md.c 111 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/config.h>
  28. #include <linux/kthread.h>
  29. #include <linux/linkage.h>
  30. #include <linux/raid/md.h>
  31. #include <linux/raid/bitmap.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/devfs_fs_kernel.h>
  34. #include <linux/buffer_head.h> /* for invalidate_bdev */
  35. #include <linux/suspend.h>
  36. #include <linux/poll.h>
  37. #include <linux/init.h>
  38. #include <linux/file.h>
  39. #ifdef CONFIG_KMOD
  40. #include <linux/kmod.h>
  41. #endif
  42. #include <asm/unaligned.h>
  43. #define MAJOR_NR MD_MAJOR
  44. #define MD_DRIVER
  45. /* 63 partitions with the alternate major number (mdp) */
  46. #define MdpMinorShift 6
  47. #define DEBUG 0
  48. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  49. #ifndef MODULE
  50. static void autostart_arrays (int part);
  51. #endif
  52. static mdk_personality_t *pers[MAX_PERSONALITY];
  53. static DEFINE_SPINLOCK(pers_lock);
  54. /*
  55. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  56. * is 1000 KB/sec, so the extra system load does not show up that much.
  57. * Increase it if you want to have more _guaranteed_ speed. Note that
  58. * the RAID driver will use the maximum available bandwidth if the IO
  59. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  60. * speed limit - in case reconstruction slows down your system despite
  61. * idle IO detection.
  62. *
  63. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  64. */
  65. static int sysctl_speed_limit_min = 1000;
  66. static int sysctl_speed_limit_max = 200000;
  67. static struct ctl_table_header *raid_table_header;
  68. static ctl_table raid_table[] = {
  69. {
  70. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  71. .procname = "speed_limit_min",
  72. .data = &sysctl_speed_limit_min,
  73. .maxlen = sizeof(int),
  74. .mode = 0644,
  75. .proc_handler = &proc_dointvec,
  76. },
  77. {
  78. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  79. .procname = "speed_limit_max",
  80. .data = &sysctl_speed_limit_max,
  81. .maxlen = sizeof(int),
  82. .mode = 0644,
  83. .proc_handler = &proc_dointvec,
  84. },
  85. { .ctl_name = 0 }
  86. };
  87. static ctl_table raid_dir_table[] = {
  88. {
  89. .ctl_name = DEV_RAID,
  90. .procname = "raid",
  91. .maxlen = 0,
  92. .mode = 0555,
  93. .child = raid_table,
  94. },
  95. { .ctl_name = 0 }
  96. };
  97. static ctl_table raid_root_table[] = {
  98. {
  99. .ctl_name = CTL_DEV,
  100. .procname = "dev",
  101. .maxlen = 0,
  102. .mode = 0555,
  103. .child = raid_dir_table,
  104. },
  105. { .ctl_name = 0 }
  106. };
  107. static struct block_device_operations md_fops;
  108. static int start_readonly;
  109. /*
  110. * We have a system wide 'event count' that is incremented
  111. * on any 'interesting' event, and readers of /proc/mdstat
  112. * can use 'poll' or 'select' to find out when the event
  113. * count increases.
  114. *
  115. * Events are:
  116. * start array, stop array, error, add device, remove device,
  117. * start build, activate spare
  118. */
  119. DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  120. static atomic_t md_event_count;
  121. void md_new_event(mddev_t *mddev)
  122. {
  123. atomic_inc(&md_event_count);
  124. wake_up(&md_event_waiters);
  125. }
  126. /*
  127. * Enables to iterate over all existing md arrays
  128. * all_mddevs_lock protects this list.
  129. */
  130. static LIST_HEAD(all_mddevs);
  131. static DEFINE_SPINLOCK(all_mddevs_lock);
  132. /*
  133. * iterates through all used mddevs in the system.
  134. * We take care to grab the all_mddevs_lock whenever navigating
  135. * the list, and to always hold a refcount when unlocked.
  136. * Any code which breaks out of this loop while own
  137. * a reference to the current mddev and must mddev_put it.
  138. */
  139. #define ITERATE_MDDEV(mddev,tmp) \
  140. \
  141. for (({ spin_lock(&all_mddevs_lock); \
  142. tmp = all_mddevs.next; \
  143. mddev = NULL;}); \
  144. ({ if (tmp != &all_mddevs) \
  145. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  146. spin_unlock(&all_mddevs_lock); \
  147. if (mddev) mddev_put(mddev); \
  148. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  149. tmp != &all_mddevs;}); \
  150. ({ spin_lock(&all_mddevs_lock); \
  151. tmp = tmp->next;}) \
  152. )
  153. static int md_fail_request (request_queue_t *q, struct bio *bio)
  154. {
  155. bio_io_error(bio, bio->bi_size);
  156. return 0;
  157. }
  158. static inline mddev_t *mddev_get(mddev_t *mddev)
  159. {
  160. atomic_inc(&mddev->active);
  161. return mddev;
  162. }
  163. static void mddev_put(mddev_t *mddev)
  164. {
  165. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  166. return;
  167. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  168. list_del(&mddev->all_mddevs);
  169. blk_put_queue(mddev->queue);
  170. kobject_unregister(&mddev->kobj);
  171. }
  172. spin_unlock(&all_mddevs_lock);
  173. }
  174. static mddev_t * mddev_find(dev_t unit)
  175. {
  176. mddev_t *mddev, *new = NULL;
  177. retry:
  178. spin_lock(&all_mddevs_lock);
  179. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  180. if (mddev->unit == unit) {
  181. mddev_get(mddev);
  182. spin_unlock(&all_mddevs_lock);
  183. kfree(new);
  184. return mddev;
  185. }
  186. if (new) {
  187. list_add(&new->all_mddevs, &all_mddevs);
  188. spin_unlock(&all_mddevs_lock);
  189. return new;
  190. }
  191. spin_unlock(&all_mddevs_lock);
  192. new = kzalloc(sizeof(*new), GFP_KERNEL);
  193. if (!new)
  194. return NULL;
  195. new->unit = unit;
  196. if (MAJOR(unit) == MD_MAJOR)
  197. new->md_minor = MINOR(unit);
  198. else
  199. new->md_minor = MINOR(unit) >> MdpMinorShift;
  200. init_MUTEX(&new->reconfig_sem);
  201. INIT_LIST_HEAD(&new->disks);
  202. INIT_LIST_HEAD(&new->all_mddevs);
  203. init_timer(&new->safemode_timer);
  204. atomic_set(&new->active, 1);
  205. spin_lock_init(&new->write_lock);
  206. init_waitqueue_head(&new->sb_wait);
  207. new->queue = blk_alloc_queue(GFP_KERNEL);
  208. if (!new->queue) {
  209. kfree(new);
  210. return NULL;
  211. }
  212. blk_queue_make_request(new->queue, md_fail_request);
  213. goto retry;
  214. }
  215. static inline int mddev_lock(mddev_t * mddev)
  216. {
  217. return down_interruptible(&mddev->reconfig_sem);
  218. }
  219. static inline void mddev_lock_uninterruptible(mddev_t * mddev)
  220. {
  221. down(&mddev->reconfig_sem);
  222. }
  223. static inline int mddev_trylock(mddev_t * mddev)
  224. {
  225. return down_trylock(&mddev->reconfig_sem);
  226. }
  227. static inline void mddev_unlock(mddev_t * mddev)
  228. {
  229. up(&mddev->reconfig_sem);
  230. md_wakeup_thread(mddev->thread);
  231. }
  232. mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  233. {
  234. mdk_rdev_t * rdev;
  235. struct list_head *tmp;
  236. ITERATE_RDEV(mddev,rdev,tmp) {
  237. if (rdev->desc_nr == nr)
  238. return rdev;
  239. }
  240. return NULL;
  241. }
  242. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  243. {
  244. struct list_head *tmp;
  245. mdk_rdev_t *rdev;
  246. ITERATE_RDEV(mddev,rdev,tmp) {
  247. if (rdev->bdev->bd_dev == dev)
  248. return rdev;
  249. }
  250. return NULL;
  251. }
  252. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  253. {
  254. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  255. return MD_NEW_SIZE_BLOCKS(size);
  256. }
  257. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  258. {
  259. sector_t size;
  260. size = rdev->sb_offset;
  261. if (chunk_size)
  262. size &= ~((sector_t)chunk_size/1024 - 1);
  263. return size;
  264. }
  265. static int alloc_disk_sb(mdk_rdev_t * rdev)
  266. {
  267. if (rdev->sb_page)
  268. MD_BUG();
  269. rdev->sb_page = alloc_page(GFP_KERNEL);
  270. if (!rdev->sb_page) {
  271. printk(KERN_ALERT "md: out of memory.\n");
  272. return -EINVAL;
  273. }
  274. return 0;
  275. }
  276. static void free_disk_sb(mdk_rdev_t * rdev)
  277. {
  278. if (rdev->sb_page) {
  279. put_page(rdev->sb_page);
  280. rdev->sb_loaded = 0;
  281. rdev->sb_page = NULL;
  282. rdev->sb_offset = 0;
  283. rdev->size = 0;
  284. }
  285. }
  286. static int super_written(struct bio *bio, unsigned int bytes_done, int error)
  287. {
  288. mdk_rdev_t *rdev = bio->bi_private;
  289. mddev_t *mddev = rdev->mddev;
  290. if (bio->bi_size)
  291. return 1;
  292. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
  293. md_error(mddev, rdev);
  294. if (atomic_dec_and_test(&mddev->pending_writes))
  295. wake_up(&mddev->sb_wait);
  296. bio_put(bio);
  297. return 0;
  298. }
  299. static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
  300. {
  301. struct bio *bio2 = bio->bi_private;
  302. mdk_rdev_t *rdev = bio2->bi_private;
  303. mddev_t *mddev = rdev->mddev;
  304. if (bio->bi_size)
  305. return 1;
  306. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  307. error == -EOPNOTSUPP) {
  308. unsigned long flags;
  309. /* barriers don't appear to be supported :-( */
  310. set_bit(BarriersNotsupp, &rdev->flags);
  311. mddev->barriers_work = 0;
  312. spin_lock_irqsave(&mddev->write_lock, flags);
  313. bio2->bi_next = mddev->biolist;
  314. mddev->biolist = bio2;
  315. spin_unlock_irqrestore(&mddev->write_lock, flags);
  316. wake_up(&mddev->sb_wait);
  317. bio_put(bio);
  318. return 0;
  319. }
  320. bio_put(bio2);
  321. bio->bi_private = rdev;
  322. return super_written(bio, bytes_done, error);
  323. }
  324. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  325. sector_t sector, int size, struct page *page)
  326. {
  327. /* write first size bytes of page to sector of rdev
  328. * Increment mddev->pending_writes before returning
  329. * and decrement it on completion, waking up sb_wait
  330. * if zero is reached.
  331. * If an error occurred, call md_error
  332. *
  333. * As we might need to resubmit the request if BIO_RW_BARRIER
  334. * causes ENOTSUPP, we allocate a spare bio...
