x86.c 138 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <linux/user-return-notifier.h>
  39. #include <linux/srcu.h>
  40. #include <trace/events/kvm.h>
  41. #undef TRACE_INCLUDE_FILE
  42. #define CREATE_TRACE_POINTS
  43. #include "trace.h"
  44. #include <asm/debugreg.h>
  45. #include <asm/uaccess.h>
  46. #include <asm/msr.h>
  47. #include <asm/desc.h>
  48. #include <asm/mtrr.h>
  49. #include <asm/mce.h>
  50. #define MAX_IO_MSRS 256
  51. #define CR0_RESERVED_BITS \
  52. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  53. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  54. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  55. #define CR4_RESERVED_BITS \
  56. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  57. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  58. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  59. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  60. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  61. #define KVM_MAX_MCE_BANKS 32
  62. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  63. /* EFER defaults:
  64. * - enable syscall per default because its emulated by KVM
  65. * - enable LME and LMA per default on 64 bit KVM
  66. */
  67. #ifdef CONFIG_X86_64
  68. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  69. #else
  70. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  71. #endif
  72. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  73. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  74. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  75. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  76. struct kvm_cpuid_entry2 __user *entries);
  77. struct kvm_x86_ops *kvm_x86_ops;
  78. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  79. int ignore_msrs = 0;
  80. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  81. #define KVM_NR_SHARED_MSRS 16
  82. struct kvm_shared_msrs_global {
  83. int nr;
  84. u32 msrs[KVM_NR_SHARED_MSRS];
  85. };
  86. struct kvm_shared_msrs {
  87. struct user_return_notifier urn;
  88. bool registered;
  89. struct kvm_shared_msr_values {
  90. u64 host;
  91. u64 curr;
  92. } values[KVM_NR_SHARED_MSRS];
  93. };
  94. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  95. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  96. struct kvm_stats_debugfs_item debugfs_entries[] = {
  97. { "pf_fixed", VCPU_STAT(pf_fixed) },
  98. { "pf_guest", VCPU_STAT(pf_guest) },
  99. { "tlb_flush", VCPU_STAT(tlb_flush) },
  100. { "invlpg", VCPU_STAT(invlpg) },
  101. { "exits", VCPU_STAT(exits) },
  102. { "io_exits", VCPU_STAT(io_exits) },
  103. { "mmio_exits", VCPU_STAT(mmio_exits) },
  104. { "signal_exits", VCPU_STAT(signal_exits) },
  105. { "irq_window", VCPU_STAT(irq_window_exits) },
  106. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  107. { "halt_exits", VCPU_STAT(halt_exits) },
  108. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  109. { "hypercalls", VCPU_STAT(hypercalls) },
  110. { "request_irq", VCPU_STAT(request_irq_exits) },
  111. { "irq_exits", VCPU_STAT(irq_exits) },
  112. { "host_state_reload", VCPU_STAT(host_state_reload) },
  113. { "efer_reload", VCPU_STAT(efer_reload) },
  114. { "fpu_reload", VCPU_STAT(fpu_reload) },
  115. { "insn_emulation", VCPU_STAT(insn_emulation) },
  116. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  117. { "irq_injections", VCPU_STAT(irq_injections) },
  118. { "nmi_injections", VCPU_STAT(nmi_injections) },
  119. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  120. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  121. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  122. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  123. { "mmu_flooded", VM_STAT(mmu_flooded) },
  124. { "mmu_recycled", VM_STAT(mmu_recycled) },
  125. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  126. { "mmu_unsync", VM_STAT(mmu_unsync) },
  127. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  128. { "largepages", VM_STAT(lpages) },
  129. { NULL }
  130. };
  131. static void kvm_on_user_return(struct user_return_notifier *urn)
  132. {
  133. unsigned slot;
  134. struct kvm_shared_msrs *locals
  135. = container_of(urn, struct kvm_shared_msrs, urn);
  136. struct kvm_shared_msr_values *values;
  137. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  138. values = &locals->values[slot];
  139. if (values->host != values->curr) {
  140. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  141. values->curr = values->host;
  142. }
  143. }
  144. locals->registered = false;
  145. user_return_notifier_unregister(urn);
  146. }
  147. static void shared_msr_update(unsigned slot, u32 msr)
  148. {
  149. struct kvm_shared_msrs *smsr;
  150. u64 value;
  151. smsr = &__get_cpu_var(shared_msrs);
  152. /* only read, and nobody should modify it at this time,
  153. * so don't need lock */
  154. if (slot >= shared_msrs_global.nr) {
  155. printk(KERN_ERR "kvm: invalid MSR slot!");
  156. return;
  157. }
  158. rdmsrl_safe(msr, &value);
  159. smsr->values[slot].host = value;
  160. smsr->values[slot].curr = value;
  161. }
  162. void kvm_define_shared_msr(unsigned slot, u32 msr)
  163. {
  164. if (slot >= shared_msrs_global.nr)
  165. shared_msrs_global.nr = slot + 1;
  166. shared_msrs_global.msrs[slot] = msr;
  167. /* we need ensured the shared_msr_global have been updated */
  168. smp_wmb();
  169. }
  170. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  171. static void kvm_shared_msr_cpu_online(void)
  172. {
  173. unsigned i;
  174. for (i = 0; i < shared_msrs_global.nr; ++i)
  175. shared_msr_update(i, shared_msrs_global.msrs[i]);
  176. }
  177. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  178. {
  179. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  180. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  181. return;
  182. smsr->values[slot].curr = value;
  183. wrmsrl(shared_msrs_global.msrs[slot], value);
  184. if (!smsr->registered) {
  185. smsr->urn.on_user_return = kvm_on_user_return;
  186. user_return_notifier_register(&smsr->urn);
  187. smsr->registered = true;
  188. }
  189. }
  190. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  191. static void drop_user_return_notifiers(void *ignore)
  192. {
  193. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  194. if (smsr->registered)
  195. kvm_on_user_return(&smsr->urn);
  196. }
  197. unsigned long segment_base(u16 selector)
  198. {
  199. struct descriptor_table gdt;
  200. struct desc_struct *d;
  201. unsigned long table_base;
  202. unsigned long v;
  203. if (selector == 0)
  204. return 0;
  205. kvm_get_gdt(&gdt);
  206. table_base = gdt.base;
  207. if (selector & 4) { /* from ldt */
  208. u16 ldt_selector = kvm_read_ldt();
  209. table_base = segment_base(ldt_selector);
  210. }
  211. d = (struct desc_struct *)(table_base + (selector & ~7));
  212. v = get_desc_base(d);
  213. #ifdef CONFIG_X86_64
  214. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  215. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  216. #endif
  217. return v;
  218. }
  219. EXPORT_SYMBOL_GPL(segment_base);
  220. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  221. {
  222. if (irqchip_in_kernel(vcpu->kvm))
  223. return vcpu->arch.apic_base;
  224. else
  225. return vcpu->arch.apic_base;
  226. }
  227. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  228. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  229. {
  230. /* TODO: reserve bits check */
  231. if (irqchip_in_kernel(vcpu->kvm))
  232. kvm_lapic_set_base(vcpu, data);
  233. else
  234. vcpu->arch.apic_base = data;
  235. }
  236. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  237. #define EXCPT_BENIGN 0
  238. #define EXCPT_CONTRIBUTORY 1
  239. #define EXCPT_PF 2
  240. static int exception_class(int vector)
  241. {
  242. switch (vector) {
  243. case PF_VECTOR:
  244. return EXCPT_PF;
  245. case DE_VECTOR:
  246. case TS_VECTOR:
  247. case NP_VECTOR:
  248. case SS_VECTOR:
  249. case GP_VECTOR:
  250. return EXCPT_CONTRIBUTORY;
  251. default:
  252. break;
  253. }
  254. return EXCPT_BENIGN;
  255. }
  256. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  257. unsigned nr, bool has_error, u32 error_code)
  258. {
  259. u32 prev_nr;
  260. int class1, class2;
  261. if (!vcpu->arch.exception.pending) {
  262. queue:
  263. vcpu->arch.exception.pending = true;
  264. vcpu->arch.exception.has_error_code = has_error;
  265. vcpu->arch.exception.nr = nr;
  266. vcpu->arch.exception.error_code = error_code;
  267. return;
  268. }
  269. /* to check exception */
  270. prev_nr = vcpu->arch.exception.nr;
  271. if (prev_nr == DF_VECTOR) {
  272. /* triple fault -> shutdown */
  273. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  274. return;
  275. }
  276. class1 = exception_class(prev_nr);
  277. class2 = exception_class(nr);
  278. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  279. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  280. /* generate double fault per SDM Table 5-5 */
  281. vcpu->arch.exception.pending = true;
  282. vcpu->arch.exception.has_error_code = true;
  283. vcpu->arch.exception.nr = DF_VECTOR;
  284. vcpu->arch.exception.error_code = 0;
  285. } else
  286. /* replace previous exception with a new one in a hope
  287. that instruction re-execution will regenerate lost
  288. exception */
  289. goto queue;
  290. }
  291. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  292. {
  293. kvm_multiple_exception(vcpu, nr, false, 0);
  294. }
  295. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  296. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  297. u32 error_code)
  298. {
  299. ++vcpu->stat.pf_guest;
  300. vcpu->arch.cr2 = addr;
  301. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  302. }
  303. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  304. {
  305. vcpu->arch.nmi_pending = 1;
  306. }
  307. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  308. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  309. {
  310. kvm_multiple_exception(vcpu, nr, true, error_code);
  311. }
  312. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  313. /*
  314. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  315. * a #GP and return false.
  316. */
  317. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  318. {
  319. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  320. return true;
  321. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  322. return false;
  323. }
  324. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  325. /*
  326. * Load the pae pdptrs. Return true is they are all valid.
  327. */
  328. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  329. {
  330. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  331. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  332. int i;
  333. int ret;
  334. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  335. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  336. offset * sizeof(u64), sizeof(pdpte));
  337. if (ret < 0) {
  338. ret = 0;
  339. goto out;
  340. }
  341. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  342. if (is_present_gpte(pdpte[i]) &&
  343. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  344. ret = 0;
  345. goto out;
  346. }
  347. }
  348. ret = 1;
  349. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  350. __set_bit(VCPU_EXREG_PDPTR,
  351. (unsigned long *)&vcpu->arch.regs_avail);
  352. __set_bit(VCPU_EXREG_PDPTR,
  353. (unsigned long *)&vcpu->arch.regs_dirty);
  354. out:
  355. return ret;
  356. }
  357. EXPORT_SYMBOL_GPL(load_pdptrs);
  358. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  359. {
  360. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  361. bool changed = true;
  362. int r;
  363. if (is_long_mode(vcpu) || !is_pae(vcpu))
  364. return false;
  365. if (!test_bit(VCPU_EXREG_PDPTR,
  366. (unsigned long *)&vcpu->arch.regs_avail))
  367. return true;
  368. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  369. if (r < 0)
  370. goto out;
  371. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  372. out:
  373. return changed;
  374. }
  375. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  376. {
  377. cr0 |= X86_CR0_ET;
  378. #ifdef CONFIG_X86_64
  379. if (cr0 & 0xffffffff00000000UL) {
  380. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  381. cr0, kvm_read_cr0(vcpu));
  382. kvm_inject_gp(vcpu, 0);
  383. return;
  384. }
  385. #endif
  386. cr0 &= ~CR0_RESERVED_BITS;
  387. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  388. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  389. kvm_inject_gp(vcpu, 0);
  390. return;
  391. }
  392. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  393. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  394. "and a clear PE flag\n");
  395. kvm_inject_gp(vcpu, 0);
  396. return;
  397. }
  398. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  399. #ifdef CONFIG_X86_64
  400. if ((vcpu->arch.efer & EFER_LME)) {
  401. int cs_db, cs_l;
  402. if (!is_pae(vcpu)) {
  403. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  404. "in long mode while PAE is disabled\n");
  405. kvm_inject_gp(vcpu, 0);
  406. return;
  407. }
  408. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  409. if (cs_l) {
  410. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  411. "in long mode while CS.L == 1\n");
  412. kvm_inject_gp(vcpu, 0);
  413. return;
  414. }
  415. } else
  416. #endif
  417. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  418. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  419. "reserved bits\n");
  420. kvm_inject_gp(vcpu, 0);
  421. return;
  422. }
  423. }
  424. kvm_x86_ops->set_cr0(vcpu, cr0);
  425. vcpu->arch.cr0 = cr0;
  426. kvm_mmu_reset_context(vcpu);
  427. return;
  428. }
  429. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  430. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  431. {
  432. kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0ful) | (msw & 0x0f));
  433. }
  434. EXPORT_SYMBOL_GPL(kvm_lmsw);
  435. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  436. {
  437. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  438. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  439. if (cr4 & CR4_RESERVED_BITS) {
  440. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  441. kvm_inject_gp(vcpu, 0);
  442. return;
  443. }
  444. if (is_long_mode(vcpu)) {
  445. if (!(cr4 & X86_CR4_PAE)) {
  446. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  447. "in long mode\n");
  448. kvm_inject_gp(vcpu, 0);
  449. return;
  450. }
  451. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  452. && ((cr4 ^ old_cr4) & pdptr_bits)
  453. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  454. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  455. kvm_inject_gp(vcpu, 0);
  456. return;
  457. }
  458. if (cr4 & X86_CR4_VMXE) {
  459. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  460. kvm_inject_gp(vcpu, 0);
  461. return;
  462. }
  463. kvm_x86_ops->set_cr4(vcpu, cr4);
  464. vcpu->arch.cr4 = cr4;
  465. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  466. kvm_mmu_reset_context(vcpu);
  467. }
  468. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  469. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  470. {
  471. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  472. kvm_mmu_sync_roots(vcpu);
  473. kvm_mmu_flush_tlb(vcpu);
  474. return;
  475. }
  476. if (is_long_mode(vcpu)) {
  477. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  478. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  479. kvm_inject_gp(vcpu, 0);
  480. return;
  481. }
  482. } else {
  483. if (is_pae(vcpu)) {
  484. if (cr3 & CR3_PAE_RESERVED_BITS) {
  485. printk(KERN_DEBUG
  486. "set_cr3: #GP, reserved bits\n");
  487. kvm_inject_gp(vcpu, 0);
  488. return;
  489. }
  490. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  491. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  492. "reserved bits\n");
  493. kvm_inject_gp(vcpu, 0);
  494. return;
  495. }
  496. }
  497. /*
  498. * We don't check reserved bits in nonpae mode, because
  499. * this isn't enforced, and VMware depends on this.
  500. */
  501. }
  502. /*
  503. * Does the new cr3 value map to physical memory? (Note, we
  504. * catch an invalid cr3 even in real-mode, because it would
  505. * cause trouble later on when we turn on paging anyway.)
  506. *
  507. * A real CPU would silently accept an invalid cr3 and would
  508. * attempt to use it - with largely undefined (and often hard
  509. * to debug) behavior on the guest side.
  510. */
  511. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  512. kvm_inject_gp(vcpu, 0);
  513. else {
  514. vcpu->arch.cr3 = cr3;
  515. vcpu->arch.mmu.new_cr3(vcpu);
  516. }
  517. }
  518. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  519. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  520. {
  521. if (cr8 & CR8_RESERVED_BITS) {
  522. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  523. kvm_inject_gp(vcpu, 0);
  524. return;
  525. }
  526. if (irqchip_in_kernel(vcpu->kvm))
  527. kvm_lapic_set_tpr(vcpu, cr8);
  528. else
  529. vcpu->arch.cr8 = cr8;
  530. }
  531. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  532. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  533. {
  534. if (irqchip_in_kernel(vcpu->kvm))
  535. return kvm_lapic_get_cr8(vcpu);
  536. else
  537. return vcpu->arch.cr8;
  538. }
  539. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  540. static inline u32 bit(int bitno)
  541. {
  542. return 1 << (bitno & 31);
  543. }
  544. /*
  545. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  546. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  547. *
  548. * This list is modified at module load time to reflect the
  549. * capabilities of the host cpu. This capabilities test skips MSRs that are
  550. * kvm-specific. Those are put in the beginning of the list.
  551. */
  552. #define KVM_SAVE_MSRS_BEGIN 5
  553. static u32 msrs_to_save[] = {
  554. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  555. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  556. HV_X64_MSR_APIC_ASSIST_PAGE,
  557. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  558. MSR_K6_STAR,
  559. #ifdef CONFIG_X86_64
  560. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  561. #endif
  562. MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  563. };
  564. static unsigned num_msrs_to_save;
  565. static u32 emulated_msrs[] = {
  566. MSR_IA32_MISC_ENABLE,
  567. };
  568. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  569. {
  570. if (efer & efer_reserved_bits) {
  571. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  572. efer);
  573. kvm_inject_gp(vcpu, 0);
  574. return;
  575. }
  576. if (is_paging(vcpu)
  577. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) {
  578. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  579. kvm_inject_gp(vcpu, 0);
  580. return;
  581. }
  582. if (efer & EFER_FFXSR) {
  583. struct kvm_cpuid_entry2 *feat;
  584. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  585. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  586. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  587. kvm_inject_gp(vcpu, 0);
  588. return;
  589. }
  590. }
  591. if (efer & EFER_SVME) {
  592. struct kvm_cpuid_entry2 *feat;
  593. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  594. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  595. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  596. kvm_inject_gp(vcpu, 0);
  597. return;
  598. }
  599. }
  600. kvm_x86_ops->set_efer(vcpu, efer);
  601. efer &= ~EFER_LMA;
  602. efer |= vcpu->arch.efer & EFER_LMA;
  603. vcpu->arch.efer = efer;
  604. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  605. kvm_mmu_reset_context(vcpu);
  606. }
  607. void kvm_enable_efer_bits(u64 mask)
  608. {
  609. efer_reserved_bits &= ~mask;
  610. }
  611. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  612. /*
  613. * Writes msr value into into the appropriate "register".
  614. * Returns 0 on success, non-0 otherwise.
  615. * Assumes vcpu_load() was already called.
  616. */
  617. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  618. {
  619. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  620. }
  621. /*
  622. * Adapt set_msr() to msr_io()'s calling convention
  623. */
  624. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  625. {
  626. return kvm_set_msr(vcpu, index, *data);
  627. }
  628. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  629. {
  630. static int version;
  631. struct pvclock_wall_clock wc;
  632. struct timespec boot;
  633. if (!wall_clock)
  634. return;
  635. version++;
  636. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  637. /*
  638. * The guest calculates current wall clock time by adding
  639. * system time (updated by kvm_write_guest_time below) to the
  640. * wall clock specified here. guest system time equals host
  641. * system time for us, thus we must fill in host boot time here.
