process.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893
  1. /* arch/sparc64/kernel/process.c
  2. *
  3. * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
  4. * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
  5. * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  6. */
  7. /*
  8. * This file handles the architecture-dependent parts of process handling..
  9. */
  10. #include <stdarg.h>
  11. #include <linux/errno.h>
  12. #include <linux/module.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/fs.h>
  17. #include <linux/smp.h>
  18. #include <linux/stddef.h>
  19. #include <linux/ptrace.h>
  20. #include <linux/slab.h>
  21. #include <linux/user.h>
  22. #include <linux/reboot.h>
  23. #include <linux/delay.h>
  24. #include <linux/compat.h>
  25. #include <linux/tick.h>
  26. #include <linux/init.h>
  27. #include <linux/cpu.h>
  28. #include <linux/elfcore.h>
  29. #include <linux/sysrq.h>
  30. #include <asm/oplib.h>
  31. #include <asm/uaccess.h>
  32. #include <asm/system.h>
  33. #include <asm/page.h>
  34. #include <asm/pgalloc.h>
  35. #include <asm/pgtable.h>
  36. #include <asm/processor.h>
  37. #include <asm/pstate.h>
  38. #include <asm/elf.h>
  39. #include <asm/fpumacro.h>
  40. #include <asm/head.h>
  41. #include <asm/cpudata.h>
  42. #include <asm/mmu_context.h>
  43. #include <asm/unistd.h>
  44. #include <asm/hypervisor.h>
  45. #include <asm/sstate.h>
  46. #include <asm/reboot.h>
  47. #include <asm/syscalls.h>
  48. #include <asm/irq_regs.h>
  49. #include <asm/smp.h>
  50. static void sparc64_yield(int cpu)
  51. {
  52. if (tlb_type != hypervisor)
  53. return;
  54. clear_thread_flag(TIF_POLLING_NRFLAG);
  55. smp_mb__after_clear_bit();
  56. while (!need_resched() && !cpu_is_offline(cpu)) {
  57. unsigned long pstate;
  58. /* Disable interrupts. */
  59. __asm__ __volatile__(
  60. "rdpr %%pstate, %0\n\t"
  61. "andn %0, %1, %0\n\t"
  62. "wrpr %0, %%g0, %%pstate"
  63. : "=&r" (pstate)
  64. : "i" (PSTATE_IE));
  65. if (!need_resched() && !cpu_is_offline(cpu))
  66. sun4v_cpu_yield();
  67. /* Re-enable interrupts. */
  68. __asm__ __volatile__(
  69. "rdpr %%pstate, %0\n\t"
  70. "or %0, %1, %0\n\t"
  71. "wrpr %0, %%g0, %%pstate"
  72. : "=&r" (pstate)
  73. : "i" (PSTATE_IE));
  74. }
  75. set_thread_flag(TIF_POLLING_NRFLAG);
  76. }
  77. /* The idle loop on sparc64. */
  78. void cpu_idle(void)
  79. {
  80. int cpu = smp_processor_id();
  81. set_thread_flag(TIF_POLLING_NRFLAG);
  82. while(1) {
  83. tick_nohz_stop_sched_tick(1);
  84. while (!need_resched() && !cpu_is_offline(cpu))
  85. sparc64_yield(cpu);
  86. tick_nohz_restart_sched_tick();
  87. preempt_enable_no_resched();
  88. #ifdef CONFIG_HOTPLUG_CPU
  89. if (cpu_is_offline(cpu))
  90. cpu_play_dead();
  91. #endif
  92. schedule();
  93. preempt_disable();
  94. }
  95. }
  96. void machine_halt(void)
  97. {
  98. sstate_halt();
  99. prom_halt();
  100. panic("Halt failed!");
  101. }
  102. void machine_alt_power_off(void)
  103. {
  104. sstate_poweroff();
  105. prom_halt_power_off();
  106. panic("Power-off failed!");
  107. }
  108. void machine_restart(char * cmd)
  109. {
  110. char *p;
  111. sstate_reboot();
  112. p = strchr (reboot_command, '\n');
  113. if (p) *p = 0;
  114. if (cmd)
  115. prom_reboot(cmd);
  116. if (*reboot_command)
  117. prom_reboot(reboot_command);
  118. prom_reboot("");
  119. panic("Reboot failed!");
  120. }
  121. #ifdef CONFIG_COMPAT
  122. static void show_regwindow32(struct pt_regs *regs)
  123. {
  124. struct reg_window32 __user *rw;
  125. struct reg_window32 r_w;
  126. mm_segment_t old_fs;
  127. __asm__ __volatile__ ("flushw");
  128. rw = compat_ptr((unsigned)regs->u_regs[14]);
  129. old_fs = get_fs();
  130. set_fs (USER_DS);
  131. if (copy_from_user (&r_w, rw, sizeof(r_w))) {
  132. set_fs (old_fs);
  133. return;
  134. }
  135. set_fs (old_fs);
  136. printk("l0: %08x l1: %08x l2: %08x l3: %08x "
