365. int size, unsigned port)
  1366. {
  1367. struct kvm_io_device *pio_dev;
  1368. vcpu->run->exit_reason = KVM_EXIT_IO;
  1369. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1370. vcpu->run->io.size = vcpu->pio.size = size;
  1371. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1372. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
  1373. vcpu->run->io.port = vcpu->pio.port = port;
  1374. vcpu->pio.in = in;
  1375. vcpu->pio.string = 0;
  1376. vcpu->pio.down = 0;
  1377. vcpu->pio.guest_page_offset = 0;
  1378. vcpu->pio.rep = 0;
  1379. kvm_x86_ops->cache_regs(vcpu);
  1380. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1381. kvm_x86_ops->decache_regs(vcpu);
  1382. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1383. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1384. if (pio_dev) {
  1385. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1386. complete_pio(vcpu);
  1387. return 1;
  1388. }
  1389. return 0;
  1390. }
  1391. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1392. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1393. int size, unsigned long count, int down,
  1394. gva_t address, int rep, unsigned port)
  1395. {
  1396. unsigned now, in_page;
  1397. int i, ret = 0;
  1398. int nr_pages = 1;
  1399. struct page *page;
  1400. struct kvm_io_device *pio_dev;
  1401. vcpu->run->exit_reason = KVM_EXIT_IO;
  1402. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1403. vcpu->run->io.size = vcpu->pio.size = size;
  1404. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1405. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
  1406. vcpu->run->io.port = vcpu->pio.port = port;
  1407. vcpu->pio.in = in;
  1408. vcpu->pio.string = 1;
  1409. vcpu->pio.down = down;
  1410. vcpu->pio.guest_page_offset = offset_in_page(address);
  1411. vcpu->pio.rep = rep;
  1412. if (!count) {
  1413. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1414. return 1;
  1415. }
  1416. if (!down)
  1417. in_page = PAGE_SIZE - offset_in_page(address);
  1418. else
  1419. in_page = offset_in_page(address) + size;
  1420. now = min(count, (unsigned long)in_page / size);
  1421. if (!now) {
  1422. /*
  1423. * String I/O straddles page boundary. Pin two guest pages
  1424. * so that we satisfy atomicity constraints. Do just one
  1425. * transaction to avoid complexity.
  1426. */
  1427. nr_pages = 2;
  1428. now = 1;
  1429. }
  1430. if (down) {
  1431. /*
  1432. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1433. */
  1434. pr_unimpl(vcpu, "guest string pio down\n");
  1435. inject_gp(vcpu);
  1436. return 1;
  1437. }
  1438. vcpu->run->io.count = now;
  1439. vcpu->pio.cur_count = now;
  1440. if (vcpu->pio.cur_count == vcpu->pio.count)
  1441. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1442. for (i = 0; i < nr_pages; ++i) {
  1443. mutex_lock(&vcpu->kvm->lock);
  1444. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1445. vcpu->pio.guest_pages[i] = page;
  1446. mutex_unlock(&vcpu->kvm->lock);
  1447. if (!page) {
  1448. inject_gp(vcpu);
  1449. free_pio_guest_pages(vcpu);
  1450. return 1;
  1451. }
  1452. }
  1453. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1454. if (!vcpu->pio.in) {
  1455. /* string PIO write */
  1456. ret = pio_copy_data(vcpu);
  1457. if (ret >= 0 && pio_dev) {
  1458. pio_string_write(pio_dev, vcpu);
  1459. complete_pio(vcpu);
  1460. if (vcpu->pio.count == 0)
  1461. ret = 1;
  1462. }
  1463. } else if (pio_dev)
  1464. pr_unimpl(vcpu, "no string pio read support yet, "
  1465. "port %x size %d count %ld\n",
  1466. port, size, count);
  1467. return ret;
  1468. }
  1469. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  1470. /*
  1471. * Check if userspace requested an interrupt window, and that the
  1472. * interrupt window is open.
  1473. *
  1474. * No need to exit to userspace if we already have an interrupt queued.