  335. */
  336. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  337. int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
  338. bio->bi_bdev = rdev->bdev;
  339. bio->bi_sector = sector;
  340. bio_add_page(bio, page, size, 0);
  341. bio->bi_private = rdev;
  342. bio->bi_end_io = super_written;
  343. bio->bi_rw = rw;
  344. atomic_inc(&mddev->pending_writes);
  345. if (!test_bit(BarriersNotsupp, &rdev->flags)) {
  346. struct bio *rbio;
  347. rw |= (1<<BIO_RW_BARRIER);
  348. rbio = bio_clone(bio, GFP_NOIO);
  349. rbio->bi_private = bio;
  350. rbio->bi_end_io = super_written_barrier;
  351. submit_bio(rw, rbio);
  352. } else
  353. submit_bio(rw, bio);
  354. }
  355. void md_super_wait(mddev_t *mddev)
  356. {
  357. /* wait for all superblock writes that were scheduled to complete.
  358. * if any had to be retried (due to BARRIER problems), retry them
  359. */
  360. DEFINE_WAIT(wq);
  361. for(;;) {
  362. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  363. if (atomic_read(&mddev->pending_writes)==0)
  364. break;
  365. while (mddev->biolist) {
  366. struct bio *bio;
  367. spin_lock_irq(&mddev->write_lock);
  368. bio = mddev->biolist;
  369. mddev->biolist = bio->bi_next ;
  370. bio->bi_next = NULL;
  371. spin_unlock_irq(&mddev->write_lock);
  372. submit_bio(bio->bi_rw, bio);
  373. }
  374. schedule();
  375. }
  376. finish_wait(&mddev->sb_wait, &wq);
  377. }
  378. static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
  379. {
  380. if (bio->bi_size)
  381. return 1;
  382. complete((struct completion*)bio->bi_private);
  383. return 0;
  384. }
  385. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  386. struct page *page, int rw)
  387. {
  388. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  389. struct completion event;
  390. int ret;
  391. rw |= (1 << BIO_RW_SYNC);
  392. bio->bi_bdev = bdev;
  393. bio->bi_sector = sector;
  394. bio_add_page(bio, page, size, 0);
  395. init_completion(&event);
  396. bio->bi_private = &event;
  397. bio->bi_end_io = bi_complete;
  398. submit_bio(rw, bio);
  399. wait_for_completion(&event);
  400. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  401. bio_put(bio);
  402. return ret;
  403. }
  404. EXPORT_SYMBOL(sync_page_io);
  405. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  406. {
  407. char b[BDEVNAME_SIZE];
  408. if (!rdev->sb_page) {
  409. MD_BUG();
  410. return -EINVAL;
  411. }
  412. if (rdev->sb_loaded)
  413. return 0;
  414. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
  415. goto fail;
  416. rdev->sb_loaded = 1;
  417. return 0;
  418. fail:
  419. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  420. bdevname(rdev->bdev,b));
  421. return -EINVAL;
  422. }
  423. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  424. {
  425. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  426. (sb1->set_uuid1 == sb2->set_uuid1) &&
  427. (sb1->set_uuid2 == sb2->set_uuid2) &&
  428. (sb1->set_uuid3 == sb2->set_uuid3))
  429. return 1;
  430. return 0;
  431. }
  432. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  433. {
  434. int ret;
  435. mdp_super_t *tmp1, *tmp2;
  436. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  437. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  438. if (!tmp1 || !tmp2) {
  439. ret = 0;
  440. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  441. goto abort;
  442. }
  443. *tmp1 = *sb1;
  444. *tmp2 = *sb2;
  445. /*
  446. * nr_disks is not constant
  447. */
  448. tmp1->nr_disks = 0;
  449. tmp2->nr_disks = 0;
  450. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  451. ret = 0;
  452. else
  453. ret = 1;
  454. abort:
  455. kfree(tmp1);
  456. kfree(tmp2);
  457. return ret;
  458. }
  459. static unsigned int calc_sb_csum(mdp_super_t * sb)
  460. {
  461. unsigned int disk_csum, csum;
  462. disk_csum = sb->sb_csum;
  463. sb->sb_csum = 0;
  464. csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
  465. sb->sb_csum = disk_csum;
  466. return csum;
  467. }
  468. /*
  469. * Handle superblock details.
  470. * We want to be able to handle multiple superblock formats
  471. * so we have a common interface to them all, and an array of
  472. * different handlers.
  473. * We rely on user-space to write the initial superblock, and support
  474. * reading and updating of superblocks.
  475. * Interface methods are:
  476. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  477. * loads and validates a superblock on dev.
  478. * if refdev != NULL, compare superblocks on both devices
  479. * Return:
  480. * 0 - dev has a superblock that is compatible with refdev
  481. * 1 - dev has a superblock that is compatible and newer than refdev
  482. * so dev should be used as the refdev in future
  483. * -EINVAL superblock incompatible or invalid
  484. * -othererror e.g. -EIO
  485. *
  486. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  487. * Verify that dev is acceptable into mddev.
  488. * The first time, mddev->raid_disks will be 0, and data from
  489. * dev should be merged in. Subsequent calls check that dev
  490. * is new enough. Return 0 or -EINVAL
  491. *
  492. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  493. * Update the superblock for rdev with data in mddev
  494. * This does not write to disc.
  495. *
  496. */
  497. struct super_type {
  498. char *name;
  499. struct module *owner;
  500. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  501. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  502. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  503. };
  504. /*
  505. * load_super for 0.90.0
  506. */
  507. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  508. {
  509. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  510. mdp_super_t *sb;
  511. int ret;
  512. sector_t sb_offset;
  513. /*
  514. * Calculate the position of the superblock,
  515. * it's at the end of the disk.
  516. *
  517. * It also happens to be a multiple of 4Kb.
  518. */
  519. sb_offset = calc_dev_sboffset(rdev->bdev);
  520. rdev->sb_offset = sb_offset;
  521. ret = read_disk_sb(rdev, MD_SB_BYTES);
  522. if (ret) return ret;
  523. ret = -EINVAL;
  524. bdevname(rdev->bdev, b);
  525. sb = (mdp_super_t*)page_address(rdev->sb_page);
  526. if (sb->md_magic != MD_SB_MAGIC) {
  527. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  528. b);
  529. goto abort;
  530. }
  531. if (sb->major_version != 0 ||
  532. sb->minor_version != 90) {
  533. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  534. sb->major_version, sb->minor_version,
  535. b);
  536. goto abort;
  537. }
  538. if (sb->raid_disks <= 0)
  539. goto abort;
  540. if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
  541. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  542. b);
  543. goto abort;
  544. }
  545. rdev->preferred_minor = sb->md_minor;
  546. rdev->data_offset = 0;
  547. rdev->sb_size = MD_SB_BYTES;
  548. if (sb->level == LEVEL_MULTIPATH)
  549. rdev->desc_nr = -1;
  550. else
  551. rdev->desc_nr = sb->this_disk.number;
  552. if (refdev == 0)
  553. ret = 1;
  554. else {
  555. __u64 ev1, ev2;
  556. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  557. if (!uuid_equal(refsb, sb)) {
  558. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  559. b, bdevname(refdev->bdev,b2));
  560. goto abort;
  561. }
  562. if (!sb_equal(refsb, sb)) {
  563. printk(KERN_WARNING "md: %s has same UUID"
  564. " but different superblock to %s\n",
  565. b, bdevname(refdev->bdev, b2));
  566. goto abort;
  567. }
  568. ev1 = md_event(sb);
  569. ev2 = md_event(refsb);
  570. if (ev1 > ev2)
  571. ret = 1;
  572. else
  573. ret = 0;
  574. }
  575. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  576. abort:
  577. return ret;
  578. }
  579. /*
  580. * validate_super for 0.90.0
  581. */
  582. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  583. {
  584. mdp_disk_t *desc;
  585. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  586. rdev->raid_disk = -1;
  587. rdev->flags = 0;
  588. if (mddev->raid_disks == 0) {
  589. mddev->major_version = 0;
  590. mddev->minor_version = sb->minor_version;
  591. mddev->patch_version = sb->patch_version;
  592. mddev->persistent = ! sb->not_persistent;
  593. mddev->chunk_size = sb->chunk_size;
  594. mddev->ctime = sb->ctime;
  595. mddev->utime = sb->utime;
  596. mddev->level = sb->level;
  597. mddev->layout = sb->layout;
  598. mddev->raid_disks = sb->raid_disks;
  599. mddev->size = sb->size;
  600. mddev->events = md_event(sb);
  601. mddev->bitmap_offset = 0;
  602. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  603. if (sb->state & (1<<MD_SB_CLEAN))
  604. mddev->recovery_cp = MaxSector;
  605. else {
  606. if (sb->events_hi == sb->cp_events_hi &&
  607. sb->events_lo == sb->cp_events_lo) {
  608. mddev->recovery_cp = sb->recovery_cp;
  609. } else
  610. mddev->recovery_cp = 0;
  611. }
  612. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  613. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  614. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  615. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  616. mddev->max_disks = MD_SB_DISKS;
  617. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  618. mddev->bitmap_file == NULL) {
  619. if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
  620. && mddev->level != 10) {
  621. /* FIXME use a better test */
  622. printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
  623. return -EINVAL;
  624. }
  625. mddev->bitmap_offset = mddev->default_bitmap_offset;
  626. }
  627. } else if (mddev->pers == NULL) {
  628. /* Insist on good event counter while assembling */
  629. __u64 ev1 = md_event(sb);
  630. ++ev1;
  631. if (ev1 < mddev->events)
  632. return -EINVAL;
  633. } else if (mddev->bitmap) {
  634. /* if adding to array with a bitmap, then we can accept an
  635. * older device ... but not too old.
  636. */
  637. __u64 ev1 = md_event(sb);
  638. if (ev1 < mddev->bitmap->events_cleared)
  639. return 0;
  640. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  641. return 0;
  642. if (mddev->level != LEVEL_MULTIPATH) {
  643. desc = sb->disks + rdev->desc_nr;
  644. if (desc->state & (1<<MD_DISK_FAULTY))
  645. set_bit(Faulty, &rdev->flags);
  646. else if (desc->state & (1<<MD_DISK_SYNC) &&
  647. desc->raid_disk < mddev->raid_disks) {
  648. set_bit(In_sync, &rdev->flags);
  649. rdev->raid_disk = desc->raid_disk;
  650. }
  651. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  652. set_bit(WriteMostly, &rdev->flags);
  653. } else /* MULTIPATH are always insync */
  654. set_bit(In_sync, &rdev->flags);
  655. return 0;
  656. }
  657. /*
  658. * sync_super for 0.90.0
  659. */
  660. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  661. {
  662. mdp_super_t *sb;
  663. struct list_head *tmp;
  664. mdk_rdev_t *rdev2;
  665. int next_spare = mddev->raid_disks;
  666. /* make rdev->sb match mddev data..
  667. *
  668. * 1/ zero out disks
  669. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  670. * 3/ any empty disks < next_spare become removed
  671. *
  672. * disks[0] gets initialised to REMOVED because
  673. * we cannot be sure from other fields if it has
  674. * been initialised or not.