  137. "l4: %08x l5: %08x l6: %08x l7: %08x\n",
  138. r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
  139. r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
  140. printk("i0: %08x i1: %08x i2: %08x i3: %08x "
  141. "i4: %08x i5: %08x i6: %08x i7: %08x\n",
  142. r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
  143. r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
  144. }
  145. #else
  146. #define show_regwindow32(regs) do { } while (0)
  147. #endif
  148. static void show_regwindow(struct pt_regs *regs)
  149. {
  150. struct reg_window __user *rw;
  151. struct reg_window *rwk;
  152. struct reg_window r_w;
  153. mm_segment_t old_fs;
  154. if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
  155. __asm__ __volatile__ ("flushw");
  156. rw = (struct reg_window __user *)
  157. (regs->u_regs[14] + STACK_BIAS);
  158. rwk = (struct reg_window *)
  159. (regs->u_regs[14] + STACK_BIAS);
  160. if (!(regs->tstate & TSTATE_PRIV)) {
  161. old_fs = get_fs();
  162. set_fs (USER_DS);
  163. if (copy_from_user (&r_w, rw, sizeof(r_w))) {
  164. set_fs (old_fs);
  165. return;
  166. }
  167. rwk = &r_w;
  168. set_fs (old_fs);
  169. }
  170. } else {
  171. show_regwindow32(regs);
  172. return;
  173. }
  174. printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
  175. rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
  176. printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
  177. rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
  178. printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
  179. rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
  180. printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
  181. rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
  182. if (regs->tstate & TSTATE_PRIV)
  183. printk("I7: <%pS>\n", (void *) rwk->ins[7]);
  184. }
  185. #ifdef CONFIG_SMP
  186. static DEFINE_SPINLOCK(regdump_lock);
  187. #endif
  188. void __show_regs(struct pt_regs * regs)
  189. {
  190. #ifdef CONFIG_SMP
  191. unsigned long flags;
  192. /* Protect against xcall ipis which might lead to livelock on the lock */
  193. __asm__ __volatile__("rdpr %%pstate, %0\n\t"
  194. "wrpr %0, %1, %%pstate"
  195. : "=r" (flags)
  196. : "i" (PSTATE_IE));
  197. spin_lock(&regdump_lock);
  198. #endif
  199. printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
  200. regs->tpc, regs->tnpc, regs->y, print_tainted());
  201. printk("TPC: <%pS>\n", (void *) regs->tpc);
  202. printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
  203. regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
  204. regs->u_regs[3]);
  205. printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
  206. regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
  207. regs->u_regs[7]);
  208. printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
  209. regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
  210. regs->u_regs[11]);
  211. printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
  212. regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
  213. regs->u_regs[15]);
  214. printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
  215. show_regwindow(regs);
  216. #ifdef CONFIG_SMP
  217. spin_unlock(&regdump_lock);
  218. __asm__ __volatile__("wrpr %0, 0, %%pstate"
  219. : : "r" (flags));
  220. #endif
  221. }
  222. void show_regs(struct pt_regs *regs)
  223. {
  224. __show_regs(regs);
  225. #if 0
  226. #ifdef CONFIG_SMP
  227. {
  228. extern void smp_report_regs(void);
  229. smp_report_regs();
  230. }
  231. #endif
  232. #endif
  233. }
  234. struct global_reg_snapshot global_reg_snapshot[NR_CPUS];
  235. static DEFINE_SPINLOCK(global_reg_snapshot_lock);
  236. static bool kstack_valid(struct thread_info *tp, struct reg_window *rw)
  237. {
  238. unsigned long thread_base, fp;
  239. thread_base = (unsigned long) tp;
  240. fp = (unsigned long) rw;
  241. if (fp < (thread_base + sizeof(struct thread_info)) ||
