i915_gem.c 132 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/intel-gtt.h>
  37. static uint32_t i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv);
  38. static uint32_t i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv);
  39. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  40. bool pipelined);
  41. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  42. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  43. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  44. int write);
  45. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  46. uint64_t offset,
  47. uint64_t size);
  48. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  49. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  50. bool interruptible);
  51. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  52. unsigned alignment,
  53. bool mappable,
  54. bool need_fence);
  55. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  56. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  57. struct drm_i915_gem_pwrite *args,
  58. struct drm_file *file_priv);
  59. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  60. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  61. int nr_to_scan,
  62. gfp_t gfp_mask);
  63. /* some bookkeeping */
  64. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  65. size_t size)
  66. {
  67. dev_priv->mm.object_count++;
  68. dev_priv->mm.object_memory += size;
  69. }
  70. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  71. size_t size)
  72. {
  73. dev_priv->mm.object_count--;
  74. dev_priv->mm.object_memory -= size;
  75. }
  76. static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
  77. struct drm_i915_gem_object *obj)
  78. {
  79. dev_priv->mm.gtt_count++;
  80. dev_priv->mm.gtt_memory += obj->gtt_space->size;
  81. if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
  82. dev_priv->mm.mappable_gtt_used +=
  83. min_t(size_t, obj->gtt_space->size,
  84. dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
  85. }
  86. }
  87. static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
  88. struct drm_i915_gem_object *obj)
  89. {
  90. dev_priv->mm.gtt_count--;
  91. dev_priv->mm.gtt_memory -= obj->gtt_space->size;
  92. if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
  93. dev_priv->mm.mappable_gtt_used -=
  94. min_t(size_t, obj->gtt_space->size,
  95. dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
  96. }
  97. }
  98. /**
  99. * Update the mappable working set counters. Call _only_ when there is a change
  100. * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
  101. * @mappable: new state the changed mappable flag (either pin_ or fault_).
  102. */
  103. static void
  104. i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
  105. struct drm_i915_gem_object *obj,
  106. bool mappable)
  107. {
  108. if (mappable) {
  109. if (obj->pin_mappable && obj->fault_mappable)
  110. /* Combined state was already mappable. */
  111. return;
  112. dev_priv->mm.gtt_mappable_count++;
  113. dev_priv->mm.gtt_mappable_memory += obj->gtt_space->size;
  114. } else {
  115. if (obj->pin_mappable || obj->fault_mappable)
  116. /* Combined state still mappable. */
  117. return;
  118. dev_priv->mm.gtt_mappable_count--;
  119. dev_priv->mm.gtt_mappable_memory -= obj->gtt_space->size;
  120. }
  121. }
  122. static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
  123. struct drm_i915_gem_object *obj,
  124. bool mappable)
  125. {
  126. dev_priv->mm.pin_count++;
  127. dev_priv->mm.pin_memory += obj->gtt_space->size;
  128. if (mappable) {
  129. obj->pin_mappable = true;
  130. i915_gem_info_update_mappable(dev_priv, obj, true);
  131. }
  132. }
  133. static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
  134. struct drm_i915_gem_object *obj)
  135. {
  136. dev_priv->mm.pin_count--;
  137. dev_priv->mm.pin_memory -= obj->gtt_space->size;
  138. if (obj->pin_mappable) {
  139. obj->pin_mappable = false;
  140. i915_gem_info_update_mappable(dev_priv, obj, false);
  141. }
  142. }
  143. int
  144. i915_gem_check_is_wedged(struct drm_device *dev)
  145. {
  146. struct drm_i915_private *dev_priv = dev->dev_private;
  147. struct completion *x = &dev_priv->error_completion;
  148. unsigned long flags;
  149. int ret;
  150. if (!atomic_read(&dev_priv->mm.wedged))
  151. return 0;
  152. ret = wait_for_completion_interruptible(x);
  153. if (ret)
  154. return ret;
  155. /* Success, we reset the GPU! */
  156. if (!atomic_read(&dev_priv->mm.wedged))
  157. return 0;
  158. /* GPU is hung, bump the completion count to account for
  159. * the token we just consumed so that we never hit zero and
  160. * end up waiting upon a subsequent completion event that
  161. * will never happen.
  162. */
  163. spin_lock_irqsave(&x->wait.lock, flags);
  164. x->done++;
  165. spin_unlock_irqrestore(&x->wait.lock, flags);
  166. return -EIO;
  167. }
  168. static int i915_mutex_lock_interruptible(struct drm_device *dev)
  169. {
  170. struct drm_i915_private *dev_priv = dev->dev_private;
  171. int ret;
  172. ret = i915_gem_check_is_wedged(dev);
  173. if (ret)
  174. return ret;
  175. ret = mutex_lock_interruptible(&dev->struct_mutex);
  176. if (ret)
  177. return ret;
  178. if (atomic_read(&dev_priv->mm.wedged)) {
  179. mutex_unlock(&dev->struct_mutex);
  180. return -EAGAIN;
  181. }
  182. WARN_ON(i915_verify_lists(dev));
  183. return 0;
  184. }
  185. static inline bool
  186. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  187. {
  188. return obj_priv->gtt_space &&
  189. !obj_priv->active &&
  190. obj_priv->pin_count == 0;
  191. }
  192. int i915_gem_do_init(struct drm_device *dev,
  193. unsigned long start,
  194. unsigned long mappable_end,
  195. unsigned long end)
  196. {
  197. drm_i915_private_t *dev_priv = dev->dev_private;
  198. if (start >= end ||
  199. (start & (PAGE_SIZE - 1)) != 0 ||
  200. (end & (PAGE_SIZE - 1)) != 0) {
  201. return -EINVAL;
  202. }
  203. drm_mm_init(&dev_priv->mm.gtt_space, start,
  204. end - start);
  205. dev_priv->mm.gtt_total = end - start;
  206. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  207. dev_priv->mm.gtt_mappable_end = mappable_end;
  208. return 0;
  209. }
  210. int
  211. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  212. struct drm_file *file_priv)
  213. {
  214. struct drm_i915_gem_init *args = data;
  215. int ret;
  216. mutex_lock(&dev->struct_mutex);
  217. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  218. mutex_unlock(&dev->struct_mutex);
  219. return ret;
  220. }
  221. int
  222. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  223. struct drm_file *file_priv)
  224. {
  225. struct drm_i915_private *dev_priv = dev->dev_private;
  226. struct drm_i915_gem_get_aperture *args = data;
  227. if (!(dev->driver->driver_features & DRIVER_GEM))
  228. return -ENODEV;
  229. mutex_lock(&dev->struct_mutex);
  230. args->aper_size = dev_priv->mm.gtt_total;
  231. args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
  232. mutex_unlock(&dev->struct_mutex);
  233. return 0;
  234. }
  235. /**
  236. * Creates a new mm object and returns a handle to it.
  237. */
  238. int
  239. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  240. struct drm_file *file_priv)
  241. {
  242. struct drm_i915_gem_create *args = data;
  243. struct drm_gem_object *obj;
  244. int ret;
  245. u32 handle;
  246. args->size = roundup(args->size, PAGE_SIZE);
  247. /* Allocate the new object */
  248. obj = i915_gem_alloc_object(dev, args->size);
  249. if (obj == NULL)
  250. return -ENOMEM;
  251. ret = drm_gem_handle_create(file_priv, obj, &handle);
  252. if (ret) {
  253. drm_gem_object_release(obj);
  254. i915_gem_info_remove_obj(dev->dev_private, obj->size);
  255. kfree(obj);
  256. return ret;
  257. }
  258. /* drop reference from allocate - handle holds it now */
  259. drm_gem_object_unreference(obj);
  260. trace_i915_gem_object_create(obj);
  261. args->handle = handle;
  262. return 0;
  263. }
  264. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  265. {
  266. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  267. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  268. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  269. obj_priv->tiling_mode != I915_TILING_NONE;
  270. }
  271. static inline void
  272. slow_shmem_copy(struct page *dst_page,
  273. int dst_offset,
  274. struct page *src_page,
  275. int src_offset,
  276. int length)
  277. {
  278. char *dst_vaddr, *src_vaddr;
  279. dst_vaddr = kmap(dst_page);
  280. src_vaddr = kmap(src_page);
  281. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  282. kunmap(src_page);
  283. kunmap(dst_page);
  284. }
  285. static inline void
  286. slow_shmem_bit17_copy(struct page *gpu_page,
  287. int gpu_offset,
  288. struct page *cpu_page,
  289. int cpu_offset,
  290. int length,
  291. int is_read)
  292. {
  293. char *gpu_vaddr, *cpu_vaddr;
  294. /* Use the unswizzled path if this page isn't affected. */
  295. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  296. if (is_read)
  297. return slow_shmem_copy(cpu_page, cpu_offset,
  298. gpu_page, gpu_offset, length);
  299. else
  300. return slow_shmem_copy(gpu_page, gpu_offset,
  301. cpu_page, cpu_offset, length);
  302. }
  303. gpu_vaddr = kmap(gpu_page);
  304. cpu_vaddr = kmap(cpu_page);
  305. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  306. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  307. */
  308. while (length > 0) {
  309. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  310. int this_length = min(cacheline_end - gpu_offset, length);
  311. int swizzled_gpu_offset = gpu_offset ^ 64;
  312. if (is_read) {
  313. memcpy(cpu_vaddr + cpu_offset,
  314. gpu_vaddr + swizzled_gpu_offset,
  315. this_length);
  316. } else {
  317. memcpy(gpu_vaddr + swizzled_gpu_offset,
  318. cpu_vaddr + cpu_offset,
  319. this_length);
  320. }
  321. cpu_offset += this_length;
  322. gpu_offset += this_length;
  323. length -= this_length;
  324. }
  325. kunmap(cpu_page);
  326. kunmap(gpu_page);
  327. }
  328. /**
  329. * This is the fast shmem pread path, which attempts to copy_from_user directly
  330. * from the backing pages of the object to the user's address space. On a
  331. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  332. */
  333. static int
  334. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  335. struct drm_i915_gem_pread *args,
  336. struct drm_file *file_priv)
  337. {
  338. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  339. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  340. ssize_t remain;
  341. loff_t offset;
  342. char __user *user_data;
  343. int page_offset, page_length;
  344. user_data = (char __user *) (uintptr_t) args->data_ptr;
  345. remain = args->size;
  346. obj_priv = to_intel_bo(obj);
  347. offset = args->offset;
  348. while (remain > 0) {
  349. struct page *page;
  350. char *vaddr;
  351. int ret;
  352. /* Operation in this page
  353. *
  354. * page_offset = offset within page
  355. * page_length = bytes to copy for this page
  356. */
  357. page_offset = offset & (PAGE_SIZE-1);
  358. page_length = remain;
  359. if ((page_offset + remain) > PAGE_SIZE)
  360. page_length = PAGE_SIZE - page_offset;
  361. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  362. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  363. if (IS_ERR(page))
  364. return PTR_ERR(page);
  365. vaddr = kmap_atomic(page);
  366. ret = __copy_to_user_inatomic(user_data,
  367. vaddr + page_offset,
  368. page_length);
  369. kunmap_atomic(vaddr);
  370. mark_page_accessed(page);
  371. page_cache_release(page);
  372. if (ret)
  373. return -EFAULT;
  374. remain -= page_length;
  375. user_data += page_length;
  376. offset += page_length;
  377. }
  378. return 0;
  379. }
  380. /**
  381. * This is the fallback shmem pread path, which allocates temporary storage
  382. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  383. * can copy out of the object's backing pages while holding the struct mutex
  384. * and not take page faults.
  385. */
  386. static int
  387. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  388. struct drm_i915_gem_pread *args,
  389. struct drm_file *file_priv)
  390. {
  391. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  392. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  393. struct mm_struct *mm = current->mm;
  394. struct page **user_pages;
  395. ssize_t remain;
  396. loff_t offset, pinned_pages, i;
  397. loff_t first_data_page, last_data_page, num_pages;
  398. int shmem_page_offset;
  399. int data_page_index, data_page_offset;
  400. int page_length;
  401. int ret;
  402. uint64_t data_ptr = args->data_ptr;
  403. int do_bit17_swizzling;
  404. remain = args->size;
  405. /* Pin the user pages containing the data. We can't fault while
  406. * holding the struct mutex, yet we want to hold it while
  407. * dereferencing the user data.
  408. */
  409. first_data_page = data_ptr / PAGE_SIZE;
  410. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  411. num_pages = last_data_page - first_data_page + 1;
  412. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  413. if (user_pages == NULL)
  414. return -ENOMEM;
  415. mutex_unlock(&dev->struct_mutex);
  416. down_read(&mm->mmap_sem);
  417. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  418. num_pages, 1, 0, user_pages, NULL);
  419. up_read(&mm->mmap_sem);
  420. mutex_lock(&dev->struct_mutex);
  421. if (pinned_pages < num_pages) {
  422. ret = -EFAULT;
  423. goto out;
  424. }
  425. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  426. args->offset,
  427. args->size);
  428. if (ret)
  429. goto out;
  430. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  431. obj_priv = to_intel_bo(obj);
  432. offset = args->offset;
  433. while (remain > 0) {
  434. struct page *page;
  435. /* Operation in this page
  436. *
  437. * shmem_page_offset = offset within page in shmem file
  438. * data_page_index = page number in get_user_pages return
  439. * data_page_offset = offset with data_page_index page.
  440. * page_length = bytes to copy for this page
  441. */
  442. shmem_page_offset = offset & ~PAGE_MASK;
  443. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  444. data_page_offset = data_ptr & ~PAGE_MASK;
  445. page_length = remain;
  446. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  447. page_length = PAGE_SIZE - shmem_page_offset;
  448. if ((data_page_offset + page_length) > PAGE_SIZE)
  449. page_length = PAGE_SIZE - data_page_offset;
  450. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  451. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  452. if (IS_ERR(page))
  453. return PTR_ERR(page);
  454. if (do_bit17_swizzling) {
  455. slow_shmem_bit17_copy(page,
  456. shmem_page_offset,
  457. user_pages[data_page_index],
  458. data_page_offset,
  459. page_length,
  460. 1);
  461. } else {
  462. slow_shmem_copy(user_pages[data_page_index],
  463. data_page_offset,
  464. page,
  465. shmem_page_offset,
  466. page_length);
  467. }
  468. mark_page_accessed(page);
  469. page_cache_release(page);
  470. remain -= page_length;
  471. data_ptr += page_length;
  472. offset += page_length;
  473. }
  474. out:
  475. for (i = 0; i < pinned_pages; i++) {
  476. SetPageDirty(user_pages[i]);
  477. mark_page_accessed(user_pages[i]);
  478. page_cache_release(user_pages[i]);
  479. }
  480. drm_free_large(user_pages);
  481. return ret;
  482. }
  483. /**
  484. * Reads data from the object referenced by handle.
  485. *
  486. * On error, the contents of *data are undefined.
  487. */
  488. int
  489. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  490. struct drm_file *file_priv)
  491. {
  492. struct drm_i915_gem_pread *args = data;
  493. struct drm_gem_object *obj;
  494. struct drm_i915_gem_object *obj_priv;
  495. int ret = 0;
  496. ret = i915_mutex_lock_interruptible(dev);
  497. if (ret)
  498. return ret;
  499. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  500. if (obj == NULL) {
  501. ret = -ENOENT;
  502. goto unlock;
  503. }
  504. obj_priv = to_intel_bo(obj);
  505. /* Bounds check source. */
  506. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  507. ret = -EINVAL;
  508. goto out;
  509. }
  510. if (args->size == 0)
  511. goto out;
  512. if (!access_ok(VERIFY_WRITE,
  513. (char __user *)(uintptr_t)args->data_ptr,
  514. args->size)) {
  515. ret = -EFAULT;
  516. goto out;
  517. }
  518. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  519. args->size);
  520. if (ret) {
  521. ret = -EFAULT;
  522. goto out;
  523. }
  524. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  525. args->offset,
  526. args->size);
  527. if (ret)
  528. goto out;
  529. ret = -EFAULT;
  530. if (!i915_gem_object_needs_bit17_swizzle(obj))
  531. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  532. if (ret == -EFAULT)
  533. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  534. out:
  535. drm_gem_object_unreference(obj);
  536. unlock:
  537. mutex_unlock(&dev->struct_mutex);
  538. return ret;
  539. }
  540. /* This is the fast write path which cannot handle
  541. * page faults in the source data
  542. */
  543. static inline int
  544. fast_user_write(struct io_mapping *mapping,
  545. loff_t page_base, int page_offset,
  546. char __user *user_data,
  547. int length)
  548. {
  549. char *vaddr_atomic;
  550. unsigned long unwritten;
  551. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  552. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  553. user_data, length);
  554. io_mapping_unmap_atomic(vaddr_atomic);
  555. return unwritten;
  556. }
  557. /* Here's the write path which can sleep for
  558. * page faults
  559. */
  560. static inline void
  561. slow_kernel_write(struct io_mapping *mapping,
  562. loff_t gtt_base, int gtt_offset,
  563. struct page *user_page, int user_offset,
  564. int length)
  565. {
  566. char __iomem *dst_vaddr;
  567. char *src_vaddr;
  568. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  569. src_vaddr = kmap(user_page);
  570. memcpy_toio(dst_vaddr + gtt_offset,
  571. src_vaddr + user_offset,
  572. length);
  573. kunmap(user_page);
  574. io_mapping_unmap(dst_vaddr);
  575. }
  576. /**
  577. * This is the fast pwrite path, where we copy the data directly from the
  578. * user into the GTT, uncached.
  579. */
  580. static int
  581. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  582. struct drm_i915_gem_pwrite *args,
  583. struct drm_file *file_priv)
  584. {
  585. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  586. drm_i915_private_t *dev_priv = dev->dev_private;
  587. ssize_t remain;
  588. loff_t offset, page_base;
  589. char __user *user_data;
  590. int page_offset, page_length;
  591. user_data = (char __user *) (uintptr_t) args->data_ptr;
  592. remain = args->size;
  593. obj_priv = to_intel_bo(obj);
  594. offset = obj_priv->gtt_offset + args->offset;
  595. while (remain > 0) {
  596. /* Operation in this page
  597. *
  598. * page_base = page offset within aperture
  599. * page_offset = offset within page
  600. * page_length = bytes to copy for this page
  601. */
  602. page_base = (offset & ~(PAGE_SIZE-1));
  603. page_offset = offset & (PAGE_SIZE-1);
  604. page_length = remain;
  605. if ((page_offset + remain) > PAGE_SIZE)
  606. page_length = PAGE_SIZE - page_offset;
  607. /* If we get a fault while copying data, then (presumably) our
  608. * source page isn't available. Return the error and we'll
  609. * retry in the slow path.
  610. */
  611. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  612. page_offset, user_data, page_length))
  613. return -EFAULT;
  614. remain -= page_length;
  615. user_data += page_length;
  616. offset += page_length;
  617. }
  618. return 0;
  619. }
  620. /**
  621. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  622. * the memory and maps it using kmap_atomic for copying.