  675. */
  676. int i;
  677. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  678. rdev->sb_size = MD_SB_BYTES;
  679. sb = (mdp_super_t*)page_address(rdev->sb_page);
  680. memset(sb, 0, sizeof(*sb));
  681. sb->md_magic = MD_SB_MAGIC;
  682. sb->major_version = mddev->major_version;
  683. sb->minor_version = mddev->minor_version;
  684. sb->patch_version = mddev->patch_version;
  685. sb->gvalid_words = 0; /* ignored */
  686. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  687. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  688. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  689. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  690. sb->ctime = mddev->ctime;
  691. sb->level = mddev->level;
  692. sb->size = mddev->size;
  693. sb->raid_disks = mddev->raid_disks;
  694. sb->md_minor = mddev->md_minor;
  695. sb->not_persistent = !mddev->persistent;
  696. sb->utime = mddev->utime;
  697. sb->state = 0;
  698. sb->events_hi = (mddev->events>>32);
  699. sb->events_lo = (u32)mddev->events;
  700. if (mddev->in_sync)
  701. {
  702. sb->recovery_cp = mddev->recovery_cp;
  703. sb->cp_events_hi = (mddev->events>>32);
  704. sb->cp_events_lo = (u32)mddev->events;
  705. if (mddev->recovery_cp == MaxSector)
  706. sb->state = (1<< MD_SB_CLEAN);
  707. } else
  708. sb->recovery_cp = 0;
  709. sb->layout = mddev->layout;
  710. sb->chunk_size = mddev->chunk_size;
  711. if (mddev->bitmap && mddev->bitmap_file == NULL)
  712. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  713. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  714. ITERATE_RDEV(mddev,rdev2,tmp) {
  715. mdp_disk_t *d;
  716. int desc_nr;
  717. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  718. && !test_bit(Faulty, &rdev2->flags))
  719. desc_nr = rdev2->raid_disk;
  720. else
  721. desc_nr = next_spare++;
  722. rdev2->desc_nr = desc_nr;
  723. d = &sb->disks[rdev2->desc_nr];
  724. nr_disks++;
  725. d->number = rdev2->desc_nr;
  726. d->major = MAJOR(rdev2->bdev->bd_dev);
  727. d->minor = MINOR(rdev2->bdev->bd_dev);
  728. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  729. && !test_bit(Faulty, &rdev2->flags))
  730. d->raid_disk = rdev2->raid_disk;
  731. else
  732. d->raid_disk = rdev2->desc_nr; /* compatibility */
  733. if (test_bit(Faulty, &rdev2->flags)) {
  734. d->state = (1<<MD_DISK_FAULTY);
  735. failed++;
  736. } else if (test_bit(In_sync, &rdev2->flags)) {
  737. d->state = (1<<MD_DISK_ACTIVE);
  738. d->state |= (1<<MD_DISK_SYNC);
  739. active++;
  740. working++;
  741. } else {
  742. d->state = 0;
  743. spare++;
  744. working++;
  745. }
  746. if (test_bit(WriteMostly, &rdev2->flags))
  747. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  748. }
  749. /* now set the "removed" and "faulty" bits on any missing devices */
  750. for (i=0 ; i < mddev->raid_disks ; i++) {
  751. mdp_disk_t *d = &sb->disks[i];
  752. if (d->state == 0 && d->number == 0) {
  753. d->number = i;
  754. d->raid_disk = i;
  755. d->state = (1<<MD_DISK_REMOVED);
  756. d->state |= (1<<MD_DISK_FAULTY);
  757. failed++;
  758. }
  759. }
  760. sb->nr_disks = nr_disks;
  761. sb->active_disks = active;
  762. sb->working_disks = working;
  763. sb->failed_disks = failed;
  764. sb->spare_disks = spare;
  765. sb->this_disk = sb->disks[rdev->desc_nr];
  766. sb->sb_csum = calc_sb_csum(sb);
  767. }
  768. /*
  769. * version 1 superblock
  770. */
  771. static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
  772. {
  773. unsigned int disk_csum, csum;
  774. unsigned long long newcsum;
  775. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  776. unsigned int *isuper = (unsigned int*)sb;
  777. int i;
  778. disk_csum = sb->sb_csum;
  779. sb->sb_csum = 0;
  780. newcsum = 0;
  781. for (i=0; size>=4; size -= 4 )
  782. newcsum += le32_to_cpu(*isuper++);
  783. if (size == 2)
  784. newcsum += le16_to_cpu(*(unsigned short*) isuper);
  785. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  786. sb->sb_csum = disk_csum;
  787. return cpu_to_le32(csum);
  788. }
  789. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  790. {
  791. struct mdp_superblock_1 *sb;
  792. int ret;
  793. sector_t sb_offset;
  794. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  795. int bmask;
  796. /*
  797. * Calculate the position of the superblock.
  798. * It is always aligned to a 4K boundary and
  799. * depeding on minor_version, it can be:
  800. * 0: At least 8K, but less than 12K, from end of device
  801. * 1: At start of device
  802. * 2: 4K from start of device.
  803. */
  804. switch(minor_version) {
  805. case 0:
  806. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  807. sb_offset -= 8*2;
  808. sb_offset &= ~(sector_t)(4*2-1);
  809. /* convert from sectors to K */
  810. sb_offset /= 2;
  811. break;
  812. case 1:
  813. sb_offset = 0;
  814. break;
  815. case 2:
  816. sb_offset = 4;
  817. break;
  818. default:
  819. return -EINVAL;
  820. }
  821. rdev->sb_offset = sb_offset;
  822. /* superblock is rarely larger than 1K, but it can be larger,
  823. * and it is safe to read 4k, so we do that
  824. */
  825. ret = read_disk_sb(rdev, 4096);
  826. if (ret) return ret;
  827. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  828. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  829. sb->major_version != cpu_to_le32(1) ||
  830. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  831. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  832. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  833. return -EINVAL;
  834. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  835. printk("md: invalid superblock checksum on %s\n",
  836. bdevname(rdev->bdev,b));
  837. return -EINVAL;
  838. }
  839. if (le64_to_cpu(sb->data_size) < 10) {
  840. printk("md: data_size too small on %s\n",
  841. bdevname(rdev->bdev,b));
  842. return -EINVAL;
  843. }
  844. rdev->preferred_minor = 0xffff;
  845. rdev->data_offset = le64_to_cpu(sb->data_offset);
  846. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  847. bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
  848. if (rdev->sb_size & bmask)
  849. rdev-> sb_size = (rdev->sb_size | bmask)+1;
  850. if (refdev == 0)
  851. return 1;
  852. else {
  853. __u64 ev1, ev2;
  854. struct mdp_superblock_1 *refsb =
  855. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  856. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  857. sb->level != refsb->level ||
  858. sb->layout != refsb->layout ||
  859. sb->chunksize != refsb->chunksize) {
  860. printk(KERN_WARNING "md: %s has strangely different"
  861. " superblock to %s\n",
  862. bdevname(rdev->bdev,b),
  863. bdevname(refdev->bdev,b2));
  864. return -EINVAL;
  865. }
  866. ev1 = le64_to_cpu(sb->events);
  867. ev2 = le64_to_cpu(refsb->events);
  868. if (ev1 > ev2)
  869. return 1;
  870. }
  871. if (minor_version)
  872. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  873. else
  874. rdev->size = rdev->sb_offset;
  875. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  876. return -EINVAL;
  877. rdev->size = le64_to_cpu(sb->data_size)/2;
  878. if (le32_to_cpu(sb->chunksize))
  879. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  880. return 0;
  881. }
  882. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  883. {
  884. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  885. rdev->raid_disk = -1;
  886. rdev->flags = 0;
  887. if (mddev->raid_disks == 0) {
  888. mddev->major_version = 1;
  889. mddev->patch_version = 0;
  890. mddev->persistent = 1;
  891. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  892. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  893. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  894. mddev->level = le32_to_cpu(sb->level);
  895. mddev->layout = le32_to_cpu(sb->layout);
  896. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  897. mddev->size = le64_to_cpu(sb->size)/2;
  898. mddev->events = le64_to_cpu(sb->events);
  899. mddev->bitmap_offset = 0;
  900. mddev->default_bitmap_offset = 1024;
  901. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  902. memcpy(mddev->uuid, sb->set_uuid, 16);
  903. mddev->max_disks = (4096-256)/2;
  904. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  905. mddev->bitmap_file == NULL ) {
  906. if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
  907. && mddev->level != 10) {
  908. printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
  909. return -EINVAL;
  910. }
  911. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  912. }
  913. } else if (mddev->pers == NULL) {
  914. /* Insist of good event counter while assembling */
  915. __u64 ev1 = le64_to_cpu(sb->events);
  916. ++ev1;
  917. if (ev1 < mddev->events)
  918. return -EINVAL;
  919. } else if (mddev->bitmap) {
  920. /* If adding to array with a bitmap, then we can accept an
  921. * older device, but not too old.
  922. */
  923. __u64 ev1 = le64_to_cpu(sb->events);
  924. if (ev1 < mddev->bitmap->events_cleared)
  925. return 0;
  926. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  927. return 0;
  928. if (mddev->level != LEVEL_MULTIPATH) {
  929. int role;
  930. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  931. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  932. switch(role) {
  933. case 0xffff: /* spare */
  934. break;
  935. case 0xfffe: /* faulty */
  936. set_bit(Faulty, &rdev->flags);
  937. break;
  938. default:
  939. set_bit(In_sync, &rdev->flags);
  940. rdev->raid_disk = role;
  941. break;
  942. }
  943. if (sb->devflags & WriteMostly1)
  944. set_bit(WriteMostly, &rdev->flags);
  945. } else /* MULTIPATH are always insync */
  946. set_bit(In_sync, &rdev->flags);
  947. return 0;
  948. }
  949. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  950. {
  951. struct mdp_superblock_1 *sb;
  952. struct list_head *tmp;
  953. mdk_rdev_t *rdev2;
  954. int max_dev, i;
  955. /* make rdev->sb match mddev and rdev data. */
  956. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  957. sb->feature_map = 0;
  958. sb->pad0 = 0;
  959. memset(sb->pad1, 0, sizeof(sb->pad1));
  960. memset(sb->pad2, 0, sizeof(sb->pad2));
  961. memset(sb->pad3, 0, sizeof(sb->pad3));
  962. sb->utime = cpu_to_le64((__u64)mddev->utime);
  963. sb->events = cpu_to_le64(mddev->events);
  964. if (mddev->in_sync)
  965. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  966. else
  967. sb->resync_offset = cpu_to_le64(0);
  968. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  969. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  970. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  971. }
  972. max_dev = 0;
  973. ITERATE_RDEV(mddev,rdev2,tmp)
  974. if (rdev2->desc_nr+1 > max_dev)
  975. max_dev = rdev2->desc_nr+1;
  976. sb->max_dev = cpu_to_le32(max_dev);
  977. for (i=0; i<max_dev;i++)
  978. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  979. ITERATE_RDEV(mddev,rdev2,tmp) {
  980. i = rdev2->desc_nr;
  981. if (test_bit(Faulty, &rdev2->flags))
  982. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  983. else if (test_bit(In_sync, &rdev2->flags))
  984. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  985. else
  986. sb->dev_roles[i] = cpu_to_le16(0xffff);
  987. }
  988. sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
  989. sb->sb_csum = calc_sb_1_csum(sb);
  990. }
  991. static struct super_type super_types[] = {
  992. [0] = {
  993. .name = "0.90.0",
  994. .owner = THIS_MODULE,
  995. .load_super = super_90_load,
  996. .validate_super = super_90_validate,
  997. .sync_super = super_90_sync,
  998. },
  999. [1] = {
  1000. .name = "md-1",
  1001. .owner = THIS_MODULE,
  1002. .load_super = super_1_load,
  1003. .validate_super = super_1_validate,
  1004. .sync_super = super_1_sync,
  1005. },
  1006. };
  1007. static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
  1008. {
  1009. struct list_head *tmp;
  1010. mdk_rdev_t *rdev;
  1011. ITERATE_RDEV(mddev,rdev,tmp)
  1012. if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
  1013. return rdev;
  1014. return NULL;
  1015. }
  1016. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  1017. {
  1018. struct list_head *tmp;
  1019. mdk_rdev_t *rdev;
  1020. ITERATE_RDEV(mddev1,rdev,tmp)
  1021. if (match_dev_unit(mddev2, rdev))
  1022. return 1;
  1023. return 0;
  1024. }
  1025. static LIST_HEAD(pending_raid_disks);
  1026. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1027. {
  1028. mdk_rdev_t *same_pdev;
  1029. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1030. struct kobject *ko;
  1031. if (rdev->mddev) {
  1032. MD_BUG();
  1033. return -EINVAL;
  1034. }
  1035. same_pdev = match_dev_unit(mddev, rdev);
  1036. if (same_pdev)
  1037. printk(KERN_WARNING
  1038. "%s: WARNING: %s appears to be on the same physical"
  1039. " disk as %s. True\n protection against single-disk"
  1040. " failure might be compromised.\n",
  1041. mdname(mddev), bdevname(rdev->bdev,b),
  1042. bdevname(same_pdev->bdev,b2));
  1043. /* Verify rdev->desc_nr is unique.