  1475. */
  1476. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1477. struct kvm_run *kvm_run)
  1478. {
  1479. return (!vcpu->irq_summary &&
  1480. kvm_run->request_interrupt_window &&
  1481. vcpu->interrupt_window_open &&
  1482. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  1483. }
  1484. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1485. struct kvm_run *kvm_run)
  1486. {
  1487. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  1488. kvm_run->cr8 = get_cr8(vcpu);
  1489. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  1490. if (irqchip_in_kernel(vcpu->kvm))
  1491. kvm_run->ready_for_interrupt_injection = 1;
  1492. else
  1493. kvm_run->ready_for_interrupt_injection =
  1494. (vcpu->interrupt_window_open &&
  1495. vcpu->irq_summary == 0);
  1496. }
  1497. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1498. {
  1499. int r;
  1500. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  1501. pr_debug("vcpu %d received sipi with vector # %x\n",
  1502. vcpu->vcpu_id, vcpu->sipi_vector);
  1503. kvm_lapic_reset(vcpu);
  1504. r = kvm_x86_ops->vcpu_reset(vcpu);
  1505. if (r)
  1506. return r;
  1507. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  1508. }
  1509. preempted:
  1510. if (vcpu->guest_debug.enabled)
  1511. kvm_x86_ops->guest_debug_pre(vcpu);
  1512. again:
  1513. r = kvm_mmu_reload(vcpu);
  1514. if (unlikely(r))
  1515. goto out;
  1516. kvm_inject_pending_timer_irqs(vcpu);
  1517. preempt_disable();
  1518. kvm_x86_ops->prepare_guest_switch(vcpu);
  1519. kvm_load_guest_fpu(vcpu);
  1520. local_irq_disable();
  1521. if (signal_pending(current)) {
  1522. local_irq_enable();
  1523. preempt_enable();
  1524. r = -EINTR;
  1525. kvm_run->exit_reason = KVM_EXIT_INTR;
  1526. ++vcpu->stat.signal_exits;
  1527. goto out;
  1528. }
  1529. if (irqchip_in_kernel(vcpu->kvm))
  1530. kvm_x86_ops->inject_pending_irq(vcpu);
  1531. else if (!vcpu->mmio_read_completed)
  1532. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  1533. vcpu->guest_mode = 1;
  1534. kvm_guest_enter();
  1535. if (vcpu->requests)
  1536. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  1537. kvm_x86_ops->tlb_flush(vcpu);
  1538. kvm_x86_ops->run(vcpu, kvm_run);
  1539. vcpu->guest_mode = 0;
  1540. local_irq_enable();
  1541. ++vcpu->stat.exits;
  1542. /*
  1543. * We must have an instruction between local_irq_enable() and
  1544. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  1545. * the interrupt shadow. The stat.exits increment will do nicely.
  1546. * But we need to prevent reordering, hence this barrier():
  1547. */
  1548. barrier();
  1549. kvm_guest_exit();
  1550. preempt_enable();
  1551. /*
  1552. * Profile KVM exit RIPs:
  1553. */
  1554. if (unlikely(prof_on == KVM_PROFILING)) {
  1555. kvm_x86_ops->cache_regs(vcpu);
  1556. profile_hit(KVM_PROFILING, (void *)vcpu->rip);
  1557. }
  1558. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  1559. if (r > 0) {
  1560. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1561. r = -EINTR;
  1562. kvm_run->exit_reason = KVM_EXIT_INTR;
  1563. ++vcpu->stat.request_irq_exits;
  1564. goto out;
  1565. }
  1566. if (!need_resched()) {
  1567. ++vcpu->stat.light_exits;
  1568. goto again;
  1569. }
  1570. }
  1571. out:
  1572. if (r > 0) {
  1573. kvm_resched(vcpu);
  1574. goto preempted;
  1575. }
  1576. post_kvm_run_save(vcpu, kvm_run);
  1577. return r;
  1578. }
  1579. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1580. {
  1581. int r;
  1582. sigset_t sigsaved;
  1583. vcpu_load(vcpu);
  1584. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  1585. kvm_vcpu_block(vcpu);
  1586. vcpu_put(vcpu);
  1587. return -EAGAIN;
  1588. }
  1589. if (vcpu->sigset_active)
  1590. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1591. /* re-sync apic's tpr */
  1592. if (!irqchip_in_kernel(vcpu->kvm))
  1593. set_cr8(vcpu, kvm_run->cr8);
  1594. if (vcpu->pio.cur_count) {
  1595. r = complete_pio(vcpu);
  1596. if (r)
  1597. goto out;
  1598. }
  1599. #if CONFIG_HAS_IOMEM
  1600. if (vcpu->mmio_needed) {
  1601. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1602. vcpu->mmio_read_completed = 1;
  1603. vcpu->mmio_needed = 0;
  1604. r = emulate_instruction(vcpu, kvm_run,
  1605. vcpu->mmio_fault_cr2, 0, 1);
  1606. if (r == EMULATE_DO_MMIO) {
  1607. /*
  1608. * Read-modify-write. Back to userspace.