  642. */
  643. getboottime(&boot);
  644. wc.sec = boot.tv_sec;
  645. wc.nsec = boot.tv_nsec;
  646. wc.version = version;
  647. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  648. version++;
  649. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  650. }
  651. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  652. {
  653. uint32_t quotient, remainder;
  654. /* Don't try to replace with do_div(), this one calculates
  655. * "(dividend << 32) / divisor" */
  656. __asm__ ( "divl %4"
  657. : "=a" (quotient), "=d" (remainder)
  658. : "0" (0), "1" (dividend), "r" (divisor) );
  659. return quotient;
  660. }
  661. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  662. {
  663. uint64_t nsecs = 1000000000LL;
  664. int32_t shift = 0;
  665. uint64_t tps64;
  666. uint32_t tps32;
  667. tps64 = tsc_khz * 1000LL;
  668. while (tps64 > nsecs*2) {
  669. tps64 >>= 1;
  670. shift--;
  671. }
  672. tps32 = (uint32_t)tps64;
  673. while (tps32 <= (uint32_t)nsecs) {
  674. tps32 <<= 1;
  675. shift++;
  676. }
  677. hv_clock->tsc_shift = shift;
  678. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  679. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  680. __func__, tsc_khz, hv_clock->tsc_shift,
  681. hv_clock->tsc_to_system_mul);
  682. }
  683. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  684. static void kvm_write_guest_time(struct kvm_vcpu *v)
  685. {
  686. struct timespec ts;
  687. unsigned long flags;
  688. struct kvm_vcpu_arch *vcpu = &v->arch;
  689. void *shared_kaddr;
  690. unsigned long this_tsc_khz;
  691. if ((!vcpu->time_page))
  692. return;
  693. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  694. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  695. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  696. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  697. }
  698. put_cpu_var(cpu_tsc_khz);
  699. /* Keep irq disabled to prevent changes to the clock */
  700. local_irq_save(flags);
  701. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  702. ktime_get_ts(&ts);
  703. monotonic_to_bootbased(&ts);
  704. local_irq_restore(flags);
  705. /* With all the info we got, fill in the values */
  706. vcpu->hv_clock.system_time = ts.tv_nsec +
  707. (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
  708. /*
  709. * The interface expects us to write an even number signaling that the
  710. * update is finished. Since the guest won't see the intermediate
  711. * state, we just increase by 2 at the end.
  712. */
  713. vcpu->hv_clock.version += 2;
  714. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  715. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  716. sizeof(vcpu->hv_clock));
  717. kunmap_atomic(shared_kaddr, KM_USER0);
  718. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  719. }
  720. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  721. {
  722. struct kvm_vcpu_arch *vcpu = &v->arch;
  723. if (!vcpu->time_page)
  724. return 0;
  725. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  726. return 1;
  727. }
  728. static bool msr_mtrr_valid(unsigned msr)
  729. {
  730. switch (msr) {
  731. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  732. case MSR_MTRRfix64K_00000:
  733. case MSR_MTRRfix16K_80000:
  734. case MSR_MTRRfix16K_A0000:
  735. case MSR_MTRRfix4K_C0000:
  736. case MSR_MTRRfix4K_C8000:
  737. case MSR_MTRRfix4K_D0000:
  738. case MSR_MTRRfix4K_D8000:
  739. case MSR_MTRRfix4K_E0000:
  740. case MSR_MTRRfix4K_E8000:
  741. case MSR_MTRRfix4K_F0000:
  742. case MSR_MTRRfix4K_F8000:
  743. case MSR_MTRRdefType:
  744. case MSR_IA32_CR_PAT:
  745. return true;
  746. case 0x2f8:
  747. return true;
  748. }
  749. return false;
  750. }
  751. static bool valid_pat_type(unsigned t)
  752. {
  753. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  754. }
  755. static bool valid_mtrr_type(unsigned t)
  756. {
  757. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  758. }
  759. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  760. {
  761. int i;
  762. if (!msr_mtrr_valid(msr))
  763. return false;
  764. if (msr == MSR_IA32_CR_PAT) {
  765. for (i = 0; i < 8; i++)
  766. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  767. return false;
  768. return true;
  769. } else if (msr == MSR_MTRRdefType) {
  770. if (data & ~0xcff)
  771. return false;
  772. return valid_mtrr_type(data & 0xff);
  773. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  774. for (i = 0; i < 8 ; i++)
  775. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  776. return false;
  777. return true;
  778. }
  779. /* variable MTRRs */
  780. return valid_mtrr_type(data & 0xff);
  781. }
  782. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  783. {
  784. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  785. if (!mtrr_valid(vcpu, msr, data))
  786. return 1;
  787. if (msr == MSR_MTRRdefType) {
  788. vcpu->arch.mtrr_state.def_type = data;
  789. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  790. } else if (msr == MSR_MTRRfix64K_00000)
  791. p[0] = data;
  792. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  793. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  794. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  795. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  796. else if (msr == MSR_IA32_CR_PAT)
  797. vcpu->arch.pat = data;
  798. else { /* Variable MTRRs */
  799. int idx, is_mtrr_mask;
  800. u64 *pt;
  801. idx = (msr - 0x200) / 2;
  802. is_mtrr_mask = msr - 0x200 - 2 * idx;
  803. if (!is_mtrr_mask)
  804. pt =
  805. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  806. else
  807. pt =
  808. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  809. *pt = data;
  810. }
  811. kvm_mmu_reset_context(vcpu);
  812. return 0;
  813. }
  814. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  815. {
  816. u64 mcg_cap = vcpu->arch.mcg_cap;
  817. unsigned bank_num = mcg_cap & 0xff;
  818. switch (msr) {
  819. case MSR_IA32_MCG_STATUS:
  820. vcpu->arch.mcg_status = data;
  821. break;
  822. case MSR_IA32_MCG_CTL:
  823. if (!(mcg_cap & MCG_CTL_P))
  824. return 1;
  825. if (data != 0 && data != ~(u64)0)
  826. return -1;
  827. vcpu->arch.mcg_ctl = data;
  828. break;
  829. default:
  830. if (msr >= MSR_IA32_MC0_CTL &&
  831. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  832. u32 offset = msr - MSR_IA32_MC0_CTL;
  833. /* only 0 or all 1s can be written to IA32_MCi_CTL */
  834. if ((offset & 0x3) == 0 &&
  835. data != 0 && data != ~(u64)0)
  836. return -1;
  837. vcpu->arch.mce_banks[offset] = data;
  838. break;
  839. }
  840. return 1;
  841. }
  842. return 0;
  843. }
  844. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  845. {
  846. struct kvm *kvm = vcpu->kvm;
  847. int lm = is_long_mode(vcpu);
  848. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  849. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  850. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  851. : kvm->arch.xen_hvm_config.blob_size_32;
  852. u32 page_num = data & ~PAGE_MASK;
  853. u64 page_addr = data & PAGE_MASK;
  854. u8 *page;
  855. int r;
  856. r = -E2BIG;
  857. if (page_num >= blob_size)
  858. goto out;
  859. r = -ENOMEM;
  860. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  861. if (!page)
  862. goto out;
  863. r = -EFAULT;
  864. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  865. goto out_free;
  866. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  867. goto out_free;
  868. r = 0;
  869. out_free:
  870. kfree(page);
  871. out:
  872. return r;
  873. }
  874. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  875. {
  876. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  877. }
  878. static bool kvm_hv_msr_partition_wide(u32 msr)
  879. {
  880. bool r = false;
  881. switch (msr) {
  882. case HV_X64_MSR_GUEST_OS_ID:
  883. case HV_X64_MSR_HYPERCALL:
  884. r = true;
  885. break;
  886. }
  887. return r;
  888. }
  889. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  890. {
  891. struct kvm *kvm = vcpu->kvm;
  892. switch (msr) {
  893. case HV_X64_MSR_GUEST_OS_ID:
  894. kvm->arch.hv_guest_os_id = data;
  895. /* setting guest os id to zero disables hypercall page */
  896. if (!kvm->arch.hv_guest_os_id)
  897. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  898. break;
  899. case HV_X64_MSR_HYPERCALL: {
  900. u64 gfn;
  901. unsigned long addr;
  902. u8 instructions[4];
  903. /* if guest os id is not set hypercall should remain disabled */
  904. if (!kvm->arch.hv_guest_os_id)
  905. break;
  906. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  907. kvm->arch.hv_hypercall = data;
  908. break;
  909. }
  910. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  911. addr = gfn_to_hva(kvm, gfn);
  912. if (kvm_is_error_hva(addr))
  913. return 1;
  914. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  915. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  916. if (copy_to_user((void __user *)addr, instructions, 4))
  917. return 1;
  918. kvm->arch.hv_hypercall = data;
  919. break;
  920. }
  921. default:
  922. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  923. "data 0x%llx\n", msr, data);
  924. return 1;
  925. }
  926. return 0;
  927. }
  928. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  929. {
  930. switch (msr) {
  931. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  932. unsigned long addr;
  933. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  934. vcpu->arch.hv_vapic = data;
  935. break;
  936. }
  937. addr = gfn_to_hva(vcpu->kvm, data >>
  938. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  939. if (kvm_is_error_hva(addr))
  940. return 1;
  941. if (clear_user((void __user *)addr, PAGE_SIZE))
  942. return 1;
  943. vcpu->arch.hv_vapic = data;
  944. break;
  945. }
  946. case HV_X64_MSR_EOI:
  947. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  948. case HV_X64_MSR_ICR:
  949. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  950. case HV_X64_MSR_TPR:
  951. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  952. default:
  953. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  954. "data 0x%llx\n", msr, data);
  955. return 1;
  956. }
  957. return 0;
  958. }
  959. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  960. {
  961. switch (msr) {
  962. case MSR_EFER:
  963. set_efer(vcpu, data);
  964. break;
  965. case MSR_K7_HWCR:
  966. data &= ~(u64)0x40; /* ignore flush filter disable */
  967. if (data != 0) {
  968. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  969. data);
  970. return 1;
  971. }
  972. break;
  973. case MSR_FAM10H_MMIO_CONF_BASE:
  974. if (data != 0) {
  975. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  976. "0x%llx\n", data);
  977. return 1;
  978. }
  979. break;
  980. case MSR_AMD64_NB_CFG:
  981. break;
  982. case MSR_IA32_DEBUGCTLMSR:
  983. if (!data) {
  984. /* We support the non-activated case already */
  985. break;
  986. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  987. /* Values other than LBR and BTF are vendor-specific,
  988. thus reserved and should throw a #GP */
  989. return 1;
  990. }
  991. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  992. __func__, data);
  993. break;
  994. case MSR_IA32_UCODE_REV:
  995. case MSR_IA32_UCODE_WRITE:
  996. case MSR_VM_HSAVE_PA:
  997. case MSR_AMD64_PATCH_LOADER:
  998. break;
  999. case 0x200 ... 0x2ff:
  1000. return set_msr_mtrr(vcpu, msr, data);
  1001. case MSR_IA32_APICBASE:
  1002. kvm_set_apic_base(vcpu, data);
  1003. break;
  1004. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1005. return kvm_x2apic_msr_write(vcpu, msr, data);
  1006. case MSR_IA32_MISC_ENABLE:
  1007. vcpu->arch.ia32_misc_enable_msr = data;
  1008. break;
  1009. case MSR_KVM_WALL_CLOCK:
  1010. vcpu->kvm->arch.wall_clock = data;
  1011. kvm_write_wall_clock(vcpu->kvm, data);
  1012. break;
  1013. case MSR_KVM_SYSTEM_TIME: {
  1014. if (vcpu->arch.time_page) {
  1015. kvm_release_page_dirty(vcpu->arch.time_page);
  1016. vcpu->arch.time_page = NULL;
  1017. }
  1018. vcpu->arch.time = data;
  1019. /* we verify if the enable bit is set... */
  1020. if (!(data & 1))
  1021. break;
  1022. /* ...but clean it before doing the actual write */
  1023. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  1024. vcpu->arch.time_page =
  1025. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  1026. if (is_error_page(vcpu->arch.time_page)) {
  1027. kvm_release_page_clean(vcpu->arch.time_page);
  1028. vcpu->arch.time_page = NULL;
  1029. }
  1030. kvm_request_guest_time_update(vcpu);
  1031. break;
  1032. }
  1033. case MSR_IA32_MCG_CTL:
  1034. case MSR_IA32_MCG_STATUS:
  1035. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1036. return set_msr_mce(vcpu, msr, data);
  1037. /* Performance counters are not protected by a CPUID bit,
  1038. * so we should check all of them in the generic path for the sake of
  1039. * cross vendor migration.
  1040. * Writing a zero into the event select MSRs disables them,
  1041. * which we perfectly emulate ;-). Any other value should be at least
  1042. * reported, some guests depend on them.
  1043. */
  1044. case MSR_P6_EVNTSEL0:
  1045. case MSR_P6_EVNTSEL1:
  1046. case MSR_K7_EVNTSEL0:
  1047. case MSR_K7_EVNTSEL1:
  1048. case MSR_K7_EVNTSEL2:
  1049. case MSR_K7_EVNTSEL3:
  1050. if (data != 0)
  1051. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1052. "0x%x data 0x%llx\n", msr, data);
  1053. break;
  1054. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1055. * so we ignore writes to make it happy.
  1056. */
  1057. case MSR_P6_PERFCTR0:
  1058. case MSR_P6_PERFCTR1:
  1059. case MSR_K7_PERFCTR0:
  1060. case MSR_K7_PERFCTR1:
  1061. case MSR_K7_PERFCTR2:
  1062. case MSR_K7_PERFCTR3:
  1063. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1064. "0x%x data 0x%llx\n", msr, data);
  1065. break;
  1066. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1067. if (kvm_hv_msr_partition_wide(msr)) {
  1068. int r;
  1069. mutex_lock(&vcpu->kvm->lock);
  1070. r = set_msr_hyperv_pw(vcpu, msr, data);
  1071. mutex_unlock(&vcpu->kvm->lock);
  1072. return r;
  1073. } else
  1074. return set_msr_hyperv(vcpu, msr, data);
  1075. break;
  1076. default:
  1077. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1078. return xen_hvm_config(vcpu, data);
  1079. if (!ignore_msrs) {
  1080. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1081. msr, data);
  1082. return 1;
  1083. } else {
  1084. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1085. msr, data);
  1086. break;
  1087. }
  1088. }
  1089. return 0;
  1090. }
  1091. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1092. /*
  1093. * Reads an msr value (of 'msr_index') into 'pdata'.
  1094. * Returns 0 on success, non-0 otherwise.
  1095. * Assumes vcpu_load() was already called.
  1096. */
  1097. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1098. {
  1099. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1100. }
  1101. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1102. {
  1103. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1104. if (!msr_mtrr_valid(msr))
  1105. return 1;
  1106. if (msr == MSR_MTRRdefType)
  1107. *pdata = vcpu->arch.mtrr_state.def_type +
  1108. (vcpu->arch.mtrr_state.enabled << 10);
  1109. else if (msr == MSR_MTRRfix64K_00000)
  1110. *pdata = p[0];
  1111. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1112. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1113. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1114. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1115. else if (msr == MSR_IA32_CR_PAT)
  1116. *pdata = vcpu->arch.pat;
  1117. else { /* Variable MTRRs */
  1118. int idx, is_mtrr_mask;
  1119. u64 *pt;
  1120. idx = (msr - 0x200) / 2;
  1121. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1122. if (!is_mtrr_mask)
  1123. pt =
  1124. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1125. else
  1126. pt =
  1127. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1128. *pdata = *pt;
  1129. }
  1130. return 0;
  1131. }
  1132. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1133. {
  1134. u64 data;
  1135. u64 mcg_cap = vcpu->arch.mcg_cap;
  1136. unsigned bank_num = mcg_cap & 0xff;
  1137. switch (msr) {
  1138. case MSR_IA32_P5_MC_ADDR:
  1139. case MSR_IA32_P5_MC_TYPE:
  1140. data = 0;
  1141. break;
  1142. case MSR_IA32_MCG_CAP:
  1143. data = vcpu->arch.mcg_cap;
  1144. break;
  1145. case MSR_IA32_MCG_CTL:
  1146. if (!(mcg_cap & MCG_CTL_P))
  1147. return 1;
  1148. data = vcpu->arch.mcg_ctl;
  1149. break;
  1150. case MSR_IA32_MCG_STATUS:
  1151. data = vcpu->arch.mcg_status;
  1152. break;
  1153. default:
  1154. if (msr >= MSR_IA32_MC0_CTL &&
  1155. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1156. u32 offset = msr - MSR_IA32_MC0_CTL;
  1157. data = vcpu->arch.mce_banks[offset];
  1158. break;
  1159. }
  1160. return 1;
  1161. }
  1162. *pdata = data;
  1163. return 0;
  1164. }
  1165. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1166. {
  1167. u64 data = 0;
  1168. struct kvm *kvm = vcpu->kvm;
  1169. switch (msr) {
  1170. case HV_X64_MSR_GUEST_OS_ID:
  1171. data = kvm->arch.hv_guest_os_id;
  1172. break;
  1173. case HV_X64_MSR_HYPERCALL:
  1174. data = kvm->arch.hv_hypercall;
  1175. break;
  1176. default:
  1177. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1178. return 1;
  1179. }
  1180. *pdata = data;
  1181. return 0;
  1182. }
  1183. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1184. {
  1185. u64 data = 0;
  1186. switch (msr) {
  1187. case HV_X64_MSR_VP_INDEX: {
  1188. int r;
  1189. struct kvm_vcpu *v;
  1190. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1191. if (v == vcpu)
  1192. data = r;
  1193. break;
  1194. }
  1195. case HV_X64_MSR_EOI:
  1196. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1197. case HV_X64_MSR_ICR:
  1198. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1199. case HV_X64_MSR_TPR:
  1200. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1201. default:
  1202. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1203. return 1;
  1204. }
  1205. *pdata = data;
  1206. return 0;
  1207. }
  1208. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1209. {
  1210. u64 data;
  1211. switch (msr) {
  1212. case MSR_IA32_PLATFORM_ID:
  1213. case MSR_IA32_UCODE_REV:
  1214. case MSR_IA32_EBL_CR_POWERON:
  1215. case MSR_IA32_DEBUGCTLMSR:
  1216. case MSR_IA32_LASTBRANCHFROMIP:
  1217. case MSR_IA32_LASTBRANCHTOIP:
  1218. case MSR_IA32_LASTINTFROMIP:
  1219. case MSR_IA32_LASTINTTOIP:
  1220. case MSR_K8_SYSCFG:
  1221. case MSR_K7_HWCR:
  1222. case MSR_VM_HSAVE_PA:
  1223. case MSR_P6_PERFCTR0:
  1224. case MSR_P6_PERFCTR1:
  1225. case MSR_P6_EVNTSEL0:
  1226. case MSR_P6_EVNTSEL1:
  1227. case MSR_K7_EVNTSEL0:
  1228. case MSR_K7_PERFCTR0:
  1229. case MSR_K8_INT_PENDING_MSG:
  1230. case MSR_AMD64_NB_CFG:
  1231. case MSR_FAM10H_MMIO_CONF_BASE:
  1232. data = 0;
  1233. break;
  1234. case MSR_MTRRcap:
  1235. data = 0x500 | KVM_NR_VAR_MTRR;
  1236. break;
  1237. case 0x200 ... 0x2ff:
  1238. return get_msr_mtrr(vcpu, msr, pdata);
  1239. case 0xcd: /* fsb frequency */
  1240. data = 3;
  1241. break;
  1242. case MSR_IA32_APICBASE:
  1243. data = kvm_get_apic_base(vcpu);
  1244. break;
  1245. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1246. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1247. break;
  1248. case MSR_IA32_MISC_ENABLE:
  1249. data = vcpu->arch.ia32_misc_enable_msr;
  1250. break;
  1251. case MSR_IA32_PERF_STATUS:
  1252. /* TSC increment by tick */
  1253. data = 1000ULL;
  1254. /* CPU multiplier */
  1255. data |= (((uint64_t)4ULL) << 40);
  1256. break;
  1257. case MSR_EFER:
  1258. data = vcpu->arch.efer;
  1259. break;
  1260. case MSR_KVM_WALL_CLOCK:
  1261. data = vcpu->kvm->arch.wall_clock;
  1262. break;
  1263. case MSR_KVM_SYSTEM_TIME:
  1264. data = vcpu->arch.time;
  1265. break;
  1266. case MSR_IA32_P5_MC_ADDR:
  1267. case MSR_IA32_P5_MC_TYPE:
  1268. case MSR_IA32_MCG_CAP:
  1269. case MSR_IA32_MCG_CTL:
  1270. case MSR_IA32_MCG_STATUS:
  1271. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1272. return get_msr_mce(vcpu, msr, pdata);
  1273. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1274. if (kvm_hv_msr_partition_wide(msr)) {
  1275. int r;
  1276. mutex_lock(&vcpu->kvm->lock);
  1277. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  1278. mutex_unlock(&vcpu->kvm->lock);
  1279. return r;
  1280. } else
  1281. return get_msr_hyperv(vcpu, msr, pdata);
  1282. break;
  1283. default:
  1284. if (!ignore_msrs) {
  1285. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1286. return 1;
  1287. } else {
  1288. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1289. data = 0;
  1290. }
  1291. break;
  1292. }
  1293. *pdata = data;
  1294. return 0;
  1295. }
  1296. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1297. /*
  1298. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1299. *
  1300. * @return number of msrs set successfully.