  1044. * If it is -1, assign a free number, else
  1045. * check number is not in use
  1046. */
  1047. if (rdev->desc_nr < 0) {
  1048. int choice = 0;
  1049. if (mddev->pers) choice = mddev->raid_disks;
  1050. while (find_rdev_nr(mddev, choice))
  1051. choice++;
  1052. rdev->desc_nr = choice;
  1053. } else {
  1054. if (find_rdev_nr(mddev, rdev->desc_nr))
  1055. return -EBUSY;
  1056. }
  1057. bdevname(rdev->bdev,b);
  1058. if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
  1059. return -ENOMEM;
  1060. list_add(&rdev->same_set, &mddev->disks);
  1061. rdev->mddev = mddev;
  1062. printk(KERN_INFO "md: bind<%s>\n", b);
  1063. rdev->kobj.parent = &mddev->kobj;
  1064. kobject_add(&rdev->kobj);
  1065. if (rdev->bdev->bd_part)
  1066. ko = &rdev->bdev->bd_part->kobj;
  1067. else
  1068. ko = &rdev->bdev->bd_disk->kobj;
  1069. sysfs_create_link(&rdev->kobj, ko, "block");
  1070. return 0;
  1071. }
  1072. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1073. {
  1074. char b[BDEVNAME_SIZE];
  1075. if (!rdev->mddev) {
  1076. MD_BUG();
  1077. return;
  1078. }
  1079. list_del_init(&rdev->same_set);
  1080. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1081. rdev->mddev = NULL;
  1082. sysfs_remove_link(&rdev->kobj, "block");
  1083. kobject_del(&rdev->kobj);
  1084. }
  1085. /*
  1086. * prevent the device from being mounted, repartitioned or
  1087. * otherwise reused by a RAID array (or any other kernel
  1088. * subsystem), by bd_claiming the device.
  1089. */
  1090. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  1091. {
  1092. int err = 0;
  1093. struct block_device *bdev;
  1094. char b[BDEVNAME_SIZE];
  1095. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1096. if (IS_ERR(bdev)) {
  1097. printk(KERN_ERR "md: could not open %s.\n",
  1098. __bdevname(dev, b));
  1099. return PTR_ERR(bdev);
  1100. }
  1101. err = bd_claim(bdev, rdev);
  1102. if (err) {
  1103. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1104. bdevname(bdev, b));
  1105. blkdev_put(bdev);
  1106. return err;
  1107. }
  1108. rdev->bdev = bdev;
  1109. return err;
  1110. }
  1111. static void unlock_rdev(mdk_rdev_t *rdev)
  1112. {
  1113. struct block_device *bdev = rdev->bdev;
  1114. rdev->bdev = NULL;
  1115. if (!bdev)
  1116. MD_BUG();
  1117. bd_release(bdev);
  1118. blkdev_put(bdev);
  1119. }
  1120. void md_autodetect_dev(dev_t dev);
  1121. static void export_rdev(mdk_rdev_t * rdev)
  1122. {
  1123. char b[BDEVNAME_SIZE];
  1124. printk(KERN_INFO "md: export_rdev(%s)\n",
  1125. bdevname(rdev->bdev,b));
  1126. if (rdev->mddev)
  1127. MD_BUG();
  1128. free_disk_sb(rdev);
  1129. list_del_init(&rdev->same_set);
  1130. #ifndef MODULE
  1131. md_autodetect_dev(rdev->bdev->bd_dev);
  1132. #endif
  1133. unlock_rdev(rdev);
  1134. kobject_put(&rdev->kobj);
  1135. }
  1136. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1137. {
  1138. unbind_rdev_from_array(rdev);
  1139. export_rdev(rdev);
  1140. }
  1141. static void export_array(mddev_t *mddev)
  1142. {
  1143. struct list_head *tmp;
  1144. mdk_rdev_t *rdev;
  1145. ITERATE_RDEV(mddev,rdev,tmp) {
  1146. if (!rdev->mddev) {
  1147. MD_BUG();
  1148. continue;
  1149. }
  1150. kick_rdev_from_array(rdev);
  1151. }
  1152. if (!list_empty(&mddev->disks))
  1153. MD_BUG();
  1154. mddev->raid_disks = 0;
  1155. mddev->major_version = 0;
  1156. }
  1157. static void print_desc(mdp_disk_t *desc)
  1158. {
  1159. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1160. desc->major,desc->minor,desc->raid_disk,desc->state);
  1161. }
  1162. static void print_sb(mdp_super_t *sb)
  1163. {
  1164. int i;
  1165. printk(KERN_INFO
  1166. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1167. sb->major_version, sb->minor_version, sb->patch_version,
  1168. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1169. sb->ctime);
  1170. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1171. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1172. sb->md_minor, sb->layout, sb->chunk_size);
  1173. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1174. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1175. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1176. sb->failed_disks, sb->spare_disks,
  1177. sb->sb_csum, (unsigned long)sb->events_lo);
  1178. printk(KERN_INFO);
  1179. for (i = 0; i < MD_SB_DISKS; i++) {
  1180. mdp_disk_t *desc;
  1181. desc = sb->disks + i;
  1182. if (desc->number || desc->major || desc->minor ||
  1183. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1184. printk(" D %2d: ", i);
  1185. print_desc(desc);
  1186. }
  1187. }
  1188. printk(KERN_INFO "md: THIS: ");
  1189. print_desc(&sb->this_disk);
  1190. }
  1191. static void print_rdev(mdk_rdev_t *rdev)
  1192. {
  1193. char b[BDEVNAME_SIZE];
  1194. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1195. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1196. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1197. rdev->desc_nr);
  1198. if (rdev->sb_loaded) {
  1199. printk(KERN_INFO "md: rdev superblock:\n");
  1200. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1201. } else
  1202. printk(KERN_INFO "md: no rdev superblock!\n");
  1203. }
  1204. void md_print_devices(void)
  1205. {
  1206. struct list_head *tmp, *tmp2;
  1207. mdk_rdev_t *rdev;
  1208. mddev_t *mddev;
  1209. char b[BDEVNAME_SIZE];
  1210. printk("\n");
  1211. printk("md: **********************************\n");
  1212. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1213. printk("md: **********************************\n");
  1214. ITERATE_MDDEV(mddev,tmp) {
  1215. if (mddev->bitmap)
  1216. bitmap_print_sb(mddev->bitmap);
  1217. else
  1218. printk("%s: ", mdname(mddev));
  1219. ITERATE_RDEV(mddev,rdev,tmp2)
  1220. printk("<%s>", bdevname(rdev->bdev,b));
  1221. printk("\n");
  1222. ITERATE_RDEV(mddev,rdev,tmp2)
  1223. print_rdev(rdev);
  1224. }
  1225. printk("md: **********************************\n");
  1226. printk("\n");
  1227. }
  1228. static void sync_sbs(mddev_t * mddev)
  1229. {
  1230. mdk_rdev_t *rdev;
  1231. struct list_head *tmp;
  1232. ITERATE_RDEV(mddev,rdev,tmp) {
  1233. super_types[mddev->major_version].
  1234. sync_super(mddev, rdev);
  1235. rdev->sb_loaded = 1;
  1236. }
  1237. }
  1238. static void md_update_sb(mddev_t * mddev)
  1239. {
  1240. int err;
  1241. struct list_head *tmp;
  1242. mdk_rdev_t *rdev;
  1243. int sync_req;
  1244. repeat:
  1245. spin_lock_irq(&mddev->write_lock);
  1246. sync_req = mddev->in_sync;
  1247. mddev->utime = get_seconds();
  1248. mddev->events ++;
  1249. if (!mddev->events) {
  1250. /*
  1251. * oops, this 64-bit counter should never wrap.