  1609. */
  1610. r = 0;
  1611. goto out;
  1612. }
  1613. }
  1614. #endif
  1615. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1616. kvm_x86_ops->cache_regs(vcpu);
  1617. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1618. kvm_x86_ops->decache_regs(vcpu);
  1619. }
  1620. r = __vcpu_run(vcpu, kvm_run);
  1621. out:
  1622. if (vcpu->sigset_active)
  1623. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1624. vcpu_put(vcpu);
  1625. return r;
  1626. }
  1627. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1628. struct kvm_regs *regs)
  1629. {
  1630. vcpu_load(vcpu);
  1631. kvm_x86_ops->cache_regs(vcpu);
  1632. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1633. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1634. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1635. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1636. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1637. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1638. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1639. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1640. #ifdef CONFIG_X86_64
  1641. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1642. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1643. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1644. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1645. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1646. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1647. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1648. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1649. #endif
  1650. regs->rip = vcpu->rip;
  1651. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  1652. /*
  1653. * Don't leak debug flags in case they were set for guest debugging
  1654. */
  1655. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1656. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1657. vcpu_put(vcpu);
  1658. return 0;
  1659. }
  1660. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1661. struct kvm_regs *regs)
  1662. {
  1663. vcpu_load(vcpu);
  1664. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1665. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1666. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1667. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1668. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1669. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1670. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1671. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1672. #ifdef CONFIG_X86_64
  1673. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1674. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1675. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1676. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1677. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1678. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1679. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1680. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1681. #endif
  1682. vcpu->rip = regs->rip;
  1683. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  1684. kvm_x86_ops->decache_regs(vcpu);
  1685. vcpu_put(vcpu);
  1686. return 0;
  1687. }
  1688. static void get_segment(struct kvm_vcpu *vcpu,
  1689. struct kvm_segment *var, int seg)
  1690. {
  1691. return kvm_x86_ops->get_segment(vcpu, var, seg);
  1692. }
  1693. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1694. struct kvm_sregs *sregs)
  1695. {
  1696. struct descriptor_table dt;
  1697. int pending_vec;
  1698. vcpu_load(vcpu);
  1699. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1700. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1701. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1702. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1703. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1704. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1705. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1706. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1707. kvm_x86_ops->get_idt(vcpu, &dt);
  1708. sregs->idt.limit = dt.limit;
  1709. sregs->idt.base = dt.base;
  1710. kvm_x86_ops->get_gdt(vcpu, &dt);
  1711. sregs->gdt.limit = dt.limit;
  1712. sregs->gdt.base = dt.base;
  1713. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1714. sregs->cr0 = vcpu->cr0;
  1715. sregs->cr2 = vcpu->cr2;
  1716. sregs->cr3 = vcpu->cr3;
  1717. sregs->cr4 = vcpu->cr4;
  1718. sregs->cr8 = get_cr8(vcpu);
  1719. sregs->efer = vcpu->shadow_efer;
  1720. sregs->apic_base = kvm_get_apic_base(vcpu);
  1721. if (irqchip_in_kernel(vcpu->kvm)) {
  1722. memset(sregs->interrupt_bitmap, 0,
  1723. sizeof sregs->interrupt_bitmap);
  1724. pending_vec = kvm_x86_ops->get_irq(vcpu);
  1725. if (pending_vec >= 0)
  1726. set_bit(pending_vec,
  1727. (unsigned long *)sregs->interrupt_bitmap);
  1728. } else
  1729. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1730. sizeof sregs->interrupt_bitmap);
  1731. vcpu_put(vcpu);
  1732. return 0;
  1733. }
  1734. static void set_segment(struct kvm_vcpu *vcpu,
  1735. struct kvm_segment *var, int seg)
  1736. {
  1737. return kvm_x86_ops->set_segment(vcpu, var, seg);
  1738. }
  1739. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1740. struct kvm_sregs *sregs)
  1741. {
  1742. int mmu_reset_needed = 0;
  1743. int i, pending_vec, max_bits;
  1744. struct descriptor_table dt;
  1745. vcpu_load(vcpu);
  1746. dt.limit = sregs->idt.limit;
  1747. dt.base = sregs->idt.base;
  1748. kvm_x86_ops->set_idt(vcpu, &dt);
  1749. dt.limit = sregs->gdt.limit;
  1750. dt.base = sregs->gdt.base;
  1751. kvm_x86_ops->set_gdt(vcpu, &dt);
  1752. vcpu->cr2 = sregs->cr2;
  1753. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1754. vcpu->cr3 = sregs->cr3;
  1755. set_cr8(vcpu, sregs->cr8);
  1756. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1757. #ifdef CONFIG_X86_64
  1758. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  1759. #endif
  1760. kvm_set_apic_base(vcpu, sregs->apic_base);
  1761. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1762. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1763. vcpu->cr0 = sregs->cr0;
  1764. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  1765. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1766. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  1767. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1768. load_pdptrs(vcpu, vcpu->cr3);
  1769. if (mmu_reset_needed)
  1770. kvm_mmu_reset_context(vcpu);
  1771. if (!irqchip_in_kernel(vcpu->kvm)) {
  1772. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1773. sizeof vcpu->irq_pending);
  1774. vcpu->irq_summary = 0;
  1775. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  1776. if (vcpu->irq_pending[i])
  1777. __set_bit(i, &vcpu->irq_summary);
  1778. } else {
  1779. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  1780. pending_vec = find_first_bit(
  1781. (const unsigned long *)sregs->interrupt_bitmap,
  1782. max_bits);
  1783. /* Only pending external irq is handled here */
  1784. if (pending_vec < max_bits) {
  1785. kvm_x86_ops->set_irq(vcpu, pending_vec);
  1786. pr_debug("Set back pending irq %d\n",
  1787. pending_vec);
  1788. }
  1789. }
  1790. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1791. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1792. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1793. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1794. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1795. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1796. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1797. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1798. vcpu_put(vcpu);
  1799. return 0;
  1800. }
  1801. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1802. {
  1803. struct kvm_segment cs;
  1804. get_segment(vcpu, &cs, VCPU_SREG_CS);
  1805. *db = cs.db;
  1806. *l = cs.l;
  1807. }
  1808. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  1809. /*
  1810. * Translate a guest virtual address to a guest physical address.