  1301. */
  1302. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1303. struct kvm_msr_entry *entries,
  1304. int (*do_msr)(struct kvm_vcpu *vcpu,
  1305. unsigned index, u64 *data))
  1306. {
  1307. int i, idx;
  1308. vcpu_load(vcpu);
  1309. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1310. for (i = 0; i < msrs->nmsrs; ++i)
  1311. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1312. break;
  1313. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1314. vcpu_put(vcpu);
  1315. return i;
  1316. }
  1317. /*
  1318. * Read or write a bunch of msrs. Parameters are user addresses.
  1319. *
  1320. * @return number of msrs set successfully.
  1321. */
  1322. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1323. int (*do_msr)(struct kvm_vcpu *vcpu,
  1324. unsigned index, u64 *data),
  1325. int writeback)
  1326. {
  1327. struct kvm_msrs msrs;
  1328. struct kvm_msr_entry *entries;
  1329. int r, n;
  1330. unsigned size;
  1331. r = -EFAULT;
  1332. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1333. goto out;
  1334. r = -E2BIG;
  1335. if (msrs.nmsrs >= MAX_IO_MSRS)
  1336. goto out;
  1337. r = -ENOMEM;
  1338. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1339. entries = vmalloc(size);
  1340. if (!entries)
  1341. goto out;
  1342. r = -EFAULT;
  1343. if (copy_from_user(entries, user_msrs->entries, size))
  1344. goto out_free;
  1345. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1346. if (r < 0)
  1347. goto out_free;
  1348. r = -EFAULT;
  1349. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1350. goto out_free;
  1351. r = n;
  1352. out_free:
  1353. vfree(entries);
  1354. out:
  1355. return r;
  1356. }
  1357. int kvm_dev_ioctl_check_extension(long ext)
  1358. {
  1359. int r;
  1360. switch (ext) {
  1361. case KVM_CAP_IRQCHIP:
  1362. case KVM_CAP_HLT:
  1363. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1364. case KVM_CAP_SET_TSS_ADDR:
  1365. case KVM_CAP_EXT_CPUID:
  1366. case KVM_CAP_CLOCKSOURCE:
  1367. case KVM_CAP_PIT:
  1368. case KVM_CAP_NOP_IO_DELAY:
  1369. case KVM_CAP_MP_STATE:
  1370. case KVM_CAP_SYNC_MMU:
  1371. case KVM_CAP_REINJECT_CONTROL:
  1372. case KVM_CAP_IRQ_INJECT_STATUS:
  1373. case KVM_CAP_ASSIGN_DEV_IRQ:
  1374. case KVM_CAP_IRQFD:
  1375. case KVM_CAP_IOEVENTFD:
  1376. case KVM_CAP_PIT2:
  1377. case KVM_CAP_PIT_STATE2:
  1378. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1379. case KVM_CAP_XEN_HVM:
  1380. case KVM_CAP_ADJUST_CLOCK:
  1381. case KVM_CAP_VCPU_EVENTS:
  1382. case KVM_CAP_HYPERV:
  1383. case KVM_CAP_HYPERV_VAPIC:
  1384. case KVM_CAP_HYPERV_SPIN:
  1385. case KVM_CAP_PCI_SEGMENT:
  1386. r = 1;
  1387. break;
  1388. case KVM_CAP_COALESCED_MMIO:
  1389. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1390. break;
  1391. case KVM_CAP_VAPIC:
  1392. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1393. break;
  1394. case KVM_CAP_NR_VCPUS:
  1395. r = KVM_MAX_VCPUS;
  1396. break;
  1397. case KVM_CAP_NR_MEMSLOTS:
  1398. r = KVM_MEMORY_SLOTS;
  1399. break;
  1400. case KVM_CAP_PV_MMU: /* obsolete */
  1401. r = 0;
  1402. break;
  1403. case KVM_CAP_IOMMU:
  1404. r = iommu_found();
  1405. break;
  1406. case KVM_CAP_MCE:
  1407. r = KVM_MAX_MCE_BANKS;
  1408. break;
  1409. default:
  1410. r = 0;
  1411. break;
  1412. }
  1413. return r;
  1414. }
  1415. long kvm_arch_dev_ioctl(struct file *filp,
  1416. unsigned int ioctl, unsigned long arg)
  1417. {
  1418. void __user *argp = (void __user *)arg;
  1419. long r;
  1420. switch (ioctl) {
  1421. case KVM_GET_MSR_INDEX_LIST: {
  1422. struct kvm_msr_list __user *user_msr_list = argp;
  1423. struct kvm_msr_list msr_list;
  1424. unsigned n;
  1425. r = -EFAULT;
  1426. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1427. goto out;
  1428. n = msr_list.nmsrs;
  1429. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1430. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1431. goto out;
  1432. r = -E2BIG;
  1433. if (n < msr_list.nmsrs)
  1434. goto out;
  1435. r = -EFAULT;
  1436. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1437. num_msrs_to_save * sizeof(u32)))
  1438. goto out;
  1439. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1440. &emulated_msrs,
  1441. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1442. goto out;
  1443. r = 0;
  1444. break;
  1445. }
  1446. case KVM_GET_SUPPORTED_CPUID: {
  1447. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1448. struct kvm_cpuid2 cpuid;
  1449. r = -EFAULT;
  1450. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1451. goto out;
  1452. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1453. cpuid_arg->entries);
  1454. if (r)
  1455. goto out;
  1456. r = -EFAULT;
  1457. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1458. goto out;
  1459. r = 0;
  1460. break;
  1461. }
  1462. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1463. u64 mce_cap;
  1464. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1465. r = -EFAULT;
  1466. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1467. goto out;
  1468. r = 0;
  1469. break;
  1470. }
  1471. default:
  1472. r = -EINVAL;
  1473. }
  1474. out:
  1475. return r;
  1476. }
  1477. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1478. {
  1479. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1480. if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
  1481. unsigned long khz = cpufreq_quick_get(cpu);
  1482. if (!khz)
  1483. khz = tsc_khz;
  1484. per_cpu(cpu_tsc_khz, cpu) = khz;
  1485. }
  1486. kvm_request_guest_time_update(vcpu);
  1487. }
  1488. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1489. {
  1490. kvm_put_guest_fpu(vcpu);
  1491. kvm_x86_ops->vcpu_put(vcpu);
  1492. }
  1493. static int is_efer_nx(void)
  1494. {
  1495. unsigned long long efer = 0;
  1496. rdmsrl_safe(MSR_EFER, &efer);
  1497. return efer & EFER_NX;
  1498. }
  1499. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1500. {
  1501. int i;
  1502. struct kvm_cpuid_entry2 *e, *entry;
  1503. entry = NULL;
  1504. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1505. e = &vcpu->arch.cpuid_entries[i];
  1506. if (e->function == 0x80000001) {
  1507. entry = e;
  1508. break;
  1509. }
  1510. }
  1511. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1512. entry->edx &= ~(1 << 20);
  1513. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1514. }
  1515. }
  1516. /* when an old userspace process fills a new kernel module */
  1517. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1518. struct kvm_cpuid *cpuid,
  1519. struct kvm_cpuid_entry __user *entries)
  1520. {
  1521. int r, i;
  1522. struct kvm_cpuid_entry *cpuid_entries;
  1523. r = -E2BIG;
  1524. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1525. goto out;
  1526. r = -ENOMEM;
  1527. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1528. if (!cpuid_entries)
  1529. goto out;
  1530. r = -EFAULT;
  1531. if (copy_from_user(cpuid_entries, entries,
  1532. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1533. goto out_free;
  1534. for (i = 0; i < cpuid->nent; i++) {
  1535. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1536. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1537. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1538. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1539. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1540. vcpu->arch.cpuid_entries[i].index = 0;
  1541. vcpu->arch.cpuid_entries[i].flags = 0;
  1542. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1543. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1544. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1545. }
  1546. vcpu->arch.cpuid_nent = cpuid->nent;
  1547. cpuid_fix_nx_cap(vcpu);
  1548. r = 0;
  1549. kvm_apic_set_version(vcpu);
  1550. kvm_x86_ops->cpuid_update(vcpu);
  1551. out_free:
  1552. vfree(cpuid_entries);
  1553. out:
  1554. return r;
  1555. }
  1556. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1557. struct kvm_cpuid2 *cpuid,
  1558. struct kvm_cpuid_entry2 __user *entries)
  1559. {
  1560. int r;
  1561. r = -E2BIG;
  1562. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1563. goto out;
  1564. r = -EFAULT;
  1565. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1566. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1567. goto out;
  1568. vcpu->arch.cpuid_nent = cpuid->nent;
  1569. kvm_apic_set_version(vcpu);
  1570. kvm_x86_ops->cpuid_update(vcpu);
  1571. return 0;
  1572. out:
  1573. return r;
  1574. }
  1575. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1576. struct kvm_cpuid2 *cpuid,
  1577. struct kvm_cpuid_entry2 __user *entries)
  1578. {
  1579. int r;
  1580. r = -E2BIG;
  1581. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1582. goto out;
  1583. r = -EFAULT;
  1584. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1585. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1586. goto out;
  1587. return 0;
  1588. out:
  1589. cpuid->nent = vcpu->arch.cpuid_nent;
  1590. return r;
  1591. }
  1592. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1593. u32 index)
  1594. {
  1595. entry->function = function;
  1596. entry->index = index;
  1597. cpuid_count(entry->function, entry->index,
  1598. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1599. entry->flags = 0;
  1600. }
  1601. #define F(x) bit(X86_FEATURE_##x)
  1602. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1603. u32 index, int *nent, int maxnent)
  1604. {
  1605. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1606. #ifdef CONFIG_X86_64
  1607. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  1608. ? F(GBPAGES) : 0;
  1609. unsigned f_lm = F(LM);
  1610. #else
  1611. unsigned f_gbpages = 0;
  1612. unsigned f_lm = 0;
  1613. #endif
  1614. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  1615. /* cpuid 1.edx */
  1616. const u32 kvm_supported_word0_x86_features =
  1617. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1618. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1619. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1620. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1621. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1622. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1623. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1624. 0 /* HTT, TM, Reserved, PBE */;
  1625. /* cpuid 0x80000001.edx */
  1626. const u32 kvm_supported_word1_x86_features =
  1627. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1628. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1629. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1630. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1631. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1632. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1633. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  1634. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1635. /* cpuid 1.ecx */
  1636. const u32 kvm_supported_word4_x86_features =
  1637. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1638. 0 /* DS-CPL, VMX, SMX, EST */ |
  1639. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1640. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1641. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1642. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1643. 0 /* Reserved, XSAVE, OSXSAVE */;
  1644. /* cpuid 0x80000001.ecx */
  1645. const u32 kvm_supported_word6_x86_features =
  1646. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1647. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1648. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1649. 0 /* SKINIT */ | 0 /* WDT */;
  1650. /* all calls to cpuid_count() should be made on the same cpu */
  1651. get_cpu();
  1652. do_cpuid_1_ent(entry, function, index);
  1653. ++*nent;
  1654. switch (function) {
  1655. case 0:
  1656. entry->eax = min(entry->eax, (u32)0xb);
  1657. break;
  1658. case 1:
  1659. entry->edx &= kvm_supported_word0_x86_features;
  1660. entry->ecx &= kvm_supported_word4_x86_features;
  1661. /* we support x2apic emulation even if host does not support
  1662. * it since we emulate x2apic in software */
  1663. entry->ecx |= F(X2APIC);
  1664. break;
  1665. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1666. * may return different values. This forces us to get_cpu() before
  1667. * issuing the first command, and also to emulate this annoying behavior
  1668. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1669. case 2: {
  1670. int t, times = entry->eax & 0xff;
  1671. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1672. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1673. for (t = 1; t < times && *nent < maxnent; ++t) {
  1674. do_cpuid_1_ent(&entry[t], function, 0);
  1675. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1676. ++*nent;
  1677. }
  1678. break;
  1679. }
  1680. /* function 4 and 0xb have additional index. */
  1681. case 4: {
  1682. int i, cache_type;
  1683. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1684. /* read more entries until cache_type is zero */
  1685. for (i = 1; *nent < maxnent; ++i) {
  1686. cache_type = entry[i - 1].eax & 0x1f;
  1687. if (!cache_type)
  1688. break;
  1689. do_cpuid_1_ent(&entry[i], function, i);
  1690. entry[i].flags |=
  1691. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1692. ++*nent;
  1693. }
  1694. break;
  1695. }
  1696. case 0xb: {
  1697. int i, level_type;
  1698. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1699. /* read more entries until level_type is zero */
  1700. for (i = 1; *nent < maxnent; ++i) {
  1701. level_type = entry[i - 1].ecx & 0xff00;
  1702. if (!level_type)
  1703. break;
  1704. do_cpuid_1_ent(&entry[i], function, i);
  1705. entry[i].flags |=
  1706. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1707. ++*nent;
  1708. }
  1709. break;
  1710. }
  1711. case 0x80000000:
  1712. entry->eax = min(entry->eax, 0x8000001a);
  1713. break;
  1714. case 0x80000001:
  1715. entry->edx &= kvm_supported_word1_x86_features;
  1716. entry->ecx &= kvm_supported_word6_x86_features;
  1717. break;
  1718. }
  1719. put_cpu();
  1720. }
  1721. #undef F
  1722. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1723. struct kvm_cpuid_entry2 __user *entries)
  1724. {
  1725. struct kvm_cpuid_entry2 *cpuid_entries;
  1726. int limit, nent = 0, r = -E2BIG;
  1727. u32 func;
  1728. if (cpuid->nent < 1)
  1729. goto out;
  1730. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1731. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  1732. r = -ENOMEM;
  1733. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1734. if (!cpuid_entries)
  1735. goto out;
  1736. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1737. limit = cpuid_entries[0].eax;
  1738. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1739. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1740. &nent, cpuid->nent);
  1741. r = -E2BIG;
  1742. if (nent >= cpuid->nent)
  1743. goto out_free;
  1744. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1745. limit = cpuid_entries[nent - 1].eax;
  1746. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1747. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1748. &nent, cpuid->nent);
  1749. r = -E2BIG;
  1750. if (nent >= cpuid->nent)
  1751. goto out_free;
  1752. r = -EFAULT;
  1753. if (copy_to_user(entries, cpuid_entries,
  1754. nent * sizeof(struct kvm_cpuid_entry2)))
  1755. goto out_free;
  1756. cpuid->nent = nent;
  1757. r = 0;
  1758. out_free:
  1759. vfree(cpuid_entries);
  1760. out:
  1761. return r;
  1762. }
  1763. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1764. struct kvm_lapic_state *s)
  1765. {
  1766. vcpu_load(vcpu);
  1767. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1768. vcpu_put(vcpu);
  1769. return 0;
  1770. }
  1771. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1772. struct kvm_lapic_state *s)
  1773. {
  1774. vcpu_load(vcpu);
  1775. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1776. kvm_apic_post_state_restore(vcpu);
  1777. update_cr8_intercept(vcpu);
  1778. vcpu_put(vcpu);
  1779. return 0;
  1780. }
  1781. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1782. struct kvm_interrupt *irq)
  1783. {
  1784. if (irq->irq < 0 || irq->irq >= 256)
  1785. return -EINVAL;
  1786. if (irqchip_in_kernel(vcpu->kvm))
  1787. return -ENXIO;
  1788. vcpu_load(vcpu);
  1789. kvm_queue_interrupt(vcpu, irq->irq, false);
  1790. vcpu_put(vcpu);
  1791. return 0;
  1792. }
  1793. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1794. {
  1795. vcpu_load(vcpu);
  1796. kvm_inject_nmi(vcpu);
  1797. vcpu_put(vcpu);
  1798. return 0;
  1799. }
  1800. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1801. struct kvm_tpr_access_ctl *tac)
  1802. {
  1803. if (tac->flags)
  1804. return -EINVAL;
  1805. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1806. return 0;
  1807. }
  1808. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1809. u64 mcg_cap)
  1810. {
  1811. int r;
  1812. unsigned bank_num = mcg_cap & 0xff, bank;
  1813. r = -EINVAL;
  1814. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  1815. goto out;
  1816. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1817. goto out;
  1818. r = 0;
  1819. vcpu->arch.mcg_cap = mcg_cap;
  1820. /* Init IA32_MCG_CTL to all 1s */
  1821. if (mcg_cap & MCG_CTL_P)
  1822. vcpu->arch.mcg_ctl = ~(u64)0;
  1823. /* Init IA32_MCi_CTL to all 1s */
  1824. for (bank = 0; bank < bank_num; bank++)
  1825. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1826. out:
  1827. return r;
  1828. }
  1829. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1830. struct kvm_x86_mce *mce)
  1831. {
  1832. u64 mcg_cap = vcpu->arch.mcg_cap;
  1833. unsigned bank_num = mcg_cap & 0xff;
  1834. u64 *banks = vcpu->arch.mce_banks;
  1835. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1836. return -EINVAL;
  1837. /*
  1838. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1839. * reporting is disabled
  1840. */
  1841. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1842. vcpu->arch.mcg_ctl != ~(u64)0)
  1843. return 0;
  1844. banks += 4 * mce->bank;
  1845. /*