  1252. * Either we are in around ~1 trillion A.C., assuming
  1253. * 1 reboot per second, or we have a bug:
  1254. */
  1255. MD_BUG();
  1256. mddev->events --;
  1257. }
  1258. mddev->sb_dirty = 2;
  1259. sync_sbs(mddev);
  1260. /*
  1261. * do not write anything to disk if using
  1262. * nonpersistent superblocks
  1263. */
  1264. if (!mddev->persistent) {
  1265. mddev->sb_dirty = 0;
  1266. spin_unlock_irq(&mddev->write_lock);
  1267. wake_up(&mddev->sb_wait);
  1268. return;
  1269. }
  1270. spin_unlock_irq(&mddev->write_lock);
  1271. dprintk(KERN_INFO
  1272. "md: updating %s RAID superblock on device (in sync %d)\n",
  1273. mdname(mddev),mddev->in_sync);
  1274. err = bitmap_update_sb(mddev->bitmap);
  1275. ITERATE_RDEV(mddev,rdev,tmp) {
  1276. char b[BDEVNAME_SIZE];
  1277. dprintk(KERN_INFO "md: ");
  1278. if (test_bit(Faulty, &rdev->flags))
  1279. dprintk("(skipping faulty ");
  1280. dprintk("%s ", bdevname(rdev->bdev,b));
  1281. if (!test_bit(Faulty, &rdev->flags)) {
  1282. md_super_write(mddev,rdev,
  1283. rdev->sb_offset<<1, rdev->sb_size,
  1284. rdev->sb_page);
  1285. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1286. bdevname(rdev->bdev,b),
  1287. (unsigned long long)rdev->sb_offset);
  1288. } else
  1289. dprintk(")\n");
  1290. if (mddev->level == LEVEL_MULTIPATH)
  1291. /* only need to write one superblock... */
  1292. break;
  1293. }
  1294. md_super_wait(mddev);
  1295. /* if there was a failure, sb_dirty was set to 1, and we re-write super */
  1296. spin_lock_irq(&mddev->write_lock);
  1297. if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
  1298. /* have to write it out again */
  1299. spin_unlock_irq(&mddev->write_lock);
  1300. goto repeat;
  1301. }
  1302. mddev->sb_dirty = 0;
  1303. spin_unlock_irq(&mddev->write_lock);
  1304. wake_up(&mddev->sb_wait);
  1305. }
  1306. struct rdev_sysfs_entry {
  1307. struct attribute attr;
  1308. ssize_t (*show)(mdk_rdev_t *, char *);
  1309. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  1310. };
  1311. static ssize_t
  1312. state_show(mdk_rdev_t *rdev, char *page)
  1313. {
  1314. char *sep = "";
  1315. int len=0;
  1316. if (test_bit(Faulty, &rdev->flags)) {
  1317. len+= sprintf(page+len, "%sfaulty",sep);
  1318. sep = ",";
  1319. }
  1320. if (test_bit(In_sync, &rdev->flags)) {
  1321. len += sprintf(page+len, "%sin_sync",sep);
  1322. sep = ",";
  1323. }
  1324. if (!test_bit(Faulty, &rdev->flags) &&
  1325. !test_bit(In_sync, &rdev->flags)) {
  1326. len += sprintf(page+len, "%sspare", sep);
  1327. sep = ",";
  1328. }
  1329. return len+sprintf(page+len, "\n");
  1330. }
  1331. static struct rdev_sysfs_entry
  1332. rdev_state = __ATTR_RO(state);
  1333. static ssize_t
  1334. super_show(mdk_rdev_t *rdev, char *page)
  1335. {
  1336. if (rdev->sb_loaded && rdev->sb_size) {
  1337. memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
  1338. return rdev->sb_size;
  1339. } else
  1340. return 0;
  1341. }
  1342. static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
  1343. static struct attribute *rdev_default_attrs[] = {
  1344. &rdev_state.attr,
  1345. &rdev_super.attr,
  1346. NULL,
  1347. };
  1348. static ssize_t
  1349. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1350. {
  1351. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1352. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1353. if (!entry->show)
  1354. return -EIO;
  1355. return entry->show(rdev, page);
  1356. }
  1357. static ssize_t
  1358. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  1359. const char *page, size_t length)
  1360. {
  1361. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1362. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1363. if (!entry->store)
  1364. return -EIO;
  1365. return entry->store(rdev, page, length);
  1366. }
  1367. static void rdev_free(struct kobject *ko)
  1368. {
  1369. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  1370. kfree(rdev);
  1371. }
  1372. static struct sysfs_ops rdev_sysfs_ops = {
  1373. .show = rdev_attr_show,
  1374. .store = rdev_attr_store,
  1375. };
  1376. static struct kobj_type rdev_ktype = {
  1377. .release = rdev_free,
  1378. .sysfs_ops = &rdev_sysfs_ops,
  1379. .default_attrs = rdev_default_attrs,
  1380. };
  1381. /*
  1382. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1383. *
  1384. * mark the device faulty if:
  1385. *
  1386. * - the device is nonexistent (zero size)
  1387. * - the device has no valid superblock
  1388. *
  1389. * a faulty rdev _never_ has rdev->sb set.
  1390. */
  1391. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1392. {
  1393. char b[BDEVNAME_SIZE];
  1394. int err;
  1395. mdk_rdev_t *rdev;
  1396. sector_t size;
  1397. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  1398. if (!rdev) {
  1399. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1400. return ERR_PTR(-ENOMEM);
  1401. }
  1402. if ((err = alloc_disk_sb(rdev)))
  1403. goto abort_free;
  1404. err = lock_rdev(rdev, newdev);
  1405. if (err)
  1406. goto abort_free;
  1407. rdev->kobj.parent = NULL;
  1408. rdev->kobj.ktype = &rdev_ktype;
  1409. kobject_init(&rdev->kobj);
  1410. rdev->desc_nr = -1;
  1411. rdev->flags = 0;
  1412. rdev->data_offset = 0;
  1413. atomic_set(&rdev->nr_pending, 0);
  1414. atomic_set(&rdev->read_errors, 0);
  1415. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1416. if (!size) {
  1417. printk(KERN_WARNING
  1418. "md: %s has zero or unknown size, marking faulty!\n",
  1419. bdevname(rdev->bdev,b));
  1420. err = -EINVAL;
  1421. goto abort_free;
  1422. }
  1423. if (super_format >= 0) {
  1424. err = super_types[super_format].
  1425. load_super(rdev, NULL, super_minor);
  1426. if (err == -EINVAL) {
  1427. printk(KERN_WARNING
  1428. "md: %s has invalid sb, not importing!\n",
  1429. bdevname(rdev->bdev,b));
  1430. goto abort_free;
  1431. }
  1432. if (err < 0) {
  1433. printk(KERN_WARNING
  1434. "md: could not read %s's sb, not importing!\n",
  1435. bdevname(rdev->bdev,b));
  1436. goto abort_free;
  1437. }
  1438. }
  1439. INIT_LIST_HEAD(&rdev->same_set);
  1440. return rdev;
  1441. abort_free:
  1442. if (rdev->sb_page) {
  1443. if (rdev->bdev)
  1444. unlock_rdev(rdev);
  1445. free_disk_sb(rdev);
  1446. }
  1447. kfree(rdev);
  1448. return ERR_PTR(err);
  1449. }
  1450. /*
  1451. * Check a full RAID array for plausibility
  1452. */
  1453. static void analyze_sbs(mddev_t * mddev)
  1454. {
  1455. int i;
  1456. struct list_head *tmp;
  1457. mdk_rdev_t *rdev, *freshest;
  1458. char b[BDEVNAME_SIZE];
  1459. freshest = NULL;
  1460. ITERATE_RDEV(mddev,rdev,tmp)
  1461. switch (super_types[mddev->major_version].
  1462. load_super(rdev, freshest, mddev->minor_version)) {
  1463. case 1:
  1464. freshest = rdev;
  1465. break;
  1466. case 0:
  1467. break;
  1468. default:
  1469. printk( KERN_ERR \
  1470. "md: fatal superblock inconsistency in %s"
  1471. " -- removing from array\n",
  1472. bdevname(rdev->bdev,b));
  1473. kick_rdev_from_array(rdev);
  1474. }
  1475. super_types[mddev->major_version].
  1476. validate_super(mddev, freshest);
  1477. i = 0;
  1478. ITERATE_RDEV(mddev,rdev,tmp) {
  1479. if (rdev != freshest)
  1480. if (super_types[mddev->major_version].
  1481. validate_super(mddev, rdev)) {
  1482. printk(KERN_WARNING "md: kicking non-fresh %s"
  1483. " from array!\n",
  1484. bdevname(rdev->bdev,b));
  1485. kick_rdev_from_array(rdev);
  1486. continue;
  1487. }
  1488. if (mddev->level == LEVEL_MULTIPATH) {
  1489. rdev->desc_nr = i++;
  1490. rdev->raid_disk = rdev->desc_nr;
  1491. set_bit(In_sync, &rdev->flags);
  1492. }
  1493. }
  1494. if (mddev->recovery_cp != MaxSector &&
  1495. mddev->level >= 1)
  1496. printk(KERN_ERR "md: %s: raid array is not clean"
  1497. " -- starting background reconstruction\n",
  1498. mdname(mddev));
  1499. }
  1500. static ssize_t
  1501. level_show(mddev_t *mddev, char *page)
  1502. {
  1503. mdk_personality_t *p = mddev->pers;
  1504. if (p == NULL && mddev->raid_disks == 0)
  1505. return 0;
  1506. if (mddev->level >= 0)
  1507. return sprintf(page, "raid%d\n", mddev->level);
  1508. else
  1509. return sprintf(page, "%s\n", p->name);
  1510. }
  1511. static struct md_sysfs_entry md_level = __ATTR_RO(level);
  1512. static ssize_t
  1513. raid_disks_show(mddev_t *mddev, char *page)
  1514. {
  1515. if (mddev->raid_disks == 0)
  1516. return 0;
  1517. return sprintf(page, "%d\n", mddev->raid_disks);
  1518. }
  1519. static struct md_sysfs_entry md_raid_disks = __ATTR_RO(raid_disks);
  1520. static ssize_t
  1521. action_show(mddev_t *mddev, char *page)
  1522. {
  1523. char *type = "idle";
  1524. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  1525. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
  1526. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  1527. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  1528. type = "resync";
  1529. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  1530. type = "check";
  1531. else
  1532. type = "repair";
  1533. } else
  1534. type = "recover";
  1535. }
  1536. return sprintf(page, "%s\n", type);
  1537. }
  1538. static ssize_t
  1539. action_store(mddev_t *mddev, const char *page, size_t len)
  1540. {
  1541. if (!mddev->pers || !mddev->pers->sync_request)
  1542. return -EINVAL;
  1543. if (strcmp(page, "idle")==0 || strcmp(page, "idle\n")==0) {
  1544. if (mddev->sync_thread) {
  1545. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1546. md_unregister_thread(mddev->sync_thread);
  1547. mddev->sync_thread = NULL;
  1548. mddev->recovery = 0;
  1549. }
  1550. return len;
  1551. }
  1552. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  1553. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  1554. return -EBUSY;
  1555. if (strcmp(page, "resync")==0 || strcmp(page, "resync\n")==0 ||
  1556. strcmp(page, "recover")==0 || strcmp(page, "recover\n")==0)
  1557. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1558. else {
  1559. if (strcmp(page, "check")==0 || strcmp(page, "check\n")==0)
  1560. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  1561. else if (strcmp(page, "repair")!=0 && strcmp(page, "repair\n")!=0)
  1562. return -EINVAL;
  1563. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  1564. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  1565. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1566. }
  1567. md_wakeup_thread(mddev->thread);
  1568. return len;
  1569. }
  1570. static ssize_t
  1571. mismatch_cnt_show(mddev_t *mddev, char *page)
  1572. {
  1573. return sprintf(page, "%llu\n",
  1574. (unsigned long long) mddev->resync_mismatches);
  1575. }
  1576. static struct md_sysfs_entry
  1577. md_scan_mode = __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  1578. static struct md_sysfs_entry
  1579. md_mismatches = __ATTR_RO(mismatch_cnt);
  1580. static struct attribute *md_default_attrs[] = {
  1581. &md_level.attr,
  1582. &md_raid_disks.attr,
  1583. NULL,
  1584. };
  1585. static struct attribute *md_redundancy_attrs[] = {
  1586. &md_scan_mode.attr,
  1587. &md_mismatches.attr,
  1588. NULL,
  1589. };
  1590. static struct attribute_group md_redundancy_group = {
  1591. .name = NULL,
  1592. .attrs = md_redundancy_attrs,
  1593. };
  1594. static ssize_t
  1595. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1596. {
  1597. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  1598. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  1599. ssize_t rv;
  1600. if (!entry->show)
  1601. return -EIO;
  1602. mddev_lock(mddev);
  1603. rv = entry->show(mddev, page);
  1604. mddev_unlock(mddev);
  1605. return rv;
  1606. }
  1607. static ssize_t
  1608. md_attr_store(struct kobject *kobj, struct attribute *attr,
  1609. const char *page, size_t length)
  1610. {