  242. fp >= (thread_base + THREAD_SIZE))
  243. return false;
  244. return true;
  245. }
  246. static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
  247. int this_cpu)
  248. {
  249. flushw_all();
  250. global_reg_snapshot[this_cpu].tstate = regs->tstate;
  251. global_reg_snapshot[this_cpu].tpc = regs->tpc;
  252. global_reg_snapshot[this_cpu].tnpc = regs->tnpc;
  253. global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7];
  254. if (regs->tstate & TSTATE_PRIV) {
  255. struct thread_info *tp = current_thread_info();
  256. struct reg_window *rw;
  257. rw = (struct reg_window *)
  258. (regs->u_regs[UREG_FP] + STACK_BIAS);
  259. if (kstack_valid(tp, rw)) {
  260. global_reg_snapshot[this_cpu].i7 = rw->ins[7];
  261. rw = (struct reg_window *)
  262. (rw->ins[6] + STACK_BIAS);
  263. if (kstack_valid(tp, rw))
  264. global_reg_snapshot[this_cpu].rpc = rw->ins[7];
  265. }
  266. } else {
  267. global_reg_snapshot[this_cpu].i7 = 0;
  268. global_reg_snapshot[this_cpu].rpc = 0;
  269. }
  270. global_reg_snapshot[this_cpu].thread = tp;
  271. }
  272. /* In order to avoid hangs we do not try to synchronize with the
  273. * global register dump client cpus. The last store they make is to
  274. * the thread pointer, so do a short poll waiting for that to become
  275. * non-NULL.
  276. */
  277. static void __global_reg_poll(struct global_reg_snapshot *gp)
  278. {
  279. int limit = 0;
  280. while (!gp->thread && ++limit < 100) {
  281. barrier();
  282. udelay(1);
  283. }
  284. }
  285. void __trigger_all_cpu_backtrace(void)
  286. {
  287. struct thread_info *tp = current_thread_info();
  288. struct pt_regs *regs = get_irq_regs();
  289. unsigned long flags;
  290. int this_cpu, cpu;
  291. if (!regs)
  292. regs = tp->kregs;
  293. spin_lock_irqsave(&global_reg_snapshot_lock, flags);
  294. memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
  295. this_cpu = raw_smp_processor_id();
  296. __global_reg_self(tp, regs, this_cpu);
  297. smp_fetch_global_regs();
  298. for_each_online_cpu(cpu) {
  299. struct global_reg_snapshot *gp = &global_reg_snapshot[cpu];
  300. struct thread_info *tp;
  301. __global_reg_poll(gp);
  302. tp = gp->thread;
  303. printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
  304. (cpu == this_cpu ? '*' : ' '), cpu,
  305. gp->tstate, gp->tpc, gp->tnpc,
  306. ((tp && tp->task) ? tp->task->comm : "NULL"),
  307. ((tp && tp->task) ? tp->task->pid : -1));
  308. if (gp->tstate & TSTATE_PRIV) {
  309. printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
  310. (void *) gp->tpc,
  311. (void *) gp->o7,
  312. (void *) gp->i7,
  313. (void *) gp->rpc);
  314. } else {
  315. printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
  316. gp->tpc, gp->o7, gp->i7, gp->rpc);
  317. }
  318. }
  319. memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
  320. spin_unlock_irqrestore(&global_reg_snapshot_lock, flags);
  321. }
  322. #ifdef CONFIG_MAGIC_SYSRQ
  323. static void sysrq_handle_globreg(int key, struct tty_struct *tty)
  324. {
  325. __trigger_all_cpu_backtrace();
  326. }
  327. static struct sysrq_key_op sparc_globalreg_op = {
  328. .handler = sysrq_handle_globreg,
  329. .help_msg = "Globalregs",
  330. .action_msg = "Show Global CPU Regs",
  331. };
  332. static int __init sparc_globreg_init(void)
  333. {
  334. return register_sysrq_key('y', &sparc_globalreg_op);
  335. }
  336. core_initcall(sparc_globreg_init);
  337. #endif
  338. unsigned long thread_saved_pc(struct task_struct *tsk)
  339. {
  340. struct thread_info *ti = task_thread_info(tsk);
  341. unsigned long ret = 0xdeadbeefUL;
  342. if (ti && ti->ksp) {
  343. unsigned long *sp;
  344. sp = (unsigned long *)(ti->ksp + STACK_BIAS);
  345. if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
  346. sp[14]) {
  347. unsigned long *fp;
  348. fp = (unsigned long *)(sp[14] + STACK_BIAS);
  349. if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