  1846. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1847. * reporting is disabled for the bank
  1848. */
  1849. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1850. return 0;
  1851. if (mce->status & MCI_STATUS_UC) {
  1852. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1853. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  1854. printk(KERN_DEBUG "kvm: set_mce: "
  1855. "injects mce exception while "
  1856. "previous one is in progress!\n");
  1857. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1858. return 0;
  1859. }
  1860. if (banks[1] & MCI_STATUS_VAL)
  1861. mce->status |= MCI_STATUS_OVER;
  1862. banks[2] = mce->addr;
  1863. banks[3] = mce->misc;
  1864. vcpu->arch.mcg_status = mce->mcg_status;
  1865. banks[1] = mce->status;
  1866. kvm_queue_exception(vcpu, MC_VECTOR);
  1867. } else if (!(banks[1] & MCI_STATUS_VAL)
  1868. || !(banks[1] & MCI_STATUS_UC)) {
  1869. if (banks[1] & MCI_STATUS_VAL)
  1870. mce->status |= MCI_STATUS_OVER;
  1871. banks[2] = mce->addr;
  1872. banks[3] = mce->misc;
  1873. banks[1] = mce->status;
  1874. } else
  1875. banks[1] |= MCI_STATUS_OVER;
  1876. return 0;
  1877. }
  1878. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  1879. struct kvm_vcpu_events *events)
  1880. {
  1881. vcpu_load(vcpu);
  1882. events->exception.injected = vcpu->arch.exception.pending;
  1883. events->exception.nr = vcpu->arch.exception.nr;
  1884. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  1885. events->exception.error_code = vcpu->arch.exception.error_code;
  1886. events->interrupt.injected = vcpu->arch.interrupt.pending;
  1887. events->interrupt.nr = vcpu->arch.interrupt.nr;
  1888. events->interrupt.soft = vcpu->arch.interrupt.soft;
  1889. events->nmi.injected = vcpu->arch.nmi_injected;
  1890. events->nmi.pending = vcpu->arch.nmi_pending;
  1891. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  1892. events->sipi_vector = vcpu->arch.sipi_vector;
  1893. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  1894. | KVM_VCPUEVENT_VALID_SIPI_VECTOR);
  1895. vcpu_put(vcpu);
  1896. }
  1897. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  1898. struct kvm_vcpu_events *events)
  1899. {
  1900. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  1901. | KVM_VCPUEVENT_VALID_SIPI_VECTOR))
  1902. return -EINVAL;
  1903. vcpu_load(vcpu);
  1904. vcpu->arch.exception.pending = events->exception.injected;
  1905. vcpu->arch.exception.nr = events->exception.nr;
  1906. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  1907. vcpu->arch.exception.error_code = events->exception.error_code;
  1908. vcpu->arch.interrupt.pending = events->interrupt.injected;
  1909. vcpu->arch.interrupt.nr = events->interrupt.nr;
  1910. vcpu->arch.interrupt.soft = events->interrupt.soft;
  1911. if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
  1912. kvm_pic_clear_isr_ack(vcpu->kvm);
  1913. vcpu->arch.nmi_injected = events->nmi.injected;
  1914. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  1915. vcpu->arch.nmi_pending = events->nmi.pending;
  1916. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  1917. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  1918. vcpu->arch.sipi_vector = events->sipi_vector;
  1919. vcpu_put(vcpu);
  1920. return 0;
  1921. }
  1922. long kvm_arch_vcpu_ioctl(struct file *filp,
  1923. unsigned int ioctl, unsigned long arg)
  1924. {
  1925. struct kvm_vcpu *vcpu = filp->private_data;
  1926. void __user *argp = (void __user *)arg;
  1927. int r;
  1928. struct kvm_lapic_state *lapic = NULL;
  1929. switch (ioctl) {
  1930. case KVM_GET_LAPIC: {
  1931. r = -EINVAL;
  1932. if (!vcpu->arch.apic)
  1933. goto out;
  1934. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1935. r = -ENOMEM;
  1936. if (!lapic)
  1937. goto out;
  1938. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1939. if (r)
  1940. goto out;
  1941. r = -EFAULT;
  1942. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1943. goto out;
  1944. r = 0;
  1945. break;
  1946. }
  1947. case KVM_SET_LAPIC: {
  1948. r = -EINVAL;
  1949. if (!vcpu->arch.apic)
  1950. goto out;
  1951. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1952. r = -ENOMEM;
  1953. if (!lapic)
  1954. goto out;
  1955. r = -EFAULT;
  1956. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1957. goto out;
  1958. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1959. if (r)
  1960. goto out;
  1961. r = 0;
  1962. break;
  1963. }
  1964. case KVM_INTERRUPT: {
  1965. struct kvm_interrupt irq;
  1966. r = -EFAULT;
  1967. if (copy_from_user(&irq, argp, sizeof irq))
  1968. goto out;
  1969. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1970. if (r)
  1971. goto out;
  1972. r = 0;
  1973. break;
  1974. }
  1975. case KVM_NMI: {
  1976. r = kvm_vcpu_ioctl_nmi(vcpu);
  1977. if (r)
  1978. goto out;
  1979. r = 0;
  1980. break;
  1981. }
  1982. case KVM_SET_CPUID: {
  1983. struct kvm_cpuid __user *cpuid_arg = argp;
  1984. struct kvm_cpuid cpuid;
  1985. r = -EFAULT;
  1986. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1987. goto out;
  1988. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1989. if (r)
  1990. goto out;
  1991. break;
  1992. }
  1993. case KVM_SET_CPUID2: {
  1994. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1995. struct kvm_cpuid2 cpuid;
  1996. r = -EFAULT;
  1997. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1998. goto out;
  1999. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2000. cpuid_arg->entries);
  2001. if (r)
  2002. goto out;
  2003. break;
  2004. }
  2005. case KVM_GET_CPUID2: {
  2006. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2007. struct kvm_cpuid2 cpuid;
  2008. r = -EFAULT;
  2009. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2010. goto out;
  2011. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2012. cpuid_arg->entries);
  2013. if (r)
  2014. goto out;
  2015. r = -EFAULT;
  2016. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2017. goto out;
  2018. r = 0;
  2019. break;
  2020. }
  2021. case KVM_GET_MSRS:
  2022. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2023. break;
  2024. case KVM_SET_MSRS:
  2025. r = msr_io(vcpu, argp, do_set_msr, 0);
  2026. break;
  2027. case KVM_TPR_ACCESS_REPORTING: {
  2028. struct kvm_tpr_access_ctl tac;
  2029. r = -EFAULT;
  2030. if (copy_from_user(&tac, argp, sizeof tac))
  2031. goto out;
  2032. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2033. if (r)
  2034. goto out;
  2035. r = -EFAULT;
  2036. if (copy_to_user(argp, &tac, sizeof tac))
  2037. goto out;
  2038. r = 0;
  2039. break;
  2040. };
  2041. case KVM_SET_VAPIC_ADDR: {
  2042. struct kvm_vapic_addr va;
  2043. r = -EINVAL;
  2044. if (!irqchip_in_kernel(vcpu->kvm))
  2045. goto out;
  2046. r = -EFAULT;
  2047. if (copy_from_user(&va, argp, sizeof va))
  2048. goto out;
  2049. r = 0;
  2050. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2051. break;
  2052. }
  2053. case KVM_X86_SETUP_MCE: {
  2054. u64 mcg_cap;
  2055. r = -EFAULT;
  2056. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2057. goto out;
  2058. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2059. break;
  2060. }
  2061. case KVM_X86_SET_MCE: {
  2062. struct kvm_x86_mce mce;
  2063. r = -EFAULT;
  2064. if (copy_from_user(&mce, argp, sizeof mce))
  2065. goto out;
  2066. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2067. break;
  2068. }
  2069. case KVM_GET_VCPU_EVENTS: {
  2070. struct kvm_vcpu_events events;
  2071. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2072. r = -EFAULT;
  2073. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2074. break;
  2075. r = 0;
  2076. break;
  2077. }
  2078. case KVM_SET_VCPU_EVENTS: {
  2079. struct kvm_vcpu_events events;
  2080. r = -EFAULT;
  2081. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2082. break;
  2083. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2084. break;
  2085. }
  2086. default:
  2087. r = -EINVAL;
  2088. }
  2089. out:
  2090. kfree(lapic);
  2091. return r;
  2092. }
  2093. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2094. {
  2095. int ret;
  2096. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2097. return -1;
  2098. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2099. return ret;
  2100. }
  2101. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2102. u64 ident_addr)
  2103. {
  2104. kvm->arch.ept_identity_map_addr = ident_addr;
  2105. return 0;
  2106. }
  2107. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2108. u32 kvm_nr_mmu_pages)
  2109. {
  2110. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2111. return -EINVAL;
  2112. mutex_lock(&kvm->slots_lock);
  2113. spin_lock(&kvm->mmu_lock);
  2114. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2115. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2116. spin_unlock(&kvm->mmu_lock);
  2117. mutex_unlock(&kvm->slots_lock);
  2118. return 0;
  2119. }
  2120. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2121. {
  2122. return kvm->arch.n_alloc_mmu_pages;
  2123. }
  2124. gfn_t unalias_gfn_instantiation(struct kvm *kvm, gfn_t gfn)
  2125. {
  2126. int i;
  2127. struct kvm_mem_alias *alias;
  2128. struct kvm_mem_aliases *aliases;
  2129. aliases = rcu_dereference(kvm->arch.aliases);
  2130. for (i = 0; i < aliases->naliases; ++i) {
  2131. alias = &aliases->aliases[i];
  2132. if (alias->flags & KVM_ALIAS_INVALID)
  2133. continue;
  2134. if (gfn >= alias->base_gfn
  2135. && gfn < alias->base_gfn + alias->npages)
  2136. return alias->target_gfn + gfn - alias->base_gfn;
  2137. }
  2138. return gfn;
  2139. }
  2140. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  2141. {
  2142. int i;
  2143. struct kvm_mem_alias *alias;
  2144. struct kvm_mem_aliases *aliases;
  2145. aliases = rcu_dereference(kvm->arch.aliases);
  2146. for (i = 0; i < aliases->naliases; ++i) {
  2147. alias = &aliases->aliases[i];
  2148. if (gfn >= alias->base_gfn
  2149. && gfn < alias->base_gfn + alias->npages)
  2150. return alias->target_gfn + gfn - alias->base_gfn;
  2151. }
  2152. return gfn;
  2153. }
  2154. /*
  2155. * Set a new alias region. Aliases map a portion of physical memory into
  2156. * another portion. This is useful for memory windows, for example the PC
  2157. * VGA region.
  2158. */
  2159. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  2160. struct kvm_memory_alias *alias)
  2161. {
  2162. int r, n;
  2163. struct kvm_mem_alias *p;
  2164. struct kvm_mem_aliases *aliases, *old_aliases;
  2165. r = -EINVAL;
  2166. /* General sanity checks */
  2167. if (alias->memory_size & (PAGE_SIZE - 1))
  2168. goto out;
  2169. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  2170. goto out;
  2171. if (alias->slot >= KVM_ALIAS_SLOTS)
  2172. goto out;
  2173. if (alias->guest_phys_addr + alias->memory_size
  2174. < alias->guest_phys_addr)
  2175. goto out;
  2176. if (alias->target_phys_addr + alias->memory_size
  2177. < alias->target_phys_addr)
  2178. goto out;
  2179. r = -ENOMEM;
  2180. aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  2181. if (!aliases)
  2182. goto out;
  2183. mutex_lock(&kvm->slots_lock);
  2184. /* invalidate any gfn reference in case of deletion/shrinking */
  2185. memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
  2186. aliases->aliases[alias->slot].flags |= KVM_ALIAS_INVALID;
  2187. old_aliases = kvm->arch.aliases;
  2188. rcu_assign_pointer(kvm->arch.aliases, aliases);
  2189. synchronize_srcu_expedited(&kvm->srcu);
  2190. kvm_mmu_zap_all(kvm);
  2191. kfree(old_aliases);
  2192. r = -ENOMEM;
  2193. aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  2194. if (!aliases)
  2195. goto out_unlock;
  2196. memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
  2197. p = &aliases->aliases[alias->slot];
  2198. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  2199. p->npages = alias->memory_size >> PAGE_SHIFT;
  2200. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  2201. p->flags &= ~(KVM_ALIAS_INVALID);
  2202. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  2203. if (aliases->aliases[n - 1].npages)
  2204. break;
  2205. aliases->naliases = n;
  2206. old_aliases = kvm->arch.aliases;
  2207. rcu_assign_pointer(kvm->arch.aliases, aliases);
  2208. synchronize_srcu_expedited(&kvm->srcu);
  2209. kfree(old_aliases);
  2210. r = 0;
  2211. out_unlock:
  2212. mutex_unlock(&kvm->slots_lock);
  2213. out:
  2214. return r;
  2215. }
  2216. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2217. {
  2218. int r;
  2219. r = 0;
  2220. switch (chip->chip_id) {
  2221. case KVM_IRQCHIP_PIC_MASTER:
  2222. memcpy(&chip->chip.pic,
  2223. &pic_irqchip(kvm)->pics[0],
  2224. sizeof(struct kvm_pic_state));
  2225. break;
  2226. case KVM_IRQCHIP_PIC_SLAVE:
  2227. memcpy(&chip->chip.pic,
  2228. &pic_irqchip(kvm)->pics[1],
  2229. sizeof(struct kvm_pic_state));
  2230. break;
  2231. case KVM_IRQCHIP_IOAPIC:
  2232. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2233. break;
  2234. default:
  2235. r = -EINVAL;
  2236. break;
  2237. }
  2238. return r;
  2239. }
  2240. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2241. {
  2242. int r;
  2243. r = 0;
  2244. switch (chip->chip_id) {
  2245. case KVM_IRQCHIP_PIC_MASTER:
  2246. spin_lock(&pic_irqchip(kvm)->lock);
  2247. memcpy(&pic_irqchip(kvm)->pics[0],
  2248. &chip->chip.pic,
  2249. sizeof(struct kvm_pic_state));
  2250. spin_unlock(&pic_irqchip(kvm)->lock);
  2251. break;
  2252. case KVM_IRQCHIP_PIC_SLAVE:
  2253. spin_lock(&pic_irqchip(kvm)->lock);
  2254. memcpy(&pic_irqchip(kvm)->pics[1],
  2255. &chip->chip.pic,
  2256. sizeof(struct kvm_pic_state));
  2257. spin_unlock(&pic_irqchip(kvm)->lock);
  2258. break;
  2259. case KVM_IRQCHIP_IOAPIC:
  2260. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2261. break;
  2262. default:
  2263. r = -EINVAL;
  2264. break;
  2265. }
  2266. kvm_pic_update_irq(pic_irqchip(kvm));
  2267. return r;
  2268. }
  2269. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2270. {
  2271. int r = 0;
  2272. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2273. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2274. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2275. return r;
  2276. }
  2277. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2278. {
  2279. int r = 0;
  2280. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2281. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2282. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2283. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2284. return r;
  2285. }
  2286. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2287. {
  2288. int r = 0;
  2289. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2290. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2291. sizeof(ps->channels));
  2292. ps->flags = kvm->arch.vpit->pit_state.flags;
  2293. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2294. return r;
  2295. }
  2296. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2297. {
  2298. int r = 0, start = 0;
  2299. u32 prev_legacy, cur_legacy;
  2300. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2301. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2302. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2303. if (!prev_legacy && cur_legacy)
  2304. start = 1;
  2305. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2306. sizeof(kvm->arch.vpit->pit_state.channels));
  2307. kvm->arch.vpit->pit_state.flags = ps->flags;
  2308. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2309. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2310. return r;
  2311. }
  2312. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2313. struct kvm_reinject_control *control)
  2314. {
  2315. if (!kvm->arch.vpit)
  2316. return -ENXIO;
  2317. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2318. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2319. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2320. return 0;
  2321. }
  2322. /*
  2323. * Get (and clear) the dirty memory log for a memory slot.
  2324. */
  2325. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2326. struct kvm_dirty_log *log)
  2327. {
  2328. int r, n, i;
  2329. struct kvm_memory_slot *memslot;
  2330. unsigned long is_dirty = 0;
  2331. unsigned long *dirty_bitmap = NULL;
  2332. mutex_lock(&kvm->slots_lock);
  2333. r = -EINVAL;
  2334. if (log->slot >= KVM_MEMORY_SLOTS)
  2335. goto out;
  2336. memslot = &kvm->memslots->memslots[log->slot];
  2337. r = -ENOENT;
  2338. if (!memslot->dirty_bitmap)
  2339. goto out;
  2340. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  2341. r = -ENOMEM;
  2342. dirty_bitmap = vmalloc(n);
  2343. if (!dirty_bitmap)
  2344. goto out;
  2345. memset(dirty_bitmap, 0, n);
  2346. for (i = 0; !is_dirty && i < n/sizeof(long); i++)
  2347. is_dirty = memslot->dirty_bitmap[i];
  2348. /* If nothing is dirty, don't bother messing with page tables. */
  2349. if (is_dirty) {
  2350. struct kvm_memslots *slots, *old_slots;
  2351. spin_lock(&kvm->mmu_lock);
  2352. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2353. spin_unlock(&kvm->mmu_lock);
  2354. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  2355. if (!slots)
  2356. goto out_free;
  2357. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  2358. slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
  2359. old_slots = kvm->memslots;
  2360. rcu_assign_pointer(kvm->memslots, slots);
  2361. synchronize_srcu_expedited(&kvm->srcu);
  2362. dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
  2363. kfree(old_slots);
  2364. }
  2365. r = 0;
  2366. if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
  2367. r = -EFAULT;
  2368. out_free:
  2369. vfree(dirty_bitmap);
  2370. out:
  2371. mutex_unlock(&kvm->slots_lock);
  2372. return r;
  2373. }
  2374. long kvm_arch_vm_ioctl(struct file *filp,
  2375. unsigned int ioctl, unsigned long arg)
  2376. {
  2377. struct kvm *kvm = filp->private_data;
  2378. void __user *argp = (void __user *)arg;
  2379. int r = -ENOTTY;
  2380. /*
  2381. * This union makes it completely explicit to gcc-3.x
  2382. * that these two variables' stack usage should be
  2383. * combined, not added together.