  623. *
  624. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  625. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  626. */
  627. static int
  628. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  629. struct drm_i915_gem_pwrite *args,
  630. struct drm_file *file_priv)
  631. {
  632. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  633. drm_i915_private_t *dev_priv = dev->dev_private;
  634. ssize_t remain;
  635. loff_t gtt_page_base, offset;
  636. loff_t first_data_page, last_data_page, num_pages;
  637. loff_t pinned_pages, i;
  638. struct page **user_pages;
  639. struct mm_struct *mm = current->mm;
  640. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  641. int ret;
  642. uint64_t data_ptr = args->data_ptr;
  643. remain = args->size;
  644. /* Pin the user pages containing the data. We can't fault while
  645. * holding the struct mutex, and all of the pwrite implementations
  646. * want to hold it while dereferencing the user data.
  647. */
  648. first_data_page = data_ptr / PAGE_SIZE;
  649. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  650. num_pages = last_data_page - first_data_page + 1;
  651. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  652. if (user_pages == NULL)
  653. return -ENOMEM;
  654. mutex_unlock(&dev->struct_mutex);
  655. down_read(&mm->mmap_sem);
  656. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  657. num_pages, 0, 0, user_pages, NULL);
  658. up_read(&mm->mmap_sem);
  659. mutex_lock(&dev->struct_mutex);
  660. if (pinned_pages < num_pages) {
  661. ret = -EFAULT;
  662. goto out_unpin_pages;
  663. }
  664. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  665. if (ret)
  666. goto out_unpin_pages;
  667. obj_priv = to_intel_bo(obj);
  668. offset = obj_priv->gtt_offset + args->offset;
  669. while (remain > 0) {
  670. /* Operation in this page
  671. *
  672. * gtt_page_base = page offset within aperture
  673. * gtt_page_offset = offset within page in aperture
  674. * data_page_index = page number in get_user_pages return
  675. * data_page_offset = offset with data_page_index page.
  676. * page_length = bytes to copy for this page
  677. */
  678. gtt_page_base = offset & PAGE_MASK;
  679. gtt_page_offset = offset & ~PAGE_MASK;
  680. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  681. data_page_offset = data_ptr & ~PAGE_MASK;
  682. page_length = remain;
  683. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  684. page_length = PAGE_SIZE - gtt_page_offset;
  685. if ((data_page_offset + page_length) > PAGE_SIZE)
  686. page_length = PAGE_SIZE - data_page_offset;
  687. slow_kernel_write(dev_priv->mm.gtt_mapping,
  688. gtt_page_base, gtt_page_offset,
  689. user_pages[data_page_index],
  690. data_page_offset,
  691. page_length);
  692. remain -= page_length;
  693. offset += page_length;
  694. data_ptr += page_length;
  695. }
  696. out_unpin_pages:
  697. for (i = 0; i < pinned_pages; i++)
  698. page_cache_release(user_pages[i]);
  699. drm_free_large(user_pages);
  700. return ret;
  701. }
  702. /**
  703. * This is the fast shmem pwrite path, which attempts to directly
  704. * copy_from_user into the kmapped pages backing the object.
  705. */
  706. static int
  707. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  708. struct drm_i915_gem_pwrite *args,
  709. struct drm_file *file_priv)
  710. {
  711. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  712. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  713. ssize_t remain;
  714. loff_t offset;
  715. char __user *user_data;
  716. int page_offset, page_length;
  717. user_data = (char __user *) (uintptr_t) args->data_ptr;
  718. remain = args->size;
  719. obj_priv = to_intel_bo(obj);
  720. offset = args->offset;
  721. obj_priv->dirty = 1;
  722. while (remain > 0) {
  723. struct page *page;
  724. char *vaddr;
  725. int ret;
  726. /* Operation in this page
  727. *
  728. * page_offset = offset within page
  729. * page_length = bytes to copy for this page
  730. */
  731. page_offset = offset & (PAGE_SIZE-1);
  732. page_length = remain;
  733. if ((page_offset + remain) > PAGE_SIZE)
  734. page_length = PAGE_SIZE - page_offset;
  735. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  736. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  737. if (IS_ERR(page))
  738. return PTR_ERR(page);
  739. vaddr = kmap_atomic(page, KM_USER0);
  740. ret = __copy_from_user_inatomic(vaddr + page_offset,
  741. user_data,
  742. page_length);
  743. kunmap_atomic(vaddr, KM_USER0);
  744. set_page_dirty(page);
  745. mark_page_accessed(page);
  746. page_cache_release(page);
  747. /* If we get a fault while copying data, then (presumably) our
  748. * source page isn't available. Return the error and we'll
  749. * retry in the slow path.
  750. */
  751. if (ret)
  752. return -EFAULT;
  753. remain -= page_length;
  754. user_data += page_length;
  755. offset += page_length;
  756. }
  757. return 0;
  758. }
  759. /**
  760. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  761. * the memory and maps it using kmap_atomic for copying.
  762. *
  763. * This avoids taking mmap_sem for faulting on the user's address while the
  764. * struct_mutex is held.
  765. */
  766. static int
  767. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  768. struct drm_i915_gem_pwrite *args,
  769. struct drm_file *file_priv)
  770. {
  771. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  772. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  773. struct mm_struct *mm = current->mm;
  774. struct page **user_pages;
  775. ssize_t remain;
  776. loff_t offset, pinned_pages, i;
  777. loff_t first_data_page, last_data_page, num_pages;
  778. int shmem_page_offset;
  779. int data_page_index, data_page_offset;
  780. int page_length;
  781. int ret;
  782. uint64_t data_ptr = args->data_ptr;
  783. int do_bit17_swizzling;
  784. remain = args->size;
  785. /* Pin the user pages containing the data. We can't fault while
  786. * holding the struct mutex, and all of the pwrite implementations
  787. * want to hold it while dereferencing the user data.
  788. */
  789. first_data_page = data_ptr / PAGE_SIZE;
  790. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  791. num_pages = last_data_page - first_data_page + 1;
  792. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  793. if (user_pages == NULL)
  794. return -ENOMEM;
  795. mutex_unlock(&dev->struct_mutex);
  796. down_read(&mm->mmap_sem);
  797. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  798. num_pages, 0, 0, user_pages, NULL);
  799. up_read(&mm->mmap_sem);
  800. mutex_lock(&dev->struct_mutex);
  801. if (pinned_pages < num_pages) {
  802. ret = -EFAULT;
  803. goto out;
  804. }
  805. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  806. if (ret)
  807. goto out;
  808. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  809. obj_priv = to_intel_bo(obj);
  810. offset = args->offset;
  811. obj_priv->dirty = 1;
  812. while (remain > 0) {
  813. struct page *page;
  814. /* Operation in this page
  815. *
  816. * shmem_page_offset = offset within page in shmem file
  817. * data_page_index = page number in get_user_pages return
  818. * data_page_offset = offset with data_page_index page.
  819. * page_length = bytes to copy for this page
  820. */
  821. shmem_page_offset = offset & ~PAGE_MASK;
  822. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  823. data_page_offset = data_ptr & ~PAGE_MASK;
  824. page_length = remain;
  825. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  826. page_length = PAGE_SIZE - shmem_page_offset;
  827. if ((data_page_offset + page_length) > PAGE_SIZE)
  828. page_length = PAGE_SIZE - data_page_offset;
  829. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  830. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  831. if (IS_ERR(page)) {
  832. ret = PTR_ERR(page);
  833. goto out;
  834. }
  835. if (do_bit17_swizzling) {
  836. slow_shmem_bit17_copy(page,
  837. shmem_page_offset,
  838. user_pages[data_page_index],
  839. data_page_offset,
  840. page_length,
  841. 0);
  842. } else {
  843. slow_shmem_copy(page,
  844. shmem_page_offset,
  845. user_pages[data_page_index],
  846. data_page_offset,
  847. page_length);
  848. }
  849. set_page_dirty(page);
  850. mark_page_accessed(page);
  851. page_cache_release(page);
  852. remain -= page_length;
  853. data_ptr += page_length;
  854. offset += page_length;
  855. }
  856. out:
  857. for (i = 0; i < pinned_pages; i++)
  858. page_cache_release(user_pages[i]);
  859. drm_free_large(user_pages);
  860. return ret;
  861. }
  862. /**
  863. * Writes data to the object referenced by handle.
  864. *
  865. * On error, the contents of the buffer that were to be modified are undefined.
  866. */
  867. int
  868. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  869. struct drm_file *file)
  870. {
  871. struct drm_i915_gem_pwrite *args = data;
  872. struct drm_gem_object *obj;
  873. struct drm_i915_gem_object *obj_priv;
  874. int ret = 0;
  875. ret = i915_mutex_lock_interruptible(dev);
  876. if (ret)
  877. return ret;
  878. obj = drm_gem_object_lookup(dev, file, args->handle);
  879. if (obj == NULL) {
  880. ret = -ENOENT;
  881. goto unlock;
  882. }
  883. obj_priv = to_intel_bo(obj);
  884. /* Bounds check destination. */
  885. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  886. ret = -EINVAL;
  887. goto out;
  888. }
  889. if (args->size == 0)
  890. goto out;
  891. if (!access_ok(VERIFY_READ,
  892. (char __user *)(uintptr_t)args->data_ptr,
  893. args->size)) {
  894. ret = -EFAULT;
  895. goto out;
  896. }
  897. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  898. args->size);
  899. if (ret) {
  900. ret = -EFAULT;
  901. goto out;
  902. }
  903. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  904. * it would end up going through the fenced access, and we'll get
  905. * different detiling behavior between reading and writing.
  906. * pread/pwrite currently are reading and writing from the CPU
  907. * perspective, requiring manual detiling by the client.
  908. */
  909. if (obj_priv->phys_obj)
  910. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  911. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  912. obj_priv->gtt_space &&
  913. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  914. ret = i915_gem_object_pin(obj, 0, true, false);
  915. if (ret)
  916. goto out;
  917. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  918. if (ret)
  919. goto out_unpin;
  920. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  921. if (ret == -EFAULT)
  922. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  923. out_unpin:
  924. i915_gem_object_unpin(obj);
  925. } else {
  926. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  927. if (ret)
  928. goto out;
  929. ret = -EFAULT;
  930. if (!i915_gem_object_needs_bit17_swizzle(obj))
  931. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  932. if (ret == -EFAULT)
  933. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  934. }
  935. out:
  936. drm_gem_object_unreference(obj);
  937. unlock:
  938. mutex_unlock(&dev->struct_mutex);
  939. return ret;
  940. }
  941. /**
  942. * Called when user space prepares to use an object with the CPU, either
  943. * through the mmap ioctl's mapping or a GTT mapping.
  944. */
  945. int
  946. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  947. struct drm_file *file_priv)
  948. {
  949. struct drm_i915_private *dev_priv = dev->dev_private;
  950. struct drm_i915_gem_set_domain *args = data;
  951. struct drm_gem_object *obj;
  952. struct drm_i915_gem_object *obj_priv;
  953. uint32_t read_domains = args->read_domains;
  954. uint32_t write_domain = args->write_domain;
  955. int ret;
  956. if (!(dev->driver->driver_features & DRIVER_GEM))
  957. return -ENODEV;
  958. /* Only handle setting domains to types used by the CPU. */
  959. if (write_domain & I915_GEM_GPU_DOMAINS)
  960. return -EINVAL;
  961. if (read_domains & I915_GEM_GPU_DOMAINS)
  962. return -EINVAL;
  963. /* Having something in the write domain implies it's in the read
  964. * domain, and only that read domain. Enforce that in the request.
  965. */
  966. if (write_domain != 0 && read_domains != write_domain)
  967. return -EINVAL;
  968. ret = i915_mutex_lock_interruptible(dev);
  969. if (ret)
  970. return ret;
  971. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  972. if (obj == NULL) {
  973. ret = -ENOENT;
  974. goto unlock;
  975. }
  976. obj_priv = to_intel_bo(obj);
  977. intel_mark_busy(dev, obj);
  978. if (read_domains & I915_GEM_DOMAIN_GTT) {
  979. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  980. /* Update the LRU on the fence for the CPU access that's
  981. * about to occur.
  982. */
  983. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  984. struct drm_i915_fence_reg *reg =
  985. &dev_priv->fence_regs[obj_priv->fence_reg];
  986. list_move_tail(&reg->lru_list,
  987. &dev_priv->mm.fence_list);
  988. }
  989. /* Silently promote "you're not bound, there was nothing to do"
  990. * to success, since the client was just asking us to
  991. * make sure everything was done.
  992. */
  993. if (ret == -EINVAL)
  994. ret = 0;
  995. } else {
  996. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  997. }
  998. /* Maintain LRU order of "inactive" objects */
  999. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  1000. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1001. drm_gem_object_unreference(obj);
  1002. unlock:
  1003. mutex_unlock(&dev->struct_mutex);
  1004. return ret;
  1005. }
  1006. /**
  1007. * Called when user space has done writes to this buffer
  1008. */
  1009. int
  1010. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  1011. struct drm_file *file_priv)
  1012. {
  1013. struct drm_i915_gem_sw_finish *args = data;
  1014. struct drm_gem_object *obj;
  1015. int ret = 0;
  1016. if (!(dev->driver->driver_features & DRIVER_GEM))
  1017. return -ENODEV;
  1018. ret = i915_mutex_lock_interruptible(dev);
  1019. if (ret)
  1020. return ret;
  1021. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1022. if (obj == NULL) {
  1023. ret = -ENOENT;
  1024. goto unlock;
  1025. }
  1026. /* Pinned buffers may be scanout, so flush the cache */
  1027. if (to_intel_bo(obj)->pin_count)
  1028. i915_gem_object_flush_cpu_write_domain(obj);
  1029. drm_gem_object_unreference(obj);
  1030. unlock:
  1031. mutex_unlock(&dev->struct_mutex);
  1032. return ret;
  1033. }
  1034. /**
  1035. * Maps the contents of an object, returning the address it is mapped
  1036. * into.
  1037. *
  1038. * While the mapping holds a reference on the contents of the object, it doesn't
  1039. * imply a ref on the object itself.
  1040. */
  1041. int
  1042. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1043. struct drm_file *file_priv)
  1044. {
  1045. struct drm_i915_private *dev_priv = dev->dev_private;
  1046. struct drm_i915_gem_mmap *args = data;
  1047. struct drm_gem_object *obj;
  1048. loff_t offset;
  1049. unsigned long addr;
  1050. if (!(dev->driver->driver_features & DRIVER_GEM))
  1051. return -ENODEV;
  1052. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1053. if (obj == NULL)
  1054. return -ENOENT;
  1055. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  1056. drm_gem_object_unreference_unlocked(obj);
  1057. return -E2BIG;
  1058. }
  1059. offset = args->offset;
  1060. down_write(&current->mm->mmap_sem);
  1061. addr = do_mmap(obj->filp, 0, args->size,
  1062. PROT_READ | PROT_WRITE, MAP_SHARED,
  1063. args->offset);
  1064. up_write(&current->mm->mmap_sem);
  1065. drm_gem_object_unreference_unlocked(obj);
  1066. if (IS_ERR((void *)addr))
  1067. return addr;
  1068. args->addr_ptr = (uint64_t) addr;
  1069. return 0;
  1070. }
  1071. /**
  1072. * i915_gem_fault - fault a page into the GTT
  1073. * vma: VMA in question
  1074. * vmf: fault info
  1075. *
  1076. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1077. * from userspace. The fault handler takes care of binding the object to
  1078. * the GTT (if needed), allocating and programming a fence register (again,
  1079. * only if needed based on whether the old reg is still valid or the object
  1080. * is tiled) and inserting a new PTE into the faulting process.
  1081. *
  1082. * Note that the faulting process may involve evicting existing objects
  1083. * from the GTT and/or fence registers to make room. So performance may
  1084. * suffer if the GTT working set is large or there are few fence registers
  1085. * left.
  1086. */
  1087. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1088. {
  1089. struct drm_gem_object *obj = vma->vm_private_data;
  1090. struct drm_device *dev = obj->dev;
  1091. drm_i915_private_t *dev_priv = dev->dev_private;
  1092. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1093. pgoff_t page_offset;
  1094. unsigned long pfn;
  1095. int ret = 0;
  1096. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1097. /* We don't use vmf->pgoff since that has the fake offset */
  1098. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1099. PAGE_SHIFT;
  1100. /* Now bind it into the GTT if needed */
  1101. mutex_lock(&dev->struct_mutex);
  1102. BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
  1103. if (obj_priv->gtt_space) {
  1104. if (!obj_priv->mappable ||
  1105. (obj_priv->tiling_mode && !obj_priv->fenceable)) {
  1106. ret = i915_gem_object_unbind(obj);
  1107. if (ret)
  1108. goto unlock;
  1109. }
  1110. }
  1111. if (!obj_priv->gtt_space) {
  1112. ret = i915_gem_object_bind_to_gtt(obj, 0,
  1113. true, obj_priv->tiling_mode);
  1114. if (ret)
  1115. goto unlock;
  1116. }
  1117. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1118. if (ret)
  1119. goto unlock;
  1120. if (!obj_priv->fault_mappable) {
  1121. obj_priv->fault_mappable = true;
  1122. i915_gem_info_update_mappable(dev_priv, obj_priv, true);
  1123. }
  1124. /* Need a new fence register? */
  1125. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1126. ret = i915_gem_object_get_fence_reg(obj, true);
  1127. if (ret)
  1128. goto unlock;
  1129. }
  1130. if (i915_gem_object_is_inactive(obj_priv))
  1131. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1132. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1133. page_offset;
  1134. /* Finally, remap it using the new GTT offset */
  1135. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1136. unlock:
  1137. mutex_unlock(&dev->struct_mutex);
  1138. switch (ret) {
  1139. case 0:
  1140. case -ERESTARTSYS:
  1141. return VM_FAULT_NOPAGE;
  1142. case -ENOMEM:
  1143. case -EAGAIN:
  1144. return VM_FAULT_OOM;
  1145. default:
  1146. return VM_FAULT_SIGBUS;
  1147. }
  1148. }
  1149. /**
  1150. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1151. * @obj: obj in question
  1152. *
  1153. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1154. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1155. * up the object based on the offset and sets up the various memory mapping
  1156. * structures.
  1157. *
  1158. * This routine allocates and attaches a fake offset for @obj.
  1159. */
  1160. static int
  1161. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1162. {
  1163. struct drm_device *dev = obj->dev;
  1164. struct drm_gem_mm *mm = dev->mm_private;
  1165. struct drm_map_list *list;
  1166. struct drm_local_map *map;
  1167. int ret = 0;
  1168. /* Set the object up for mmap'ing */
  1169. list = &obj->map_list;
  1170. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1171. if (!list->map)
  1172. return -ENOMEM;
  1173. map = list->map;
  1174. map->type = _DRM_GEM;
  1175. map->size = obj->size;
  1176. map->handle = obj;
  1177. /* Get a DRM GEM mmap offset allocated... */
  1178. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1179. obj->size / PAGE_SIZE, 0, 0);
  1180. if (!list->file_offset_node) {
  1181. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1182. ret = -ENOSPC;
  1183. goto out_free_list;
  1184. }
  1185. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1186. obj->size / PAGE_SIZE, 0);
  1187. if (!list->file_offset_node) {
  1188. ret = -ENOMEM;
  1189. goto out_free_list;
  1190. }
  1191. list->hash.key = list->file_offset_node->start;
  1192. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1193. if (ret) {
  1194. DRM_ERROR("failed to add to map hash\n");
  1195. goto out_free_mm;
  1196. }
  1197. return 0;
  1198. out_free_mm:
  1199. drm_mm_put_block(list->file_offset_node);
  1200. out_free_list:
  1201. kfree(list->map);
  1202. list->map = NULL;
  1203. return ret;
  1204. }
  1205. /**
  1206. * i915_gem_release_mmap - remove physical page mappings
  1207. * @obj: obj in question
  1208. *
  1209. * Preserve the reservation of the mmapping with the DRM core code, but
  1210. * relinquish ownership of the pages back to the system.