  350. ret = fp[15];
  351. }
  352. }
  353. return ret;
  354. }
  355. /* Free current thread data structures etc.. */
  356. void exit_thread(void)
  357. {
  358. struct thread_info *t = current_thread_info();
  359. if (t->utraps) {
  360. if (t->utraps[0] < 2)
  361. kfree (t->utraps);
  362. else
  363. t->utraps[0]--;
  364. }
  365. if (test_and_clear_thread_flag(TIF_PERFCTR)) {
  366. t->user_cntd0 = t->user_cntd1 = NULL;
  367. t->pcr_reg = 0;
  368. write_pcr(0);
  369. }
  370. }
  371. void flush_thread(void)
  372. {
  373. struct thread_info *t = current_thread_info();
  374. struct mm_struct *mm;
  375. if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
  376. clear_ti_thread_flag(t, TIF_ABI_PENDING);
  377. if (test_ti_thread_flag(t, TIF_32BIT))
  378. clear_ti_thread_flag(t, TIF_32BIT);
  379. else
  380. set_ti_thread_flag(t, TIF_32BIT);
  381. }
  382. mm = t->task->mm;
  383. if (mm)
  384. tsb_context_switch(mm);
  385. set_thread_wsaved(0);
  386. /* Turn off performance counters if on. */
  387. if (test_and_clear_thread_flag(TIF_PERFCTR)) {
  388. t->user_cntd0 = t->user_cntd1 = NULL;
  389. t->pcr_reg = 0;
  390. write_pcr(0);
  391. }
  392. /* Clear FPU register state. */
  393. t->fpsaved[0] = 0;
  394. if (get_thread_current_ds() != ASI_AIUS)
  395. set_fs(USER_DS);
  396. }
  397. /* It's a bit more tricky when 64-bit tasks are involved... */
  398. static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
  399. {
  400. unsigned long fp, distance, rval;
  401. if (!(test_thread_flag(TIF_32BIT))) {
  402. csp += STACK_BIAS;
  403. psp += STACK_BIAS;
  404. __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
  405. fp += STACK_BIAS;
  406. } else
  407. __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
  408. /* Now 8-byte align the stack as this is mandatory in the
  409. * Sparc ABI due to how register windows work. This hides
  410. * the restriction from thread libraries etc. -DaveM
  411. */
  412. csp &= ~7UL;
  413. distance = fp - psp;
  414. rval = (csp - distance);
  415. if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
  416. rval = 0;
  417. else if (test_thread_flag(TIF_32BIT)) {
  418. if (put_user(((u32)csp),
  419. &(((struct reg_window32 __user *)rval)->ins[6])))
  420. rval = 0;
  421. } else {
  422. if (put_user(((u64)csp - STACK_BIAS),
  423. &(((struct reg_window __user *)rval)->ins[6])))
  424. rval = 0;
  425. else
  426. rval = rval - STACK_BIAS;
  427. }
  428. return rval;
  429. }
  430. /* Standard stuff. */
  431. static inline void shift_window_buffer(int first_win, int last_win,
  432. struct thread_info *t)
  433. {
  434. int i;
  435. for (i = first_win; i < last_win; i++) {
  436. t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
  437. memcpy(&t->reg_window[i], &t->reg_window[i+1],
  438. sizeof(struct reg_window));
  439. }
  440. }
  441. void synchronize_user_stack(void)
  442. {
  443. struct thread_info *t = current_thread_info();
  444. unsigned long window;
  445. flush_user_windows();
  446. if ((window = get_thread_wsaved()) != 0) {
  447. int winsize = sizeof(struct reg_window);
  448. int bias = 0;
  449. if (test_thread_flag(TIF_32BIT))
  450. winsize = sizeof(struct reg_window32);
  451. else
  452. bias = STACK_BIAS;
  453. window -= 1;
  454. do {
  455. unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
  456. struct reg_window *rwin = &t->reg_window[window];
  457. if (!copy_to_user((char __user *)sp, rwin, winsize)) {
  458. shift_window_buffer(window, get_thread_wsaved() - 1, t);
  459. set_thread_wsaved(get_thread_wsaved() - 1);
  460. }
  461. } while (window--);
  462. }
  463. }
  464. static void stack_unaligned(unsigned long sp)
  465. {
  466. siginfo_t info;
  467. info.si_signo = SIGBUS;
  468. info.si_errno = 0;
  469. info.si_code = BUS_ADRALN;
  470. info.si_addr = (void __user *) sp;
  471. info.si_trapno = 0;
  472. force_sig_info(SIGBUS, &info, current);
  473. }