  2384. */
  2385. union {
  2386. struct kvm_pit_state ps;
  2387. struct kvm_pit_state2 ps2;
  2388. struct kvm_memory_alias alias;
  2389. struct kvm_pit_config pit_config;
  2390. } u;
  2391. switch (ioctl) {
  2392. case KVM_SET_TSS_ADDR:
  2393. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2394. if (r < 0)
  2395. goto out;
  2396. break;
  2397. case KVM_SET_IDENTITY_MAP_ADDR: {
  2398. u64 ident_addr;
  2399. r = -EFAULT;
  2400. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2401. goto out;
  2402. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2403. if (r < 0)
  2404. goto out;
  2405. break;
  2406. }
  2407. case KVM_SET_MEMORY_REGION: {
  2408. struct kvm_memory_region kvm_mem;
  2409. struct kvm_userspace_memory_region kvm_userspace_mem;
  2410. r = -EFAULT;
  2411. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2412. goto out;
  2413. kvm_userspace_mem.slot = kvm_mem.slot;
  2414. kvm_userspace_mem.flags = kvm_mem.flags;
  2415. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  2416. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  2417. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2418. if (r)
  2419. goto out;
  2420. break;
  2421. }
  2422. case KVM_SET_NR_MMU_PAGES:
  2423. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2424. if (r)
  2425. goto out;
  2426. break;
  2427. case KVM_GET_NR_MMU_PAGES:
  2428. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2429. break;
  2430. case KVM_SET_MEMORY_ALIAS:
  2431. r = -EFAULT;
  2432. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  2433. goto out;
  2434. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  2435. if (r)
  2436. goto out;
  2437. break;
  2438. case KVM_CREATE_IRQCHIP: {
  2439. struct kvm_pic *vpic;
  2440. mutex_lock(&kvm->lock);
  2441. r = -EEXIST;
  2442. if (kvm->arch.vpic)
  2443. goto create_irqchip_unlock;
  2444. r = -ENOMEM;
  2445. vpic = kvm_create_pic(kvm);
  2446. if (vpic) {
  2447. r = kvm_ioapic_init(kvm);
  2448. if (r) {
  2449. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  2450. &vpic->dev);
  2451. kfree(vpic);
  2452. goto create_irqchip_unlock;
  2453. }
  2454. } else
  2455. goto create_irqchip_unlock;
  2456. smp_wmb();
  2457. kvm->arch.vpic = vpic;
  2458. smp_wmb();
  2459. r = kvm_setup_default_irq_routing(kvm);
  2460. if (r) {
  2461. mutex_lock(&kvm->irq_lock);
  2462. kvm_ioapic_destroy(kvm);
  2463. kvm_destroy_pic(kvm);
  2464. mutex_unlock(&kvm->irq_lock);
  2465. }
  2466. create_irqchip_unlock:
  2467. mutex_unlock(&kvm->lock);
  2468. break;
  2469. }
  2470. case KVM_CREATE_PIT:
  2471. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2472. goto create_pit;
  2473. case KVM_CREATE_PIT2:
  2474. r = -EFAULT;
  2475. if (copy_from_user(&u.pit_config, argp,
  2476. sizeof(struct kvm_pit_config)))
  2477. goto out;
  2478. create_pit:
  2479. mutex_lock(&kvm->slots_lock);
  2480. r = -EEXIST;
  2481. if (kvm->arch.vpit)
  2482. goto create_pit_unlock;
  2483. r = -ENOMEM;
  2484. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2485. if (kvm->arch.vpit)
  2486. r = 0;
  2487. create_pit_unlock:
  2488. mutex_unlock(&kvm->slots_lock);
  2489. break;
  2490. case KVM_IRQ_LINE_STATUS:
  2491. case KVM_IRQ_LINE: {
  2492. struct kvm_irq_level irq_event;
  2493. r = -EFAULT;
  2494. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2495. goto out;
  2496. if (irqchip_in_kernel(kvm)) {
  2497. __s32 status;
  2498. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2499. irq_event.irq, irq_event.level);
  2500. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2501. irq_event.status = status;
  2502. if (copy_to_user(argp, &irq_event,
  2503. sizeof irq_event))
  2504. goto out;
  2505. }
  2506. r = 0;
  2507. }
  2508. break;
  2509. }
  2510. case KVM_GET_IRQCHIP: {
  2511. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2512. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2513. r = -ENOMEM;
  2514. if (!chip)
  2515. goto out;
  2516. r = -EFAULT;
  2517. if (copy_from_user(chip, argp, sizeof *chip))
  2518. goto get_irqchip_out;
  2519. r = -ENXIO;
  2520. if (!irqchip_in_kernel(kvm))
  2521. goto get_irqchip_out;
  2522. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2523. if (r)
  2524. goto get_irqchip_out;
  2525. r = -EFAULT;
  2526. if (copy_to_user(argp, chip, sizeof *chip))
  2527. goto get_irqchip_out;
  2528. r = 0;
  2529. get_irqchip_out:
  2530. kfree(chip);
  2531. if (r)
  2532. goto out;
  2533. break;
  2534. }
  2535. case KVM_SET_IRQCHIP: {
  2536. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2537. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2538. r = -ENOMEM;
  2539. if (!chip)
  2540. goto out;
  2541. r = -EFAULT;
  2542. if (copy_from_user(chip, argp, sizeof *chip))
  2543. goto set_irqchip_out;
  2544. r = -ENXIO;
  2545. if (!irqchip_in_kernel(kvm))
  2546. goto set_irqchip_out;
  2547. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2548. if (r)
  2549. goto set_irqchip_out;
  2550. r = 0;
  2551. set_irqchip_out:
  2552. kfree(chip);
  2553. if (r)
  2554. goto out;
  2555. break;
  2556. }
  2557. case KVM_GET_PIT: {
  2558. r = -EFAULT;
  2559. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2560. goto out;
  2561. r = -ENXIO;
  2562. if (!kvm->arch.vpit)
  2563. goto out;
  2564. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2565. if (r)
  2566. goto out;
  2567. r = -EFAULT;
  2568. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2569. goto out;
  2570. r = 0;
  2571. break;
  2572. }
  2573. case KVM_SET_PIT: {
  2574. r = -EFAULT;
  2575. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2576. goto out;
  2577. r = -ENXIO;
  2578. if (!kvm->arch.vpit)
  2579. goto out;
  2580. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2581. if (r)
  2582. goto out;
  2583. r = 0;
  2584. break;
  2585. }
  2586. case KVM_GET_PIT2: {
  2587. r = -ENXIO;
  2588. if (!kvm->arch.vpit)
  2589. goto out;
  2590. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2591. if (r)
  2592. goto out;
  2593. r = -EFAULT;
  2594. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2595. goto out;
  2596. r = 0;
  2597. break;
  2598. }
  2599. case KVM_SET_PIT2: {
  2600. r = -EFAULT;
  2601. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2602. goto out;
  2603. r = -ENXIO;
  2604. if (!kvm->arch.vpit)
  2605. goto out;
  2606. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2607. if (r)
  2608. goto out;
  2609. r = 0;
  2610. break;
  2611. }
  2612. case KVM_REINJECT_CONTROL: {
  2613. struct kvm_reinject_control control;
  2614. r = -EFAULT;
  2615. if (copy_from_user(&control, argp, sizeof(control)))
  2616. goto out;
  2617. r = kvm_vm_ioctl_reinject(kvm, &control);
  2618. if (r)
  2619. goto out;
  2620. r = 0;
  2621. break;
  2622. }
  2623. case KVM_XEN_HVM_CONFIG: {
  2624. r = -EFAULT;
  2625. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  2626. sizeof(struct kvm_xen_hvm_config)))
  2627. goto out;
  2628. r = -EINVAL;
  2629. if (kvm->arch.xen_hvm_config.flags)
  2630. goto out;
  2631. r = 0;
  2632. break;
  2633. }
  2634. case KVM_SET_CLOCK: {
  2635. struct timespec now;
  2636. struct kvm_clock_data user_ns;
  2637. u64 now_ns;
  2638. s64 delta;
  2639. r = -EFAULT;
  2640. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  2641. goto out;
  2642. r = -EINVAL;
  2643. if (user_ns.flags)
  2644. goto out;
  2645. r = 0;
  2646. ktime_get_ts(&now);
  2647. now_ns = timespec_to_ns(&now);
  2648. delta = user_ns.clock - now_ns;
  2649. kvm->arch.kvmclock_offset = delta;
  2650. break;
  2651. }
  2652. case KVM_GET_CLOCK: {
  2653. struct timespec now;
  2654. struct kvm_clock_data user_ns;
  2655. u64 now_ns;
  2656. ktime_get_ts(&now);
  2657. now_ns = timespec_to_ns(&now);
  2658. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  2659. user_ns.flags = 0;
  2660. r = -EFAULT;
  2661. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  2662. goto out;
  2663. r = 0;
  2664. break;
  2665. }
  2666. default:
  2667. ;
  2668. }
  2669. out:
  2670. return r;
  2671. }
  2672. static void kvm_init_msr_list(void)
  2673. {
  2674. u32 dummy[2];
  2675. unsigned i, j;
  2676. /* skip the first msrs in the list. KVM-specific */
  2677. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  2678. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2679. continue;
  2680. if (j < i)
  2681. msrs_to_save[j] = msrs_to_save[i];
  2682. j++;
  2683. }
  2684. num_msrs_to_save = j;
  2685. }
  2686. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2687. const void *v)
  2688. {
  2689. if (vcpu->arch.apic &&
  2690. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2691. return 0;
  2692. return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2693. }
  2694. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2695. {
  2696. if (vcpu->arch.apic &&
  2697. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2698. return 0;
  2699. return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2700. }
  2701. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2702. struct kvm_vcpu *vcpu)
  2703. {
  2704. void *data = val;
  2705. int r = X86EMUL_CONTINUE;
  2706. while (bytes) {
  2707. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2708. unsigned offset = addr & (PAGE_SIZE-1);
  2709. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2710. int ret;
  2711. if (gpa == UNMAPPED_GVA) {
  2712. r = X86EMUL_PROPAGATE_FAULT;
  2713. goto out;
  2714. }
  2715. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2716. if (ret < 0) {
  2717. r = X86EMUL_UNHANDLEABLE;
  2718. goto out;
  2719. }
  2720. bytes -= toread;
  2721. data += toread;
  2722. addr += toread;
  2723. }
  2724. out:
  2725. return r;
  2726. }
  2727. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2728. struct kvm_vcpu *vcpu)
  2729. {
  2730. void *data = val;
  2731. int r = X86EMUL_CONTINUE;
  2732. while (bytes) {
  2733. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2734. unsigned offset = addr & (PAGE_SIZE-1);
  2735. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2736. int ret;
  2737. if (gpa == UNMAPPED_GVA) {
  2738. r = X86EMUL_PROPAGATE_FAULT;
  2739. goto out;
  2740. }
  2741. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2742. if (ret < 0) {
  2743. r = X86EMUL_UNHANDLEABLE;
  2744. goto out;
  2745. }
  2746. bytes -= towrite;
  2747. data += towrite;
  2748. addr += towrite;
  2749. }
  2750. out:
  2751. return r;
  2752. }
  2753. static int emulator_read_emulated(unsigned long addr,
  2754. void *val,
  2755. unsigned int bytes,
  2756. struct kvm_vcpu *vcpu)
  2757. {
  2758. gpa_t gpa;
  2759. if (vcpu->mmio_read_completed) {
  2760. memcpy(val, vcpu->mmio_data, bytes);
  2761. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  2762. vcpu->mmio_phys_addr, *(u64 *)val);
  2763. vcpu->mmio_read_completed = 0;
  2764. return X86EMUL_CONTINUE;
  2765. }
  2766. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2767. /* For APIC access vmexit */
  2768. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2769. goto mmio;
  2770. if (kvm_read_guest_virt(addr, val, bytes, vcpu)
  2771. == X86EMUL_CONTINUE)
  2772. return X86EMUL_CONTINUE;
  2773. if (gpa == UNMAPPED_GVA)
  2774. return X86EMUL_PROPAGATE_FAULT;
  2775. mmio:
  2776. /*
  2777. * Is this MMIO handled locally?
  2778. */
  2779. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  2780. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  2781. return X86EMUL_CONTINUE;
  2782. }
  2783. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  2784. vcpu->mmio_needed = 1;
  2785. vcpu->mmio_phys_addr = gpa;
  2786. vcpu->mmio_size = bytes;
  2787. vcpu->mmio_is_write = 0;
  2788. return X86EMUL_UNHANDLEABLE;
  2789. }
  2790. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2791. const void *val, int bytes)
  2792. {
  2793. int ret;
  2794. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2795. if (ret < 0)
  2796. return 0;
  2797. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2798. return 1;
  2799. }
  2800. static int emulator_write_emulated_onepage(unsigned long addr,
  2801. const void *val,
  2802. unsigned int bytes,
  2803. struct kvm_vcpu *vcpu)
  2804. {
  2805. gpa_t gpa;
  2806. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2807. if (gpa == UNMAPPED_GVA) {
  2808. kvm_inject_page_fault(vcpu, addr, 2);
  2809. return X86EMUL_PROPAGATE_FAULT;
  2810. }
  2811. /* For APIC access vmexit */
  2812. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2813. goto mmio;
  2814. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2815. return X86EMUL_CONTINUE;
  2816. mmio:
  2817. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  2818. /*
  2819. * Is this MMIO handled locally?
  2820. */
  2821. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  2822. return X86EMUL_CONTINUE;
  2823. vcpu->mmio_needed = 1;
  2824. vcpu->mmio_phys_addr = gpa;
  2825. vcpu->mmio_size = bytes;
  2826. vcpu->mmio_is_write = 1;
  2827. memcpy(vcpu->mmio_data, val, bytes);
  2828. return X86EMUL_CONTINUE;
  2829. }
  2830. int emulator_write_emulated(unsigned long addr,
  2831. const void *val,
  2832. unsigned int bytes,
  2833. struct kvm_vcpu *vcpu)
  2834. {
  2835. /* Crossing a page boundary? */
  2836. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2837. int rc, now;
  2838. now = -addr & ~PAGE_MASK;
  2839. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2840. if (rc != X86EMUL_CONTINUE)
  2841. return rc;
  2842. addr += now;
  2843. val += now;
  2844. bytes -= now;
  2845. }
  2846. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2847. }
  2848. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2849. static int emulator_cmpxchg_emulated(unsigned long addr,
  2850. const void *old,
  2851. const void *new,
  2852. unsigned int bytes,
  2853. struct kvm_vcpu *vcpu)
  2854. {
  2855. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  2856. #ifndef CONFIG_X86_64
  2857. /* guests cmpxchg8b have to be emulated atomically */
  2858. if (bytes == 8) {
  2859. gpa_t gpa;
  2860. struct page *page;
  2861. char *kaddr;
  2862. u64 val;
  2863. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2864. if (gpa == UNMAPPED_GVA ||
  2865. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2866. goto emul_write;
  2867. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2868. goto emul_write;
  2869. val = *(u64 *)new;
  2870. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2871. kaddr = kmap_atomic(page, KM_USER0);
  2872. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2873. kunmap_atomic(kaddr, KM_USER0);
  2874. kvm_release_page_dirty(page);
  2875. }
  2876. emul_write:
  2877. #endif
  2878. return emulator_write_emulated(addr, new, bytes, vcpu);
  2879. }
  2880. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2881. {
  2882. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2883. }
  2884. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2885. {
  2886. kvm_mmu_invlpg(vcpu, address);
  2887. return X86EMUL_CONTINUE;
  2888. }
  2889. int emulate_clts(struct kvm_vcpu *vcpu)
  2890. {
  2891. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  2892. kvm_x86_ops->fpu_activate(vcpu);
  2893. return X86EMUL_CONTINUE;
  2894. }
  2895. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2896. {
  2897. return kvm_x86_ops->get_dr(ctxt->vcpu, dr, dest);
  2898. }
  2899. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2900. {
  2901. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2902. return kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask);
  2903. }
  2904. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2905. {
  2906. u8 opcodes[4];
  2907. unsigned long rip = kvm_rip_read(vcpu);
  2908. unsigned long rip_linear;
  2909. if (!printk_ratelimit())
  2910. return;
  2911. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2912. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
  2913. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2914. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2915. }
  2916. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2917. static struct x86_emulate_ops emulate_ops = {
  2918. .read_std = kvm_read_guest_virt,
  2919. .read_emulated = emulator_read_emulated,
  2920. .write_emulated = emulator_write_emulated,
  2921. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2922. };
  2923. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2924. {
  2925. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2926. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2927. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2928. vcpu->arch.regs_dirty = ~0;
  2929. }
  2930. int emulate_instruction(struct kvm_vcpu *vcpu,
  2931. unsigned long cr2,
  2932. u16 error_code,
  2933. int emulation_type)
  2934. {
  2935. int r, shadow_mask;
  2936. struct decode_cache *c;
  2937. struct kvm_run *run = vcpu->run;
  2938. kvm_clear_exception_queue(vcpu);
  2939. vcpu->arch.mmio_fault_cr2 = cr2;
  2940. /*
  2941. * TODO: fix emulate.c to use guest_read/write_register
  2942. * instead of direct ->regs accesses, can save hundred cycles
  2943. * on Intel for instructions that don't read/change RSP, for
  2944. * for example.
  2945. */
  2946. cache_all_regs(vcpu);
  2947. vcpu->mmio_is_write = 0;
  2948. vcpu->arch.pio.string = 0;
  2949. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2950. int cs_db, cs_l;
  2951. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2952. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2953. vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
  2954. vcpu->arch.emulate_ctxt.mode =
  2955. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  2956. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2957. ? X86EMUL_MODE_VM86 : cs_l
  2958. ? X86EMUL_MODE_PROT64 : cs_db
  2959. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2960. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2961. /* Only allow emulation of specific instructions on #UD
  2962. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  2963. c = &vcpu->arch.emulate_ctxt.decode;
  2964. if (emulation_type & EMULTYPE_TRAP_UD) {
  2965. if (!c->twobyte)
  2966. return EMULATE_FAIL;
  2967. switch (c->b) {
  2968. case 0x01: /* VMMCALL */
  2969. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  2970. return EMULATE_FAIL;
  2971. break;
  2972. case 0x34: /* sysenter */
  2973. case 0x35: /* sysexit */
  2974. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2975. return EMULATE_FAIL;
  2976. break;
  2977. case 0x05: /* syscall */
  2978. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2979. return EMULATE_FAIL;
  2980. break;
  2981. default:
  2982. return EMULATE_FAIL;
  2983. }
  2984. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  2985. return EMULATE_FAIL;
  2986. }
  2987. ++vcpu->stat.insn_emulation;
  2988. if (r) {
  2989. ++vcpu->stat.insn_emulation_fail;
  2990. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2991. return EMULATE_DONE;
  2992. return EMULATE_FAIL;
  2993. }
  2994. }
  2995. if (emulation_type & EMULTYPE_SKIP) {
  2996. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  2997. return EMULATE_DONE;
  2998. }
  2999. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  3000. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  3001. if (r == 0)
  3002. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  3003. if (vcpu->arch.pio.string)
  3004. return EMULATE_DO_MMIO;
  3005. if ((r || vcpu->mmio_is_write) && run) {
  3006. run->exit_reason = KVM_EXIT_MMIO;
  3007. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  3008. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  3009. run->mmio.len = vcpu->mmio_size;
  3010. run->mmio.is_write = vcpu->mmio_is_write;
  3011. }
  3012. if (r) {
  3013. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  3014. return EMULATE_DONE;
  3015. if (!vcpu->mmio_needed) {
  3016. kvm_report_emulation_failure(vcpu, "mmio");
  3017. return EMULATE_FAIL;
  3018. }
  3019. return EMULATE_DO_MMIO;
  3020. }
  3021. kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3022. if (vcpu->mmio_is_write) {
  3023. vcpu->mmio_needed = 0;
  3024. return EMULATE_DO_MMIO;
  3025. }
  3026. return EMULATE_DONE;
  3027. }
  3028. EXPORT_SYMBOL_GPL(emulate_instruction);
  3029. static int pio_copy_data(struct kvm_vcpu *vcpu)
  3030. {
  3031. void *p = vcpu->arch.pio_data;
  3032. gva_t q = vcpu->arch.pio.guest_gva;
  3033. unsigned bytes;
  3034. int ret;
  3035. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  3036. if (vcpu->arch.pio.in)
  3037. ret = kvm_write_guest_virt(q, p, bytes, vcpu);
  3038. else
  3039. ret = kvm_read_guest_virt(q, p, bytes, vcpu);
  3040. return ret;
  3041. }
  3042. int complete_pio(struct kvm_vcpu *vcpu)
  3043. {
  3044. struct kvm_pio_request *io = &vcpu->arch.pio;
  3045. long delta;
  3046. int r;
  3047. unsigned long val;
  3048. if (!io->string) {
  3049. if (io->in) {
  3050. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3051. memcpy(&val, vcpu->arch.pio_data, io->size);
  3052. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  3053. }
  3054. } else {
  3055. if (io->in) {
  3056. r = pio_copy_data(vcpu);
  3057. if (r)
  3058. return r;
  3059. }
  3060. delta = 1;
  3061. if (io->rep) {
  3062. delta *= io->cur_count;
  3063. /*
  3064. * The size of the register should really depend on
  3065. * current address size.