  1211. *
  1212. * It is vital that we remove the page mapping if we have mapped a tiled
  1213. * object through the GTT and then lose the fence register due to
  1214. * resource pressure. Similarly if the object has been moved out of the
  1215. * aperture, than pages mapped into userspace must be revoked. Removing the
  1216. * mapping will then trigger a page fault on the next user access, allowing
  1217. * fixup by i915_gem_fault().
  1218. */
  1219. void
  1220. i915_gem_release_mmap(struct drm_gem_object *obj)
  1221. {
  1222. struct drm_device *dev = obj->dev;
  1223. struct drm_i915_private *dev_priv = dev->dev_private;
  1224. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1225. if (unlikely(obj->map_list.map && dev->dev_mapping))
  1226. unmap_mapping_range(dev->dev_mapping,
  1227. (loff_t)obj->map_list.hash.key<<PAGE_SHIFT,
  1228. obj->size, 1);
  1229. if (obj_priv->fault_mappable) {
  1230. obj_priv->fault_mappable = false;
  1231. i915_gem_info_update_mappable(dev_priv, obj_priv, false);
  1232. }
  1233. }
  1234. static void
  1235. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1236. {
  1237. struct drm_device *dev = obj->dev;
  1238. struct drm_gem_mm *mm = dev->mm_private;
  1239. struct drm_map_list *list = &obj->map_list;
  1240. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1241. drm_mm_put_block(list->file_offset_node);
  1242. kfree(list->map);
  1243. list->map = NULL;
  1244. }
  1245. /**
  1246. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1247. * @obj: object to check
  1248. *
  1249. * Return the required GTT alignment for an object, taking into account
  1250. * potential fence register mapping if needed.
  1251. */
  1252. static uint32_t
  1253. i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv)
  1254. {
  1255. struct drm_device *dev = obj_priv->base.dev;
  1256. /*
  1257. * Minimum alignment is 4k (GTT page size), but might be greater
  1258. * if a fence register is needed for the object.
  1259. */
  1260. if (INTEL_INFO(dev)->gen >= 4 ||
  1261. obj_priv->tiling_mode == I915_TILING_NONE)
  1262. return 4096;
  1263. /*
  1264. * Previous chips need to be aligned to the size of the smallest
  1265. * fence register that can contain the object.
  1266. */
  1267. return i915_gem_get_gtt_size(obj_priv);
  1268. }
  1269. static uint32_t
  1270. i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv)
  1271. {
  1272. struct drm_device *dev = obj_priv->base.dev;
  1273. uint32_t size;
  1274. /*
  1275. * Minimum alignment is 4k (GTT page size), but might be greater
  1276. * if a fence register is needed for the object.
  1277. */
  1278. if (INTEL_INFO(dev)->gen >= 4)
  1279. return obj_priv->base.size;
  1280. /*
  1281. * Previous chips need to be aligned to the size of the smallest
  1282. * fence register that can contain the object.
  1283. */
  1284. if (INTEL_INFO(dev)->gen == 3)
  1285. size = 1024*1024;
  1286. else
  1287. size = 512*1024;
  1288. while (size < obj_priv->base.size)
  1289. size <<= 1;
  1290. return size;
  1291. }
  1292. /**
  1293. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1294. * @dev: DRM device
  1295. * @data: GTT mapping ioctl data
  1296. * @file_priv: GEM object info
  1297. *
  1298. * Simply returns the fake offset to userspace so it can mmap it.
  1299. * The mmap call will end up in drm_gem_mmap(), which will set things
  1300. * up so we can get faults in the handler above.
  1301. *
  1302. * The fault handler will take care of binding the object into the GTT
  1303. * (since it may have been evicted to make room for something), allocating
  1304. * a fence register, and mapping the appropriate aperture address into
  1305. * userspace.
  1306. */
  1307. int
  1308. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1309. struct drm_file *file_priv)
  1310. {
  1311. struct drm_i915_private *dev_priv = dev->dev_private;
  1312. struct drm_i915_gem_mmap_gtt *args = data;
  1313. struct drm_gem_object *obj;
  1314. struct drm_i915_gem_object *obj_priv;
  1315. int ret;
  1316. if (!(dev->driver->driver_features & DRIVER_GEM))
  1317. return -ENODEV;
  1318. ret = i915_mutex_lock_interruptible(dev);
  1319. if (ret)
  1320. return ret;
  1321. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1322. if (obj == NULL) {
  1323. ret = -ENOENT;
  1324. goto unlock;
  1325. }
  1326. obj_priv = to_intel_bo(obj);
  1327. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  1328. ret = -E2BIG;
  1329. goto unlock;
  1330. }
  1331. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1332. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1333. ret = -EINVAL;
  1334. goto out;
  1335. }
  1336. if (!obj->map_list.map) {
  1337. ret = i915_gem_create_mmap_offset(obj);
  1338. if (ret)
  1339. goto out;
  1340. }
  1341. args->offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
  1342. out:
  1343. drm_gem_object_unreference(obj);
  1344. unlock:
  1345. mutex_unlock(&dev->struct_mutex);
  1346. return ret;
  1347. }
  1348. static int
  1349. i915_gem_object_get_pages_gtt(struct drm_gem_object *obj,
  1350. gfp_t gfpmask)
  1351. {
  1352. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1353. int page_count, i;
  1354. struct address_space *mapping;
  1355. struct inode *inode;
  1356. struct page *page;
  1357. /* Get the list of pages out of our struct file. They'll be pinned
  1358. * at this point until we release them.
  1359. */
  1360. page_count = obj->size / PAGE_SIZE;
  1361. BUG_ON(obj_priv->pages != NULL);
  1362. obj_priv->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1363. if (obj_priv->pages == NULL)
  1364. return -ENOMEM;
  1365. inode = obj->filp->f_path.dentry->d_inode;
  1366. mapping = inode->i_mapping;
  1367. for (i = 0; i < page_count; i++) {
  1368. page = read_cache_page_gfp(mapping, i,
  1369. GFP_HIGHUSER |
  1370. __GFP_COLD |
  1371. __GFP_RECLAIMABLE |
  1372. gfpmask);
  1373. if (IS_ERR(page))
  1374. goto err_pages;
  1375. obj_priv->pages[i] = page;
  1376. }
  1377. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1378. i915_gem_object_do_bit_17_swizzle(obj);
  1379. return 0;
  1380. err_pages:
  1381. while (i--)
  1382. page_cache_release(obj_priv->pages[i]);
  1383. drm_free_large(obj_priv->pages);
  1384. obj_priv->pages = NULL;
  1385. return PTR_ERR(page);
  1386. }
  1387. static void
  1388. i915_gem_object_put_pages_gtt(struct drm_gem_object *obj)
  1389. {
  1390. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1391. int page_count = obj->size / PAGE_SIZE;
  1392. int i;
  1393. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1394. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1395. i915_gem_object_save_bit_17_swizzle(obj);
  1396. if (obj_priv->madv == I915_MADV_DONTNEED)
  1397. obj_priv->dirty = 0;
  1398. for (i = 0; i < page_count; i++) {
  1399. if (obj_priv->dirty)
  1400. set_page_dirty(obj_priv->pages[i]);
  1401. if (obj_priv->madv == I915_MADV_WILLNEED)
  1402. mark_page_accessed(obj_priv->pages[i]);
  1403. page_cache_release(obj_priv->pages[i]);
  1404. }
  1405. obj_priv->dirty = 0;
  1406. drm_free_large(obj_priv->pages);
  1407. obj_priv->pages = NULL;
  1408. }
  1409. static uint32_t
  1410. i915_gem_next_request_seqno(struct drm_device *dev,
  1411. struct intel_ring_buffer *ring)
  1412. {
  1413. drm_i915_private_t *dev_priv = dev->dev_private;
  1414. ring->outstanding_lazy_request = true;
  1415. return dev_priv->next_seqno;
  1416. }
  1417. static void
  1418. i915_gem_object_move_to_active(struct drm_gem_object *obj,
  1419. struct intel_ring_buffer *ring)
  1420. {
  1421. struct drm_device *dev = obj->dev;
  1422. struct drm_i915_private *dev_priv = dev->dev_private;
  1423. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1424. uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
  1425. BUG_ON(ring == NULL);
  1426. obj_priv->ring = ring;
  1427. /* Add a reference if we're newly entering the active list. */
  1428. if (!obj_priv->active) {
  1429. drm_gem_object_reference(obj);
  1430. obj_priv->active = 1;
  1431. }
  1432. /* Move from whatever list we were on to the tail of execution. */
  1433. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
  1434. list_move_tail(&obj_priv->ring_list, &ring->active_list);
  1435. obj_priv->last_rendering_seqno = seqno;
  1436. }
  1437. static void
  1438. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1439. {
  1440. struct drm_device *dev = obj->dev;
  1441. drm_i915_private_t *dev_priv = dev->dev_private;
  1442. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1443. BUG_ON(!obj_priv->active);
  1444. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
  1445. list_del_init(&obj_priv->ring_list);
  1446. obj_priv->last_rendering_seqno = 0;
  1447. }
  1448. /* Immediately discard the backing storage */
  1449. static void
  1450. i915_gem_object_truncate(struct drm_gem_object *obj)
  1451. {
  1452. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1453. struct inode *inode;
  1454. /* Our goal here is to return as much of the memory as
  1455. * is possible back to the system as we are called from OOM.
  1456. * To do this we must instruct the shmfs to drop all of its
  1457. * backing pages, *now*. Here we mirror the actions taken
  1458. * when by shmem_delete_inode() to release the backing store.
  1459. */
  1460. inode = obj->filp->f_path.dentry->d_inode;
  1461. truncate_inode_pages(inode->i_mapping, 0);
  1462. if (inode->i_op->truncate_range)
  1463. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1464. obj_priv->madv = __I915_MADV_PURGED;
  1465. }
  1466. static inline int
  1467. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1468. {
  1469. return obj_priv->madv == I915_MADV_DONTNEED;
  1470. }
  1471. static void
  1472. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1473. {
  1474. struct drm_device *dev = obj->dev;
  1475. drm_i915_private_t *dev_priv = dev->dev_private;
  1476. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1477. if (obj_priv->pin_count != 0)
  1478. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
  1479. else
  1480. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1481. list_del_init(&obj_priv->ring_list);
  1482. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1483. obj_priv->last_rendering_seqno = 0;
  1484. obj_priv->ring = NULL;
  1485. if (obj_priv->active) {
  1486. obj_priv->active = 0;
  1487. drm_gem_object_unreference(obj);
  1488. }
  1489. WARN_ON(i915_verify_lists(dev));
  1490. }
  1491. static void
  1492. i915_gem_process_flushing_list(struct drm_device *dev,
  1493. uint32_t flush_domains,
  1494. struct intel_ring_buffer *ring)
  1495. {
  1496. drm_i915_private_t *dev_priv = dev->dev_private;
  1497. struct drm_i915_gem_object *obj_priv, *next;
  1498. list_for_each_entry_safe(obj_priv, next,
  1499. &ring->gpu_write_list,
  1500. gpu_write_list) {
  1501. struct drm_gem_object *obj = &obj_priv->base;
  1502. if (obj->write_domain & flush_domains) {
  1503. uint32_t old_write_domain = obj->write_domain;
  1504. obj->write_domain = 0;
  1505. list_del_init(&obj_priv->gpu_write_list);
  1506. i915_gem_object_move_to_active(obj, ring);
  1507. /* update the fence lru list */
  1508. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1509. struct drm_i915_fence_reg *reg =
  1510. &dev_priv->fence_regs[obj_priv->fence_reg];
  1511. list_move_tail(&reg->lru_list,
  1512. &dev_priv->mm.fence_list);
  1513. }
  1514. trace_i915_gem_object_change_domain(obj,
  1515. obj->read_domains,
  1516. old_write_domain);
  1517. }
  1518. }
  1519. }
  1520. int
  1521. i915_add_request(struct drm_device *dev,
  1522. struct drm_file *file,
  1523. struct drm_i915_gem_request *request,
  1524. struct intel_ring_buffer *ring)
  1525. {
  1526. drm_i915_private_t *dev_priv = dev->dev_private;
  1527. struct drm_i915_file_private *file_priv = NULL;
  1528. uint32_t seqno;
  1529. int was_empty;
  1530. int ret;
  1531. BUG_ON(request == NULL);
  1532. if (file != NULL)
  1533. file_priv = file->driver_priv;
  1534. ret = ring->add_request(ring, &seqno);
  1535. if (ret)
  1536. return ret;
  1537. ring->outstanding_lazy_request = false;
  1538. request->seqno = seqno;
  1539. request->ring = ring;
  1540. request->emitted_jiffies = jiffies;
  1541. was_empty = list_empty(&ring->request_list);
  1542. list_add_tail(&request->list, &ring->request_list);
  1543. if (file_priv) {
  1544. spin_lock(&file_priv->mm.lock);
  1545. request->file_priv = file_priv;
  1546. list_add_tail(&request->client_list,
  1547. &file_priv->mm.request_list);
  1548. spin_unlock(&file_priv->mm.lock);
  1549. }
  1550. if (!dev_priv->mm.suspended) {
  1551. mod_timer(&dev_priv->hangcheck_timer,
  1552. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1553. if (was_empty)
  1554. queue_delayed_work(dev_priv->wq,
  1555. &dev_priv->mm.retire_work, HZ);
  1556. }
  1557. return 0;
  1558. }
  1559. /**
  1560. * Command execution barrier
  1561. *
  1562. * Ensures that all commands in the ring are finished
  1563. * before signalling the CPU
  1564. */
  1565. static void
  1566. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1567. {
  1568. uint32_t flush_domains = 0;
  1569. /* The sampler always gets flushed on i965 (sigh) */
  1570. if (INTEL_INFO(dev)->gen >= 4)
  1571. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1572. ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
  1573. }
  1574. static inline void
  1575. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1576. {
  1577. struct drm_i915_file_private *file_priv = request->file_priv;
  1578. if (!file_priv)
  1579. return;
  1580. spin_lock(&file_priv->mm.lock);
  1581. list_del(&request->client_list);
  1582. request->file_priv = NULL;
  1583. spin_unlock(&file_priv->mm.lock);
  1584. }
  1585. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1586. struct intel_ring_buffer *ring)
  1587. {
  1588. while (!list_empty(&ring->request_list)) {
  1589. struct drm_i915_gem_request *request;
  1590. request = list_first_entry(&ring->request_list,
  1591. struct drm_i915_gem_request,
  1592. list);
  1593. list_del(&request->list);
  1594. i915_gem_request_remove_from_client(request);
  1595. kfree(request);
  1596. }
  1597. while (!list_empty(&ring->active_list)) {
  1598. struct drm_i915_gem_object *obj_priv;
  1599. obj_priv = list_first_entry(&ring->active_list,
  1600. struct drm_i915_gem_object,
  1601. ring_list);
  1602. obj_priv->base.write_domain = 0;
  1603. list_del_init(&obj_priv->gpu_write_list);
  1604. i915_gem_object_move_to_inactive(&obj_priv->base);
  1605. }
  1606. }
  1607. void i915_gem_reset(struct drm_device *dev)
  1608. {
  1609. struct drm_i915_private *dev_priv = dev->dev_private;
  1610. struct drm_i915_gem_object *obj_priv;
  1611. int i;
  1612. i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
  1613. i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
  1614. i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
  1615. /* Remove anything from the flushing lists. The GPU cache is likely
  1616. * to be lost on reset along with the data, so simply move the
  1617. * lost bo to the inactive list.
  1618. */
  1619. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1620. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1621. struct drm_i915_gem_object,
  1622. mm_list);
  1623. obj_priv->base.write_domain = 0;
  1624. list_del_init(&obj_priv->gpu_write_list);
  1625. i915_gem_object_move_to_inactive(&obj_priv->base);
  1626. }
  1627. /* Move everything out of the GPU domains to ensure we do any
  1628. * necessary invalidation upon reuse.
  1629. */
  1630. list_for_each_entry(obj_priv,
  1631. &dev_priv->mm.inactive_list,
  1632. mm_list)
  1633. {
  1634. obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1635. }
  1636. /* The fence registers are invalidated so clear them out */
  1637. for (i = 0; i < 16; i++) {
  1638. struct drm_i915_fence_reg *reg;
  1639. reg = &dev_priv->fence_regs[i];
  1640. if (!reg->obj)
  1641. continue;
  1642. i915_gem_clear_fence_reg(reg->obj);
  1643. }
  1644. }
  1645. /**
  1646. * This function clears the request list as sequence numbers are passed.
  1647. */
  1648. static void
  1649. i915_gem_retire_requests_ring(struct drm_device *dev,
  1650. struct intel_ring_buffer *ring)
  1651. {
  1652. drm_i915_private_t *dev_priv = dev->dev_private;
  1653. uint32_t seqno;
  1654. if (!ring->status_page.page_addr ||
  1655. list_empty(&ring->request_list))
  1656. return;
  1657. WARN_ON(i915_verify_lists(dev));
  1658. seqno = ring->get_seqno(ring);
  1659. while (!list_empty(&ring->request_list)) {
  1660. struct drm_i915_gem_request *request;
  1661. request = list_first_entry(&ring->request_list,
  1662. struct drm_i915_gem_request,
  1663. list);
  1664. if (!i915_seqno_passed(seqno, request->seqno))
  1665. break;
  1666. trace_i915_gem_request_retire(dev, request->seqno);
  1667. list_del(&request->list);
  1668. i915_gem_request_remove_from_client(request);
  1669. kfree(request);
  1670. }
  1671. /* Move any buffers on the active list that are no longer referenced
  1672. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1673. */
  1674. while (!list_empty(&ring->active_list)) {
  1675. struct drm_gem_object *obj;
  1676. struct drm_i915_gem_object *obj_priv;
  1677. obj_priv = list_first_entry(&ring->active_list,
  1678. struct drm_i915_gem_object,
  1679. ring_list);
  1680. if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
  1681. break;
  1682. obj = &obj_priv->base;
  1683. if (obj->write_domain != 0)
  1684. i915_gem_object_move_to_flushing(obj);
  1685. else
  1686. i915_gem_object_move_to_inactive(obj);
  1687. }
  1688. if (unlikely (dev_priv->trace_irq_seqno &&
  1689. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1690. ring->user_irq_put(ring);
  1691. dev_priv->trace_irq_seqno = 0;
  1692. }
  1693. WARN_ON(i915_verify_lists(dev));
  1694. }
  1695. void
  1696. i915_gem_retire_requests(struct drm_device *dev)
  1697. {
  1698. drm_i915_private_t *dev_priv = dev->dev_private;
  1699. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1700. struct drm_i915_gem_object *obj_priv, *tmp;
  1701. /* We must be careful that during unbind() we do not
  1702. * accidentally infinitely recurse into retire requests.