  474. void fault_in_user_windows(void)
  475. {
  476. struct thread_info *t = current_thread_info();
  477. unsigned long window;
  478. int winsize = sizeof(struct reg_window);
  479. int bias = 0;
  480. if (test_thread_flag(TIF_32BIT))
  481. winsize = sizeof(struct reg_window32);
  482. else
  483. bias = STACK_BIAS;
  484. flush_user_windows();
  485. window = get_thread_wsaved();
  486. if (likely(window != 0)) {
  487. window -= 1;
  488. do {
  489. unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
  490. struct reg_window *rwin = &t->reg_window[window];
  491. if (unlikely(sp & 0x7UL))
  492. stack_unaligned(sp);
  493. if (unlikely(copy_to_user((char __user *)sp,
  494. rwin, winsize)))
  495. goto barf;
  496. } while (window--);
  497. }
  498. set_thread_wsaved(0);
  499. return;
  500. barf:
  501. set_thread_wsaved(window + 1);
  502. do_exit(SIGILL);
  503. }
  504. asmlinkage long sparc_do_fork(unsigned long clone_flags,
  505. unsigned long stack_start,
  506. struct pt_regs *regs,
  507. unsigned long stack_size)
  508. {
  509. int __user *parent_tid_ptr, *child_tid_ptr;
  510. unsigned long orig_i1 = regs->u_regs[UREG_I1];
  511. long ret;
  512. #ifdef CONFIG_COMPAT
  513. if (test_thread_flag(TIF_32BIT)) {
  514. parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
  515. child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
  516. } else
  517. #endif
  518. {
  519. parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
  520. child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
  521. }
  522. ret = do_fork(clone_flags, stack_start,
  523. regs, stack_size,
  524. parent_tid_ptr, child_tid_ptr);
  525. /* If we get an error and potentially restart the system
  526. * call, we're screwed because copy_thread() clobbered
  527. * the parent's %o1. So detect that case and restore it
  528. * here.
  529. */
  530. if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
  531. regs->u_regs[UREG_I1] = orig_i1;
  532. return ret;
  533. }
  534. /* Copy a Sparc thread. The fork() return value conventions
  535. * under SunOS are nothing short of bletcherous:
  536. * Parent --> %o0 == childs pid, %o1 == 0
  537. * Child --> %o0 == parents pid, %o1 == 1
  538. */
  539. int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
  540. unsigned long unused,
  541. struct task_struct *p, struct pt_regs *regs)
  542. {
  543. struct thread_info *t = task_thread_info(p);
  544. struct sparc_stackf *parent_sf;
  545. unsigned long child_stack_sz;
  546. char *child_trap_frame;
  547. int kernel_thread;
  548. kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0;
  549. parent_sf = ((struct sparc_stackf *) regs) - 1;
  550. /* Calculate offset to stack_frame & pt_regs */
  551. child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) +
  552. (kernel_thread ? STACKFRAME_SZ : 0));
  553. child_trap_frame = (task_stack_page(p) +
  554. (THREAD_SIZE - child_stack_sz));
  555. memcpy(child_trap_frame, parent_sf, child_stack_sz);
  556. t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) |
  557. (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
  558. (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
  559. t->new_child = 1;
  560. t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
  561. t->kregs = (struct pt_regs *) (child_trap_frame +
  562. sizeof(struct sparc_stackf));
  563. t->fpsaved[0] = 0;
  564. if (kernel_thread) {
  565. struct sparc_stackf *child_sf = (struct sparc_stackf *)
  566. (child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ));
  567. /* Zero terminate the stack backtrace. */
  568. child_sf->fp = NULL;
  569. t->kregs->u_regs[UREG_FP] =
  570. ((unsigned long) child_sf) - STACK_BIAS;
  571. /* Special case, if we are spawning a kernel thread from
  572. * a userspace task (usermode helper, NFS or similar), we
  573. * must disable performance counters in the child because
  574. * the address space and protection realm are changing.