  1811. */
  1812. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1813. struct kvm_translation *tr)
  1814. {
  1815. unsigned long vaddr = tr->linear_address;
  1816. gpa_t gpa;
  1817. vcpu_load(vcpu);
  1818. mutex_lock(&vcpu->kvm->lock);
  1819. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1820. tr->physical_address = gpa;
  1821. tr->valid = gpa != UNMAPPED_GVA;
  1822. tr->writeable = 1;
  1823. tr->usermode = 0;
  1824. mutex_unlock(&vcpu->kvm->lock);
  1825. vcpu_put(vcpu);
  1826. return 0;
  1827. }
  1828. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1829. struct kvm_interrupt *irq)
  1830. {
  1831. if (irq->irq < 0 || irq->irq >= 256)
  1832. return -EINVAL;
  1833. if (irqchip_in_kernel(vcpu->kvm))
  1834. return -ENXIO;
  1835. vcpu_load(vcpu);
  1836. set_bit(irq->irq, vcpu->irq_pending);
  1837. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1838. vcpu_put(vcpu);
  1839. return 0;
  1840. }
  1841. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1842. struct kvm_debug_guest *dbg)
  1843. {
  1844. int r;
  1845. vcpu_load(vcpu);
  1846. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  1847. vcpu_put(vcpu);
  1848. return r;
  1849. }
  1850. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  1851. unsigned long address,
  1852. int *type)
  1853. {
  1854. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1855. unsigned long pgoff;
  1856. struct page *page;
  1857. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1858. if (pgoff == 0)
  1859. page = virt_to_page(vcpu->run);
  1860. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  1861. page = virt_to_page(vcpu->pio_data);
  1862. else
  1863. return NOPAGE_SIGBUS;
  1864. get_page(page);
  1865. if (type != NULL)
  1866. *type = VM_FAULT_MINOR;
  1867. return page;
  1868. }
  1869. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1870. .nopage = kvm_vcpu_nopage,
  1871. };
  1872. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1873. {
  1874. vma->vm_ops = &kvm_vcpu_vm_ops;
  1875. return 0;
  1876. }
  1877. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1878. {
  1879. struct kvm_vcpu *vcpu = filp->private_data;
  1880. fput(vcpu->kvm->filp);
  1881. return 0;
  1882. }
  1883. static struct file_operations kvm_vcpu_fops = {
  1884. .release = kvm_vcpu_release,
  1885. .unlocked_ioctl = kvm_vcpu_ioctl,
  1886. .compat_ioctl = kvm_vcpu_ioctl,
  1887. .mmap = kvm_vcpu_mmap,
  1888. };
  1889. /*
  1890. * Allocates an inode for the vcpu.
  1891. */
  1892. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1893. {
  1894. int fd, r;
  1895. struct inode *inode;
  1896. struct file *file;
  1897. r = anon_inode_getfd(&fd, &inode, &file,
  1898. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  1899. if (r)
  1900. return r;
  1901. atomic_inc(&vcpu->kvm->filp->f_count);
  1902. return fd;
  1903. }
  1904. /*
  1905. * Creates some virtual cpus. Good luck creating more than one.
  1906. */
  1907. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1908. {
  1909. int r;
  1910. struct kvm_vcpu *vcpu;
  1911. if (!valid_vcpu(n))
  1912. return -EINVAL;
  1913. vcpu = kvm_x86_ops->vcpu_create(kvm, n);
  1914. if (IS_ERR(vcpu))
  1915. return PTR_ERR(vcpu);
  1916. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1917. /* We do fxsave: this must be aligned. */
  1918. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  1919. vcpu_load(vcpu);
  1920. r = kvm_x86_ops->vcpu_reset(vcpu);
  1921. if (r == 0)
  1922. r = kvm_mmu_setup(vcpu);
  1923. vcpu_put(vcpu);
  1924. if (r < 0)
  1925. goto free_vcpu;
  1926. mutex_lock(&kvm->lock);
  1927. if (kvm->vcpus[n]) {
  1928. r = -EEXIST;
  1929. mutex_unlock(&kvm->lock);
  1930. goto mmu_unload;
  1931. }
  1932. kvm->vcpus[n] = vcpu;
  1933. mutex_unlock(&kvm->lock);
  1934. /* Now it's all set up, let userspace reach it */
  1935. r = create_vcpu_fd(vcpu);
  1936. if (r < 0)
  1937. goto unlink;
  1938. return r;
  1939. unlink:
  1940. mutex_lock(&kvm->lock);
  1941. kvm->vcpus[n] = NULL;
  1942. mutex_unlock(&kvm->lock);
  1943. mmu_unload:
  1944. vcpu_load(vcpu);
  1945. kvm_mmu_unload(vcpu);
  1946. vcpu_put(vcpu);
  1947. free_vcpu:
  1948. kvm_x86_ops->vcpu_free(vcpu);
  1949. return r;
  1950. }
  1951. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1952. {
  1953. if (sigset) {
  1954. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1955. vcpu->sigset_active = 1;
  1956. vcpu->sigset = *sigset;
  1957. } else
  1958. vcpu->sigset_active = 0;
  1959. return 0;
  1960. }
  1961. /*
  1962. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  1963. * we have asm/x86/processor.h
  1964. */
  1965. struct fxsave {
  1966. u16 cwd;
  1967. u16 swd;
  1968. u16 twd;
  1969. u16 fop;
  1970. u64 rip;
  1971. u64 rdp;
  1972. u32 mxcsr;
  1973. u32 mxcsr_mask;
  1974. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  1975. #ifdef CONFIG_X86_64