  1611. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  1612. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  1613. ssize_t rv;
  1614. if (!entry->store)
  1615. return -EIO;
  1616. mddev_lock(mddev);
  1617. rv = entry->store(mddev, page, length);
  1618. mddev_unlock(mddev);
  1619. return rv;
  1620. }
  1621. static void md_free(struct kobject *ko)
  1622. {
  1623. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  1624. kfree(mddev);
  1625. }
  1626. static struct sysfs_ops md_sysfs_ops = {
  1627. .show = md_attr_show,
  1628. .store = md_attr_store,
  1629. };
  1630. static struct kobj_type md_ktype = {
  1631. .release = md_free,
  1632. .sysfs_ops = &md_sysfs_ops,
  1633. .default_attrs = md_default_attrs,
  1634. };
  1635. int mdp_major = 0;
  1636. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  1637. {
  1638. static DECLARE_MUTEX(disks_sem);
  1639. mddev_t *mddev = mddev_find(dev);
  1640. struct gendisk *disk;
  1641. int partitioned = (MAJOR(dev) != MD_MAJOR);
  1642. int shift = partitioned ? MdpMinorShift : 0;
  1643. int unit = MINOR(dev) >> shift;
  1644. if (!mddev)
  1645. return NULL;
  1646. down(&disks_sem);
  1647. if (mddev->gendisk) {
  1648. up(&disks_sem);
  1649. mddev_put(mddev);
  1650. return NULL;
  1651. }
  1652. disk = alloc_disk(1 << shift);
  1653. if (!disk) {
  1654. up(&disks_sem);
  1655. mddev_put(mddev);
  1656. return NULL;
  1657. }
  1658. disk->major = MAJOR(dev);
  1659. disk->first_minor = unit << shift;
  1660. if (partitioned) {
  1661. sprintf(disk->disk_name, "md_d%d", unit);
  1662. sprintf(disk->devfs_name, "md/d%d", unit);
  1663. } else {
  1664. sprintf(disk->disk_name, "md%d", unit);
  1665. sprintf(disk->devfs_name, "md/%d", unit);
  1666. }
  1667. disk->fops = &md_fops;
  1668. disk->private_data = mddev;
  1669. disk->queue = mddev->queue;
  1670. add_disk(disk);
  1671. mddev->gendisk = disk;
  1672. up(&disks_sem);
  1673. mddev->kobj.parent = &disk->kobj;
  1674. mddev->kobj.k_name = NULL;
  1675. snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
  1676. mddev->kobj.ktype = &md_ktype;
  1677. kobject_register(&mddev->kobj);
  1678. return NULL;
  1679. }
  1680. void md_wakeup_thread(mdk_thread_t *thread);
  1681. static void md_safemode_timeout(unsigned long data)
  1682. {
  1683. mddev_t *mddev = (mddev_t *) data;
  1684. mddev->safemode = 1;
  1685. md_wakeup_thread(mddev->thread);
  1686. }
  1687. static int start_dirty_degraded;
  1688. static int do_md_run(mddev_t * mddev)
  1689. {
  1690. int pnum, err;
  1691. int chunk_size;
  1692. struct list_head *tmp;
  1693. mdk_rdev_t *rdev;
  1694. struct gendisk *disk;
  1695. char b[BDEVNAME_SIZE];
  1696. if (list_empty(&mddev->disks))
  1697. /* cannot run an array with no devices.. */
  1698. return -EINVAL;
  1699. if (mddev->pers)
  1700. return -EBUSY;
  1701. /*
  1702. * Analyze all RAID superblock(s)
  1703. */
  1704. if (!mddev->raid_disks)
  1705. analyze_sbs(mddev);
  1706. chunk_size = mddev->chunk_size;
  1707. pnum = level_to_pers(mddev->level);
  1708. if ((pnum != MULTIPATH) && (pnum != RAID1)) {
  1709. if (!chunk_size) {
  1710. /*
  1711. * 'default chunksize' in the old md code used to
  1712. * be PAGE_SIZE, baaad.
  1713. * we abort here to be on the safe side. We don't
  1714. * want to continue the bad practice.
  1715. */
  1716. printk(KERN_ERR
  1717. "no chunksize specified, see 'man raidtab'\n");
  1718. return -EINVAL;
  1719. }
  1720. if (chunk_size > MAX_CHUNK_SIZE) {
  1721. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  1722. chunk_size, MAX_CHUNK_SIZE);
  1723. return -EINVAL;
  1724. }
  1725. /*
  1726. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  1727. */
  1728. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  1729. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  1730. return -EINVAL;
  1731. }
  1732. if (chunk_size < PAGE_SIZE) {
  1733. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  1734. chunk_size, PAGE_SIZE);
  1735. return -EINVAL;
  1736. }
  1737. /* devices must have minimum size of one chunk */
  1738. ITERATE_RDEV(mddev,rdev,tmp) {
  1739. if (test_bit(Faulty, &rdev->flags))
  1740. continue;
  1741. if (rdev->size < chunk_size / 1024) {
  1742. printk(KERN_WARNING
  1743. "md: Dev %s smaller than chunk_size:"
  1744. " %lluk < %dk\n",
  1745. bdevname(rdev->bdev,b),
  1746. (unsigned long long)rdev->size,
  1747. chunk_size / 1024);
  1748. return -EINVAL;
  1749. }
  1750. }
  1751. }
  1752. #ifdef CONFIG_KMOD
  1753. if (!pers[pnum])
  1754. {
  1755. request_module("md-personality-%d", pnum);
  1756. }
  1757. #endif
  1758. /*
  1759. * Drop all container device buffers, from now on
  1760. * the only valid external interface is through the md
  1761. * device.
  1762. * Also find largest hardsector size
  1763. */
  1764. ITERATE_RDEV(mddev,rdev,tmp) {
  1765. if (test_bit(Faulty, &rdev->flags))
  1766. continue;
  1767. sync_blockdev(rdev->bdev);
  1768. invalidate_bdev(rdev->bdev, 0);
  1769. }
  1770. md_probe(mddev->unit, NULL, NULL);
  1771. disk = mddev->gendisk;
  1772. if (!disk)
  1773. return -ENOMEM;
  1774. spin_lock(&pers_lock);
  1775. if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
  1776. spin_unlock(&pers_lock);
  1777. printk(KERN_WARNING "md: personality %d is not loaded!\n",
  1778. pnum);
  1779. return -EINVAL;
  1780. }
  1781. mddev->pers = pers[pnum];
  1782. spin_unlock(&pers_lock);
  1783. mddev->recovery = 0;
  1784. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  1785. mddev->barriers_work = 1;
  1786. mddev->ok_start_degraded = start_dirty_degraded;
  1787. if (start_readonly)
  1788. mddev->ro = 2; /* read-only, but switch on first write */
  1789. err = mddev->pers->run(mddev);
  1790. if (!err && mddev->pers->sync_request) {
  1791. err = bitmap_create(mddev);
  1792. if (err) {
  1793. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  1794. mdname(mddev), err);
  1795. mddev->pers->stop(mddev);
  1796. }
  1797. }
  1798. if (err) {
  1799. printk(KERN_ERR "md: pers->run() failed ...\n");
  1800. module_put(mddev->pers->owner);
  1801. mddev->pers = NULL;
  1802. bitmap_destroy(mddev);
  1803. return err;
  1804. }
  1805. if (mddev->pers->sync_request)
  1806. sysfs_create_group(&mddev->kobj, &md_redundancy_group);
  1807. else if (mddev->ro == 2) /* auto-readonly not meaningful */
  1808. mddev->ro = 0;
  1809. atomic_set(&mddev->writes_pending,0);
  1810. mddev->safemode = 0;
  1811. mddev->safemode_timer.function = md_safemode_timeout;
  1812. mddev->safemode_timer.data = (unsigned long) mddev;
  1813. mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
  1814. mddev->in_sync = 1;
  1815. ITERATE_RDEV(mddev,rdev,tmp)
  1816. if (rdev->raid_disk >= 0) {
  1817. char nm[20];
  1818. sprintf(nm, "rd%d", rdev->raid_disk);
  1819. sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
  1820. }
  1821. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1822. md_wakeup_thread(mddev->thread);
  1823. if (mddev->sb_dirty)
  1824. md_update_sb(mddev);
  1825. set_capacity(disk, mddev->array_size<<1);
  1826. /* If we call blk_queue_make_request here, it will
  1827. * re-initialise max_sectors etc which may have been
  1828. * refined inside -> run. So just set the bits we need to set.
  1829. * Most initialisation happended when we called
  1830. * blk_queue_make_request(..., md_fail_request)
  1831. * earlier.
  1832. */
  1833. mddev->queue->queuedata = mddev;
  1834. mddev->queue->make_request_fn = mddev->pers->make_request;
  1835. mddev->changed = 1;
  1836. md_new_event(mddev);
  1837. return 0;
  1838. }
  1839. static int restart_array(mddev_t *mddev)
  1840. {
  1841. struct gendisk *disk = mddev->gendisk;
  1842. int err;
  1843. /*
  1844. * Complain if it has no devices
  1845. */
  1846. err = -ENXIO;
  1847. if (list_empty(&mddev->disks))
  1848. goto out;
  1849. if (mddev->pers) {
  1850. err = -EBUSY;
  1851. if (!mddev->ro)
  1852. goto out;
  1853. mddev->safemode = 0;
  1854. mddev->ro = 0;
  1855. set_disk_ro(disk, 0);
  1856. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  1857. mdname(mddev));
  1858. /*
  1859. * Kick recovery or resync if necessary
  1860. */
  1861. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1862. md_wakeup_thread(mddev->thread);
  1863. err = 0;
  1864. } else {
  1865. printk(KERN_ERR "md: %s has no personality assigned.\n",
  1866. mdname(mddev));
  1867. err = -EINVAL;
  1868. }
  1869. out:
  1870. return err;
  1871. }
  1872. static int do_md_stop(mddev_t * mddev, int ro)
  1873. {
  1874. int err = 0;
  1875. struct gendisk *disk = mddev->gendisk;
  1876. if (mddev->pers) {
  1877. if (atomic_read(&mddev->active)>2) {
  1878. printk("md: %s still in use.\n",mdname(mddev));
  1879. return -EBUSY;
  1880. }
  1881. if (mddev->sync_thread) {
  1882. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1883. md_unregister_thread(mddev->sync_thread);
  1884. mddev->sync_thread = NULL;
  1885. }
  1886. del_timer_sync(&mddev->safemode_timer);
  1887. invalidate_partition(disk, 0);
  1888. if (ro) {
  1889. err = -ENXIO;
  1890. if (mddev->ro==1)
  1891. goto out;
  1892. mddev->ro = 1;
  1893. } else {
  1894. bitmap_flush(mddev);
  1895. md_super_wait(mddev);
  1896. if (mddev->ro)
  1897. set_disk_ro(disk, 0);
  1898. blk_queue_make_request(mddev->queue, md_fail_request);
  1899. mddev->pers->stop(mddev);
  1900. if (mddev->pers->sync_request)
  1901. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  1902. module_put(mddev->pers->owner);
  1903. mddev->pers = NULL;
  1904. if (mddev->ro)
  1905. mddev->ro = 0;
  1906. }
  1907. if (!mddev->in_sync) {
  1908. /* mark array as shutdown cleanly */
  1909. mddev->in_sync = 1;
  1910. md_update_sb(mddev);
  1911. }
  1912. if (ro)
  1913. set_disk_ro(disk, 1);
  1914. }
  1915. bitmap_destroy(mddev);
  1916. if (mddev->bitmap_file) {
  1917. atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
  1918. fput(mddev->bitmap_file);
  1919. mddev->bitmap_file = NULL;
  1920. }
  1921. mddev->bitmap_offset = 0;
  1922. /*
  1923. * Free resources if final stop
  1924. */
  1925. if (!ro) {
  1926. mdk_rdev_t *rdev;
  1927. struct list_head *tmp;
  1928. struct gendisk *disk;
  1929. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  1930. ITERATE_RDEV(mddev,rdev,tmp)
  1931. if (rdev->raid_disk >= 0) {
  1932. char nm[20];
  1933. sprintf(nm, "rd%d", rdev->raid_disk);
  1934. sysfs_remove_link(&mddev->kobj, nm);
  1935. }
  1936. export_array(mddev);
  1937. mddev->array_size = 0;
  1938. disk = mddev->gendisk;
  1939. if (disk)
  1940. set_capacity(disk, 0);
  1941. mddev->changed = 1;
  1942. } else
  1943. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  1944. mdname(mddev));
  1945. err = 0;
  1946. md_new_event(mddev);
  1947. out:
  1948. return err;
  1949. }
  1950. static void autorun_array(mddev_t *mddev)
  1951. {
  1952. mdk_rdev_t *rdev;
  1953. struct list_head *tmp;
  1954. int err;
  1955. if (list_empty(&mddev->disks))
  1956. return;
  1957. printk(KERN_INFO "md: running: ");
  1958. ITERATE_RDEV(mddev,rdev,tmp) {
  1959. char b[BDEVNAME_SIZE];
  1960. printk("<%s>", bdevname(rdev->bdev,b));
  1961. }
  1962. printk("\n");
  1963. err = do_md_run (mddev);
  1964. if (err) {
  1965. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  1966. do_md_stop (mddev, 0);
  1967. }
  1968. }
  1969. /*
  1970. * lets try to run arrays based on all disks that have arrived
  1971. * until now. (those are in pending_raid_disks)
  1972. *
  1973. * the method: pick the first pending disk, collect all disks with
  1974. * the same UUID, remove all from the pending list and put them into
  1975. * the 'same_array' list. Then order this list based on superblock
  1976. * update time (freshest comes first), kick out 'old' disks and
  1977. * compare superblocks. If everything's fine then run it.