  575. */
  576. if (t->flags & _TIF_PERFCTR) {
  577. t->user_cntd0 = t->user_cntd1 = NULL;
  578. t->pcr_reg = 0;
  579. t->flags &= ~_TIF_PERFCTR;
  580. }
  581. t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
  582. t->kregs->u_regs[UREG_G6] = (unsigned long) t;
  583. t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
  584. } else {
  585. if (t->flags & _TIF_32BIT) {
  586. sp &= 0x00000000ffffffffUL;
  587. regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
  588. }
  589. t->kregs->u_regs[UREG_FP] = sp;
  590. t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
  591. if (sp != regs->u_regs[UREG_FP]) {
  592. unsigned long csp;
  593. csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
  594. if (!csp)
  595. return -EFAULT;
  596. t->kregs->u_regs[UREG_FP] = csp;
  597. }
  598. if (t->utraps)
  599. t->utraps[0]++;
  600. }
  601. /* Set the return value for the child. */
  602. t->kregs->u_regs[UREG_I0] = current->pid;
  603. t->kregs->u_regs[UREG_I1] = 1;
  604. /* Set the second return value for the parent. */
  605. regs->u_regs[UREG_I1] = 0;
  606. if (clone_flags & CLONE_SETTLS)
  607. t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
  608. return 0;
  609. }
  610. /*
  611. * This is the mechanism for creating a new kernel thread.
  612. *
  613. * NOTE! Only a kernel-only process(ie the swapper or direct descendants
  614. * who haven't done an "execve()") should use this: it will work within
  615. * a system call from a "real" process, but the process memory space will
  616. * not be freed until both the parent and the child have exited.
  617. */
  618. pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  619. {
  620. long retval;
  621. /* If the parent runs before fn(arg) is called by the child,
  622. * the input registers of this function can be clobbered.
  623. * So we stash 'fn' and 'arg' into global registers which
  624. * will not be modified by the parent.
  625. */
  626. __asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */
  627. "mov %5, %%g3\n\t" /* Save ARG into global */
  628. "mov %1, %%g1\n\t" /* Clone syscall nr. */
  629. "mov %2, %%o0\n\t" /* Clone flags. */
  630. "mov 0, %%o1\n\t" /* usp arg == 0 */
  631. "t 0x6d\n\t" /* Linux/Sparc clone(). */
  632. "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
  633. " mov %%o0, %0\n\t"
  634. "jmpl %%g2, %%o7\n\t" /* Call the function. */
  635. " mov %%g3, %%o0\n\t" /* Set arg in delay. */
  636. "mov %3, %%g1\n\t"
  637. "t 0x6d\n\t" /* Linux/Sparc exit(). */
  638. /* Notreached by child. */
  639. "1:" :
  640. "=r" (retval) :
  641. "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
  642. "i" (__NR_exit), "r" (fn), "r" (arg) :
  643. "g1", "g2", "g3", "o0", "o1", "memory", "cc");
  644. return retval;
  645. }
  646. typedef struct {
  647. union {
  648. unsigned int pr_regs[32];
  649. unsigned long pr_dregs[16];
  650. } pr_fr;
  651. unsigned int __unused;
  652. unsigned int pr_fsr;
  653. unsigned char pr_qcnt;
  654. unsigned char pr_q_entrysize;
  655. unsigned char pr_en;
  656. unsigned int pr_q[64];
  657. } elf_fpregset_t32;
  658. /*
  659. * fill in the fpu structure for a core dump.