  1976. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  1977. #else
  1978. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  1979. #endif
  1980. };
  1981. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1982. {
  1983. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  1984. vcpu_load(vcpu);
  1985. memcpy(fpu->fpr, fxsave->st_space, 128);
  1986. fpu->fcw = fxsave->cwd;
  1987. fpu->fsw = fxsave->swd;
  1988. fpu->ftwx = fxsave->twd;
  1989. fpu->last_opcode = fxsave->fop;
  1990. fpu->last_ip = fxsave->rip;
  1991. fpu->last_dp = fxsave->rdp;
  1992. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  1993. vcpu_put(vcpu);
  1994. return 0;
  1995. }
  1996. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1997. {
  1998. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  1999. vcpu_load(vcpu);
  2000. memcpy(fxsave->st_space, fpu->fpr, 128);
  2001. fxsave->cwd = fpu->fcw;
  2002. fxsave->swd = fpu->fsw;
  2003. fxsave->twd = fpu->ftwx;
  2004. fxsave->fop = fpu->last_opcode;
  2005. fxsave->rip = fpu->last_ip;
  2006. fxsave->rdp = fpu->last_dp;
  2007. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2008. vcpu_put(vcpu);
  2009. return 0;
  2010. }
  2011. static long kvm_vcpu_ioctl(struct file *filp,
  2012. unsigned int ioctl, unsigned long arg)
  2013. {
  2014. struct kvm_vcpu *vcpu = filp->private_data;
  2015. void __user *argp = (void __user *)arg;
  2016. int r;
  2017. switch (ioctl) {
  2018. case KVM_RUN:
  2019. r = -EINVAL;
  2020. if (arg)
  2021. goto out;
  2022. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2023. break;
  2024. case KVM_GET_REGS: {
  2025. struct kvm_regs kvm_regs;
  2026. memset(&kvm_regs, 0, sizeof kvm_regs);
  2027. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2028. if (r)
  2029. goto out;
  2030. r = -EFAULT;
  2031. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2032. goto out;
  2033. r = 0;
  2034. break;
  2035. }
  2036. case KVM_SET_REGS: {
  2037. struct kvm_regs kvm_regs;
  2038. r = -EFAULT;
  2039. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2040. goto out;
  2041. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2042. if (r)
  2043. goto out;
  2044. r = 0;
  2045. break;
  2046. }
  2047. case KVM_GET_SREGS: {
  2048. struct kvm_sregs kvm_sregs;
  2049. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2050. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2051. if (r)
  2052. goto out;
  2053. r = -EFAULT;
  2054. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2055. goto out;
  2056. r = 0;
  2057. break;
  2058. }
  2059. case KVM_SET_SREGS: {
  2060. struct kvm_sregs kvm_sregs;
  2061. r = -EFAULT;
  2062. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2063. goto out;
  2064. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2065. if (r)
  2066. goto out;
  2067. r = 0;
  2068. break;
  2069. }
  2070. case KVM_TRANSLATE: {
  2071. struct kvm_translation tr;
  2072. r = -EFAULT;
  2073. if (copy_from_user(&tr, argp, sizeof tr))
  2074. goto out;
  2075. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2076. if (r)
  2077. goto out;
  2078. r = -EFAULT;
  2079. if (copy_to_user(argp, &tr, sizeof tr))
  2080. goto out;
  2081. r = 0;
  2082. break;
  2083. }
  2084. case KVM_INTERRUPT: {
  2085. struct kvm_interrupt irq;
  2086. r = -EFAULT;
  2087. if (copy_from_user(&irq, argp, sizeof irq))
  2088. goto out;
  2089. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2090. if (r)
  2091. goto out;
  2092. r = 0;
  2093. break;
  2094. }
  2095. case KVM_DEBUG_GUEST: {
  2096. struct kvm_debug_guest dbg;
  2097. r = -EFAULT;
  2098. if (copy_from_user(&dbg, argp, sizeof dbg))
  2099. goto out;
  2100. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2101. if (r)
  2102. goto out;
  2103. r = 0;
  2104. break;
  2105. }
  2106. case KVM_SET_SIGNAL_MASK: {
  2107. struct kvm_signal_mask __user *sigmask_arg = argp;
  2108. struct kvm_signal_mask kvm_sigmask;
  2109. sigset_t sigset, *p;
  2110. p = NULL;
  2111. if (argp) {
  2112. r = -EFAULT;
  2113. if (copy_from_user(&kvm_sigmask, argp,
  2114. sizeof kvm_sigmask))
  2115. goto out;
  2116. r = -EINVAL;
  2117. if (kvm_sigmask.len != sizeof sigset)
  2118. goto out;
  2119. r = -EFAULT;
  2120. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2121. sizeof sigset))
  2122. goto out;
  2123. p = &sigset;
  2124. }
  2125. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2126. break;
  2127. }
  2128. case KVM_GET_FPU: {
  2129. struct kvm_fpu fpu;
  2130. memset(&fpu, 0, sizeof fpu);
  2131. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2132. if (r)
  2133. goto out;
  2134. r = -EFAULT;
  2135. if (copy_to_user(argp, &fpu, sizeof fpu))
  2136. goto out;
  2137. r = 0;
  2138. break;
  2139. }
  2140. case KVM_SET_FPU: {
  2141. struct kvm_fpu fpu;
  2142. r = -EFAULT;