  1978. *
  1979. * If "unit" is allocated, then bump its reference count
  1980. */
  1981. static void autorun_devices(int part)
  1982. {
  1983. struct list_head candidates;
  1984. struct list_head *tmp;
  1985. mdk_rdev_t *rdev0, *rdev;
  1986. mddev_t *mddev;
  1987. char b[BDEVNAME_SIZE];
  1988. printk(KERN_INFO "md: autorun ...\n");
  1989. while (!list_empty(&pending_raid_disks)) {
  1990. dev_t dev;
  1991. rdev0 = list_entry(pending_raid_disks.next,
  1992. mdk_rdev_t, same_set);
  1993. printk(KERN_INFO "md: considering %s ...\n",
  1994. bdevname(rdev0->bdev,b));
  1995. INIT_LIST_HEAD(&candidates);
  1996. ITERATE_RDEV_PENDING(rdev,tmp)
  1997. if (super_90_load(rdev, rdev0, 0) >= 0) {
  1998. printk(KERN_INFO "md: adding %s ...\n",
  1999. bdevname(rdev->bdev,b));
  2000. list_move(&rdev->same_set, &candidates);
  2001. }
  2002. /*
  2003. * now we have a set of devices, with all of them having
  2004. * mostly sane superblocks. It's time to allocate the
  2005. * mddev.
  2006. */
  2007. if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
  2008. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  2009. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  2010. break;
  2011. }
  2012. if (part)
  2013. dev = MKDEV(mdp_major,
  2014. rdev0->preferred_minor << MdpMinorShift);
  2015. else
  2016. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  2017. md_probe(dev, NULL, NULL);
  2018. mddev = mddev_find(dev);
  2019. if (!mddev) {
  2020. printk(KERN_ERR
  2021. "md: cannot allocate memory for md drive.\n");
  2022. break;
  2023. }
  2024. if (mddev_lock(mddev))
  2025. printk(KERN_WARNING "md: %s locked, cannot run\n",
  2026. mdname(mddev));
  2027. else if (mddev->raid_disks || mddev->major_version
  2028. || !list_empty(&mddev->disks)) {
  2029. printk(KERN_WARNING
  2030. "md: %s already running, cannot run %s\n",
  2031. mdname(mddev), bdevname(rdev0->bdev,b));
  2032. mddev_unlock(mddev);
  2033. } else {
  2034. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  2035. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  2036. list_del_init(&rdev->same_set);
  2037. if (bind_rdev_to_array(rdev, mddev))
  2038. export_rdev(rdev);
  2039. }
  2040. autorun_array(mddev);
  2041. mddev_unlock(mddev);
  2042. }
  2043. /* on success, candidates will be empty, on error
  2044. * it won't...
  2045. */
  2046. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  2047. export_rdev(rdev);
  2048. mddev_put(mddev);
  2049. }
  2050. printk(KERN_INFO "md: ... autorun DONE.\n");
  2051. }
  2052. /*
  2053. * import RAID devices based on one partition
  2054. * if possible, the array gets run as well.
  2055. */
  2056. static int autostart_array(dev_t startdev)
  2057. {
  2058. char b[BDEVNAME_SIZE];
  2059. int err = -EINVAL, i;
  2060. mdp_super_t *sb = NULL;
  2061. mdk_rdev_t *start_rdev = NULL, *rdev;
  2062. start_rdev = md_import_device(startdev, 0, 0);
  2063. if (IS_ERR(start_rdev))
  2064. return err;
  2065. /* NOTE: this can only work for 0.90.0 superblocks */
  2066. sb = (mdp_super_t*)page_address(start_rdev->sb_page);
  2067. if (sb->major_version != 0 ||
  2068. sb->minor_version != 90 ) {
  2069. printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
  2070. export_rdev(start_rdev);
  2071. return err;
  2072. }
  2073. if (test_bit(Faulty, &start_rdev->flags)) {
  2074. printk(KERN_WARNING
  2075. "md: can not autostart based on faulty %s!\n",
  2076. bdevname(start_rdev->bdev,b));
  2077. export_rdev(start_rdev);
  2078. return err;
  2079. }
  2080. list_add(&start_rdev->same_set, &pending_raid_disks);
  2081. for (i = 0; i < MD_SB_DISKS; i++) {
  2082. mdp_disk_t *desc = sb->disks + i;
  2083. dev_t dev = MKDEV(desc->major, desc->minor);
  2084. if (!dev)
  2085. continue;
  2086. if (dev == startdev)
  2087. continue;
  2088. if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
  2089. continue;
  2090. rdev = md_import_device(dev, 0, 0);
  2091. if (IS_ERR(rdev))
  2092. continue;
  2093. list_add(&rdev->same_set, &pending_raid_disks);
  2094. }
  2095. /*
  2096. * possibly return codes
  2097. */
  2098. autorun_devices(0);
  2099. return 0;
  2100. }
  2101. static int get_version(void __user * arg)
  2102. {
  2103. mdu_version_t ver;
  2104. ver.major = MD_MAJOR_VERSION;
  2105. ver.minor = MD_MINOR_VERSION;
  2106. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  2107. if (copy_to_user(arg, &ver, sizeof(ver)))
  2108. return -EFAULT;
  2109. return 0;
  2110. }
  2111. static int get_array_info(mddev_t * mddev, void __user * arg)
  2112. {
  2113. mdu_array_info_t info;
  2114. int nr,working,active,failed,spare;
  2115. mdk_rdev_t *rdev;
  2116. struct list_head *tmp;
  2117. nr=working=active=failed=spare=0;
  2118. ITERATE_RDEV(mddev,rdev,tmp) {
  2119. nr++;
  2120. if (test_bit(Faulty, &rdev->flags))
  2121. failed++;
  2122. else {
  2123. working++;
  2124. if (test_bit(In_sync, &rdev->flags))
  2125. active++;
  2126. else
  2127. spare++;
  2128. }
  2129. }
  2130. info.major_version = mddev->major_version;
  2131. info.minor_version = mddev->minor_version;
  2132. info.patch_version = MD_PATCHLEVEL_VERSION;
  2133. info.ctime = mddev->ctime;
  2134. info.level = mddev->level;
  2135. info.size = mddev->size;
  2136. info.nr_disks = nr;
  2137. info.raid_disks = mddev->raid_disks;
  2138. info.md_minor = mddev->md_minor;
  2139. info.not_persistent= !mddev->persistent;
  2140. info.utime = mddev->utime;
  2141. info.state = 0;
  2142. if (mddev->in_sync)
  2143. info.state = (1<<MD_SB_CLEAN);
  2144. if (mddev->bitmap && mddev->bitmap_offset)
  2145. info.state = (1<<MD_SB_BITMAP_PRESENT);
  2146. info.active_disks = active;
  2147. info.working_disks = working;
  2148. info.failed_disks = failed;
  2149. info.spare_disks = spare;
  2150. info.layout = mddev->layout;
  2151. info.chunk_size = mddev->chunk_size;
  2152. if (copy_to_user(arg, &info, sizeof(info)))
  2153. return -EFAULT;
  2154. return 0;
  2155. }
  2156. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  2157. {
  2158. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  2159. char *ptr, *buf = NULL;
  2160. int err = -ENOMEM;
  2161. file = kmalloc(sizeof(*file), GFP_KERNEL);
  2162. if (!file)
  2163. goto out;
  2164. /* bitmap disabled, zero the first byte and copy out */
  2165. if (!mddev->bitmap || !mddev->bitmap->file) {
  2166. file->pathname[0] = '\0';
  2167. goto copy_out;
  2168. }
  2169. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  2170. if (!buf)
  2171. goto out;
  2172. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  2173. if (!ptr)
  2174. goto out;
  2175. strcpy(file->pathname, ptr);
  2176. copy_out:
  2177. err = 0;
  2178. if (copy_to_user(arg, file, sizeof(*file)))
  2179. err = -EFAULT;
  2180. out:
  2181. kfree(buf);
  2182. kfree(file);
  2183. return err;
  2184. }
  2185. static int get_disk_info(mddev_t * mddev, void __user * arg)
  2186. {
  2187. mdu_disk_info_t info;
  2188. unsigned int nr;
  2189. mdk_rdev_t *rdev;
  2190. if (copy_from_user(&info, arg, sizeof(info)))
  2191. return -EFAULT;
  2192. nr = info.number;
  2193. rdev = find_rdev_nr(mddev, nr);
  2194. if (rdev) {
  2195. info.major = MAJOR(rdev->bdev->bd_dev);
  2196. info.minor = MINOR(rdev->bdev->bd_dev);
  2197. info.raid_disk = rdev->raid_disk;
  2198. info.state = 0;
  2199. if (test_bit(Faulty, &rdev->flags))
  2200. info.state |= (1<<MD_DISK_FAULTY);
  2201. else if (test_bit(In_sync, &rdev->flags)) {
  2202. info.state |= (1<<MD_DISK_ACTIVE);
  2203. info.state |= (1<<MD_DISK_SYNC);
  2204. }
  2205. if (test_bit(WriteMostly, &rdev->flags))
  2206. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  2207. } else {
  2208. info.major = info.minor = 0;
  2209. info.raid_disk = -1;
  2210. info.state = (1<<MD_DISK_REMOVED);
  2211. }
  2212. if (copy_to_user(arg, &info, sizeof(info)))
  2213. return -EFAULT;
  2214. return 0;
  2215. }
  2216. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  2217. {
  2218. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  2219. mdk_rdev_t *rdev;
  2220. dev_t dev = MKDEV(info->major,info->minor);
  2221. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  2222. return -EOVERFLOW;
  2223. if (!mddev->raid_disks) {
  2224. int err;
  2225. /* expecting a device which has a superblock */
  2226. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  2227. if (IS_ERR(rdev)) {
  2228. printk(KERN_WARNING
  2229. "md: md_import_device returned %ld\n",
  2230. PTR_ERR(rdev));
  2231. return PTR_ERR(rdev);
  2232. }
  2233. if (!list_empty(&mddev->disks)) {
  2234. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  2235. mdk_rdev_t, same_set);
  2236. int err = super_types[mddev->major_version]
  2237. .load_super(rdev, rdev0, mddev->minor_version);
  2238. if (err < 0) {
  2239. printk(KERN_WARNING
  2240. "md: %s has different UUID to %s\n",
  2241. bdevname(rdev->bdev,b),
  2242. bdevname(rdev0->bdev,b2));
  2243. export_rdev(rdev);
  2244. return -EINVAL;
  2245. }
  2246. }
  2247. err = bind_rdev_to_array(rdev, mddev);
  2248. if (err)
  2249. export_rdev(rdev);
  2250. return err;
  2251. }
  2252. /*
  2253. * add_new_disk can be used once the array is assembled
  2254. * to add "hot spares". They must already have a superblock
  2255. * written
  2256. */
  2257. if (mddev->pers) {
  2258. int err;
  2259. if (!mddev->pers->hot_add_disk) {
  2260. printk(KERN_WARNING
  2261. "%s: personality does not support diskops!\n",
  2262. mdname(mddev));
  2263. return -EINVAL;
  2264. }
  2265. if (mddev->persistent)
  2266. rdev = md_import_device(dev, mddev->major_version,
  2267. mddev->minor_version);
  2268. else
  2269. rdev = md_import_device(dev, -1, -1);
  2270. if (IS_ERR(rdev)) {
  2271. printk(KERN_WARNING
  2272. "md: md_import_device returned %ld\n",
  2273. PTR_ERR(rdev));
  2274. return PTR_ERR(rdev);
  2275. }
  2276. /* set save_raid_disk if appropriate */
  2277. if (!mddev->persistent) {
  2278. if (info->state & (1<<MD_DISK_SYNC) &&
  2279. info->raid_disk < mddev->raid_disks)
  2280. rdev->raid_disk = info->raid_disk;
  2281. else
  2282. rdev->raid_disk = -1;
  2283. } else
  2284. super_types[mddev->major_version].