  1703. * Currently:
  1704. * retire -> free -> unbind -> wait -> retire_ring
  1705. */
  1706. list_for_each_entry_safe(obj_priv, tmp,
  1707. &dev_priv->mm.deferred_free_list,
  1708. mm_list)
  1709. i915_gem_free_object_tail(&obj_priv->base);
  1710. }
  1711. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1712. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1713. i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
  1714. }
  1715. static void
  1716. i915_gem_retire_work_handler(struct work_struct *work)
  1717. {
  1718. drm_i915_private_t *dev_priv;
  1719. struct drm_device *dev;
  1720. dev_priv = container_of(work, drm_i915_private_t,
  1721. mm.retire_work.work);
  1722. dev = dev_priv->dev;
  1723. /* Come back later if the device is busy... */
  1724. if (!mutex_trylock(&dev->struct_mutex)) {
  1725. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1726. return;
  1727. }
  1728. i915_gem_retire_requests(dev);
  1729. if (!dev_priv->mm.suspended &&
  1730. (!list_empty(&dev_priv->render_ring.request_list) ||
  1731. !list_empty(&dev_priv->bsd_ring.request_list) ||
  1732. !list_empty(&dev_priv->blt_ring.request_list)))
  1733. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1734. mutex_unlock(&dev->struct_mutex);
  1735. }
  1736. int
  1737. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1738. bool interruptible, struct intel_ring_buffer *ring)
  1739. {
  1740. drm_i915_private_t *dev_priv = dev->dev_private;
  1741. u32 ier;
  1742. int ret = 0;
  1743. BUG_ON(seqno == 0);
  1744. if (atomic_read(&dev_priv->mm.wedged))
  1745. return -EAGAIN;
  1746. if (ring->outstanding_lazy_request) {
  1747. struct drm_i915_gem_request *request;
  1748. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1749. if (request == NULL)
  1750. return -ENOMEM;
  1751. ret = i915_add_request(dev, NULL, request, ring);
  1752. if (ret) {
  1753. kfree(request);
  1754. return ret;
  1755. }
  1756. seqno = request->seqno;
  1757. }
  1758. BUG_ON(seqno == dev_priv->next_seqno);
  1759. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1760. if (HAS_PCH_SPLIT(dev))
  1761. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1762. else
  1763. ier = I915_READ(IER);
  1764. if (!ier) {
  1765. DRM_ERROR("something (likely vbetool) disabled "
  1766. "interrupts, re-enabling\n");
  1767. i915_driver_irq_preinstall(dev);
  1768. i915_driver_irq_postinstall(dev);
  1769. }
  1770. trace_i915_gem_request_wait_begin(dev, seqno);
  1771. ring->waiting_seqno = seqno;
  1772. ring->user_irq_get(ring);
  1773. if (interruptible)
  1774. ret = wait_event_interruptible(ring->irq_queue,
  1775. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1776. || atomic_read(&dev_priv->mm.wedged));
  1777. else
  1778. wait_event(ring->irq_queue,
  1779. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1780. || atomic_read(&dev_priv->mm.wedged));
  1781. ring->user_irq_put(ring);
  1782. ring->waiting_seqno = 0;
  1783. trace_i915_gem_request_wait_end(dev, seqno);
  1784. }
  1785. if (atomic_read(&dev_priv->mm.wedged))
  1786. ret = -EAGAIN;
  1787. if (ret && ret != -ERESTARTSYS)
  1788. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1789. __func__, ret, seqno, ring->get_seqno(ring),
  1790. dev_priv->next_seqno);
  1791. /* Directly dispatch request retiring. While we have the work queue
  1792. * to handle this, the waiter on a request often wants an associated
  1793. * buffer to have made it to the inactive list, and we would need
  1794. * a separate wait queue to handle that.
  1795. */
  1796. if (ret == 0)
  1797. i915_gem_retire_requests_ring(dev, ring);
  1798. return ret;
  1799. }
  1800. /**
  1801. * Waits for a sequence number to be signaled, and cleans up the
  1802. * request and object lists appropriately for that event.
  1803. */
  1804. static int
  1805. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1806. struct intel_ring_buffer *ring)
  1807. {
  1808. return i915_do_wait_request(dev, seqno, 1, ring);
  1809. }
  1810. static void
  1811. i915_gem_flush_ring(struct drm_device *dev,
  1812. struct drm_file *file_priv,
  1813. struct intel_ring_buffer *ring,
  1814. uint32_t invalidate_domains,
  1815. uint32_t flush_domains)
  1816. {
  1817. ring->flush(ring, invalidate_domains, flush_domains);
  1818. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1819. }
  1820. static void
  1821. i915_gem_flush(struct drm_device *dev,
  1822. struct drm_file *file_priv,
  1823. uint32_t invalidate_domains,
  1824. uint32_t flush_domains,
  1825. uint32_t flush_rings)
  1826. {
  1827. drm_i915_private_t *dev_priv = dev->dev_private;
  1828. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1829. drm_agp_chipset_flush(dev);
  1830. if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
  1831. if (flush_rings & RING_RENDER)
  1832. i915_gem_flush_ring(dev, file_priv,
  1833. &dev_priv->render_ring,
  1834. invalidate_domains, flush_domains);
  1835. if (flush_rings & RING_BSD)
  1836. i915_gem_flush_ring(dev, file_priv,
  1837. &dev_priv->bsd_ring,
  1838. invalidate_domains, flush_domains);
  1839. if (flush_rings & RING_BLT)
  1840. i915_gem_flush_ring(dev, file_priv,
  1841. &dev_priv->blt_ring,
  1842. invalidate_domains, flush_domains);
  1843. }
  1844. }
  1845. /**
  1846. * Ensures that all rendering to the object has completed and the object is
  1847. * safe to unbind from the GTT or access from the CPU.
  1848. */
  1849. static int
  1850. i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  1851. bool interruptible)
  1852. {
  1853. struct drm_device *dev = obj->dev;
  1854. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1855. int ret;
  1856. /* This function only exists to support waiting for existing rendering,
  1857. * not for emitting required flushes.
  1858. */
  1859. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1860. /* If there is rendering queued on the buffer being evicted, wait for
  1861. * it.
  1862. */
  1863. if (obj_priv->active) {
  1864. ret = i915_do_wait_request(dev,
  1865. obj_priv->last_rendering_seqno,
  1866. interruptible,
  1867. obj_priv->ring);
  1868. if (ret)
  1869. return ret;
  1870. }
  1871. return 0;
  1872. }
  1873. /**
  1874. * Unbinds an object from the GTT aperture.
  1875. */
  1876. int
  1877. i915_gem_object_unbind(struct drm_gem_object *obj)
  1878. {
  1879. struct drm_device *dev = obj->dev;
  1880. struct drm_i915_private *dev_priv = dev->dev_private;
  1881. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1882. int ret = 0;
  1883. if (obj_priv->gtt_space == NULL)
  1884. return 0;
  1885. if (obj_priv->pin_count != 0) {
  1886. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1887. return -EINVAL;
  1888. }
  1889. /* blow away mappings if mapped through GTT */
  1890. i915_gem_release_mmap(obj);
  1891. /* Move the object to the CPU domain to ensure that
  1892. * any possible CPU writes while it's not in the GTT
  1893. * are flushed when we go to remap it. This will
  1894. * also ensure that all pending GPU writes are finished
  1895. * before we unbind.
  1896. */
  1897. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1898. if (ret == -ERESTARTSYS)
  1899. return ret;
  1900. /* Continue on if we fail due to EIO, the GPU is hung so we
  1901. * should be safe and we need to cleanup or else we might
  1902. * cause memory corruption through use-after-free.
  1903. */
  1904. if (ret) {
  1905. i915_gem_clflush_object(obj);
  1906. obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
  1907. }
  1908. /* release the fence reg _after_ flushing */
  1909. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1910. i915_gem_clear_fence_reg(obj);
  1911. drm_unbind_agp(obj_priv->agp_mem);
  1912. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1913. i915_gem_object_put_pages_gtt(obj);
  1914. i915_gem_info_remove_gtt(dev_priv, obj_priv);
  1915. list_del_init(&obj_priv->mm_list);
  1916. obj_priv->fenceable = true;
  1917. obj_priv->mappable = true;
  1918. drm_mm_put_block(obj_priv->gtt_space);
  1919. obj_priv->gtt_space = NULL;
  1920. obj_priv->gtt_offset = 0;
  1921. if (i915_gem_object_is_purgeable(obj_priv))
  1922. i915_gem_object_truncate(obj);
  1923. trace_i915_gem_object_unbind(obj);
  1924. return ret;
  1925. }
  1926. static int i915_ring_idle(struct drm_device *dev,
  1927. struct intel_ring_buffer *ring)
  1928. {
  1929. if (list_empty(&ring->gpu_write_list))
  1930. return 0;
  1931. i915_gem_flush_ring(dev, NULL, ring,
  1932. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1933. return i915_wait_request(dev,
  1934. i915_gem_next_request_seqno(dev, ring),
  1935. ring);
  1936. }
  1937. int
  1938. i915_gpu_idle(struct drm_device *dev)
  1939. {
  1940. drm_i915_private_t *dev_priv = dev->dev_private;
  1941. bool lists_empty;
  1942. int ret;
  1943. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1944. list_empty(&dev_priv->render_ring.active_list) &&
  1945. list_empty(&dev_priv->bsd_ring.active_list) &&
  1946. list_empty(&dev_priv->blt_ring.active_list));
  1947. if (lists_empty)
  1948. return 0;
  1949. /* Flush everything onto the inactive list. */
  1950. ret = i915_ring_idle(dev, &dev_priv->render_ring);
  1951. if (ret)
  1952. return ret;
  1953. ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
  1954. if (ret)
  1955. return ret;
  1956. ret = i915_ring_idle(dev, &dev_priv->blt_ring);
  1957. if (ret)
  1958. return ret;
  1959. return 0;
  1960. }
  1961. static void sandybridge_write_fence_reg(struct drm_gem_object *obj)
  1962. {
  1963. struct drm_device *dev = obj->dev;
  1964. drm_i915_private_t *dev_priv = dev->dev_private;
  1965. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1966. u32 size = i915_gem_get_gtt_size(obj_priv);
  1967. int regnum = obj_priv->fence_reg;
  1968. uint64_t val;
  1969. val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
  1970. 0xfffff000) << 32;
  1971. val |= obj_priv->gtt_offset & 0xfffff000;
  1972. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1973. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1974. if (obj_priv->tiling_mode == I915_TILING_Y)
  1975. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1976. val |= I965_FENCE_REG_VALID;
  1977. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1978. }
  1979. static void i965_write_fence_reg(struct drm_gem_object *obj)
  1980. {
  1981. struct drm_device *dev = obj->dev;
  1982. drm_i915_private_t *dev_priv = dev->dev_private;
  1983. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1984. u32 size = i915_gem_get_gtt_size(obj_priv);
  1985. int regnum = obj_priv->fence_reg;
  1986. uint64_t val;
  1987. val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
  1988. 0xfffff000) << 32;
  1989. val |= obj_priv->gtt_offset & 0xfffff000;
  1990. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1991. if (obj_priv->tiling_mode == I915_TILING_Y)
  1992. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1993. val |= I965_FENCE_REG_VALID;
  1994. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1995. }
  1996. static void i915_write_fence_reg(struct drm_gem_object *obj)
  1997. {
  1998. struct drm_device *dev = obj->dev;
  1999. drm_i915_private_t *dev_priv = dev->dev_private;
  2000. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2001. u32 size = i915_gem_get_gtt_size(obj_priv);
  2002. uint32_t fence_reg, val, pitch_val;
  2003. int tile_width;
  2004. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  2005. (obj_priv->gtt_offset & (size - 1))) {
  2006. WARN(1, "%s: object 0x%08x [fenceable? %d] not 1M or size (0x%08x) aligned [gtt_space offset=%lx, size=%lx]\n",
  2007. __func__, obj_priv->gtt_offset, obj_priv->fenceable, size,
  2008. obj_priv->gtt_space->start, obj_priv->gtt_space->size);
  2009. return;
  2010. }
  2011. if (obj_priv->tiling_mode == I915_TILING_Y &&
  2012. HAS_128_BYTE_Y_TILING(dev))
  2013. tile_width = 128;
  2014. else
  2015. tile_width = 512;
  2016. /* Note: pitch better be a power of two tile widths */
  2017. pitch_val = obj_priv->stride / tile_width;
  2018. pitch_val = ffs(pitch_val) - 1;
  2019. if (obj_priv->tiling_mode == I915_TILING_Y &&
  2020. HAS_128_BYTE_Y_TILING(dev))
  2021. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2022. else
  2023. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  2024. val = obj_priv->gtt_offset;
  2025. if (obj_priv->tiling_mode == I915_TILING_Y)
  2026. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2027. val |= I915_FENCE_SIZE_BITS(size);
  2028. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2029. val |= I830_FENCE_REG_VALID;
  2030. fence_reg = obj_priv->fence_reg;
  2031. if (fence_reg < 8)
  2032. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2033. else
  2034. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2035. I915_WRITE(fence_reg, val);
  2036. }
  2037. static void i830_write_fence_reg(struct drm_gem_object *obj)
  2038. {
  2039. struct drm_device *dev = obj->dev;
  2040. drm_i915_private_t *dev_priv = dev->dev_private;
  2041. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2042. u32 size = i915_gem_get_gtt_size(obj_priv);
  2043. int regnum = obj_priv->fence_reg;
  2044. uint32_t val;
  2045. uint32_t pitch_val;
  2046. uint32_t fence_size_bits;
  2047. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  2048. (obj_priv->gtt_offset & (obj->size - 1))) {
  2049. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  2050. __func__, obj_priv->gtt_offset);
  2051. return;
  2052. }
  2053. pitch_val = obj_priv->stride / 128;
  2054. pitch_val = ffs(pitch_val) - 1;
  2055. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2056. val = obj_priv->gtt_offset;
  2057. if (obj_priv->tiling_mode == I915_TILING_Y)
  2058. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2059. fence_size_bits = I830_FENCE_SIZE_BITS(size);
  2060. WARN_ON(fence_size_bits & ~0x00000f00);
  2061. val |= fence_size_bits;
  2062. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2063. val |= I830_FENCE_REG_VALID;
  2064. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  2065. }
  2066. static int i915_find_fence_reg(struct drm_device *dev,
  2067. bool interruptible)
  2068. {
  2069. struct drm_i915_private *dev_priv = dev->dev_private;
  2070. struct drm_i915_fence_reg *reg;
  2071. struct drm_i915_gem_object *obj_priv = NULL;
  2072. int i, avail, ret;
  2073. /* First try to find a free reg */
  2074. avail = 0;
  2075. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2076. reg = &dev_priv->fence_regs[i];
  2077. if (!reg->obj)
  2078. return i;
  2079. obj_priv = to_intel_bo(reg->obj);
  2080. if (!obj_priv->pin_count)
  2081. avail++;
  2082. }
  2083. if (avail == 0)
  2084. return -ENOSPC;
  2085. /* None available, try to steal one or wait for a user to finish */
  2086. avail = I915_FENCE_REG_NONE;
  2087. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  2088. lru_list) {
  2089. obj_priv = to_intel_bo(reg->obj);
  2090. if (obj_priv->pin_count)
  2091. continue;
  2092. /* found one! */
  2093. avail = obj_priv->fence_reg;
  2094. break;
  2095. }
  2096. BUG_ON(avail == I915_FENCE_REG_NONE);
  2097. /* We only have a reference on obj from the active list. put_fence_reg
  2098. * might drop that one, causing a use-after-free in it. So hold a
  2099. * private reference to obj like the other callers of put_fence_reg
  2100. * (set_tiling ioctl) do. */
  2101. drm_gem_object_reference(&obj_priv->base);
  2102. ret = i915_gem_object_put_fence_reg(&obj_priv->base, interruptible);
  2103. drm_gem_object_unreference(&obj_priv->base);
  2104. if (ret != 0)
  2105. return ret;
  2106. return avail;
  2107. }
  2108. /**
  2109. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  2110. * @obj: object to map through a fence reg
  2111. *
  2112. * When mapping objects through the GTT, userspace wants to be able to write
  2113. * to them without having to worry about swizzling if the object is tiled.
  2114. *
  2115. * This function walks the fence regs looking for a free one for @obj,
  2116. * stealing one if it can't find any.
  2117. *
  2118. * It then sets up the reg based on the object's properties: address, pitch
  2119. * and tiling format.
  2120. */
  2121. int
  2122. i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
  2123. bool interruptible)
  2124. {
  2125. struct drm_device *dev = obj->dev;
  2126. struct drm_i915_private *dev_priv = dev->dev_private;
  2127. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2128. struct drm_i915_fence_reg *reg = NULL;
  2129. int ret;
  2130. /* Just update our place in the LRU if our fence is getting used. */
  2131. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  2132. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2133. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2134. return 0;
  2135. }
  2136. switch (obj_priv->tiling_mode) {
  2137. case I915_TILING_NONE:
  2138. WARN(1, "allocating a fence for non-tiled object?\n");
  2139. break;
  2140. case I915_TILING_X:
  2141. if (!obj_priv->stride)
  2142. return -EINVAL;
  2143. WARN((obj_priv->stride & (512 - 1)),
  2144. "object 0x%08x is X tiled but has non-512B pitch\n",
  2145. obj_priv->gtt_offset);
  2146. break;
  2147. case I915_TILING_Y:
  2148. if (!obj_priv->stride)
  2149. return -EINVAL;
  2150. WARN((obj_priv->stride & (128 - 1)),
  2151. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2152. obj_priv->gtt_offset);
  2153. break;
  2154. }
  2155. ret = i915_find_fence_reg(dev, interruptible);
  2156. if (ret < 0)
  2157. return ret;
  2158. obj_priv->fence_reg = ret;
  2159. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2160. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2161. reg->obj = obj;
  2162. switch (INTEL_INFO(dev)->gen) {
  2163. case 6:
  2164. sandybridge_write_fence_reg(obj);
  2165. break;
  2166. case 5:
  2167. case 4:
  2168. i965_write_fence_reg(obj);
  2169. break;
  2170. case 3:
  2171. i915_write_fence_reg(obj);
  2172. break;
  2173. case 2:
  2174. i830_write_fence_reg(obj);
  2175. break;
  2176. }
  2177. trace_i915_gem_object_get_fence(obj,
  2178. obj_priv->fence_reg,
  2179. obj_priv->tiling_mode);
  2180. return 0;
  2181. }
  2182. /**
  2183. * i915_gem_clear_fence_reg - clear out fence register info
  2184. * @obj: object to clear
  2185. *
  2186. * Zeroes out the fence register itself and clears out the associated
  2187. * data structures in dev_priv and obj_priv.