  2143. if (copy_from_user(&fpu, argp, sizeof fpu))
  2144. goto out;
  2145. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2146. if (r)
  2147. goto out;
  2148. r = 0;
  2149. break;
  2150. }
  2151. default:
  2152. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  2153. }
  2154. out:
  2155. return r;
  2156. }
  2157. static long kvm_vm_ioctl(struct file *filp,
  2158. unsigned int ioctl, unsigned long arg)
  2159. {
  2160. struct kvm *kvm = filp->private_data;
  2161. void __user *argp = (void __user *)arg;
  2162. int r;
  2163. switch (ioctl) {
  2164. case KVM_CREATE_VCPU:
  2165. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2166. if (r < 0)
  2167. goto out;
  2168. break;
  2169. case KVM_SET_USER_MEMORY_REGION: {
  2170. struct kvm_userspace_memory_region kvm_userspace_mem;
  2171. r = -EFAULT;
  2172. if (copy_from_user(&kvm_userspace_mem, argp,
  2173. sizeof kvm_userspace_mem))
  2174. goto out;
  2175. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  2176. if (r)
  2177. goto out;
  2178. break;
  2179. }
  2180. case KVM_GET_DIRTY_LOG: {
  2181. struct kvm_dirty_log log;
  2182. r = -EFAULT;
  2183. if (copy_from_user(&log, argp, sizeof log))
  2184. goto out;
  2185. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2186. if (r)
  2187. goto out;
  2188. break;
  2189. }
  2190. default:
  2191. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  2192. }
  2193. out:
  2194. return r;
  2195. }
  2196. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2197. unsigned long address,
  2198. int *type)
  2199. {
  2200. struct kvm *kvm = vma->vm_file->private_data;
  2201. unsigned long pgoff;
  2202. struct page *page;
  2203. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2204. if (!kvm_is_visible_gfn(kvm, pgoff))
  2205. return NOPAGE_SIGBUS;
  2206. page = gfn_to_page(kvm, pgoff);
  2207. if (is_error_page(page)) {
  2208. kvm_release_page(page);
  2209. return NOPAGE_SIGBUS;
  2210. }
  2211. if (type != NULL)
  2212. *type = VM_FAULT_MINOR;
  2213. return page;
  2214. }
  2215. static struct vm_operations_struct kvm_vm_vm_ops = {
  2216. .nopage = kvm_vm_nopage,
  2217. };
  2218. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2219. {
  2220. vma->vm_ops = &kvm_vm_vm_ops;
  2221. return 0;
  2222. }
  2223. static struct file_operations kvm_vm_fops = {
  2224. .release = kvm_vm_release,
  2225. .unlocked_ioctl = kvm_vm_ioctl,
  2226. .compat_ioctl = kvm_vm_ioctl,
  2227. .mmap = kvm_vm_mmap,
  2228. };
  2229. static int kvm_dev_ioctl_create_vm(void)
  2230. {
  2231. int fd, r;
  2232. struct inode *inode;
  2233. struct file *file;
  2234. struct kvm *kvm;
  2235. kvm = kvm_create_vm();
  2236. if (IS_ERR(kvm))
  2237. return PTR_ERR(kvm);
  2238. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2239. if (r) {
  2240. kvm_destroy_vm(kvm);
  2241. return r;
  2242. }
  2243. kvm->filp = file;
  2244. return fd;
  2245. }
  2246. static long kvm_dev_ioctl(struct file *filp,
  2247. unsigned int ioctl, unsigned long arg)
  2248. {
  2249. void __user *argp = (void __user *)arg;
  2250. long r = -EINVAL;
  2251. switch (ioctl) {
  2252. case KVM_GET_API_VERSION:
  2253. r = -EINVAL;
  2254. if (arg)
  2255. goto out;
  2256. r = KVM_API_VERSION;
  2257. break;
  2258. case KVM_CREATE_VM:
  2259. r = -EINVAL;
  2260. if (arg)
  2261. goto out;
  2262. r = kvm_dev_ioctl_create_vm();
  2263. break;
  2264. case KVM_CHECK_EXTENSION: {
  2265. int ext = (long)argp;
  2266. switch (ext) {
  2267. case KVM_CAP_IRQCHIP:
  2268. case KVM_CAP_HLT:
  2269. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  2270. case KVM_CAP_USER_MEMORY:
  2271. case KVM_CAP_SET_TSS_ADDR:
  2272. r = 1;
  2273. break;
  2274. default:
  2275. r = 0;
  2276. break;
  2277. }
  2278. break;
  2279. }
  2280. case KVM_GET_VCPU_MMAP_SIZE:
  2281. r = -EINVAL;
  2282. if (arg)
  2283. goto out;
  2284. r = 2 * PAGE_SIZE;
  2285. break;
  2286. default:
  2287. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  2288. }
  2289. out:
  2290. return r;
  2291. }
  2292. static struct file_operations kvm_chardev_ops = {
  2293. .unlocked_ioctl = kvm_dev_ioctl,
  2294. .compat_ioctl = kvm_dev_ioctl,
  2295. };
  2296. static struct miscdevice kvm_dev = {
  2297. KVM_MINOR,
  2298. "kvm",
  2299. &kvm_chardev_ops,
  2300. };
  2301. /*
  2302. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2303. * cached on it.
  2304. */
  2305. static void decache_vcpus_on_cpu(int cpu)
  2306. {
  2307. struct kvm *vm;
  2308. struct kvm_vcpu *vcpu;
  2309. int i;
  2310. spin_lock(&kvm_lock);
  2311. list_for_each_entry(vm, &vm_list, vm_list)
  2312. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2313. vcpu = vm->vcpus[i];
  2314. if (!vcpu)
  2315. continue;
  2316. /*
  2317. * If the vcpu is locked, then it is running on some
  2318. * other cpu and therefore it is not cached on the
  2319. * cpu in question.