  3066. */
  3067. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3068. val -= delta;
  3069. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  3070. }
  3071. if (io->down)
  3072. delta = -delta;
  3073. delta *= io->size;
  3074. if (io->in) {
  3075. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3076. val += delta;
  3077. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  3078. } else {
  3079. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3080. val += delta;
  3081. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  3082. }
  3083. }
  3084. io->count -= io->cur_count;
  3085. io->cur_count = 0;
  3086. return 0;
  3087. }
  3088. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3089. {
  3090. /* TODO: String I/O for in kernel device */
  3091. int r;
  3092. if (vcpu->arch.pio.in)
  3093. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3094. vcpu->arch.pio.size, pd);
  3095. else
  3096. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3097. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3098. pd);
  3099. return r;
  3100. }
  3101. static int pio_string_write(struct kvm_vcpu *vcpu)
  3102. {
  3103. struct kvm_pio_request *io = &vcpu->arch.pio;
  3104. void *pd = vcpu->arch.pio_data;
  3105. int i, r = 0;
  3106. for (i = 0; i < io->cur_count; i++) {
  3107. if (kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3108. io->port, io->size, pd)) {
  3109. r = -EOPNOTSUPP;
  3110. break;
  3111. }
  3112. pd += io->size;
  3113. }
  3114. return r;
  3115. }
  3116. int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
  3117. {
  3118. unsigned long val;
  3119. vcpu->run->exit_reason = KVM_EXIT_IO;
  3120. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  3121. vcpu->run->io.size = vcpu->arch.pio.size = size;
  3122. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3123. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  3124. vcpu->run->io.port = vcpu->arch.pio.port = port;
  3125. vcpu->arch.pio.in = in;
  3126. vcpu->arch.pio.string = 0;
  3127. vcpu->arch.pio.down = 0;
  3128. vcpu->arch.pio.rep = 0;
  3129. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  3130. size, 1);
  3131. if (!vcpu->arch.pio.in) {
  3132. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3133. memcpy(vcpu->arch.pio_data, &val, 4);
  3134. }
  3135. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3136. complete_pio(vcpu);
  3137. return 1;
  3138. }
  3139. return 0;
  3140. }
  3141. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  3142. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
  3143. int size, unsigned long count, int down,
  3144. gva_t address, int rep, unsigned port)
  3145. {
  3146. unsigned now, in_page;
  3147. int ret = 0;
  3148. vcpu->run->exit_reason = KVM_EXIT_IO;
  3149. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  3150. vcpu->run->io.size = vcpu->arch.pio.size = size;
  3151. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3152. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  3153. vcpu->run->io.port = vcpu->arch.pio.port = port;
  3154. vcpu->arch.pio.in = in;
  3155. vcpu->arch.pio.string = 1;
  3156. vcpu->arch.pio.down = down;
  3157. vcpu->arch.pio.rep = rep;
  3158. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  3159. size, count);
  3160. if (!count) {
  3161. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3162. return 1;
  3163. }
  3164. if (!down)
  3165. in_page = PAGE_SIZE - offset_in_page(address);
  3166. else
  3167. in_page = offset_in_page(address) + size;
  3168. now = min(count, (unsigned long)in_page / size);
  3169. if (!now)
  3170. now = 1;
  3171. if (down) {
  3172. /*
  3173. * String I/O in reverse. Yuck. Kill the guest, fix later.
  3174. */
  3175. pr_unimpl(vcpu, "guest string pio down\n");
  3176. kvm_inject_gp(vcpu, 0);
  3177. return 1;
  3178. }
  3179. vcpu->run->io.count = now;
  3180. vcpu->arch.pio.cur_count = now;
  3181. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  3182. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3183. vcpu->arch.pio.guest_gva = address;
  3184. if (!vcpu->arch.pio.in) {
  3185. /* string PIO write */
  3186. ret = pio_copy_data(vcpu);
  3187. if (ret == X86EMUL_PROPAGATE_FAULT) {
  3188. kvm_inject_gp(vcpu, 0);
  3189. return 1;
  3190. }
  3191. if (ret == 0 && !pio_string_write(vcpu)) {
  3192. complete_pio(vcpu);
  3193. if (vcpu->arch.pio.count == 0)
  3194. ret = 1;
  3195. }
  3196. }
  3197. /* no string PIO read support yet */
  3198. return ret;
  3199. }
  3200. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  3201. static void bounce_off(void *info)
  3202. {
  3203. /* nothing */
  3204. }
  3205. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  3206. void *data)
  3207. {
  3208. struct cpufreq_freqs *freq = data;
  3209. struct kvm *kvm;
  3210. struct kvm_vcpu *vcpu;
  3211. int i, send_ipi = 0;
  3212. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  3213. return 0;
  3214. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  3215. return 0;
  3216. per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
  3217. spin_lock(&kvm_lock);
  3218. list_for_each_entry(kvm, &vm_list, vm_list) {
  3219. kvm_for_each_vcpu(i, vcpu, kvm) {
  3220. if (vcpu->cpu != freq->cpu)
  3221. continue;
  3222. if (!kvm_request_guest_time_update(vcpu))
  3223. continue;
  3224. if (vcpu->cpu != smp_processor_id())
  3225. send_ipi++;
  3226. }
  3227. }
  3228. spin_unlock(&kvm_lock);
  3229. if (freq->old < freq->new && send_ipi) {
  3230. /*
  3231. * We upscale the frequency. Must make the guest
  3232. * doesn't see old kvmclock values while running with
  3233. * the new frequency, otherwise we risk the guest sees
  3234. * time go backwards.
  3235. *
  3236. * In case we update the frequency for another cpu
  3237. * (which might be in guest context) send an interrupt
  3238. * to kick the cpu out of guest context. Next time
  3239. * guest context is entered kvmclock will be updated,
  3240. * so the guest will not see stale values.
  3241. */
  3242. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  3243. }
  3244. return 0;
  3245. }
  3246. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  3247. .notifier_call = kvmclock_cpufreq_notifier
  3248. };
  3249. static void kvm_timer_init(void)
  3250. {
  3251. int cpu;
  3252. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  3253. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  3254. CPUFREQ_TRANSITION_NOTIFIER);
  3255. for_each_online_cpu(cpu) {
  3256. unsigned long khz = cpufreq_get(cpu);
  3257. if (!khz)
  3258. khz = tsc_khz;
  3259. per_cpu(cpu_tsc_khz, cpu) = khz;
  3260. }
  3261. } else {
  3262. for_each_possible_cpu(cpu)
  3263. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  3264. }
  3265. }
  3266. int kvm_arch_init(void *opaque)
  3267. {
  3268. int r;
  3269. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  3270. if (kvm_x86_ops) {
  3271. printk(KERN_ERR "kvm: already loaded the other module\n");
  3272. r = -EEXIST;
  3273. goto out;
  3274. }
  3275. if (!ops->cpu_has_kvm_support()) {
  3276. printk(KERN_ERR "kvm: no hardware support\n");
  3277. r = -EOPNOTSUPP;
  3278. goto out;
  3279. }
  3280. if (ops->disabled_by_bios()) {
  3281. printk(KERN_ERR "kvm: disabled by bios\n");
  3282. r = -EOPNOTSUPP;
  3283. goto out;
  3284. }
  3285. r = kvm_mmu_module_init();
  3286. if (r)
  3287. goto out;
  3288. kvm_init_msr_list();
  3289. kvm_x86_ops = ops;
  3290. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  3291. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  3292. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  3293. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  3294. kvm_timer_init();
  3295. return 0;
  3296. out:
  3297. return r;
  3298. }
  3299. void kvm_arch_exit(void)
  3300. {
  3301. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3302. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  3303. CPUFREQ_TRANSITION_NOTIFIER);
  3304. kvm_x86_ops = NULL;
  3305. kvm_mmu_module_exit();
  3306. }
  3307. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  3308. {
  3309. ++vcpu->stat.halt_exits;
  3310. if (irqchip_in_kernel(vcpu->kvm)) {
  3311. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  3312. return 1;
  3313. } else {
  3314. vcpu->run->exit_reason = KVM_EXIT_HLT;
  3315. return 0;
  3316. }
  3317. }
  3318. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  3319. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  3320. unsigned long a1)
  3321. {
  3322. if (is_long_mode(vcpu))
  3323. return a0;
  3324. else
  3325. return a0 | ((gpa_t)a1 << 32);
  3326. }
  3327. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  3328. {
  3329. u64 param, ingpa, outgpa, ret;
  3330. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  3331. bool fast, longmode;
  3332. int cs_db, cs_l;
  3333. /*
  3334. * hypercall generates UD from non zero cpl and real mode
  3335. * per HYPER-V spec
  3336. */
  3337. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  3338. kvm_queue_exception(vcpu, UD_VECTOR);
  3339. return 0;
  3340. }
  3341. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3342. longmode = is_long_mode(vcpu) && cs_l == 1;
  3343. if (!longmode) {
  3344. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  3345. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  3346. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  3347. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  3348. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  3349. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  3350. }
  3351. #ifdef CONFIG_X86_64
  3352. else {
  3353. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3354. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3355. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  3356. }
  3357. #endif
  3358. code = param & 0xffff;
  3359. fast = (param >> 16) & 0x1;
  3360. rep_cnt = (param >> 32) & 0xfff;
  3361. rep_idx = (param >> 48) & 0xfff;
  3362. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  3363. switch (code) {
  3364. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  3365. kvm_vcpu_on_spin(vcpu);
  3366. break;
  3367. default:
  3368. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  3369. break;
  3370. }
  3371. ret = res | (((u64)rep_done & 0xfff) << 32);
  3372. if (longmode) {
  3373. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3374. } else {
  3375. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  3376. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  3377. }
  3378. return 1;
  3379. }
  3380. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  3381. {
  3382. unsigned long nr, a0, a1, a2, a3, ret;
  3383. int r = 1;
  3384. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  3385. return kvm_hv_hypercall(vcpu);
  3386. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3387. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3388. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3389. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3390. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3391. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  3392. if (!is_long_mode(vcpu)) {
  3393. nr &= 0xFFFFFFFF;
  3394. a0 &= 0xFFFFFFFF;
  3395. a1 &= 0xFFFFFFFF;
  3396. a2 &= 0xFFFFFFFF;
  3397. a3 &= 0xFFFFFFFF;
  3398. }
  3399. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  3400. ret = -KVM_EPERM;
  3401. goto out;
  3402. }
  3403. switch (nr) {
  3404. case KVM_HC_VAPIC_POLL_IRQ:
  3405. ret = 0;
  3406. break;
  3407. case KVM_HC_MMU_OP:
  3408. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  3409. break;
  3410. default:
  3411. ret = -KVM_ENOSYS;
  3412. break;
  3413. }
  3414. out:
  3415. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3416. ++vcpu->stat.hypercalls;
  3417. return r;
  3418. }
  3419. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  3420. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  3421. {
  3422. char instruction[3];
  3423. unsigned long rip = kvm_rip_read(vcpu);
  3424. /*
  3425. * Blow out the MMU to ensure that no other VCPU has an active mapping
  3426. * to ensure that the updated hypercall appears atomically across all
  3427. * VCPUs.
  3428. */
  3429. kvm_mmu_zap_all(vcpu->kvm);
  3430. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  3431. return emulator_write_emulated(rip, instruction, 3, vcpu);
  3432. }
  3433. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3434. {
  3435. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3436. }
  3437. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3438. {
  3439. struct descriptor_table dt = { limit, base };
  3440. kvm_x86_ops->set_gdt(vcpu, &dt);
  3441. }
  3442. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3443. {
  3444. struct descriptor_table dt = { limit, base };
  3445. kvm_x86_ops->set_idt(vcpu, &dt);
  3446. }
  3447. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  3448. unsigned long *rflags)
  3449. {
  3450. kvm_lmsw(vcpu, msw);
  3451. *rflags = kvm_get_rflags(vcpu);
  3452. }
  3453. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  3454. {
  3455. unsigned long value;
  3456. switch (cr) {
  3457. case 0:
  3458. value = kvm_read_cr0(vcpu);
  3459. break;
  3460. case 2:
  3461. value = vcpu->arch.cr2;
  3462. break;
  3463. case 3:
  3464. value = vcpu->arch.cr3;
  3465. break;
  3466. case 4:
  3467. value = kvm_read_cr4(vcpu);
  3468. break;
  3469. case 8:
  3470. value = kvm_get_cr8(vcpu);
  3471. break;
  3472. default:
  3473. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3474. return 0;
  3475. }
  3476. return value;
  3477. }
  3478. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  3479. unsigned long *rflags)
  3480. {
  3481. switch (cr) {
  3482. case 0:
  3483. kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3484. *rflags = kvm_get_rflags(vcpu);
  3485. break;
  3486. case 2:
  3487. vcpu->arch.cr2 = val;
  3488. break;
  3489. case 3:
  3490. kvm_set_cr3(vcpu, val);
  3491. break;
  3492. case 4:
  3493. kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3494. break;
  3495. case 8:
  3496. kvm_set_cr8(vcpu, val & 0xfUL);
  3497. break;
  3498. default:
  3499. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3500. }
  3501. }
  3502. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  3503. {
  3504. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  3505. int j, nent = vcpu->arch.cpuid_nent;
  3506. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  3507. /* when no next entry is found, the current entry[i] is reselected */
  3508. for (j = i + 1; ; j = (j + 1) % nent) {
  3509. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  3510. if (ej->function == e->function) {
  3511. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  3512. return j;
  3513. }
  3514. }
  3515. return 0; /* silence gcc, even though control never reaches here */
  3516. }
  3517. /* find an entry with matching function, matching index (if needed), and that
  3518. * should be read next (if it's stateful) */
  3519. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  3520. u32 function, u32 index)
  3521. {
  3522. if (e->function != function)
  3523. return 0;
  3524. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  3525. return 0;
  3526. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  3527. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  3528. return 0;
  3529. return 1;
  3530. }
  3531. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  3532. u32 function, u32 index)
  3533. {
  3534. int i;
  3535. struct kvm_cpuid_entry2 *best = NULL;
  3536. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  3537. struct kvm_cpuid_entry2 *e;
  3538. e = &vcpu->arch.cpuid_entries[i];
  3539. if (is_matching_cpuid_entry(e, function, index)) {
  3540. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  3541. move_to_next_stateful_cpuid_entry(vcpu, i);
  3542. best = e;
  3543. break;
  3544. }
  3545. /*
  3546. * Both basic or both extended?
  3547. */
  3548. if (((e->function ^ function) & 0x80000000) == 0)
  3549. if (!best || e->function > best->function)
  3550. best = e;
  3551. }
  3552. return best;
  3553. }
  3554. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  3555. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  3556. {
  3557. struct kvm_cpuid_entry2 *best;
  3558. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  3559. if (best)
  3560. return best->eax & 0xff;
  3561. return 36;
  3562. }
  3563. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  3564. {
  3565. u32 function, index;
  3566. struct kvm_cpuid_entry2 *best;
  3567. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3568. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3569. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  3570. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  3571. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  3572. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  3573. best = kvm_find_cpuid_entry(vcpu, function, index);
  3574. if (best) {
  3575. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  3576. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  3577. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  3578. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  3579. }
  3580. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3581. trace_kvm_cpuid(function,
  3582. kvm_register_read(vcpu, VCPU_REGS_RAX),
  3583. kvm_register_read(vcpu, VCPU_REGS_RBX),
  3584. kvm_register_read(vcpu, VCPU_REGS_RCX),
  3585. kvm_register_read(vcpu, VCPU_REGS_RDX));
  3586. }
  3587. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  3588. /*
  3589. * Check if userspace requested an interrupt window, and that the
  3590. * interrupt window is open.
  3591. *
  3592. * No need to exit to userspace if we already have an interrupt queued.
  3593. */
  3594. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  3595. {
  3596. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  3597. vcpu->run->request_interrupt_window &&
  3598. kvm_arch_interrupt_allowed(vcpu));
  3599. }
  3600. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  3601. {
  3602. struct kvm_run *kvm_run = vcpu->run;
  3603. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  3604. kvm_run->cr8 = kvm_get_cr8(vcpu);
  3605. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  3606. if (irqchip_in_kernel(vcpu->kvm))
  3607. kvm_run->ready_for_interrupt_injection = 1;
  3608. else
  3609. kvm_run->ready_for_interrupt_injection =
  3610. kvm_arch_interrupt_allowed(vcpu) &&
  3611. !kvm_cpu_has_interrupt(vcpu) &&
  3612. !kvm_event_needs_reinjection(vcpu);
  3613. }
  3614. static void vapic_enter(struct kvm_vcpu *vcpu)
  3615. {
  3616. struct kvm_lapic *apic = vcpu->arch.apic;
  3617. struct page *page;
  3618. if (!apic || !apic->vapic_addr)
  3619. return;
  3620. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3621. vcpu->arch.apic->vapic_page = page;
  3622. }
  3623. static void vapic_exit(struct kvm_vcpu *vcpu)
  3624. {
  3625. struct kvm_lapic *apic = vcpu->arch.apic;
  3626. int idx;
  3627. if (!apic || !apic->vapic_addr)
  3628. return;
  3629. idx = srcu_read_lock(&vcpu->kvm->srcu);
  3630. kvm_release_page_dirty(apic->vapic_page);
  3631. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3632. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  3633. }
  3634. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  3635. {
  3636. int max_irr, tpr;
  3637. if (!kvm_x86_ops->update_cr8_intercept)
  3638. return;
  3639. if (!vcpu->arch.apic)
  3640. return;
  3641. if (!vcpu->arch.apic->vapic_addr)
  3642. max_irr = kvm_lapic_find_highest_irr(vcpu);
  3643. else
  3644. max_irr = -1;
  3645. if (max_irr != -1)
  3646. max_irr >>= 4;
  3647. tpr = kvm_lapic_get_cr8(vcpu);
  3648. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  3649. }
  3650. static void inject_pending_event(struct kvm_vcpu *vcpu)
  3651. {
  3652. /* try to reinject previous events if any */
  3653. if (vcpu->arch.exception.pending) {
  3654. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  3655. vcpu->arch.exception.has_error_code,
  3656. vcpu->arch.exception.error_code);
  3657. return;
  3658. }
  3659. if (vcpu->arch.nmi_injected) {
  3660. kvm_x86_ops->set_nmi(vcpu);
  3661. return;
  3662. }
  3663. if (vcpu->arch.interrupt.pending) {
  3664. kvm_x86_ops->set_irq(vcpu);
  3665. return;
  3666. }
  3667. /* try to inject new event if pending */
  3668. if (vcpu->arch.nmi_pending) {
  3669. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  3670. vcpu->arch.nmi_pending = false;
  3671. vcpu->arch.nmi_injected = true;
  3672. kvm_x86_ops->set_nmi(vcpu);
  3673. }
  3674. } else if (kvm_cpu_has_interrupt(vcpu)) {
  3675. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  3676. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  3677. false);
  3678. kvm_x86_ops->set_irq(vcpu);
  3679. }
  3680. }
  3681. }
  3682. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  3683. {
  3684. int r;
  3685. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  3686. vcpu->run->request_interrupt_window;
  3687. if (vcpu->requests)
  3688. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  3689. kvm_mmu_unload(vcpu);
  3690. r = kvm_mmu_reload(vcpu);
  3691. if (unlikely(r))
  3692. goto out;
  3693. if (vcpu->requests) {
  3694. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  3695. __kvm_migrate_timers(vcpu);
  3696. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  3697. kvm_write_guest_time(vcpu);
  3698. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  3699. kvm_mmu_sync_roots(vcpu);
  3700. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  3701. kvm_x86_ops->tlb_flush(vcpu);
  3702. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  3703. &vcpu->requests)) {
  3704. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  3705. r = 0;
  3706. goto out;
  3707. }
  3708. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3709. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3710. r = 0;
  3711. goto out;
  3712. }
  3713. if (test_and_clear_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests)) {
  3714. vcpu->fpu_active = 0;
  3715. kvm_x86_ops->fpu_deactivate(vcpu);
  3716. }
  3717. }
  3718. preempt_disable();
  3719. kvm_x86_ops->prepare_guest_switch(vcpu);
  3720. if (vcpu->fpu_active)
  3721. kvm_load_guest_fpu(vcpu);
  3722. local_irq_disable();
  3723. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  3724. smp_mb__after_clear_bit();
  3725. if (vcpu->requests || need_resched() || signal_pending(current)) {
  3726. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3727. local_irq_enable();
  3728. preempt_enable();
  3729. r = 1;
  3730. goto out;
  3731. }
  3732. inject_pending_event(vcpu);
  3733. /* enable NMI/IRQ window open exits if needed */
  3734. if (vcpu->arch.nmi_pending)
  3735. kvm_x86_ops->enable_nmi_window(vcpu);
  3736. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  3737. kvm_x86_ops->enable_irq_window(vcpu);
  3738. if (kvm_lapic_enabled(vcpu)) {
  3739. update_cr8_intercept(vcpu);
  3740. kvm_lapic_sync_to_vapic(vcpu);
  3741. }
  3742. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  3743. kvm_guest_enter();
  3744. if (unlikely(vcpu->arch.switch_db_regs)) {
  3745. set_debugreg(0, 7);
  3746. set_debugreg(vcpu->arch.eff_db[0], 0);
  3747. set_debugreg(vcpu->arch.eff_db[1], 1);
  3748. set_debugreg(vcpu->arch.eff_db[2], 2);
  3749. set_debugreg(vcpu->arch.eff_db[3], 3);
  3750. }
  3751. trace_kvm_entry(vcpu->vcpu_id);
  3752. kvm_x86_ops->run(vcpu);
  3753. /*
  3754. * If the guest has used debug registers, at least dr7
  3755. * will be disabled while returning to the host.