  2188. */
  2189. static void
  2190. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2191. {
  2192. struct drm_device *dev = obj->dev;
  2193. drm_i915_private_t *dev_priv = dev->dev_private;
  2194. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2195. struct drm_i915_fence_reg *reg =
  2196. &dev_priv->fence_regs[obj_priv->fence_reg];
  2197. uint32_t fence_reg;
  2198. switch (INTEL_INFO(dev)->gen) {
  2199. case 6:
  2200. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2201. (obj_priv->fence_reg * 8), 0);
  2202. break;
  2203. case 5:
  2204. case 4:
  2205. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2206. break;
  2207. case 3:
  2208. if (obj_priv->fence_reg >= 8)
  2209. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
  2210. else
  2211. case 2:
  2212. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2213. I915_WRITE(fence_reg, 0);
  2214. break;
  2215. }
  2216. reg->obj = NULL;
  2217. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2218. list_del_init(&reg->lru_list);
  2219. }
  2220. /**
  2221. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2222. * to the buffer to finish, and then resets the fence register.
  2223. * @obj: tiled object holding a fence register.
  2224. * @bool: whether the wait upon the fence is interruptible
  2225. *
  2226. * Zeroes out the fence register itself and clears out the associated
  2227. * data structures in dev_priv and obj_priv.
  2228. */
  2229. int
  2230. i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
  2231. bool interruptible)
  2232. {
  2233. struct drm_device *dev = obj->dev;
  2234. struct drm_i915_private *dev_priv = dev->dev_private;
  2235. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2236. struct drm_i915_fence_reg *reg;
  2237. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2238. return 0;
  2239. /* If we've changed tiling, GTT-mappings of the object
  2240. * need to re-fault to ensure that the correct fence register
  2241. * setup is in place.
  2242. */
  2243. i915_gem_release_mmap(obj);
  2244. /* On the i915, GPU access to tiled buffers is via a fence,
  2245. * therefore we must wait for any outstanding access to complete
  2246. * before clearing the fence.
  2247. */
  2248. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2249. if (reg->gpu) {
  2250. int ret;
  2251. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2252. if (ret)
  2253. return ret;
  2254. ret = i915_gem_object_wait_rendering(obj, interruptible);
  2255. if (ret)
  2256. return ret;
  2257. reg->gpu = false;
  2258. }
  2259. i915_gem_object_flush_gtt_write_domain(obj);
  2260. i915_gem_clear_fence_reg(obj);
  2261. return 0;
  2262. }
  2263. /**
  2264. * Finds free space in the GTT aperture and binds the object there.
  2265. */
  2266. static int
  2267. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  2268. unsigned alignment,
  2269. bool mappable,
  2270. bool need_fence)
  2271. {
  2272. struct drm_device *dev = obj->dev;
  2273. drm_i915_private_t *dev_priv = dev->dev_private;
  2274. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2275. struct drm_mm_node *free_space;
  2276. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2277. u32 size, fence_size, fence_alignment;
  2278. int ret;
  2279. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2280. DRM_ERROR("Attempting to bind a purgeable object\n");
  2281. return -EINVAL;
  2282. }
  2283. fence_size = i915_gem_get_gtt_size(obj_priv);
  2284. fence_alignment = i915_gem_get_gtt_alignment(obj_priv);
  2285. if (alignment == 0)
  2286. alignment = need_fence ? fence_alignment : 4096;
  2287. if (need_fence && alignment & (fence_alignment - 1)) {
  2288. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2289. return -EINVAL;
  2290. }
  2291. size = need_fence ? fence_size : obj->size;
  2292. /* If the object is bigger than the entire aperture, reject it early
  2293. * before evicting everything in a vain attempt to find space.
  2294. */
  2295. if (obj->size >
  2296. (mappable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2297. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2298. return -E2BIG;
  2299. }
  2300. search_free:
  2301. if (mappable)
  2302. free_space =
  2303. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2304. size, alignment, 0,
  2305. dev_priv->mm.gtt_mappable_end,
  2306. 0);
  2307. else
  2308. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2309. size, alignment, 0);
  2310. if (free_space != NULL) {
  2311. if (mappable)
  2312. obj_priv->gtt_space =
  2313. drm_mm_get_block_range_generic(free_space,
  2314. size, alignment, 0,
  2315. dev_priv->mm.gtt_mappable_end,
  2316. 0);
  2317. else
  2318. obj_priv->gtt_space =
  2319. drm_mm_get_block(free_space, size, alignment);
  2320. }
  2321. if (obj_priv->gtt_space == NULL) {
  2322. /* If the gtt is empty and we're still having trouble
  2323. * fitting our object in, we're out of memory.
  2324. */
  2325. ret = i915_gem_evict_something(dev, size, alignment, mappable);
  2326. if (ret)
  2327. return ret;
  2328. goto search_free;
  2329. }
  2330. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2331. if (ret) {
  2332. drm_mm_put_block(obj_priv->gtt_space);
  2333. obj_priv->gtt_space = NULL;
  2334. if (ret == -ENOMEM) {
  2335. /* first try to clear up some space from the GTT */
  2336. ret = i915_gem_evict_something(dev, size,
  2337. alignment, mappable);
  2338. if (ret) {
  2339. /* now try to shrink everyone else */
  2340. if (gfpmask) {
  2341. gfpmask = 0;
  2342. goto search_free;
  2343. }
  2344. return ret;
  2345. }
  2346. goto search_free;
  2347. }
  2348. return ret;
  2349. }
  2350. /* Create an AGP memory structure pointing at our pages, and bind it
  2351. * into the GTT.
  2352. */
  2353. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2354. obj_priv->pages,
  2355. obj->size >> PAGE_SHIFT,
  2356. obj_priv->gtt_space->start,
  2357. obj_priv->agp_type);
  2358. if (obj_priv->agp_mem == NULL) {
  2359. i915_gem_object_put_pages_gtt(obj);
  2360. drm_mm_put_block(obj_priv->gtt_space);
  2361. obj_priv->gtt_space = NULL;
  2362. ret = i915_gem_evict_something(dev, size,
  2363. alignment, mappable);
  2364. if (ret)
  2365. return ret;
  2366. goto search_free;
  2367. }
  2368. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2369. /* keep track of bounds object by adding it to the inactive list */
  2370. list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  2371. i915_gem_info_add_gtt(dev_priv, obj_priv);
  2372. /* Assert that the object is not currently in any GPU domain. As it
  2373. * wasn't in the GTT, there shouldn't be any way it could have been in
  2374. * a GPU cache
  2375. */
  2376. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2377. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2378. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, mappable);
  2379. obj_priv->fenceable =
  2380. obj_priv->gtt_space->size == fence_size &&
  2381. (obj_priv->gtt_space->start & (fence_alignment -1)) == 0;
  2382. obj_priv->mappable =
  2383. obj_priv->gtt_offset + obj->size <= dev_priv->mm.gtt_mappable_end;
  2384. return 0;
  2385. }
  2386. void
  2387. i915_gem_clflush_object(struct drm_gem_object *obj)
  2388. {
  2389. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2390. /* If we don't have a page list set up, then we're not pinned
  2391. * to GPU, and we can ignore the cache flush because it'll happen
  2392. * again at bind time.
  2393. */
  2394. if (obj_priv->pages == NULL)
  2395. return;
  2396. trace_i915_gem_object_clflush(obj);
  2397. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2398. }
  2399. /** Flushes any GPU write domain for the object if it's dirty. */
  2400. static int
  2401. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  2402. bool pipelined)
  2403. {
  2404. struct drm_device *dev = obj->dev;
  2405. uint32_t old_write_domain;
  2406. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2407. return 0;
  2408. /* Queue the GPU write cache flushing we need. */
  2409. old_write_domain = obj->write_domain;
  2410. i915_gem_flush_ring(dev, NULL,
  2411. to_intel_bo(obj)->ring,
  2412. 0, obj->write_domain);
  2413. BUG_ON(obj->write_domain);
  2414. trace_i915_gem_object_change_domain(obj,
  2415. obj->read_domains,
  2416. old_write_domain);
  2417. if (pipelined)
  2418. return 0;
  2419. return i915_gem_object_wait_rendering(obj, true);
  2420. }
  2421. /** Flushes the GTT write domain for the object if it's dirty. */
  2422. static void
  2423. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2424. {
  2425. uint32_t old_write_domain;
  2426. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2427. return;
  2428. /* No actual flushing is required for the GTT write domain. Writes
  2429. * to it immediately go to main memory as far as we know, so there's
  2430. * no chipset flush. It also doesn't land in render cache.
  2431. */
  2432. i915_gem_release_mmap(obj);
  2433. old_write_domain = obj->write_domain;
  2434. obj->write_domain = 0;
  2435. trace_i915_gem_object_change_domain(obj,
  2436. obj->read_domains,
  2437. old_write_domain);
  2438. }
  2439. /** Flushes the CPU write domain for the object if it's dirty. */
  2440. static void
  2441. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2442. {
  2443. struct drm_device *dev = obj->dev;
  2444. uint32_t old_write_domain;
  2445. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2446. return;
  2447. i915_gem_clflush_object(obj);
  2448. drm_agp_chipset_flush(dev);
  2449. old_write_domain = obj->write_domain;
  2450. obj->write_domain = 0;
  2451. trace_i915_gem_object_change_domain(obj,
  2452. obj->read_domains,
  2453. old_write_domain);
  2454. }
  2455. /**
  2456. * Moves a single object to the GTT read, and possibly write domain.
  2457. *
  2458. * This function returns when the move is complete, including waiting on
  2459. * flushes to occur.
  2460. */
  2461. int
  2462. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2463. {
  2464. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2465. uint32_t old_write_domain, old_read_domains;
  2466. int ret;
  2467. /* Not valid to be called on unbound objects. */
  2468. if (obj_priv->gtt_space == NULL)
  2469. return -EINVAL;
  2470. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2471. if (ret != 0)
  2472. return ret;
  2473. i915_gem_object_flush_cpu_write_domain(obj);
  2474. if (write) {
  2475. ret = i915_gem_object_wait_rendering(obj, true);
  2476. if (ret)
  2477. return ret;
  2478. }
  2479. old_write_domain = obj->write_domain;
  2480. old_read_domains = obj->read_domains;
  2481. /* It should now be out of any other write domains, and we can update
  2482. * the domain values for our changes.
  2483. */
  2484. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2485. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2486. if (write) {
  2487. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2488. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2489. obj_priv->dirty = 1;
  2490. }
  2491. trace_i915_gem_object_change_domain(obj,
  2492. old_read_domains,
  2493. old_write_domain);
  2494. return 0;
  2495. }
  2496. /*
  2497. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2498. * wait, as in modesetting process we're not supposed to be interrupted.
  2499. */
  2500. int
  2501. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
  2502. bool pipelined)
  2503. {
  2504. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2505. uint32_t old_read_domains;
  2506. int ret;
  2507. /* Not valid to be called on unbound objects. */
  2508. if (obj_priv->gtt_space == NULL)
  2509. return -EINVAL;
  2510. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2511. if (ret)
  2512. return ret;
  2513. /* Currently, we are always called from an non-interruptible context. */
  2514. if (!pipelined) {
  2515. ret = i915_gem_object_wait_rendering(obj, false);
  2516. if (ret)
  2517. return ret;
  2518. }
  2519. i915_gem_object_flush_cpu_write_domain(obj);
  2520. old_read_domains = obj->read_domains;
  2521. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2522. trace_i915_gem_object_change_domain(obj,
  2523. old_read_domains,
  2524. obj->write_domain);
  2525. return 0;
  2526. }
  2527. /**
  2528. * Moves a single object to the CPU read, and possibly write domain.
  2529. *
  2530. * This function returns when the move is complete, including waiting on
  2531. * flushes to occur.
  2532. */
  2533. static int
  2534. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2535. {
  2536. uint32_t old_write_domain, old_read_domains;
  2537. int ret;
  2538. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2539. if (ret != 0)
  2540. return ret;
  2541. i915_gem_object_flush_gtt_write_domain(obj);
  2542. /* If we have a partially-valid cache of the object in the CPU,
  2543. * finish invalidating it and free the per-page flags.
  2544. */
  2545. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2546. if (write) {
  2547. ret = i915_gem_object_wait_rendering(obj, true);
  2548. if (ret)
  2549. return ret;
  2550. }
  2551. old_write_domain = obj->write_domain;
  2552. old_read_domains = obj->read_domains;
  2553. /* Flush the CPU cache if it's still invalid. */
  2554. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2555. i915_gem_clflush_object(obj);
  2556. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2557. }
  2558. /* It should now be out of any other write domains, and we can update
  2559. * the domain values for our changes.
  2560. */
  2561. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2562. /* If we're writing through the CPU, then the GPU read domains will
  2563. * need to be invalidated at next use.
  2564. */
  2565. if (write) {
  2566. obj->read_domains = I915_GEM_DOMAIN_CPU;
  2567. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2568. }
  2569. trace_i915_gem_object_change_domain(obj,
  2570. old_read_domains,
  2571. old_write_domain);
  2572. return 0;
  2573. }
  2574. /*
  2575. * Set the next domain for the specified object. This
  2576. * may not actually perform the necessary flushing/invaliding though,
  2577. * as that may want to be batched with other set_domain operations
  2578. *
  2579. * This is (we hope) the only really tricky part of gem. The goal
  2580. * is fairly simple -- track which caches hold bits of the object
  2581. * and make sure they remain coherent. A few concrete examples may
  2582. * help to explain how it works. For shorthand, we use the notation
  2583. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2584. * a pair of read and write domain masks.
  2585. *
  2586. * Case 1: the batch buffer
  2587. *
  2588. * 1. Allocated
  2589. * 2. Written by CPU
  2590. * 3. Mapped to GTT
  2591. * 4. Read by GPU
  2592. * 5. Unmapped from GTT
  2593. * 6. Freed
  2594. *
  2595. * Let's take these a step at a time
  2596. *
  2597. * 1. Allocated
  2598. * Pages allocated from the kernel may still have
  2599. * cache contents, so we set them to (CPU, CPU) always.
  2600. * 2. Written by CPU (using pwrite)
  2601. * The pwrite function calls set_domain (CPU, CPU) and
  2602. * this function does nothing (as nothing changes)
  2603. * 3. Mapped by GTT
  2604. * This function asserts that the object is not
  2605. * currently in any GPU-based read or write domains
  2606. * 4. Read by GPU
  2607. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2608. * As write_domain is zero, this function adds in the
  2609. * current read domains (CPU+COMMAND, 0).
  2610. * flush_domains is set to CPU.
  2611. * invalidate_domains is set to COMMAND
  2612. * clflush is run to get data out of the CPU caches
  2613. * then i915_dev_set_domain calls i915_gem_flush to
  2614. * emit an MI_FLUSH and drm_agp_chipset_flush
  2615. * 5. Unmapped from GTT
  2616. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2617. * flush_domains and invalidate_domains end up both zero
  2618. * so no flushing/invalidating happens
  2619. * 6. Freed
  2620. * yay, done
  2621. *
  2622. * Case 2: The shared render buffer
  2623. *
  2624. * 1. Allocated
  2625. * 2. Mapped to GTT
  2626. * 3. Read/written by GPU
  2627. * 4. set_domain to (CPU,CPU)
  2628. * 5. Read/written by CPU
  2629. * 6. Read/written by GPU
  2630. *
  2631. * 1. Allocated
  2632. * Same as last example, (CPU, CPU)
  2633. * 2. Mapped to GTT
  2634. * Nothing changes (assertions find that it is not in the GPU)
  2635. * 3. Read/written by GPU
  2636. * execbuffer calls set_domain (RENDER, RENDER)
  2637. * flush_domains gets CPU
  2638. * invalidate_domains gets GPU
  2639. * clflush (obj)
  2640. * MI_FLUSH and drm_agp_chipset_flush
  2641. * 4. set_domain (CPU, CPU)
  2642. * flush_domains gets GPU
  2643. * invalidate_domains gets CPU
  2644. * wait_rendering (obj) to make sure all drawing is complete.
  2645. * This will include an MI_FLUSH to get the data from GPU
  2646. * to memory
  2647. * clflush (obj) to invalidate the CPU cache
  2648. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2649. * 5. Read/written by CPU
  2650. * cache lines are loaded and dirtied
  2651. * 6. Read written by GPU
  2652. * Same as last GPU access
  2653. *
  2654. * Case 3: The constant buffer
  2655. *
  2656. * 1. Allocated
  2657. * 2. Written by CPU
  2658. * 3. Read by GPU
  2659. * 4. Updated (written) by CPU again
  2660. * 5. Read by GPU
  2661. *
  2662. * 1. Allocated
  2663. * (CPU, CPU)
  2664. * 2. Written by CPU
  2665. * (CPU, CPU)
  2666. * 3. Read by GPU
  2667. * (CPU+RENDER, 0)
  2668. * flush_domains = CPU
  2669. * invalidate_domains = RENDER
  2670. * clflush (obj)
  2671. * MI_FLUSH
  2672. * drm_agp_chipset_flush
  2673. * 4. Updated (written) by CPU again
  2674. * (CPU, CPU)
  2675. * flush_domains = 0 (no previous write domain)
  2676. * invalidate_domains = 0 (no new read domains)
  2677. * 5. Read by GPU
  2678. * (CPU+RENDER, 0)
  2679. * flush_domains = CPU
  2680. * invalidate_domains = RENDER
  2681. * clflush (obj)
  2682. * MI_FLUSH
  2683. * drm_agp_chipset_flush
  2684. */
  2685. static void
  2686. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
  2687. struct intel_ring_buffer *ring)
  2688. {
  2689. struct drm_device *dev = obj->dev;
  2690. struct drm_i915_private *dev_priv = dev->dev_private;
  2691. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2692. uint32_t invalidate_domains = 0;
  2693. uint32_t flush_domains = 0;
  2694. /*
  2695. * If the object isn't moving to a new write domain,
  2696. * let the object stay in multiple read domains
  2697. */
  2698. if (obj->pending_write_domain == 0)
  2699. obj->pending_read_domains |= obj->read_domains;
  2700. /*
  2701. * Flush the current write domain if
  2702. * the new read domains don't match. Invalidate
  2703. * any read domains which differ from the old
  2704. * write domain
  2705. */
  2706. if (obj->write_domain &&
  2707. obj->write_domain != obj->pending_read_domains) {
  2708. flush_domains |= obj->write_domain;
  2709. invalidate_domains |=
  2710. obj->pending_read_domains & ~obj->write_domain;
  2711. }
  2712. /*
  2713. * Invalidate any read caches which may have
  2714. * stale data. That is, any new read domains.
  2715. */
  2716. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2717. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
  2718. i915_gem_clflush_object(obj);
  2719. /* blow away mappings if mapped through GTT */
  2720. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
  2721. i915_gem_release_mmap(obj);
  2722. /* The actual obj->write_domain will be updated with
  2723. * pending_write_domain after we emit the accumulated flush for all
  2724. * of our domain changes in execbuffers (which clears objects'
  2725. * write_domains). So if we have a current write domain that we
  2726. * aren't changing, set pending_write_domain to that.