  2320. *
  2321. * If it's not locked, check the last cpu it executed
  2322. * on.
  2323. */
  2324. if (mutex_trylock(&vcpu->mutex)) {
  2325. if (vcpu->cpu == cpu) {
  2326. kvm_x86_ops->vcpu_decache(vcpu);
  2327. vcpu->cpu = -1;
  2328. }
  2329. mutex_unlock(&vcpu->mutex);
  2330. }
  2331. }
  2332. spin_unlock(&kvm_lock);
  2333. }
  2334. static void hardware_enable(void *junk)
  2335. {
  2336. int cpu = raw_smp_processor_id();
  2337. if (cpu_isset(cpu, cpus_hardware_enabled))
  2338. return;
  2339. cpu_set(cpu, cpus_hardware_enabled);
  2340. kvm_x86_ops->hardware_enable(NULL);
  2341. }
  2342. static void hardware_disable(void *junk)
  2343. {
  2344. int cpu = raw_smp_processor_id();
  2345. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2346. return;
  2347. cpu_clear(cpu, cpus_hardware_enabled);
  2348. decache_vcpus_on_cpu(cpu);
  2349. kvm_x86_ops->hardware_disable(NULL);
  2350. }
  2351. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2352. void *v)
  2353. {
  2354. int cpu = (long)v;
  2355. switch (val) {
  2356. case CPU_DYING:
  2357. case CPU_DYING_FROZEN:
  2358. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2359. cpu);
  2360. hardware_disable(NULL);
  2361. break;
  2362. case CPU_UP_CANCELED:
  2363. case CPU_UP_CANCELED_FROZEN:
  2364. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2365. cpu);
  2366. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2367. break;
  2368. case CPU_ONLINE:
  2369. case CPU_ONLINE_FROZEN:
  2370. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2371. cpu);
  2372. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2373. break;
  2374. }
  2375. return NOTIFY_OK;
  2376. }
  2377. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2378. void *v)
  2379. {
  2380. if (val == SYS_RESTART) {
  2381. /*
  2382. * Some (well, at least mine) BIOSes hang on reboot if
  2383. * in vmx root mode.
  2384. */
  2385. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2386. on_each_cpu(hardware_disable, NULL, 0, 1);
  2387. }
  2388. return NOTIFY_OK;
  2389. }
  2390. static struct notifier_block kvm_reboot_notifier = {
  2391. .notifier_call = kvm_reboot,
  2392. .priority = 0,
  2393. };
  2394. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2395. {
  2396. memset(bus, 0, sizeof(*bus));
  2397. }
  2398. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2399. {
  2400. int i;
  2401. for (i = 0; i < bus->dev_count; i++) {
  2402. struct kvm_io_device *pos = bus->devs[i];
  2403. kvm_iodevice_destructor(pos);
  2404. }
  2405. }
  2406. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2407. {
  2408. int i;
  2409. for (i = 0; i < bus->dev_count; i++) {
  2410. struct kvm_io_device *pos = bus->devs[i];
  2411. if (pos->in_range(pos, addr))
  2412. return pos;
  2413. }
  2414. return NULL;
  2415. }
  2416. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2417. {
  2418. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2419. bus->devs[bus->dev_count++] = dev;
  2420. }
  2421. static struct notifier_block kvm_cpu_notifier = {
  2422. .notifier_call = kvm_cpu_hotplug,
  2423. .priority = 20, /* must be > scheduler priority */
  2424. };
  2425. static u64 stat_get(void *_offset)
  2426. {
  2427. unsigned offset = (long)_offset;
  2428. u64 total = 0;
  2429. struct kvm *kvm;
  2430. struct kvm_vcpu *vcpu;
  2431. int i;
  2432. spin_lock(&kvm_lock);
  2433. list_for_each_entry(kvm, &vm_list, vm_list)
  2434. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2435. vcpu = kvm->vcpus[i];
  2436. if (vcpu)
  2437. total += *(u32 *)((void *)vcpu + offset);
  2438. }
  2439. spin_unlock(&kvm_lock);
  2440. return total;
  2441. }
  2442. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  2443. static __init void kvm_init_debug(void)
  2444. {
  2445. struct kvm_stats_debugfs_item *p;
  2446. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2447. for (p = debugfs_entries; p->name; ++p)
  2448. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2449. (void *)(long)p->offset,
  2450. &stat_fops);
  2451. }
  2452. static void kvm_exit_debug(void)
  2453. {
  2454. struct kvm_stats_debugfs_item *p;
  2455. for (p = debugfs_entries; p->name; ++p)
  2456. debugfs_remove(p->dentry);
  2457. debugfs_remove(debugfs_dir);
  2458. }
  2459. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2460. {
  2461. hardware_disable(NULL);
  2462. return 0;
  2463. }
  2464. static int kvm_resume(struct sys_device *dev)