  3756. * If we don't have active breakpoints in the host, we don't
  3757. * care about the messed up debug address registers. But if
  3758. * we have some of them active, restore the old state.
  3759. */
  3760. if (hw_breakpoint_active())
  3761. hw_breakpoint_restore();
  3762. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3763. local_irq_enable();
  3764. ++vcpu->stat.exits;
  3765. /*
  3766. * We must have an instruction between local_irq_enable() and
  3767. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  3768. * the interrupt shadow. The stat.exits increment will do nicely.
  3769. * But we need to prevent reordering, hence this barrier():
  3770. */
  3771. barrier();
  3772. kvm_guest_exit();
  3773. preempt_enable();
  3774. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  3775. /*
  3776. * Profile KVM exit RIPs:
  3777. */
  3778. if (unlikely(prof_on == KVM_PROFILING)) {
  3779. unsigned long rip = kvm_rip_read(vcpu);
  3780. profile_hit(KVM_PROFILING, (void *)rip);
  3781. }
  3782. kvm_lapic_sync_from_vapic(vcpu);
  3783. r = kvm_x86_ops->handle_exit(vcpu);
  3784. out:
  3785. return r;
  3786. }
  3787. static int __vcpu_run(struct kvm_vcpu *vcpu)
  3788. {
  3789. int r;
  3790. struct kvm *kvm = vcpu->kvm;
  3791. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  3792. pr_debug("vcpu %d received sipi with vector # %x\n",
  3793. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  3794. kvm_lapic_reset(vcpu);
  3795. r = kvm_arch_vcpu_reset(vcpu);
  3796. if (r)
  3797. return r;
  3798. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3799. }
  3800. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  3801. vapic_enter(vcpu);
  3802. r = 1;
  3803. while (r > 0) {
  3804. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  3805. r = vcpu_enter_guest(vcpu);
  3806. else {
  3807. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  3808. kvm_vcpu_block(vcpu);
  3809. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  3810. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  3811. {
  3812. switch(vcpu->arch.mp_state) {
  3813. case KVM_MP_STATE_HALTED:
  3814. vcpu->arch.mp_state =
  3815. KVM_MP_STATE_RUNNABLE;
  3816. case KVM_MP_STATE_RUNNABLE:
  3817. break;
  3818. case KVM_MP_STATE_SIPI_RECEIVED:
  3819. default:
  3820. r = -EINTR;
  3821. break;
  3822. }
  3823. }
  3824. }
  3825. if (r <= 0)
  3826. break;
  3827. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  3828. if (kvm_cpu_has_pending_timer(vcpu))
  3829. kvm_inject_pending_timer_irqs(vcpu);
  3830. if (dm_request_for_irq_injection(vcpu)) {
  3831. r = -EINTR;
  3832. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3833. ++vcpu->stat.request_irq_exits;
  3834. }
  3835. if (signal_pending(current)) {
  3836. r = -EINTR;
  3837. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3838. ++vcpu->stat.signal_exits;
  3839. }
  3840. if (need_resched()) {
  3841. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  3842. kvm_resched(vcpu);
  3843. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  3844. }
  3845. }
  3846. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  3847. post_kvm_run_save(vcpu);
  3848. vapic_exit(vcpu);
  3849. return r;
  3850. }
  3851. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3852. {
  3853. int r;
  3854. sigset_t sigsaved;
  3855. vcpu_load(vcpu);
  3856. if (vcpu->sigset_active)
  3857. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  3858. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  3859. kvm_vcpu_block(vcpu);
  3860. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  3861. r = -EAGAIN;
  3862. goto out;
  3863. }
  3864. /* re-sync apic's tpr */
  3865. if (!irqchip_in_kernel(vcpu->kvm))
  3866. kvm_set_cr8(vcpu, kvm_run->cr8);
  3867. if (vcpu->arch.pio.cur_count) {
  3868. r = complete_pio(vcpu);
  3869. if (r)
  3870. goto out;
  3871. }
  3872. if (vcpu->mmio_needed) {
  3873. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  3874. vcpu->mmio_read_completed = 1;
  3875. vcpu->mmio_needed = 0;
  3876. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  3877. r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
  3878. EMULTYPE_NO_DECODE);
  3879. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  3880. if (r == EMULATE_DO_MMIO) {
  3881. /*
  3882. * Read-modify-write. Back to userspace.
  3883. */
  3884. r = 0;
  3885. goto out;
  3886. }
  3887. }
  3888. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  3889. kvm_register_write(vcpu, VCPU_REGS_RAX,
  3890. kvm_run->hypercall.ret);
  3891. r = __vcpu_run(vcpu);
  3892. out:
  3893. if (vcpu->sigset_active)
  3894. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  3895. vcpu_put(vcpu);
  3896. return r;
  3897. }
  3898. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3899. {
  3900. vcpu_load(vcpu);
  3901. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3902. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3903. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3904. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3905. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3906. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3907. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3908. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3909. #ifdef CONFIG_X86_64
  3910. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  3911. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  3912. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  3913. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  3914. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  3915. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  3916. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  3917. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  3918. #endif
  3919. regs->rip = kvm_rip_read(vcpu);
  3920. regs->rflags = kvm_get_rflags(vcpu);
  3921. vcpu_put(vcpu);
  3922. return 0;
  3923. }
  3924. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3925. {
  3926. vcpu_load(vcpu);
  3927. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  3928. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  3929. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  3930. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  3931. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  3932. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  3933. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  3934. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  3935. #ifdef CONFIG_X86_64
  3936. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  3937. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  3938. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  3939. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  3940. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  3941. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  3942. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  3943. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  3944. #endif
  3945. kvm_rip_write(vcpu, regs->rip);
  3946. kvm_set_rflags(vcpu, regs->rflags);
  3947. vcpu->arch.exception.pending = false;
  3948. vcpu_put(vcpu);
  3949. return 0;
  3950. }
  3951. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3952. struct kvm_segment *var, int seg)
  3953. {
  3954. kvm_x86_ops->get_segment(vcpu, var, seg);
  3955. }
  3956. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3957. {
  3958. struct kvm_segment cs;
  3959. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3960. *db = cs.db;
  3961. *l = cs.l;
  3962. }
  3963. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  3964. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  3965. struct kvm_sregs *sregs)
  3966. {
  3967. struct descriptor_table dt;
  3968. vcpu_load(vcpu);
  3969. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3970. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3971. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3972. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3973. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3974. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3975. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3976. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3977. kvm_x86_ops->get_idt(vcpu, &dt);
  3978. sregs->idt.limit = dt.limit;
  3979. sregs->idt.base = dt.base;
  3980. kvm_x86_ops->get_gdt(vcpu, &dt);
  3981. sregs->gdt.limit = dt.limit;
  3982. sregs->gdt.base = dt.base;
  3983. sregs->cr0 = kvm_read_cr0(vcpu);
  3984. sregs->cr2 = vcpu->arch.cr2;
  3985. sregs->cr3 = vcpu->arch.cr3;
  3986. sregs->cr4 = kvm_read_cr4(vcpu);
  3987. sregs->cr8 = kvm_get_cr8(vcpu);
  3988. sregs->efer = vcpu->arch.efer;
  3989. sregs->apic_base = kvm_get_apic_base(vcpu);
  3990. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  3991. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  3992. set_bit(vcpu->arch.interrupt.nr,
  3993. (unsigned long *)sregs->interrupt_bitmap);
  3994. vcpu_put(vcpu);
  3995. return 0;
  3996. }
  3997. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  3998. struct kvm_mp_state *mp_state)
  3999. {
  4000. vcpu_load(vcpu);
  4001. mp_state->mp_state = vcpu->arch.mp_state;
  4002. vcpu_put(vcpu);
  4003. return 0;
  4004. }
  4005. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  4006. struct kvm_mp_state *mp_state)
  4007. {
  4008. vcpu_load(vcpu);
  4009. vcpu->arch.mp_state = mp_state->mp_state;
  4010. vcpu_put(vcpu);
  4011. return 0;
  4012. }
  4013. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  4014. struct kvm_segment *var, int seg)
  4015. {
  4016. kvm_x86_ops->set_segment(vcpu, var, seg);
  4017. }
  4018. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  4019. struct kvm_segment *kvm_desct)
  4020. {
  4021. kvm_desct->base = get_desc_base(seg_desc);
  4022. kvm_desct->limit = get_desc_limit(seg_desc);
  4023. if (seg_desc->g) {
  4024. kvm_desct->limit <<= 12;
  4025. kvm_desct->limit |= 0xfff;
  4026. }
  4027. kvm_desct->selector = selector;
  4028. kvm_desct->type = seg_desc->type;
  4029. kvm_desct->present = seg_desc->p;
  4030. kvm_desct->dpl = seg_desc->dpl;
  4031. kvm_desct->db = seg_desc->d;
  4032. kvm_desct->s = seg_desc->s;
  4033. kvm_desct->l = seg_desc->l;
  4034. kvm_desct->g = seg_desc->g;
  4035. kvm_desct->avl = seg_desc->avl;
  4036. if (!selector)
  4037. kvm_desct->unusable = 1;
  4038. else
  4039. kvm_desct->unusable = 0;
  4040. kvm_desct->padding = 0;
  4041. }
  4042. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  4043. u16 selector,
  4044. struct descriptor_table *dtable)
  4045. {
  4046. if (selector & 1 << 2) {
  4047. struct kvm_segment kvm_seg;
  4048. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  4049. if (kvm_seg.unusable)
  4050. dtable->limit = 0;
  4051. else
  4052. dtable->limit = kvm_seg.limit;
  4053. dtable->base = kvm_seg.base;
  4054. }
  4055. else
  4056. kvm_x86_ops->get_gdt(vcpu, dtable);
  4057. }
  4058. /* allowed just for 8 bytes segments */
  4059. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  4060. struct desc_struct *seg_desc)
  4061. {
  4062. struct descriptor_table dtable;
  4063. u16 index = selector >> 3;
  4064. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  4065. if (dtable.limit < index * 8 + 7) {
  4066. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  4067. return X86EMUL_PROPAGATE_FAULT;
  4068. }
  4069. return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
  4070. }
  4071. /* allowed just for 8 bytes segments */
  4072. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  4073. struct desc_struct *seg_desc)
  4074. {
  4075. struct descriptor_table dtable;
  4076. u16 index = selector >> 3;
  4077. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  4078. if (dtable.limit < index * 8 + 7)
  4079. return 1;
  4080. return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
  4081. }
  4082. static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
  4083. struct desc_struct *seg_desc)
  4084. {
  4085. u32 base_addr = get_desc_base(seg_desc);
  4086. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  4087. }
  4088. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  4089. {
  4090. struct kvm_segment kvm_seg;
  4091. kvm_get_segment(vcpu, &kvm_seg, seg);
  4092. return kvm_seg.selector;
  4093. }
  4094. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  4095. {
  4096. struct kvm_segment segvar = {
  4097. .base = selector << 4,
  4098. .limit = 0xffff,
  4099. .selector = selector,
  4100. .type = 3,
  4101. .present = 1,
  4102. .dpl = 3,
  4103. .db = 0,
  4104. .s = 1,
  4105. .l = 0,
  4106. .g = 0,
  4107. .avl = 0,
  4108. .unusable = 0,
  4109. };
  4110. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  4111. return 0;
  4112. }
  4113. static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
  4114. {
  4115. return (seg != VCPU_SREG_LDTR) &&
  4116. (seg != VCPU_SREG_TR) &&
  4117. (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
  4118. }
  4119. static void kvm_check_segment_descriptor(struct kvm_vcpu *vcpu, int seg,
  4120. u16 selector)
  4121. {
  4122. /* NULL selector is not valid for CS and SS */
  4123. if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
  4124. if (!selector)
  4125. kvm_queue_exception_e(vcpu, TS_VECTOR, selector >> 3);
  4126. }
  4127. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  4128. int type_bits, int seg)
  4129. {
  4130. struct kvm_segment kvm_seg;
  4131. struct desc_struct seg_desc;
  4132. if (is_vm86_segment(vcpu, seg) || !is_protmode(vcpu))
  4133. return kvm_load_realmode_segment(vcpu, selector, seg);
  4134. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  4135. return 1;
  4136. seg_desct_to_kvm_desct(&seg_desc, selector, &kvm_seg);
  4137. kvm_check_segment_descriptor(vcpu, seg, selector);
  4138. kvm_seg.type |= type_bits;
  4139. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  4140. seg != VCPU_SREG_LDTR)
  4141. if (!kvm_seg.s)
  4142. kvm_seg.unusable = 1;
  4143. kvm_set_segment(vcpu, &kvm_seg, seg);
  4144. if (selector && !kvm_seg.unusable && kvm_seg.s) {
  4145. /* mark segment as accessed */
  4146. seg_desc.type |= 1;
  4147. save_guest_segment_descriptor(vcpu, selector, &seg_desc);
  4148. }
  4149. return 0;
  4150. }
  4151. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  4152. struct tss_segment_32 *tss)
  4153. {
  4154. tss->cr3 = vcpu->arch.cr3;
  4155. tss->eip = kvm_rip_read(vcpu);
  4156. tss->eflags = kvm_get_rflags(vcpu);
  4157. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4158. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4159. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4160. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4161. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4162. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4163. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4164. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4165. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  4166. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  4167. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  4168. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  4169. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  4170. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  4171. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  4172. }
  4173. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  4174. struct tss_segment_32 *tss)
  4175. {
  4176. kvm_set_cr3(vcpu, tss->cr3);
  4177. kvm_rip_write(vcpu, tss->eip);
  4178. kvm_set_rflags(vcpu, tss->eflags | 2);
  4179. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  4180. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  4181. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  4182. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  4183. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  4184. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  4185. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  4186. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  4187. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  4188. return 1;
  4189. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  4190. return 1;
  4191. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  4192. return 1;
  4193. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  4194. return 1;
  4195. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  4196. return 1;
  4197. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  4198. return 1;
  4199. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  4200. return 1;
  4201. return 0;
  4202. }
  4203. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  4204. struct tss_segment_16 *tss)
  4205. {
  4206. tss->ip = kvm_rip_read(vcpu);
  4207. tss->flag = kvm_get_rflags(vcpu);
  4208. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4209. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4210. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4211. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4212. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4213. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4214. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4215. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4216. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  4217. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  4218. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  4219. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  4220. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  4221. }
  4222. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  4223. struct tss_segment_16 *tss)
  4224. {
  4225. kvm_rip_write(vcpu, tss->ip);
  4226. kvm_set_rflags(vcpu, tss->flag | 2);
  4227. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  4228. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  4229. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  4230. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  4231. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  4232. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  4233. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  4234. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  4235. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  4236. return 1;
  4237. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  4238. return 1;
  4239. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  4240. return 1;
  4241. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  4242. return 1;
  4243. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  4244. return 1;
  4245. return 0;
  4246. }
  4247. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  4248. u16 old_tss_sel, u32 old_tss_base,
  4249. struct desc_struct *nseg_desc)
  4250. {
  4251. struct tss_segment_16 tss_segment_16;
  4252. int ret = 0;
  4253. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  4254. sizeof tss_segment_16))
  4255. goto out;
  4256. save_state_to_tss16(vcpu, &tss_segment_16);
  4257. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  4258. sizeof tss_segment_16))
  4259. goto out;
  4260. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  4261. &tss_segment_16, sizeof tss_segment_16))
  4262. goto out;
  4263. if (old_tss_sel != 0xffff) {
  4264. tss_segment_16.prev_task_link = old_tss_sel;
  4265. if (kvm_write_guest(vcpu->kvm,
  4266. get_tss_base_addr(vcpu, nseg_desc),
  4267. &tss_segment_16.prev_task_link,
  4268. sizeof tss_segment_16.prev_task_link))
  4269. goto out;
  4270. }
  4271. if (load_state_from_tss16(vcpu, &tss_segment_16))
  4272. goto out;
  4273. ret = 1;
  4274. out:
  4275. return ret;
  4276. }
  4277. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  4278. u16 old_tss_sel, u32 old_tss_base,
  4279. struct desc_struct *nseg_desc)
  4280. {
  4281. struct tss_segment_32 tss_segment_32;
  4282. int ret = 0;
  4283. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  4284. sizeof tss_segment_32))
  4285. goto out;
  4286. save_state_to_tss32(vcpu, &tss_segment_32);
  4287. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  4288. sizeof tss_segment_32))
  4289. goto out;
  4290. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  4291. &tss_segment_32, sizeof tss_segment_32))
  4292. goto out;
  4293. if (old_tss_sel != 0xffff) {
  4294. tss_segment_32.prev_task_link = old_tss_sel;
  4295. if (kvm_write_guest(vcpu->kvm,
  4296. get_tss_base_addr(vcpu, nseg_desc),
  4297. &tss_segment_32.prev_task_link,
  4298. sizeof tss_segment_32.prev_task_link))
  4299. goto out;
  4300. }
  4301. if (load_state_from_tss32(vcpu, &tss_segment_32))
  4302. goto out;
  4303. ret = 1;
  4304. out:
  4305. return ret;
  4306. }
  4307. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  4308. {
  4309. struct kvm_segment tr_seg;
  4310. struct desc_struct cseg_desc;
  4311. struct desc_struct nseg_desc;
  4312. int ret = 0;
  4313. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  4314. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  4315. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  4316. /* FIXME: Handle errors. Failure to read either TSS or their
  4317. * descriptors should generate a pagefault.