  2727. */
  2728. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2729. obj->pending_write_domain = obj->write_domain;
  2730. dev->invalidate_domains |= invalidate_domains;
  2731. dev->flush_domains |= flush_domains;
  2732. if (flush_domains & I915_GEM_GPU_DOMAINS)
  2733. dev_priv->mm.flush_rings |= obj_priv->ring->id;
  2734. if (invalidate_domains & I915_GEM_GPU_DOMAINS)
  2735. dev_priv->mm.flush_rings |= ring->id;
  2736. }
  2737. /**
  2738. * Moves the object from a partially CPU read to a full one.
  2739. *
  2740. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2741. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2742. */
  2743. static void
  2744. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2745. {
  2746. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2747. if (!obj_priv->page_cpu_valid)
  2748. return;
  2749. /* If we're partially in the CPU read domain, finish moving it in.
  2750. */
  2751. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2752. int i;
  2753. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2754. if (obj_priv->page_cpu_valid[i])
  2755. continue;
  2756. drm_clflush_pages(obj_priv->pages + i, 1);
  2757. }
  2758. }
  2759. /* Free the page_cpu_valid mappings which are now stale, whether
  2760. * or not we've got I915_GEM_DOMAIN_CPU.
  2761. */
  2762. kfree(obj_priv->page_cpu_valid);
  2763. obj_priv->page_cpu_valid = NULL;
  2764. }
  2765. /**
  2766. * Set the CPU read domain on a range of the object.
  2767. *
  2768. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2769. * not entirely valid. The page_cpu_valid member of the object flags which
  2770. * pages have been flushed, and will be respected by
  2771. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2772. * of the whole object.
  2773. *
  2774. * This function returns when the move is complete, including waiting on
  2775. * flushes to occur.
  2776. */
  2777. static int
  2778. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2779. uint64_t offset, uint64_t size)
  2780. {
  2781. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2782. uint32_t old_read_domains;
  2783. int i, ret;
  2784. if (offset == 0 && size == obj->size)
  2785. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2786. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2787. if (ret != 0)
  2788. return ret;
  2789. i915_gem_object_flush_gtt_write_domain(obj);
  2790. /* If we're already fully in the CPU read domain, we're done. */
  2791. if (obj_priv->page_cpu_valid == NULL &&
  2792. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2793. return 0;
  2794. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2795. * newly adding I915_GEM_DOMAIN_CPU
  2796. */
  2797. if (obj_priv->page_cpu_valid == NULL) {
  2798. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2799. GFP_KERNEL);
  2800. if (obj_priv->page_cpu_valid == NULL)
  2801. return -ENOMEM;
  2802. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2803. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2804. /* Flush the cache on any pages that are still invalid from the CPU's
  2805. * perspective.
  2806. */
  2807. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2808. i++) {
  2809. if (obj_priv->page_cpu_valid[i])
  2810. continue;
  2811. drm_clflush_pages(obj_priv->pages + i, 1);
  2812. obj_priv->page_cpu_valid[i] = 1;
  2813. }
  2814. /* It should now be out of any other write domains, and we can update
  2815. * the domain values for our changes.
  2816. */
  2817. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2818. old_read_domains = obj->read_domains;
  2819. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2820. trace_i915_gem_object_change_domain(obj,
  2821. old_read_domains,
  2822. obj->write_domain);
  2823. return 0;
  2824. }
  2825. /**
  2826. * Pin an object to the GTT and evaluate the relocations landing in it.
  2827. */
  2828. static int
  2829. i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
  2830. struct drm_file *file_priv,
  2831. struct drm_i915_gem_exec_object2 *entry)
  2832. {
  2833. struct drm_device *dev = obj->base.dev;
  2834. drm_i915_private_t *dev_priv = dev->dev_private;
  2835. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2836. struct drm_gem_object *target_obj = NULL;
  2837. uint32_t target_handle = 0;
  2838. int i, ret = 0;
  2839. user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
  2840. for (i = 0; i < entry->relocation_count; i++) {
  2841. struct drm_i915_gem_relocation_entry reloc;
  2842. uint32_t target_offset;
  2843. if (__copy_from_user_inatomic(&reloc,
  2844. user_relocs+i,
  2845. sizeof(reloc))) {
  2846. ret = -EFAULT;
  2847. break;
  2848. }
  2849. if (reloc.target_handle != target_handle) {
  2850. drm_gem_object_unreference(target_obj);
  2851. target_obj = drm_gem_object_lookup(dev, file_priv,
  2852. reloc.target_handle);
  2853. if (target_obj == NULL) {
  2854. ret = -ENOENT;
  2855. break;
  2856. }
  2857. target_handle = reloc.target_handle;
  2858. }
  2859. target_offset = to_intel_bo(target_obj)->gtt_offset;
  2860. #if WATCH_RELOC
  2861. DRM_INFO("%s: obj %p offset %08x target %d "
  2862. "read %08x write %08x gtt %08x "
  2863. "presumed %08x delta %08x\n",
  2864. __func__,
  2865. obj,
  2866. (int) reloc.offset,
  2867. (int) reloc.target_handle,
  2868. (int) reloc.read_domains,
  2869. (int) reloc.write_domain,
  2870. (int) target_offset,
  2871. (int) reloc.presumed_offset,
  2872. reloc.delta);
  2873. #endif
  2874. /* The target buffer should have appeared before us in the
  2875. * exec_object list, so it should have a GTT space bound by now.
  2876. */
  2877. if (target_offset == 0) {
  2878. DRM_ERROR("No GTT space found for object %d\n",
  2879. reloc.target_handle);
  2880. ret = -EINVAL;
  2881. break;
  2882. }
  2883. /* Validate that the target is in a valid r/w GPU domain */
  2884. if (reloc.write_domain & (reloc.write_domain - 1)) {
  2885. DRM_ERROR("reloc with multiple write domains: "
  2886. "obj %p target %d offset %d "
  2887. "read %08x write %08x",
  2888. obj, reloc.target_handle,
  2889. (int) reloc.offset,
  2890. reloc.read_domains,
  2891. reloc.write_domain);
  2892. ret = -EINVAL;
  2893. break;
  2894. }
  2895. if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
  2896. reloc.read_domains & I915_GEM_DOMAIN_CPU) {
  2897. DRM_ERROR("reloc with read/write CPU domains: "
  2898. "obj %p target %d offset %d "
  2899. "read %08x write %08x",
  2900. obj, reloc.target_handle,
  2901. (int) reloc.offset,
  2902. reloc.read_domains,
  2903. reloc.write_domain);
  2904. ret = -EINVAL;
  2905. break;
  2906. }
  2907. if (reloc.write_domain && target_obj->pending_write_domain &&
  2908. reloc.write_domain != target_obj->pending_write_domain) {
  2909. DRM_ERROR("Write domain conflict: "
  2910. "obj %p target %d offset %d "
  2911. "new %08x old %08x\n",
  2912. obj, reloc.target_handle,
  2913. (int) reloc.offset,
  2914. reloc.write_domain,
  2915. target_obj->pending_write_domain);
  2916. ret = -EINVAL;
  2917. break;
  2918. }
  2919. target_obj->pending_read_domains |= reloc.read_domains;
  2920. target_obj->pending_write_domain |= reloc.write_domain;
  2921. /* If the relocation already has the right value in it, no
  2922. * more work needs to be done.
  2923. */
  2924. if (target_offset == reloc.presumed_offset)
  2925. continue;
  2926. /* Check that the relocation address is valid... */
  2927. if (reloc.offset > obj->base.size - 4) {
  2928. DRM_ERROR("Relocation beyond object bounds: "
  2929. "obj %p target %d offset %d size %d.\n",
  2930. obj, reloc.target_handle,
  2931. (int) reloc.offset, (int) obj->base.size);
  2932. ret = -EINVAL;
  2933. break;
  2934. }
  2935. if (reloc.offset & 3) {
  2936. DRM_ERROR("Relocation not 4-byte aligned: "
  2937. "obj %p target %d offset %d.\n",
  2938. obj, reloc.target_handle,
  2939. (int) reloc.offset);
  2940. ret = -EINVAL;
  2941. break;
  2942. }
  2943. /* and points to somewhere within the target object. */
  2944. if (reloc.delta >= target_obj->size) {
  2945. DRM_ERROR("Relocation beyond target object bounds: "
  2946. "obj %p target %d delta %d size %d.\n",
  2947. obj, reloc.target_handle,
  2948. (int) reloc.delta, (int) target_obj->size);
  2949. ret = -EINVAL;
  2950. break;
  2951. }
  2952. reloc.delta += target_offset;
  2953. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
  2954. uint32_t page_offset = reloc.offset & ~PAGE_MASK;
  2955. char *vaddr;
  2956. vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
  2957. *(uint32_t *)(vaddr + page_offset) = reloc.delta;
  2958. kunmap_atomic(vaddr);
  2959. } else {
  2960. uint32_t __iomem *reloc_entry;
  2961. void __iomem *reloc_page;
  2962. ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
  2963. if (ret)
  2964. break;
  2965. /* Map the page containing the relocation we're going to perform. */
  2966. reloc.offset += obj->gtt_offset;
  2967. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2968. reloc.offset & PAGE_MASK);
  2969. reloc_entry = (uint32_t __iomem *)
  2970. (reloc_page + (reloc.offset & ~PAGE_MASK));
  2971. iowrite32(reloc.delta, reloc_entry);
  2972. io_mapping_unmap_atomic(reloc_page);
  2973. }
  2974. /* and update the user's relocation entry */
  2975. reloc.presumed_offset = target_offset;
  2976. if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
  2977. &reloc.presumed_offset,
  2978. sizeof(reloc.presumed_offset))) {
  2979. ret = -EFAULT;
  2980. break;
  2981. }
  2982. }
  2983. drm_gem_object_unreference(target_obj);
  2984. return ret;
  2985. }
  2986. static int
  2987. i915_gem_execbuffer_pin(struct drm_device *dev,
  2988. struct drm_file *file,
  2989. struct drm_gem_object **object_list,
  2990. struct drm_i915_gem_exec_object2 *exec_list,
  2991. int count)
  2992. {
  2993. struct drm_i915_private *dev_priv = dev->dev_private;
  2994. int ret, i, retry;
  2995. /* attempt to pin all of the buffers into the GTT */
  2996. for (retry = 0; retry < 2; retry++) {
  2997. ret = 0;
  2998. for (i = 0; i < count; i++) {
  2999. struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
  3000. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3001. bool need_fence =
  3002. entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  3003. obj->tiling_mode != I915_TILING_NONE;
  3004. /* g33/pnv can't fence buffers in the unmappable part */
  3005. bool need_mappable =
  3006. entry->relocation_count ? true : need_fence;
  3007. /* Check fence reg constraints and rebind if necessary */
  3008. if ((need_fence && !obj->fenceable) ||
  3009. (need_mappable && !obj->mappable)) {
  3010. ret = i915_gem_object_unbind(&obj->base);
  3011. if (ret)
  3012. break;
  3013. }
  3014. ret = i915_gem_object_pin(&obj->base,
  3015. entry->alignment,
  3016. need_mappable,
  3017. need_fence);
  3018. if (ret)
  3019. break;
  3020. /*
  3021. * Pre-965 chips need a fence register set up in order
  3022. * to properly handle blits to/from tiled surfaces.
  3023. */
  3024. if (need_fence) {
  3025. ret = i915_gem_object_get_fence_reg(&obj->base, true);
  3026. if (ret) {
  3027. i915_gem_object_unpin(&obj->base);
  3028. break;
  3029. }
  3030. dev_priv->fence_regs[obj->fence_reg].gpu = true;
  3031. }
  3032. entry->offset = obj->gtt_offset;
  3033. }
  3034. while (i--)
  3035. i915_gem_object_unpin(object_list[i]);
  3036. if (ret == 0)
  3037. break;
  3038. if (ret != -ENOSPC || retry)
  3039. return ret;
  3040. ret = i915_gem_evict_everything(dev);
  3041. if (ret)
  3042. return ret;
  3043. }
  3044. return 0;
  3045. }
  3046. /* Throttle our rendering by waiting until the ring has completed our requests
  3047. * emitted over 20 msec ago.
  3048. *
  3049. * Note that if we were to use the current jiffies each time around the loop,
  3050. * we wouldn't escape the function with any frames outstanding if the time to
  3051. * render a frame was over 20ms.
  3052. *
  3053. * This should get us reasonable parallelism between CPU and GPU but also
  3054. * relatively low latency when blocking on a particular request to finish.
  3055. */
  3056. static int
  3057. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  3058. {
  3059. struct drm_i915_private *dev_priv = dev->dev_private;
  3060. struct drm_i915_file_private *file_priv = file->driver_priv;
  3061. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  3062. struct drm_i915_gem_request *request;
  3063. struct intel_ring_buffer *ring = NULL;
  3064. u32 seqno = 0;
  3065. int ret;
  3066. spin_lock(&file_priv->mm.lock);
  3067. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  3068. if (time_after_eq(request->emitted_jiffies, recent_enough))
  3069. break;
  3070. ring = request->ring;
  3071. seqno = request->seqno;
  3072. }
  3073. spin_unlock(&file_priv->mm.lock);
  3074. if (seqno == 0)
  3075. return 0;
  3076. ret = 0;
  3077. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  3078. /* And wait for the seqno passing without holding any locks and
  3079. * causing extra latency for others. This is safe as the irq
  3080. * generation is designed to be run atomically and so is
  3081. * lockless.
  3082. */
  3083. ring->user_irq_get(ring);
  3084. ret = wait_event_interruptible(ring->irq_queue,
  3085. i915_seqno_passed(ring->get_seqno(ring), seqno)
  3086. || atomic_read(&dev_priv->mm.wedged));
  3087. ring->user_irq_put(ring);
  3088. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  3089. ret = -EIO;
  3090. }
  3091. if (ret == 0)
  3092. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  3093. return ret;
  3094. }
  3095. static int
  3096. i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
  3097. uint64_t exec_offset)
  3098. {
  3099. uint32_t exec_start, exec_len;
  3100. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  3101. exec_len = (uint32_t) exec->batch_len;
  3102. if ((exec_start | exec_len) & 0x7)
  3103. return -EINVAL;
  3104. if (!exec_start)
  3105. return -EINVAL;
  3106. return 0;
  3107. }
  3108. static int
  3109. validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
  3110. int count)
  3111. {
  3112. int i;
  3113. for (i = 0; i < count; i++) {
  3114. char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
  3115. size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
  3116. if (!access_ok(VERIFY_READ, ptr, length))
  3117. return -EFAULT;
  3118. /* we may also need to update the presumed offsets */
  3119. if (!access_ok(VERIFY_WRITE, ptr, length))
  3120. return -EFAULT;
  3121. if (fault_in_pages_readable(ptr, length))
  3122. return -EFAULT;
  3123. }
  3124. return 0;
  3125. }
  3126. static int
  3127. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3128. struct drm_file *file,
  3129. struct drm_i915_gem_execbuffer2 *args,
  3130. struct drm_i915_gem_exec_object2 *exec_list)
  3131. {
  3132. drm_i915_private_t *dev_priv = dev->dev_private;
  3133. struct drm_gem_object **object_list = NULL;
  3134. struct drm_gem_object *batch_obj;
  3135. struct drm_clip_rect *cliprects = NULL;
  3136. struct drm_i915_gem_request *request = NULL;
  3137. int ret, i, flips;
  3138. uint64_t exec_offset;
  3139. struct intel_ring_buffer *ring = NULL;
  3140. ret = i915_gem_check_is_wedged(dev);
  3141. if (ret)
  3142. return ret;
  3143. ret = validate_exec_list(exec_list, args->buffer_count);
  3144. if (ret)
  3145. return ret;
  3146. #if WATCH_EXEC
  3147. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3148. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3149. #endif
  3150. switch (args->flags & I915_EXEC_RING_MASK) {
  3151. case I915_EXEC_DEFAULT:
  3152. case I915_EXEC_RENDER:
  3153. ring = &dev_priv->render_ring;
  3154. break;
  3155. case I915_EXEC_BSD:
  3156. if (!HAS_BSD(dev)) {
  3157. DRM_ERROR("execbuf with invalid ring (BSD)\n");
  3158. return -EINVAL;
  3159. }
  3160. ring = &dev_priv->bsd_ring;
  3161. break;
  3162. case I915_EXEC_BLT:
  3163. if (!HAS_BLT(dev)) {
  3164. DRM_ERROR("execbuf with invalid ring (BLT)\n");
  3165. return -EINVAL;
  3166. }
  3167. ring = &dev_priv->blt_ring;
  3168. break;
  3169. default:
  3170. DRM_ERROR("execbuf with unknown ring: %d\n",
  3171. (int)(args->flags & I915_EXEC_RING_MASK));
  3172. return -EINVAL;
  3173. }
  3174. if (args->buffer_count < 1) {
  3175. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3176. return -EINVAL;
  3177. }
  3178. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3179. if (object_list == NULL) {
  3180. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3181. args->buffer_count);
  3182. ret = -ENOMEM;
  3183. goto pre_mutex_err;
  3184. }
  3185. if (args->num_cliprects != 0) {
  3186. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3187. GFP_KERNEL);
  3188. if (cliprects == NULL) {
  3189. ret = -ENOMEM;
  3190. goto pre_mutex_err;
  3191. }
  3192. ret = copy_from_user(cliprects,
  3193. (struct drm_clip_rect __user *)
  3194. (uintptr_t) args->cliprects_ptr,
  3195. sizeof(*cliprects) * args->num_cliprects);
  3196. if (ret != 0) {
  3197. DRM_ERROR("copy %d cliprects failed: %d\n",
  3198. args->num_cliprects, ret);
  3199. ret = -EFAULT;
  3200. goto pre_mutex_err;
  3201. }
  3202. }
  3203. request = kzalloc(sizeof(*request), GFP_KERNEL);
  3204. if (request == NULL) {
  3205. ret = -ENOMEM;
  3206. goto pre_mutex_err;
  3207. }
  3208. ret = i915_mutex_lock_interruptible(dev);
  3209. if (ret)
  3210. goto pre_mutex_err;
  3211. if (dev_priv->mm.suspended) {
  3212. mutex_unlock(&dev->struct_mutex);
  3213. ret = -EBUSY;
  3214. goto pre_mutex_err;
  3215. }
  3216. /* Look up object handles */
  3217. for (i = 0; i < args->buffer_count; i++) {
  3218. struct drm_i915_gem_object *obj_priv;
  3219. object_list[i] = drm_gem_object_lookup(dev, file,
  3220. exec_list[i].handle);
  3221. if (object_list[i] == NULL) {
  3222. DRM_ERROR("Invalid object handle %d at index %d\n",
  3223. exec_list[i].handle, i);
  3224. /* prevent error path from reading uninitialized data */
  3225. args->buffer_count = i + 1;
  3226. ret = -ENOENT;
  3227. goto err;
  3228. }
  3229. obj_priv = to_intel_bo(object_list[i]);
  3230. if (obj_priv->in_execbuffer) {
  3231. DRM_ERROR("Object %p appears more than once in object list\n",
  3232. object_list[i]);
  3233. /* prevent error path from reading uninitialized data */
  3234. args->buffer_count = i + 1;
  3235. ret = -EINVAL;
  3236. goto err;
  3237. }
  3238. obj_priv->in_execbuffer = true;
  3239. }
  3240. /* Move the objects en-masse into the GTT, evicting if necessary. */
  3241. ret = i915_gem_execbuffer_pin(dev, file,
  3242. object_list, exec_list,
  3243. args->buffer_count);
  3244. if (ret)
  3245. goto err;
  3246. /* The objects are in their final locations, apply the relocations. */
  3247. for (i = 0; i < args->buffer_count; i++) {
  3248. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3249. obj->base.pending_read_domains = 0;
  3250. obj->base.pending_write_domain = 0;
  3251. ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
  3252. if (ret)
  3253. goto err;
  3254. }
  3255. /* Set the pending read domains for the batch buffer to COMMAND */
  3256. batch_obj = object_list[args->buffer_count-1];
  3257. if (batch_obj->pending_write_domain) {
  3258. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3259. ret = -EINVAL;
  3260. goto err;
  3261. }
  3262. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3263. /* Sanity check the batch buffer */
  3264. exec_offset = to_intel_bo(batch_obj)->gtt_offset;
  3265. ret = i915_gem_check_execbuffer(args, exec_offset);
  3266. if (ret != 0) {
  3267. DRM_ERROR("execbuf with invalid offset/length\n");
  3268. goto err;
  3269. }
  3270. /* Zero the global flush/invalidate flags. These
  3271. * will be modified as new domains are computed
  3272. * for each object
  3273. */
  3274. dev->invalidate_domains = 0;
  3275. dev->flush_domains = 0;
  3276. dev_priv->mm.flush_rings = 0;
  3277. for (i = 0; i < args->buffer_count; i++)
  3278. i915_gem_object_set_to_gpu_domain(object_list[i], ring);
  3279. if (dev->invalidate_domains | dev->flush_domains) {
  3280. #if WATCH_EXEC
  3281. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3282. __func__,
  3283. dev->invalidate_domains,
  3284. dev->flush_domains);
  3285. #endif
  3286. i915_gem_flush(dev, file,
  3287. dev->invalidate_domains,
  3288. dev->flush_domains,
  3289. dev_priv->mm.flush_rings);
  3290. }
  3291. #if WATCH_COHERENCY
  3292. for (i = 0; i < args->buffer_count; i++) {
  3293. i915_gem_object_check_coherency(object_list[i],
  3294. exec_list[i].handle);
  3295. }
  3296. #endif
  3297. #if WATCH_EXEC
  3298. i915_gem_dump_object(batch_obj,
  3299. args->batch_len,
  3300. __func__,
  3301. ~0);
  3302. #endif
  3303. /* Check for any pending flips. As we only maintain a flip queue depth
  3304. * of 1, we can simply insert a WAIT for the next display flip prior
  3305. * to executing the batch and avoid stalling the CPU.