  660. */
  661. int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
  662. {
  663. unsigned long *kfpregs = current_thread_info()->fpregs;
  664. unsigned long fprs = current_thread_info()->fpsaved[0];
  665. if (test_thread_flag(TIF_32BIT)) {
  666. elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
  667. if (fprs & FPRS_DL)
  668. memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
  669. sizeof(unsigned int) * 32);
  670. else
  671. memset(&fpregs32->pr_fr.pr_regs[0], 0,
  672. sizeof(unsigned int) * 32);
  673. fpregs32->pr_qcnt = 0;
  674. fpregs32->pr_q_entrysize = 8;
  675. memset(&fpregs32->pr_q[0], 0,
  676. (sizeof(unsigned int) * 64));
  677. if (fprs & FPRS_FEF) {
  678. fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
  679. fpregs32->pr_en = 1;
  680. } else {
  681. fpregs32->pr_fsr = 0;
  682. fpregs32->pr_en = 0;
  683. }
  684. } else {
  685. if(fprs & FPRS_DL)
  686. memcpy(&fpregs->pr_regs[0], kfpregs,
  687. sizeof(unsigned int) * 32);
  688. else
  689. memset(&fpregs->pr_regs[0], 0,
  690. sizeof(unsigned int) * 32);
  691. if(fprs & FPRS_DU)
  692. memcpy(&fpregs->pr_regs[16], kfpregs+16,
  693. sizeof(unsigned int) * 32);
  694. else
  695. memset(&fpregs->pr_regs[16], 0,
  696. sizeof(unsigned int) * 32);
  697. if(fprs & FPRS_FEF) {
  698. fpregs->pr_fsr = current_thread_info()->xfsr[0];
  699. fpregs->pr_gsr = current_thread_info()->gsr[0];
  700. } else {
  701. fpregs->pr_fsr = fpregs->pr_gsr = 0;
  702. }
  703. fpregs->pr_fprs = fprs;
  704. }
  705. return 1;
  706. }
  707. /*
  708. * sparc_execve() executes a new program after the asm stub has set
  709. * things up for us. This should basically do what I want it to.
  710. */
  711. asmlinkage int sparc_execve(struct pt_regs *regs)
  712. {
  713. int error, base = 0;
  714. char *filename;
  715. /* User register window flush is done by entry.S */
  716. /* Check for indirect call. */
  717. if (regs->u_regs[UREG_G1] == 0)
  718. base = 1;
  719. filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
  720. error = PTR_ERR(filename);
  721. if (IS_ERR(filename))
  722. goto out;
  723. error = do_execve(filename,
  724. (char __user * __user *)
  725. regs->u_regs[base + UREG_I1],
  726. (char __user * __user *)
  727. regs->u_regs[base + UREG_I2], regs);
  728. putname(filename);
  729. if (!error) {
  730. fprs_write(0);
  731. current_thread_info()->xfsr[0] = 0;
  732. current_thread_info()->fpsaved[0] = 0;
  733. regs->tstate &= ~TSTATE_PEF;
  734. }
  735. out:
  736. return error;
  737. }
  738. unsigned long get_wchan(struct task_struct *task)
  739. {
  740. unsigned long pc, fp, bias = 0;
  741. unsigned long thread_info_base;
  742. struct reg_window *rw;
  743. unsigned long ret = 0;
  744. int count = 0;
  745. if (!task || task == current ||
  746. task->state == TASK_RUNNING)
  747. goto out;
  748. thread_info_base = (unsigned long) task_stack_page(task);
  749. bias = STACK_BIAS;
  750. fp = task_thread_info(task)->ksp + bias;
  751. do {
  752. /* Bogus frame pointer? */
  753. if (fp < (thread_info_base + sizeof(struct thread_info)) ||
  754. fp >= (thread_info_base + THREAD_SIZE))
  755. break;
  756. rw = (struct reg_window *) fp;
  757. pc = rw->ins[7];
  758. if (!in_sched_functions(pc)) {
  759. ret = pc;
  760. goto out;
  761. }
  762. fp = rw->ins[6] + bias;
  763. } while (++count < 16);
  764. out:
  765. return ret;
  766. }