  4318. */
  4319. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  4320. goto out;
  4321. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  4322. goto out;
  4323. if (reason != TASK_SWITCH_IRET) {
  4324. int cpl;
  4325. cpl = kvm_x86_ops->get_cpl(vcpu);
  4326. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  4327. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  4328. return 1;
  4329. }
  4330. }
  4331. if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
  4332. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  4333. return 1;
  4334. }
  4335. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  4336. cseg_desc.type &= ~(1 << 1); //clear the B flag
  4337. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  4338. }
  4339. if (reason == TASK_SWITCH_IRET) {
  4340. u32 eflags = kvm_get_rflags(vcpu);
  4341. kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  4342. }
  4343. /* set back link to prev task only if NT bit is set in eflags
  4344. note that old_tss_sel is not used afetr this point */
  4345. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  4346. old_tss_sel = 0xffff;
  4347. if (nseg_desc.type & 8)
  4348. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  4349. old_tss_base, &nseg_desc);
  4350. else
  4351. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  4352. old_tss_base, &nseg_desc);
  4353. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  4354. u32 eflags = kvm_get_rflags(vcpu);
  4355. kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  4356. }
  4357. if (reason != TASK_SWITCH_IRET) {
  4358. nseg_desc.type |= (1 << 1);
  4359. save_guest_segment_descriptor(vcpu, tss_selector,
  4360. &nseg_desc);
  4361. }
  4362. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0(vcpu) | X86_CR0_TS);
  4363. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  4364. tr_seg.type = 11;
  4365. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  4366. out:
  4367. return ret;
  4368. }
  4369. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4370. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4371. struct kvm_sregs *sregs)
  4372. {
  4373. int mmu_reset_needed = 0;
  4374. int pending_vec, max_bits;
  4375. struct descriptor_table dt;
  4376. vcpu_load(vcpu);
  4377. dt.limit = sregs->idt.limit;
  4378. dt.base = sregs->idt.base;
  4379. kvm_x86_ops->set_idt(vcpu, &dt);
  4380. dt.limit = sregs->gdt.limit;
  4381. dt.base = sregs->gdt.base;
  4382. kvm_x86_ops->set_gdt(vcpu, &dt);
  4383. vcpu->arch.cr2 = sregs->cr2;
  4384. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  4385. vcpu->arch.cr3 = sregs->cr3;
  4386. kvm_set_cr8(vcpu, sregs->cr8);
  4387. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  4388. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4389. kvm_set_apic_base(vcpu, sregs->apic_base);
  4390. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  4391. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4392. vcpu->arch.cr0 = sregs->cr0;
  4393. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  4394. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4395. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4396. load_pdptrs(vcpu, vcpu->arch.cr3);
  4397. mmu_reset_needed = 1;
  4398. }
  4399. if (mmu_reset_needed)
  4400. kvm_mmu_reset_context(vcpu);
  4401. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4402. pending_vec = find_first_bit(
  4403. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4404. if (pending_vec < max_bits) {
  4405. kvm_queue_interrupt(vcpu, pending_vec, false);
  4406. pr_debug("Set back pending irq %d\n", pending_vec);
  4407. if (irqchip_in_kernel(vcpu->kvm))
  4408. kvm_pic_clear_isr_ack(vcpu->kvm);
  4409. }
  4410. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4411. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4412. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4413. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4414. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4415. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4416. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4417. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4418. update_cr8_intercept(vcpu);
  4419. /* Older userspace won't unhalt the vcpu on reset. */
  4420. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4421. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4422. !is_protmode(vcpu))
  4423. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4424. vcpu_put(vcpu);
  4425. return 0;
  4426. }
  4427. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4428. struct kvm_guest_debug *dbg)
  4429. {
  4430. unsigned long rflags;
  4431. int i, r;
  4432. vcpu_load(vcpu);
  4433. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4434. r = -EBUSY;
  4435. if (vcpu->arch.exception.pending)
  4436. goto unlock_out;
  4437. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4438. kvm_queue_exception(vcpu, DB_VECTOR);
  4439. else
  4440. kvm_queue_exception(vcpu, BP_VECTOR);
  4441. }
  4442. /*
  4443. * Read rflags as long as potentially injected trace flags are still
  4444. * filtered out.
  4445. */
  4446. rflags = kvm_get_rflags(vcpu);
  4447. vcpu->guest_debug = dbg->control;
  4448. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4449. vcpu->guest_debug = 0;
  4450. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4451. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4452. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4453. vcpu->arch.switch_db_regs =
  4454. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4455. } else {
  4456. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4457. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4458. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4459. }
  4460. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
  4461. vcpu->arch.singlestep_cs =
  4462. get_segment_selector(vcpu, VCPU_SREG_CS);
  4463. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu);
  4464. }
  4465. /*
  4466. * Trigger an rflags update that will inject or remove the trace
  4467. * flags.
  4468. */
  4469. kvm_set_rflags(vcpu, rflags);
  4470. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4471. r = 0;
  4472. unlock_out:
  4473. vcpu_put(vcpu);
  4474. return r;
  4475. }
  4476. /*
  4477. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  4478. * we have asm/x86/processor.h
  4479. */
  4480. struct fxsave {
  4481. u16 cwd;
  4482. u16 swd;
  4483. u16 twd;
  4484. u16 fop;
  4485. u64 rip;
  4486. u64 rdp;
  4487. u32 mxcsr;
  4488. u32 mxcsr_mask;
  4489. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  4490. #ifdef CONFIG_X86_64
  4491. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  4492. #else
  4493. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  4494. #endif
  4495. };
  4496. /*
  4497. * Translate a guest virtual address to a guest physical address.
  4498. */
  4499. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4500. struct kvm_translation *tr)
  4501. {
  4502. unsigned long vaddr = tr->linear_address;
  4503. gpa_t gpa;
  4504. int idx;
  4505. vcpu_load(vcpu);
  4506. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4507. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  4508. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4509. tr->physical_address = gpa;
  4510. tr->valid = gpa != UNMAPPED_GVA;
  4511. tr->writeable = 1;
  4512. tr->usermode = 0;
  4513. vcpu_put(vcpu);
  4514. return 0;
  4515. }
  4516. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4517. {
  4518. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4519. vcpu_load(vcpu);
  4520. memcpy(fpu->fpr, fxsave->st_space, 128);
  4521. fpu->fcw = fxsave->cwd;
  4522. fpu->fsw = fxsave->swd;
  4523. fpu->ftwx = fxsave->twd;
  4524. fpu->last_opcode = fxsave->fop;
  4525. fpu->last_ip = fxsave->rip;
  4526. fpu->last_dp = fxsave->rdp;
  4527. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4528. vcpu_put(vcpu);
  4529. return 0;
  4530. }
  4531. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4532. {
  4533. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4534. vcpu_load(vcpu);
  4535. memcpy(fxsave->st_space, fpu->fpr, 128);
  4536. fxsave->cwd = fpu->fcw;
  4537. fxsave->swd = fpu->fsw;
  4538. fxsave->twd = fpu->ftwx;
  4539. fxsave->fop = fpu->last_opcode;
  4540. fxsave->rip = fpu->last_ip;
  4541. fxsave->rdp = fpu->last_dp;
  4542. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4543. vcpu_put(vcpu);
  4544. return 0;
  4545. }
  4546. void fx_init(struct kvm_vcpu *vcpu)
  4547. {
  4548. unsigned after_mxcsr_mask;
  4549. /*
  4550. * Touch the fpu the first time in non atomic context as if
  4551. * this is the first fpu instruction the exception handler
  4552. * will fire before the instruction returns and it'll have to
  4553. * allocate ram with GFP_KERNEL.
  4554. */
  4555. if (!used_math())
  4556. kvm_fx_save(&vcpu->arch.host_fx_image);
  4557. /* Initialize guest FPU by resetting ours and saving into guest's */
  4558. preempt_disable();
  4559. kvm_fx_save(&vcpu->arch.host_fx_image);
  4560. kvm_fx_finit();
  4561. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4562. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4563. preempt_enable();
  4564. vcpu->arch.cr0 |= X86_CR0_ET;
  4565. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  4566. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  4567. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  4568. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  4569. }
  4570. EXPORT_SYMBOL_GPL(fx_init);
  4571. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4572. {
  4573. if (vcpu->guest_fpu_loaded)
  4574. return;
  4575. vcpu->guest_fpu_loaded = 1;
  4576. kvm_fx_save(&vcpu->arch.host_fx_image);
  4577. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  4578. trace_kvm_fpu(1);
  4579. }
  4580. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4581. {
  4582. if (!vcpu->guest_fpu_loaded)
  4583. return;
  4584. vcpu->guest_fpu_loaded = 0;
  4585. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4586. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4587. ++vcpu->stat.fpu_reload;
  4588. set_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests);
  4589. trace_kvm_fpu(0);
  4590. }
  4591. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4592. {
  4593. if (vcpu->arch.time_page) {
  4594. kvm_release_page_dirty(vcpu->arch.time_page);
  4595. vcpu->arch.time_page = NULL;
  4596. }
  4597. kvm_x86_ops->vcpu_free(vcpu);
  4598. }
  4599. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4600. unsigned int id)
  4601. {
  4602. return kvm_x86_ops->vcpu_create(kvm, id);
  4603. }
  4604. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4605. {
  4606. int r;
  4607. /* We do fxsave: this must be aligned. */
  4608. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  4609. vcpu->arch.mtrr_state.have_fixed = 1;
  4610. vcpu_load(vcpu);
  4611. r = kvm_arch_vcpu_reset(vcpu);
  4612. if (r == 0)
  4613. r = kvm_mmu_setup(vcpu);
  4614. vcpu_put(vcpu);
  4615. if (r < 0)
  4616. goto free_vcpu;
  4617. return 0;
  4618. free_vcpu:
  4619. kvm_x86_ops->vcpu_free(vcpu);
  4620. return r;
  4621. }
  4622. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4623. {
  4624. vcpu_load(vcpu);
  4625. kvm_mmu_unload(vcpu);
  4626. vcpu_put(vcpu);
  4627. kvm_x86_ops->vcpu_free(vcpu);
  4628. }
  4629. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4630. {
  4631. vcpu->arch.nmi_pending = false;
  4632. vcpu->arch.nmi_injected = false;
  4633. vcpu->arch.switch_db_regs = 0;
  4634. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4635. vcpu->arch.dr6 = DR6_FIXED_1;
  4636. vcpu->arch.dr7 = DR7_FIXED_1;
  4637. return kvm_x86_ops->vcpu_reset(vcpu);
  4638. }
  4639. int kvm_arch_hardware_enable(void *garbage)
  4640. {
  4641. /*
  4642. * Since this may be called from a hotplug notifcation,
  4643. * we can't get the CPU frequency directly.
  4644. */
  4645. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4646. int cpu = raw_smp_processor_id();
  4647. per_cpu(cpu_tsc_khz, cpu) = 0;
  4648. }
  4649. kvm_shared_msr_cpu_online();
  4650. return kvm_x86_ops->hardware_enable(garbage);
  4651. }
  4652. void kvm_arch_hardware_disable(void *garbage)
  4653. {
  4654. kvm_x86_ops->hardware_disable(garbage);
  4655. drop_user_return_notifiers(garbage);
  4656. }
  4657. int kvm_arch_hardware_setup(void)
  4658. {
  4659. return kvm_x86_ops->hardware_setup();
  4660. }
  4661. void kvm_arch_hardware_unsetup(void)
  4662. {
  4663. kvm_x86_ops->hardware_unsetup();
  4664. }
  4665. void kvm_arch_check_processor_compat(void *rtn)
  4666. {
  4667. kvm_x86_ops->check_processor_compatibility(rtn);
  4668. }
  4669. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4670. {
  4671. struct page *page;
  4672. struct kvm *kvm;
  4673. int r;
  4674. BUG_ON(vcpu->kvm == NULL);
  4675. kvm = vcpu->kvm;
  4676. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4677. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4678. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4679. else
  4680. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4681. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4682. if (!page) {
  4683. r = -ENOMEM;
  4684. goto fail;
  4685. }
  4686. vcpu->arch.pio_data = page_address(page);
  4687. r = kvm_mmu_create(vcpu);
  4688. if (r < 0)
  4689. goto fail_free_pio_data;
  4690. if (irqchip_in_kernel(kvm)) {
  4691. r = kvm_create_lapic(vcpu);
  4692. if (r < 0)
  4693. goto fail_mmu_destroy;
  4694. }
  4695. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4696. GFP_KERNEL);
  4697. if (!vcpu->arch.mce_banks) {
  4698. r = -ENOMEM;
  4699. goto fail_free_lapic;
  4700. }
  4701. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4702. return 0;
  4703. fail_free_lapic:
  4704. kvm_free_lapic(vcpu);
  4705. fail_mmu_destroy:
  4706. kvm_mmu_destroy(vcpu);
  4707. fail_free_pio_data:
  4708. free_page((unsigned long)vcpu->arch.pio_data);
  4709. fail:
  4710. return r;
  4711. }
  4712. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4713. {
  4714. int idx;
  4715. kfree(vcpu->arch.mce_banks);
  4716. kvm_free_lapic(vcpu);
  4717. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4718. kvm_mmu_destroy(vcpu);
  4719. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4720. free_page((unsigned long)vcpu->arch.pio_data);
  4721. }
  4722. struct kvm *kvm_arch_create_vm(void)
  4723. {
  4724. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4725. if (!kvm)
  4726. return ERR_PTR(-ENOMEM);
  4727. kvm->arch.aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  4728. if (!kvm->arch.aliases) {
  4729. kfree(kvm);
  4730. return ERR_PTR(-ENOMEM);
  4731. }
  4732. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4733. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4734. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4735. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4736. rdtscll(kvm->arch.vm_init_tsc);
  4737. return kvm;
  4738. }
  4739. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4740. {
  4741. vcpu_load(vcpu);
  4742. kvm_mmu_unload(vcpu);
  4743. vcpu_put(vcpu);
  4744. }
  4745. static void kvm_free_vcpus(struct kvm *kvm)
  4746. {
  4747. unsigned int i;
  4748. struct kvm_vcpu *vcpu;
  4749. /*
  4750. * Unpin any mmu pages first.
  4751. */
  4752. kvm_for_each_vcpu(i, vcpu, kvm)
  4753. kvm_unload_vcpu_mmu(vcpu);
  4754. kvm_for_each_vcpu(i, vcpu, kvm)
  4755. kvm_arch_vcpu_free(vcpu);
  4756. mutex_lock(&kvm->lock);
  4757. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4758. kvm->vcpus[i] = NULL;
  4759. atomic_set(&kvm->online_vcpus, 0);
  4760. mutex_unlock(&kvm->lock);
  4761. }
  4762. void kvm_arch_sync_events(struct kvm *kvm)
  4763. {
  4764. kvm_free_all_assigned_devices(kvm);
  4765. }
  4766. void kvm_arch_destroy_vm(struct kvm *kvm)
  4767. {
  4768. kvm_iommu_unmap_guest(kvm);
  4769. kvm_free_pit(kvm);
  4770. kfree(kvm->arch.vpic);
  4771. kfree(kvm->arch.vioapic);
  4772. kvm_free_vcpus(kvm);
  4773. kvm_free_physmem(kvm);
  4774. if (kvm->arch.apic_access_page)
  4775. put_page(kvm->arch.apic_access_page);
  4776. if (kvm->arch.ept_identity_pagetable)
  4777. put_page(kvm->arch.ept_identity_pagetable);
  4778. cleanup_srcu_struct(&kvm->srcu);
  4779. kfree(kvm->arch.aliases);
  4780. kfree(kvm);
  4781. }
  4782. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  4783. struct kvm_memory_slot *memslot,
  4784. struct kvm_memory_slot old,
  4785. struct kvm_userspace_memory_region *mem,
  4786. int user_alloc)
  4787. {
  4788. int npages = memslot->npages;
  4789. /*To keep backward compatibility with older userspace,
  4790. *x86 needs to hanlde !user_alloc case.
  4791. */
  4792. if (!user_alloc) {
  4793. if (npages && !old.rmap) {
  4794. unsigned long userspace_addr;
  4795. down_write(&current->mm->mmap_sem);
  4796. userspace_addr = do_mmap(NULL, 0,
  4797. npages * PAGE_SIZE,
  4798. PROT_READ | PROT_WRITE,
  4799. MAP_PRIVATE | MAP_ANONYMOUS,
  4800. 0);
  4801. up_write(&current->mm->mmap_sem);
  4802. if (IS_ERR((void *)userspace_addr))
  4803. return PTR_ERR((void *)userspace_addr);
  4804. memslot->userspace_addr = userspace_addr;
  4805. }
  4806. }
  4807. return 0;
  4808. }
  4809. void kvm_arch_commit_memory_region(struct kvm *kvm,
  4810. struct kvm_userspace_memory_region *mem,
  4811. struct kvm_memory_slot old,
  4812. int user_alloc)
  4813. {
  4814. int npages = mem->memory_size >> PAGE_SHIFT;
  4815. if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
  4816. int ret;
  4817. down_write(&current->mm->mmap_sem);
  4818. ret = do_munmap(current->mm, old.userspace_addr,
  4819. old.npages * PAGE_SIZE);
  4820. up_write(&current->mm->mmap_sem);
  4821. if (ret < 0)
  4822. printk(KERN_WARNING
  4823. "kvm_vm_ioctl_set_memory_region: "
  4824. "failed to munmap memory\n");
  4825. }
  4826. spin_lock(&kvm->mmu_lock);
  4827. if (!kvm->arch.n_requested_mmu_pages) {
  4828. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4829. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4830. }
  4831. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4832. spin_unlock(&kvm->mmu_lock);
  4833. }
  4834. void kvm_arch_flush_shadow(struct kvm *kvm)
  4835. {
  4836. kvm_mmu_zap_all(kvm);
  4837. kvm_reload_remote_mmus(kvm);
  4838. }
  4839. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4840. {
  4841. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4842. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4843. || vcpu->arch.nmi_pending ||
  4844. (kvm_arch_interrupt_allowed(vcpu) &&
  4845. kvm_cpu_has_interrupt(vcpu));
  4846. }
  4847. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4848. {
  4849. int me;
  4850. int cpu = vcpu->cpu;
  4851. if (waitqueue_active(&vcpu->wq)) {
  4852. wake_up_interruptible(&vcpu->wq);
  4853. ++vcpu->stat.halt_wakeup;
  4854. }
  4855. me = get_cpu();
  4856. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4857. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  4858. smp_send_reschedule(cpu);
  4859. put_cpu();
  4860. }
  4861. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4862. {
  4863. return kvm_x86_ops->interrupt_allowed(vcpu);
  4864. }
  4865. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  4866. {
  4867. unsigned long rflags;
  4868. rflags = kvm_x86_ops->get_rflags(vcpu);
  4869. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4870. rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
  4871. return rflags;
  4872. }
  4873. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  4874. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  4875. {
  4876. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  4877. vcpu->arch.singlestep_cs ==
  4878. get_segment_selector(vcpu, VCPU_SREG_CS) &&
  4879. vcpu->arch.singlestep_rip == kvm_rip_read(vcpu))
  4880. rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  4881. kvm_x86_ops->set_rflags(vcpu, rflags);
  4882. }
  4883. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  4884. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  4885. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  4886. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  4887. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  4888. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  4889. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  4890. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  4891. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  4892. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  4893. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  4894. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);