  3306. */
  3307. flips = 0;
  3308. for (i = 0; i < args->buffer_count; i++) {
  3309. if (object_list[i]->write_domain)
  3310. flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
  3311. }
  3312. if (flips) {
  3313. int plane, flip_mask;
  3314. for (plane = 0; flips >> plane; plane++) {
  3315. if (((flips >> plane) & 1) == 0)
  3316. continue;
  3317. if (plane)
  3318. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  3319. else
  3320. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  3321. ret = intel_ring_begin(ring, 2);
  3322. if (ret)
  3323. goto err;
  3324. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  3325. intel_ring_emit(ring, MI_NOOP);
  3326. intel_ring_advance(ring);
  3327. }
  3328. }
  3329. /* Exec the batchbuffer */
  3330. ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
  3331. if (ret) {
  3332. DRM_ERROR("dispatch failed %d\n", ret);
  3333. goto err;
  3334. }
  3335. for (i = 0; i < args->buffer_count; i++) {
  3336. struct drm_gem_object *obj = object_list[i];
  3337. obj->read_domains = obj->pending_read_domains;
  3338. obj->write_domain = obj->pending_write_domain;
  3339. i915_gem_object_move_to_active(obj, ring);
  3340. if (obj->write_domain) {
  3341. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3342. obj_priv->dirty = 1;
  3343. list_move_tail(&obj_priv->gpu_write_list,
  3344. &ring->gpu_write_list);
  3345. intel_mark_busy(dev, obj);
  3346. }
  3347. trace_i915_gem_object_change_domain(obj,
  3348. obj->read_domains,
  3349. obj->write_domain);
  3350. }
  3351. /*
  3352. * Ensure that the commands in the batch buffer are
  3353. * finished before the interrupt fires
  3354. */
  3355. i915_retire_commands(dev, ring);
  3356. if (i915_add_request(dev, file, request, ring))
  3357. ring->outstanding_lazy_request = true;
  3358. else
  3359. request = NULL;
  3360. err:
  3361. for (i = 0; i < args->buffer_count; i++) {
  3362. if (object_list[i] == NULL)
  3363. break;
  3364. to_intel_bo(object_list[i])->in_execbuffer = false;
  3365. drm_gem_object_unreference(object_list[i]);
  3366. }
  3367. mutex_unlock(&dev->struct_mutex);
  3368. pre_mutex_err:
  3369. drm_free_large(object_list);
  3370. kfree(cliprects);
  3371. kfree(request);
  3372. return ret;
  3373. }
  3374. /*
  3375. * Legacy execbuffer just creates an exec2 list from the original exec object
  3376. * list array and passes it to the real function.
  3377. */
  3378. int
  3379. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3380. struct drm_file *file_priv)
  3381. {
  3382. struct drm_i915_gem_execbuffer *args = data;
  3383. struct drm_i915_gem_execbuffer2 exec2;
  3384. struct drm_i915_gem_exec_object *exec_list = NULL;
  3385. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3386. int ret, i;
  3387. #if WATCH_EXEC
  3388. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3389. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3390. #endif
  3391. if (args->buffer_count < 1) {
  3392. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3393. return -EINVAL;
  3394. }
  3395. /* Copy in the exec list from userland */
  3396. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3397. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3398. if (exec_list == NULL || exec2_list == NULL) {
  3399. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3400. args->buffer_count);
  3401. drm_free_large(exec_list);
  3402. drm_free_large(exec2_list);
  3403. return -ENOMEM;
  3404. }
  3405. ret = copy_from_user(exec_list,
  3406. (struct drm_i915_relocation_entry __user *)
  3407. (uintptr_t) args->buffers_ptr,
  3408. sizeof(*exec_list) * args->buffer_count);
  3409. if (ret != 0) {
  3410. DRM_ERROR("copy %d exec entries failed %d\n",
  3411. args->buffer_count, ret);
  3412. drm_free_large(exec_list);
  3413. drm_free_large(exec2_list);
  3414. return -EFAULT;
  3415. }
  3416. for (i = 0; i < args->buffer_count; i++) {
  3417. exec2_list[i].handle = exec_list[i].handle;
  3418. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3419. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3420. exec2_list[i].alignment = exec_list[i].alignment;
  3421. exec2_list[i].offset = exec_list[i].offset;
  3422. if (INTEL_INFO(dev)->gen < 4)
  3423. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3424. else
  3425. exec2_list[i].flags = 0;
  3426. }
  3427. exec2.buffers_ptr = args->buffers_ptr;
  3428. exec2.buffer_count = args->buffer_count;
  3429. exec2.batch_start_offset = args->batch_start_offset;
  3430. exec2.batch_len = args->batch_len;
  3431. exec2.DR1 = args->DR1;
  3432. exec2.DR4 = args->DR4;
  3433. exec2.num_cliprects = args->num_cliprects;
  3434. exec2.cliprects_ptr = args->cliprects_ptr;
  3435. exec2.flags = I915_EXEC_RENDER;
  3436. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3437. if (!ret) {
  3438. /* Copy the new buffer offsets back to the user's exec list. */
  3439. for (i = 0; i < args->buffer_count; i++)
  3440. exec_list[i].offset = exec2_list[i].offset;
  3441. /* ... and back out to userspace */
  3442. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3443. (uintptr_t) args->buffers_ptr,
  3444. exec_list,
  3445. sizeof(*exec_list) * args->buffer_count);
  3446. if (ret) {
  3447. ret = -EFAULT;
  3448. DRM_ERROR("failed to copy %d exec entries "
  3449. "back to user (%d)\n",
  3450. args->buffer_count, ret);
  3451. }
  3452. }
  3453. drm_free_large(exec_list);
  3454. drm_free_large(exec2_list);
  3455. return ret;
  3456. }
  3457. int
  3458. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3459. struct drm_file *file_priv)
  3460. {
  3461. struct drm_i915_gem_execbuffer2 *args = data;
  3462. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3463. int ret;
  3464. #if WATCH_EXEC
  3465. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3466. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3467. #endif
  3468. if (args->buffer_count < 1) {
  3469. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3470. return -EINVAL;
  3471. }
  3472. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3473. if (exec2_list == NULL) {
  3474. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3475. args->buffer_count);
  3476. return -ENOMEM;
  3477. }
  3478. ret = copy_from_user(exec2_list,
  3479. (struct drm_i915_relocation_entry __user *)
  3480. (uintptr_t) args->buffers_ptr,
  3481. sizeof(*exec2_list) * args->buffer_count);
  3482. if (ret != 0) {
  3483. DRM_ERROR("copy %d exec entries failed %d\n",
  3484. args->buffer_count, ret);
  3485. drm_free_large(exec2_list);
  3486. return -EFAULT;
  3487. }
  3488. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3489. if (!ret) {
  3490. /* Copy the new buffer offsets back to the user's exec list. */
  3491. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3492. (uintptr_t) args->buffers_ptr,
  3493. exec2_list,
  3494. sizeof(*exec2_list) * args->buffer_count);
  3495. if (ret) {
  3496. ret = -EFAULT;
  3497. DRM_ERROR("failed to copy %d exec entries "
  3498. "back to user (%d)\n",
  3499. args->buffer_count, ret);
  3500. }
  3501. }
  3502. drm_free_large(exec2_list);
  3503. return ret;
  3504. }
  3505. int
  3506. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
  3507. bool mappable, bool need_fence)
  3508. {
  3509. struct drm_device *dev = obj->dev;
  3510. struct drm_i915_private *dev_priv = dev->dev_private;
  3511. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3512. int ret;
  3513. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3514. WARN_ON(i915_verify_lists(dev));
  3515. if (obj_priv->gtt_space != NULL) {
  3516. if ((alignment && obj_priv->gtt_offset & (alignment - 1)) ||
  3517. (need_fence && !obj_priv->fenceable) ||
  3518. (mappable && !obj_priv->mappable)) {
  3519. WARN(obj_priv->pin_count,
  3520. "bo is already pinned with incorrect alignment:"
  3521. " offset=%x, req.alignment=%x, need_fence=%d, fenceable=%d, mappable=%d, cpu_accessible=%d\n",
  3522. obj_priv->gtt_offset, alignment,
  3523. need_fence, obj_priv->fenceable,
  3524. mappable, obj_priv->mappable);
  3525. ret = i915_gem_object_unbind(obj);
  3526. if (ret)
  3527. return ret;
  3528. }
  3529. }
  3530. if (obj_priv->gtt_space == NULL) {
  3531. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  3532. mappable, need_fence);
  3533. if (ret)
  3534. return ret;
  3535. }
  3536. if (obj_priv->pin_count++ == 0) {
  3537. i915_gem_info_add_pin(dev_priv, obj_priv, mappable);
  3538. if (!obj_priv->active)
  3539. list_move_tail(&obj_priv->mm_list,
  3540. &dev_priv->mm.pinned_list);
  3541. }
  3542. BUG_ON(!obj_priv->pin_mappable && mappable);
  3543. WARN_ON(i915_verify_lists(dev));
  3544. return 0;
  3545. }
  3546. void
  3547. i915_gem_object_unpin(struct drm_gem_object *obj)
  3548. {
  3549. struct drm_device *dev = obj->dev;
  3550. drm_i915_private_t *dev_priv = dev->dev_private;
  3551. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3552. WARN_ON(i915_verify_lists(dev));
  3553. BUG_ON(obj_priv->pin_count == 0);
  3554. BUG_ON(obj_priv->gtt_space == NULL);
  3555. if (--obj_priv->pin_count == 0) {
  3556. if (!obj_priv->active)
  3557. list_move_tail(&obj_priv->mm_list,
  3558. &dev_priv->mm.inactive_list);
  3559. i915_gem_info_remove_pin(dev_priv, obj_priv);
  3560. }
  3561. WARN_ON(i915_verify_lists(dev));
  3562. }
  3563. int
  3564. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3565. struct drm_file *file_priv)
  3566. {
  3567. struct drm_i915_gem_pin *args = data;
  3568. struct drm_gem_object *obj;
  3569. struct drm_i915_gem_object *obj_priv;
  3570. int ret;
  3571. ret = i915_mutex_lock_interruptible(dev);
  3572. if (ret)
  3573. return ret;
  3574. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3575. if (obj == NULL) {
  3576. ret = -ENOENT;
  3577. goto unlock;
  3578. }
  3579. obj_priv = to_intel_bo(obj);
  3580. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3581. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3582. ret = -EINVAL;
  3583. goto out;
  3584. }
  3585. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3586. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3587. args->handle);
  3588. ret = -EINVAL;
  3589. goto out;
  3590. }
  3591. obj_priv->user_pin_count++;
  3592. obj_priv->pin_filp = file_priv;
  3593. if (obj_priv->user_pin_count == 1) {
  3594. ret = i915_gem_object_pin(obj, args->alignment,
  3595. true, obj_priv->tiling_mode);
  3596. if (ret)
  3597. goto out;
  3598. }
  3599. /* XXX - flush the CPU caches for pinned objects
  3600. * as the X server doesn't manage domains yet
  3601. */
  3602. i915_gem_object_flush_cpu_write_domain(obj);
  3603. args->offset = obj_priv->gtt_offset;
  3604. out:
  3605. drm_gem_object_unreference(obj);
  3606. unlock:
  3607. mutex_unlock(&dev->struct_mutex);
  3608. return ret;
  3609. }
  3610. int
  3611. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3612. struct drm_file *file_priv)
  3613. {
  3614. struct drm_i915_gem_pin *args = data;
  3615. struct drm_gem_object *obj;
  3616. struct drm_i915_gem_object *obj_priv;
  3617. int ret;
  3618. ret = i915_mutex_lock_interruptible(dev);
  3619. if (ret)
  3620. return ret;
  3621. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3622. if (obj == NULL) {
  3623. ret = -ENOENT;
  3624. goto unlock;
  3625. }
  3626. obj_priv = to_intel_bo(obj);
  3627. if (obj_priv->pin_filp != file_priv) {
  3628. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3629. args->handle);
  3630. ret = -EINVAL;
  3631. goto out;
  3632. }
  3633. obj_priv->user_pin_count--;
  3634. if (obj_priv->user_pin_count == 0) {
  3635. obj_priv->pin_filp = NULL;
  3636. i915_gem_object_unpin(obj);
  3637. }
  3638. out:
  3639. drm_gem_object_unreference(obj);
  3640. unlock:
  3641. mutex_unlock(&dev->struct_mutex);
  3642. return ret;
  3643. }
  3644. int
  3645. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3646. struct drm_file *file_priv)
  3647. {
  3648. struct drm_i915_gem_busy *args = data;
  3649. struct drm_gem_object *obj;
  3650. struct drm_i915_gem_object *obj_priv;
  3651. int ret;
  3652. ret = i915_mutex_lock_interruptible(dev);
  3653. if (ret)
  3654. return ret;
  3655. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3656. if (obj == NULL) {
  3657. ret = -ENOENT;
  3658. goto unlock;
  3659. }
  3660. obj_priv = to_intel_bo(obj);
  3661. /* Count all active objects as busy, even if they are currently not used
  3662. * by the gpu. Users of this interface expect objects to eventually
  3663. * become non-busy without any further actions, therefore emit any
  3664. * necessary flushes here.
  3665. */
  3666. args->busy = obj_priv->active;
  3667. if (args->busy) {
  3668. /* Unconditionally flush objects, even when the gpu still uses this
  3669. * object. Userspace calling this function indicates that it wants to
  3670. * use this buffer rather sooner than later, so issuing the required
  3671. * flush earlier is beneficial.
  3672. */
  3673. if (obj->write_domain & I915_GEM_GPU_DOMAINS)
  3674. i915_gem_flush_ring(dev, file_priv,
  3675. obj_priv->ring,
  3676. 0, obj->write_domain);
  3677. /* Update the active list for the hardware's current position.
  3678. * Otherwise this only updates on a delayed timer or when irqs
  3679. * are actually unmasked, and our working set ends up being
  3680. * larger than required.