  2465. {
  2466. hardware_enable(NULL);
  2467. return 0;
  2468. }
  2469. static struct sysdev_class kvm_sysdev_class = {
  2470. .name = "kvm",
  2471. .suspend = kvm_suspend,
  2472. .resume = kvm_resume,
  2473. };
  2474. static struct sys_device kvm_sysdev = {
  2475. .id = 0,
  2476. .cls = &kvm_sysdev_class,
  2477. };
  2478. struct page *bad_page;
  2479. static inline
  2480. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2481. {
  2482. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2483. }
  2484. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2485. {
  2486. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2487. kvm_x86_ops->vcpu_load(vcpu, cpu);
  2488. }
  2489. static void kvm_sched_out(struct preempt_notifier *pn,
  2490. struct task_struct *next)
  2491. {
  2492. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2493. kvm_x86_ops->vcpu_put(vcpu);
  2494. }
  2495. int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
  2496. struct module *module)
  2497. {
  2498. int r;
  2499. int cpu;
  2500. if (kvm_x86_ops) {
  2501. printk(KERN_ERR "kvm: already loaded the other module\n");
  2502. return -EEXIST;
  2503. }
  2504. if (!ops->cpu_has_kvm_support()) {
  2505. printk(KERN_ERR "kvm: no hardware support\n");
  2506. return -EOPNOTSUPP;
  2507. }
  2508. if (ops->disabled_by_bios()) {
  2509. printk(KERN_ERR "kvm: disabled by bios\n");
  2510. return -EOPNOTSUPP;
  2511. }
  2512. kvm_x86_ops = ops;
  2513. r = kvm_x86_ops->hardware_setup();
  2514. if (r < 0)
  2515. goto out;
  2516. for_each_online_cpu(cpu) {
  2517. smp_call_function_single(cpu,
  2518. kvm_x86_ops->check_processor_compatibility,
  2519. &r, 0, 1);
  2520. if (r < 0)
  2521. goto out_free_0;
  2522. }
  2523. on_each_cpu(hardware_enable, NULL, 0, 1);
  2524. r = register_cpu_notifier(&kvm_cpu_notifier);
  2525. if (r)
  2526. goto out_free_1;
  2527. register_reboot_notifier(&kvm_reboot_notifier);
  2528. r = sysdev_class_register(&kvm_sysdev_class);
  2529. if (r)
  2530. goto out_free_2;
  2531. r = sysdev_register(&kvm_sysdev);
  2532. if (r)
  2533. goto out_free_3;
  2534. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2535. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2536. __alignof__(struct kvm_vcpu), 0, 0);
  2537. if (!kvm_vcpu_cache) {
  2538. r = -ENOMEM;
  2539. goto out_free_4;
  2540. }
  2541. kvm_chardev_ops.owner = module;
  2542. r = misc_register(&kvm_dev);
  2543. if (r) {
  2544. printk(KERN_ERR "kvm: misc device register failed\n");
  2545. goto out_free;
  2546. }
  2547. kvm_preempt_ops.sched_in = kvm_sched_in;
  2548. kvm_preempt_ops.sched_out = kvm_sched_out;
  2549. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2550. return 0;
  2551. out_free:
  2552. kmem_cache_destroy(kvm_vcpu_cache);
  2553. out_free_4:
  2554. sysdev_unregister(&kvm_sysdev);
  2555. out_free_3:
  2556. sysdev_class_unregister(&kvm_sysdev_class);
  2557. out_free_2:
  2558. unregister_reboot_notifier(&kvm_reboot_notifier);
  2559. unregister_cpu_notifier(&kvm_cpu_notifier);
  2560. out_free_1:
  2561. on_each_cpu(hardware_disable, NULL, 0, 1);
  2562. out_free_0:
  2563. kvm_x86_ops->hardware_unsetup();
  2564. out:
  2565. kvm_x86_ops = NULL;
  2566. return r;
  2567. }
  2568. EXPORT_SYMBOL_GPL(kvm_init_x86);
  2569. void kvm_exit_x86(void)
  2570. {
  2571. misc_deregister(&kvm_dev);
  2572. kmem_cache_destroy(kvm_vcpu_cache);
  2573. sysdev_unregister(&kvm_sysdev);
  2574. sysdev_class_unregister(&kvm_sysdev_class);
  2575. unregister_reboot_notifier(&kvm_reboot_notifier);
  2576. unregister_cpu_notifier(&kvm_cpu_notifier);
  2577. on_each_cpu(hardware_disable, NULL, 0, 1);
  2578. kvm_x86_ops->hardware_unsetup();
  2579. kvm_x86_ops = NULL;
  2580. }
  2581. EXPORT_SYMBOL_GPL(kvm_exit_x86);
  2582. static __init int kvm_init(void)
  2583. {
  2584. int r;
  2585. r = kvm_mmu_module_init();
  2586. if (r)
  2587. goto out4;
  2588. kvm_init_debug();
  2589. kvm_arch_init();
  2590. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2591. if (bad_page == NULL) {
  2592. r = -ENOMEM;
  2593. goto out;
  2594. }
  2595. return 0;
  2596. out:
  2597. kvm_exit_debug();
  2598. kvm_mmu_module_exit();
  2599. out4:
  2600. return r;
  2601. }
  2602. static __exit void kvm_exit(void)
  2603. {
  2604. kvm_exit_debug();
  2605. __free_page(bad_page);
  2606. kvm_mmu_module_exit();
  2607. }
  2608. module_init(kvm_init)
  2609. module_exit(kvm_exit)