  3681. */
  3682. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3683. args->busy = obj_priv->active;
  3684. }
  3685. drm_gem_object_unreference(obj);
  3686. unlock:
  3687. mutex_unlock(&dev->struct_mutex);
  3688. return ret;
  3689. }
  3690. int
  3691. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3692. struct drm_file *file_priv)
  3693. {
  3694. return i915_gem_ring_throttle(dev, file_priv);
  3695. }
  3696. int
  3697. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3698. struct drm_file *file_priv)
  3699. {
  3700. struct drm_i915_gem_madvise *args = data;
  3701. struct drm_gem_object *obj;
  3702. struct drm_i915_gem_object *obj_priv;
  3703. int ret;
  3704. switch (args->madv) {
  3705. case I915_MADV_DONTNEED:
  3706. case I915_MADV_WILLNEED:
  3707. break;
  3708. default:
  3709. return -EINVAL;
  3710. }
  3711. ret = i915_mutex_lock_interruptible(dev);
  3712. if (ret)
  3713. return ret;
  3714. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3715. if (obj == NULL) {
  3716. ret = -ENOENT;
  3717. goto unlock;
  3718. }
  3719. obj_priv = to_intel_bo(obj);
  3720. if (obj_priv->pin_count) {
  3721. ret = -EINVAL;
  3722. goto out;
  3723. }
  3724. if (obj_priv->madv != __I915_MADV_PURGED)
  3725. obj_priv->madv = args->madv;
  3726. /* if the object is no longer bound, discard its backing storage */
  3727. if (i915_gem_object_is_purgeable(obj_priv) &&
  3728. obj_priv->gtt_space == NULL)
  3729. i915_gem_object_truncate(obj);
  3730. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3731. out:
  3732. drm_gem_object_unreference(obj);
  3733. unlock:
  3734. mutex_unlock(&dev->struct_mutex);
  3735. return ret;
  3736. }
  3737. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3738. size_t size)
  3739. {
  3740. struct drm_i915_private *dev_priv = dev->dev_private;
  3741. struct drm_i915_gem_object *obj;
  3742. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3743. if (obj == NULL)
  3744. return NULL;
  3745. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3746. kfree(obj);
  3747. return NULL;
  3748. }
  3749. i915_gem_info_add_obj(dev_priv, size);
  3750. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3751. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3752. obj->agp_type = AGP_USER_MEMORY;
  3753. obj->base.driver_private = NULL;
  3754. obj->fence_reg = I915_FENCE_REG_NONE;
  3755. INIT_LIST_HEAD(&obj->mm_list);
  3756. INIT_LIST_HEAD(&obj->ring_list);
  3757. INIT_LIST_HEAD(&obj->gpu_write_list);
  3758. obj->madv = I915_MADV_WILLNEED;
  3759. obj->fenceable = true;
  3760. obj->mappable = true;
  3761. return &obj->base;
  3762. }
  3763. int i915_gem_init_object(struct drm_gem_object *obj)
  3764. {
  3765. BUG();
  3766. return 0;
  3767. }
  3768. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3769. {
  3770. struct drm_device *dev = obj->dev;
  3771. drm_i915_private_t *dev_priv = dev->dev_private;
  3772. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3773. int ret;
  3774. ret = i915_gem_object_unbind(obj);
  3775. if (ret == -ERESTARTSYS) {
  3776. list_move(&obj_priv->mm_list,
  3777. &dev_priv->mm.deferred_free_list);
  3778. return;
  3779. }
  3780. if (obj->map_list.map)
  3781. i915_gem_free_mmap_offset(obj);
  3782. drm_gem_object_release(obj);
  3783. i915_gem_info_remove_obj(dev_priv, obj->size);
  3784. kfree(obj_priv->page_cpu_valid);
  3785. kfree(obj_priv->bit_17);
  3786. kfree(obj_priv);
  3787. }
  3788. void i915_gem_free_object(struct drm_gem_object *obj)
  3789. {
  3790. struct drm_device *dev = obj->dev;
  3791. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3792. trace_i915_gem_object_destroy(obj);
  3793. while (obj_priv->pin_count > 0)
  3794. i915_gem_object_unpin(obj);
  3795. if (obj_priv->phys_obj)
  3796. i915_gem_detach_phys_object(dev, obj);
  3797. i915_gem_free_object_tail(obj);
  3798. }
  3799. int
  3800. i915_gem_idle(struct drm_device *dev)
  3801. {
  3802. drm_i915_private_t *dev_priv = dev->dev_private;
  3803. int ret;
  3804. mutex_lock(&dev->struct_mutex);
  3805. if (dev_priv->mm.suspended) {
  3806. mutex_unlock(&dev->struct_mutex);
  3807. return 0;
  3808. }
  3809. ret = i915_gpu_idle(dev);
  3810. if (ret) {
  3811. mutex_unlock(&dev->struct_mutex);
  3812. return ret;
  3813. }
  3814. /* Under UMS, be paranoid and evict. */
  3815. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3816. ret = i915_gem_evict_inactive(dev);
  3817. if (ret) {
  3818. mutex_unlock(&dev->struct_mutex);
  3819. return ret;
  3820. }
  3821. }
  3822. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3823. * We need to replace this with a semaphore, or something.
  3824. * And not confound mm.suspended!
  3825. */
  3826. dev_priv->mm.suspended = 1;
  3827. del_timer_sync(&dev_priv->hangcheck_timer);
  3828. i915_kernel_lost_context(dev);
  3829. i915_gem_cleanup_ringbuffer(dev);
  3830. mutex_unlock(&dev->struct_mutex);
  3831. /* Cancel the retire work handler, which should be idle now. */
  3832. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3833. return 0;
  3834. }
  3835. /*
  3836. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3837. * over cache flushing.
  3838. */
  3839. static int
  3840. i915_gem_init_pipe_control(struct drm_device *dev)
  3841. {
  3842. drm_i915_private_t *dev_priv = dev->dev_private;
  3843. struct drm_gem_object *obj;
  3844. struct drm_i915_gem_object *obj_priv;
  3845. int ret;
  3846. obj = i915_gem_alloc_object(dev, 4096);
  3847. if (obj == NULL) {
  3848. DRM_ERROR("Failed to allocate seqno page\n");
  3849. ret = -ENOMEM;
  3850. goto err;
  3851. }
  3852. obj_priv = to_intel_bo(obj);
  3853. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3854. ret = i915_gem_object_pin(obj, 4096, true, false);
  3855. if (ret)
  3856. goto err_unref;
  3857. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3858. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3859. if (dev_priv->seqno_page == NULL)
  3860. goto err_unpin;
  3861. dev_priv->seqno_obj = obj;
  3862. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3863. return 0;
  3864. err_unpin:
  3865. i915_gem_object_unpin(obj);
  3866. err_unref:
  3867. drm_gem_object_unreference(obj);
  3868. err:
  3869. return ret;
  3870. }
  3871. static void
  3872. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3873. {
  3874. drm_i915_private_t *dev_priv = dev->dev_private;
  3875. struct drm_gem_object *obj;
  3876. struct drm_i915_gem_object *obj_priv;
  3877. obj = dev_priv->seqno_obj;
  3878. obj_priv = to_intel_bo(obj);
  3879. kunmap(obj_priv->pages[0]);
  3880. i915_gem_object_unpin(obj);
  3881. drm_gem_object_unreference(obj);
  3882. dev_priv->seqno_obj = NULL;
  3883. dev_priv->seqno_page = NULL;
  3884. }
  3885. int
  3886. i915_gem_init_ringbuffer(struct drm_device *dev)
  3887. {
  3888. drm_i915_private_t *dev_priv = dev->dev_private;
  3889. int ret;
  3890. if (HAS_PIPE_CONTROL(dev)) {
  3891. ret = i915_gem_init_pipe_control(dev);
  3892. if (ret)
  3893. return ret;
  3894. }
  3895. ret = intel_init_render_ring_buffer(dev);
  3896. if (ret)
  3897. goto cleanup_pipe_control;
  3898. if (HAS_BSD(dev)) {
  3899. ret = intel_init_bsd_ring_buffer(dev);
  3900. if (ret)
  3901. goto cleanup_render_ring;
  3902. }
  3903. if (HAS_BLT(dev)) {
  3904. ret = intel_init_blt_ring_buffer(dev);
  3905. if (ret)
  3906. goto cleanup_bsd_ring;
  3907. }
  3908. dev_priv->next_seqno = 1;
  3909. return 0;
  3910. cleanup_bsd_ring:
  3911. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  3912. cleanup_render_ring:
  3913. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  3914. cleanup_pipe_control:
  3915. if (HAS_PIPE_CONTROL(dev))
  3916. i915_gem_cleanup_pipe_control(dev);
  3917. return ret;
  3918. }
  3919. void
  3920. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3921. {
  3922. drm_i915_private_t *dev_priv = dev->dev_private;
  3923. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  3924. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  3925. intel_cleanup_ring_buffer(&dev_priv->blt_ring);
  3926. if (HAS_PIPE_CONTROL(dev))
  3927. i915_gem_cleanup_pipe_control(dev);
  3928. }
  3929. int
  3930. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3931. struct drm_file *file_priv)
  3932. {
  3933. drm_i915_private_t *dev_priv = dev->dev_private;
  3934. int ret;
  3935. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3936. return 0;
  3937. if (atomic_read(&dev_priv->mm.wedged)) {
  3938. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3939. atomic_set(&dev_priv->mm.wedged, 0);
  3940. }
  3941. mutex_lock(&dev->struct_mutex);
  3942. dev_priv->mm.suspended = 0;
  3943. ret = i915_gem_init_ringbuffer(dev);
  3944. if (ret != 0) {
  3945. mutex_unlock(&dev->struct_mutex);
  3946. return ret;
  3947. }
  3948. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3949. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3950. BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
  3951. BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
  3952. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3953. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3954. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3955. BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
  3956. BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
  3957. mutex_unlock(&dev->struct_mutex);
  3958. ret = drm_irq_install(dev);
  3959. if (ret)
  3960. goto cleanup_ringbuffer;
  3961. return 0;
  3962. cleanup_ringbuffer:
  3963. mutex_lock(&dev->struct_mutex);
  3964. i915_gem_cleanup_ringbuffer(dev);
  3965. dev_priv->mm.suspended = 1;
  3966. mutex_unlock(&dev->struct_mutex);
  3967. return ret;
  3968. }
  3969. int
  3970. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3971. struct drm_file *file_priv)
  3972. {
  3973. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3974. return 0;
  3975. drm_irq_uninstall(dev);
  3976. return i915_gem_idle(dev);
  3977. }
  3978. void
  3979. i915_gem_lastclose(struct drm_device *dev)
  3980. {
  3981. int ret;
  3982. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3983. return;
  3984. ret = i915_gem_idle(dev);
  3985. if (ret)
  3986. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3987. }
  3988. static void
  3989. init_ring_lists(struct intel_ring_buffer *ring)
  3990. {
  3991. INIT_LIST_HEAD(&ring->active_list);
  3992. INIT_LIST_HEAD(&ring->request_list);
  3993. INIT_LIST_HEAD(&ring->gpu_write_list);
  3994. }
  3995. void
  3996. i915_gem_load(struct drm_device *dev)
  3997. {
  3998. int i;
  3999. drm_i915_private_t *dev_priv = dev->dev_private;
  4000. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  4001. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  4002. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  4003. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  4004. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  4005. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  4006. init_ring_lists(&dev_priv->render_ring);
  4007. init_ring_lists(&dev_priv->bsd_ring);
  4008. init_ring_lists(&dev_priv->blt_ring);
  4009. for (i = 0; i < 16; i++)
  4010. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  4011. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  4012. i915_gem_retire_work_handler);
  4013. init_completion(&dev_priv->error_completion);
  4014. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  4015. if (IS_GEN3(dev)) {
  4016. u32 tmp = I915_READ(MI_ARB_STATE);
  4017. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  4018. /* arb state is a masked write, so set bit + bit in mask */
  4019. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  4020. I915_WRITE(MI_ARB_STATE, tmp);
  4021. }
  4022. }
  4023. /* Old X drivers will take 0-2 for front, back, depth buffers */
  4024. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  4025. dev_priv->fence_reg_start = 3;
  4026. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4027. dev_priv->num_fence_regs = 16;
  4028. else
  4029. dev_priv->num_fence_regs = 8;
  4030. /* Initialize fence registers to zero */
  4031. switch (INTEL_INFO(dev)->gen) {
  4032. case 6:
  4033. for (i = 0; i < 16; i++)
  4034. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  4035. break;
  4036. case 5:
  4037. case 4:
  4038. for (i = 0; i < 16; i++)
  4039. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  4040. break;
  4041. case 3:
  4042. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4043. for (i = 0; i < 8; i++)
  4044. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  4045. case 2:
  4046. for (i = 0; i < 8; i++)
  4047. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  4048. break;
  4049. }
  4050. i915_gem_detect_bit_6_swizzle(dev);
  4051. init_waitqueue_head(&dev_priv->pending_flip_queue);
  4052. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  4053. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  4054. register_shrinker(&dev_priv->mm.inactive_shrinker);
  4055. }
  4056. /*
  4057. * Create a physically contiguous memory object for this object
  4058. * e.g. for cursor + overlay regs
  4059. */
  4060. static int i915_gem_init_phys_object(struct drm_device *dev,
  4061. int id, int size, int align)
  4062. {
  4063. drm_i915_private_t *dev_priv = dev->dev_private;
  4064. struct drm_i915_gem_phys_object *phys_obj;
  4065. int ret;
  4066. if (dev_priv->mm.phys_objs[id - 1] || !size)
  4067. return 0;
  4068. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  4069. if (!phys_obj)
  4070. return -ENOMEM;
  4071. phys_obj->id = id;
  4072. phys_obj->handle = drm_pci_alloc(dev, size, align);
  4073. if (!phys_obj->handle) {
  4074. ret = -ENOMEM;
  4075. goto kfree_obj;
  4076. }
  4077. #ifdef CONFIG_X86
  4078. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4079. #endif
  4080. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4081. return 0;
  4082. kfree_obj:
  4083. kfree(phys_obj);
  4084. return ret;
  4085. }
  4086. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4087. {
  4088. drm_i915_private_t *dev_priv = dev->dev_private;
  4089. struct drm_i915_gem_phys_object *phys_obj;
  4090. if (!dev_priv->mm.phys_objs[id - 1])
  4091. return;
  4092. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4093. if (phys_obj->cur_obj) {
  4094. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4095. }
  4096. #ifdef CONFIG_X86
  4097. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4098. #endif
  4099. drm_pci_free(dev, phys_obj->handle);
  4100. kfree(phys_obj);
  4101. dev_priv->mm.phys_objs[id - 1] = NULL;
  4102. }
  4103. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4104. {
  4105. int i;
  4106. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4107. i915_gem_free_phys_object(dev, i);
  4108. }
  4109. void i915_gem_detach_phys_object(struct drm_device *dev,
  4110. struct drm_gem_object *obj)
  4111. {
  4112. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  4113. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4114. char *vaddr;
  4115. int i;
  4116. int page_count;
  4117. if (!obj_priv->phys_obj)
  4118. return;
  4119. vaddr = obj_priv->phys_obj->handle->vaddr;
  4120. page_count = obj->size / PAGE_SIZE;
  4121. for (i = 0; i < page_count; i++) {
  4122. struct page *page = read_cache_page_gfp(mapping, i,
  4123. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  4124. if (!IS_ERR(page)) {
  4125. char *dst = kmap_atomic(page);
  4126. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  4127. kunmap_atomic(dst);
  4128. drm_clflush_pages(&page, 1);
  4129. set_page_dirty(page);
  4130. mark_page_accessed(page);
  4131. page_cache_release(page);
  4132. }
  4133. }
  4134. drm_agp_chipset_flush(dev);
  4135. obj_priv->phys_obj->cur_obj = NULL;
  4136. obj_priv->phys_obj = NULL;
  4137. }
  4138. int
  4139. i915_gem_attach_phys_object(struct drm_device *dev,
  4140. struct drm_gem_object *obj,
  4141. int id,
  4142. int align)
  4143. {
  4144. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  4145. drm_i915_private_t *dev_priv = dev->dev_private;
  4146. struct drm_i915_gem_object *obj_priv;
  4147. int ret = 0;
  4148. int page_count;
  4149. int i;
  4150. if (id > I915_MAX_PHYS_OBJECT)
  4151. return -EINVAL;
  4152. obj_priv = to_intel_bo(obj);
  4153. if (obj_priv->phys_obj) {
  4154. if (obj_priv->phys_obj->id == id)
  4155. return 0;
  4156. i915_gem_detach_phys_object(dev, obj);
  4157. }
  4158. /* create a new object */
  4159. if (!dev_priv->mm.phys_objs[id - 1]) {
  4160. ret = i915_gem_init_phys_object(dev, id,
  4161. obj->size, align);
  4162. if (ret) {
  4163. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4164. return ret;
  4165. }
  4166. }
  4167. /* bind to the object */
  4168. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4169. obj_priv->phys_obj->cur_obj = obj;
  4170. page_count = obj->size / PAGE_SIZE;
  4171. for (i = 0; i < page_count; i++) {
  4172. struct page *page;
  4173. char *dst, *src;
  4174. page = read_cache_page_gfp(mapping, i,
  4175. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  4176. if (IS_ERR(page))
  4177. return PTR_ERR(page);
  4178. src = kmap_atomic(obj_priv->pages[i]);
  4179. dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4180. memcpy(dst, src, PAGE_SIZE);
  4181. kunmap_atomic(src);
  4182. mark_page_accessed(page);
  4183. page_cache_release(page);
  4184. }
  4185. return 0;
  4186. }
  4187. static int
  4188. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4189. struct drm_i915_gem_pwrite *args,
  4190. struct drm_file *file_priv)
  4191. {
  4192. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4193. void *obj_addr;
  4194. int ret;
  4195. char __user *user_data;
  4196. user_data = (char __user *) (uintptr_t) args->data_ptr;
  4197. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4198. DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
  4199. ret = copy_from_user(obj_addr, user_data, args->size);
  4200. if (ret)
  4201. return -EFAULT;
  4202. drm_agp_chipset_flush(dev);
  4203. return 0;
  4204. }
  4205. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4206. {
  4207. struct drm_i915_file_private *file_priv = file->driver_priv;
  4208. /* Clean up our request list when the client is going away, so that
  4209. * later retire_requests won't dereference our soon-to-be-gone
  4210. * file_priv.
  4211. */
  4212. spin_lock(&file_priv->mm.lock);
  4213. while (!list_empty(&file_priv->mm.request_list)) {
  4214. struct drm_i915_gem_request *request;
  4215. request = list_first_entry(&file_priv->mm.request_list,
  4216. struct drm_i915_gem_request,
  4217. client_list);
  4218. list_del(&request->client_list);
  4219. request->file_priv = NULL;
  4220. }
  4221. spin_unlock(&file_priv->mm.lock);
  4222. }
  4223. static int
  4224. i915_gpu_is_active(struct drm_device *dev)
  4225. {
  4226. drm_i915_private_t *dev_priv = dev->dev_private;
  4227. int lists_empty;
  4228. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4229. list_empty(&dev_priv->mm.active_list);
  4230. return !lists_empty;
  4231. }
  4232. static int
  4233. i915_gem_inactive_shrink(struct shrinker *shrinker,
  4234. int nr_to_scan,
  4235. gfp_t gfp_mask)
  4236. {
  4237. struct drm_i915_private *dev_priv =
  4238. container_of(shrinker,
  4239. struct drm_i915_private,
  4240. mm.inactive_shrinker);
  4241. struct drm_device *dev = dev_priv->dev;
  4242. struct drm_i915_gem_object *obj, *next;
  4243. int cnt;
  4244. if (!mutex_trylock(&dev->struct_mutex))
  4245. return 0;
  4246. /* "fast-path" to count number of available objects */
  4247. if (nr_to_scan == 0) {
  4248. cnt = 0;
  4249. list_for_each_entry(obj,
  4250. &dev_priv->mm.inactive_list,
  4251. mm_list)
  4252. cnt++;
  4253. mutex_unlock(&dev->struct_mutex);
  4254. return cnt / 100 * sysctl_vfs_cache_pressure;
  4255. }
  4256. rescan:
  4257. /* first scan for clean buffers */
  4258. i915_gem_retire_requests(dev);
  4259. list_for_each_entry_safe(obj, next,
  4260. &dev_priv->mm.inactive_list,
  4261. mm_list) {
  4262. if (i915_gem_object_is_purgeable(obj)) {
  4263. i915_gem_object_unbind(&obj->base);
  4264. if (--nr_to_scan == 0)
  4265. break;
  4266. }
  4267. }
  4268. /* second pass, evict/count anything still on the inactive list */
  4269. cnt = 0;
  4270. list_for_each_entry_safe(obj, next,
  4271. &dev_priv->mm.inactive_list,
  4272. mm_list) {
  4273. if (nr_to_scan) {
  4274. i915_gem_object_unbind(&obj->base);
  4275. nr_to_scan--;
  4276. } else
  4277. cnt++;
  4278. }
  4279. if (nr_to_scan && i915_gpu_is_active(dev)) {
  4280. /*
  4281. * We are desperate for pages, so as a last resort, wait
  4282. * for the GPU to finish and discard whatever we can.
  4283. * This has a dramatic impact to reduce the number of
  4284. * OOM-killer events whilst running the GPU aggressively.
  4285. */
  4286. if (i915_gpu_idle(dev) == 0)
  4287. goto rescan;
  4288. }
  4289. mutex_unlock(&dev->struct_mutex);
  4290. return cnt / 100 * sysctl_vfs_cache_pressure;
  4291. }