  2285. validate_super(mddev, rdev);
  2286. rdev->saved_raid_disk = rdev->raid_disk;
  2287. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  2288. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  2289. set_bit(WriteMostly, &rdev->flags);
  2290. rdev->raid_disk = -1;
  2291. err = bind_rdev_to_array(rdev, mddev);
  2292. if (err)
  2293. export_rdev(rdev);
  2294. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2295. md_wakeup_thread(mddev->thread);
  2296. return err;
  2297. }
  2298. /* otherwise, add_new_disk is only allowed
  2299. * for major_version==0 superblocks
  2300. */
  2301. if (mddev->major_version != 0) {
  2302. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  2303. mdname(mddev));
  2304. return -EINVAL;
  2305. }
  2306. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  2307. int err;
  2308. rdev = md_import_device (dev, -1, 0);
  2309. if (IS_ERR(rdev)) {
  2310. printk(KERN_WARNING
  2311. "md: error, md_import_device() returned %ld\n",
  2312. PTR_ERR(rdev));
  2313. return PTR_ERR(rdev);
  2314. }
  2315. rdev->desc_nr = info->number;
  2316. if (info->raid_disk < mddev->raid_disks)
  2317. rdev->raid_disk = info->raid_disk;
  2318. else
  2319. rdev->raid_disk = -1;
  2320. rdev->flags = 0;
  2321. if (rdev->raid_disk < mddev->raid_disks)
  2322. if (info->state & (1<<MD_DISK_SYNC))
  2323. set_bit(In_sync, &rdev->flags);
  2324. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  2325. set_bit(WriteMostly, &rdev->flags);
  2326. err = bind_rdev_to_array(rdev, mddev);
  2327. if (err) {
  2328. export_rdev(rdev);
  2329. return err;
  2330. }
  2331. if (!mddev->persistent) {
  2332. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  2333. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2334. } else
  2335. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  2336. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  2337. if (!mddev->size || (mddev->size > rdev->size))
  2338. mddev->size = rdev->size;
  2339. }
  2340. return 0;
  2341. }
  2342. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  2343. {
  2344. char b[BDEVNAME_SIZE];
  2345. mdk_rdev_t *rdev;
  2346. if (!mddev->pers)
  2347. return -ENODEV;
  2348. rdev = find_rdev(mddev, dev);
  2349. if (!rdev)
  2350. return -ENXIO;
  2351. if (rdev->raid_disk >= 0)
  2352. goto busy;
  2353. kick_rdev_from_array(rdev);
  2354. md_update_sb(mddev);
  2355. md_new_event(mddev);
  2356. return 0;
  2357. busy:
  2358. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  2359. bdevname(rdev->bdev,b), mdname(mddev));
  2360. return -EBUSY;
  2361. }
  2362. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  2363. {
  2364. char b[BDEVNAME_SIZE];
  2365. int err;
  2366. unsigned int size;
  2367. mdk_rdev_t *rdev;
  2368. if (!mddev->pers)
  2369. return -ENODEV;
  2370. if (mddev->major_version != 0) {
  2371. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  2372. " version-0 superblocks.\n",
  2373. mdname(mddev));
  2374. return -EINVAL;
  2375. }
  2376. if (!mddev->pers->hot_add_disk) {
  2377. printk(KERN_WARNING
  2378. "%s: personality does not support diskops!\n",
  2379. mdname(mddev));
  2380. return -EINVAL;
  2381. }
  2382. rdev = md_import_device (dev, -1, 0);
  2383. if (IS_ERR(rdev)) {
  2384. printk(KERN_WARNING
  2385. "md: error, md_import_device() returned %ld\n",
  2386. PTR_ERR(rdev));
  2387. return -EINVAL;
  2388. }
  2389. if (mddev->persistent)
  2390. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  2391. else
  2392. rdev->sb_offset =
  2393. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2394. size = calc_dev_size(rdev, mddev->chunk_size);
  2395. rdev->size = size;
  2396. if (size < mddev->size) {
  2397. printk(KERN_WARNING
  2398. "%s: disk size %llu blocks < array size %llu\n",
  2399. mdname(mddev), (unsigned long long)size,
  2400. (unsigned long long)mddev->size);
  2401. err = -ENOSPC;
  2402. goto abort_export;
  2403. }
  2404. if (test_bit(Faulty, &rdev->flags)) {
  2405. printk(KERN_WARNING
  2406. "md: can not hot-add faulty %s disk to %s!\n",
  2407. bdevname(rdev->bdev,b), mdname(mddev));
  2408. err = -EINVAL;
  2409. goto abort_export;
  2410. }
  2411. clear_bit(In_sync, &rdev->flags);
  2412. rdev->desc_nr = -1;
  2413. bind_rdev_to_array(rdev, mddev);
  2414. /*
  2415. * The rest should better be atomic, we can have disk failures
  2416. * noticed in interrupt contexts ...
  2417. */
  2418. if (rdev->desc_nr == mddev->max_disks) {
  2419. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  2420. mdname(mddev));
  2421. err = -EBUSY;
  2422. goto abort_unbind_export;
  2423. }
  2424. rdev->raid_disk = -1;
  2425. md_update_sb(mddev);
  2426. /*
  2427. * Kick recovery, maybe this spare has to be added to the
  2428. * array immediately.
  2429. */
  2430. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2431. md_wakeup_thread(mddev->thread);
  2432. md_new_event(mddev);
  2433. return 0;
  2434. abort_unbind_export:
  2435. unbind_rdev_from_array(rdev);
  2436. abort_export:
  2437. export_rdev(rdev);
  2438. return err;
  2439. }
  2440. /* similar to deny_write_access, but accounts for our holding a reference
  2441. * to the file ourselves */
  2442. static int deny_bitmap_write_access(struct file * file)
  2443. {
  2444. struct inode *inode = file->f_mapping->host;
  2445. spin_lock(&inode->i_lock);
  2446. if (atomic_read(&inode->i_writecount) > 1) {
  2447. spin_unlock(&inode->i_lock);
  2448. return -ETXTBSY;
  2449. }
  2450. atomic_set(&inode->i_writecount, -1);
  2451. spin_unlock(&inode->i_lock);
  2452. return 0;
  2453. }
  2454. static int set_bitmap_file(mddev_t *mddev, int fd)
  2455. {
  2456. int err;
  2457. if (mddev->pers) {
  2458. if (!mddev->pers->quiesce)
  2459. return -EBUSY;
  2460. if (mddev->recovery || mddev->sync_thread)
  2461. return -EBUSY;
  2462. /* we should be able to change the bitmap.. */
  2463. }
  2464. if (fd >= 0) {
  2465. if (mddev->bitmap)
  2466. return -EEXIST; /* cannot add when bitmap is present */
  2467. mddev->bitmap_file = fget(fd);
  2468. if (mddev->bitmap_file == NULL) {
  2469. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  2470. mdname(mddev));
  2471. return -EBADF;
  2472. }
  2473. err = deny_bitmap_write_access(mddev->bitmap_file);
  2474. if (err) {
  2475. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  2476. mdname(mddev));
  2477. fput(mddev->bitmap_file);
  2478. mddev->bitmap_file = NULL;
  2479. return err;
  2480. }
  2481. mddev->bitmap_offset = 0; /* file overrides offset */
  2482. } else if (mddev->bitmap == NULL)
  2483. return -ENOENT; /* cannot remove what isn't there */
  2484. err = 0;
  2485. if (mddev->pers) {
  2486. mddev->pers->quiesce(mddev, 1);
  2487. if (fd >= 0)
  2488. err = bitmap_create(mddev);
  2489. if (fd < 0 || err)
  2490. bitmap_destroy(mddev);
  2491. mddev->pers->quiesce(mddev, 0);
  2492. } else if (fd < 0) {
  2493. if (mddev->bitmap_file)
  2494. fput(mddev->bitmap_file);
  2495. mddev->bitmap_file = NULL;
  2496. }
  2497. return err;
  2498. }
  2499. /*
  2500. * set_array_info is used two different ways
  2501. * The original usage is when creating a new array.
  2502. * In this usage, raid_disks is > 0 and it together with
  2503. * level, size, not_persistent,layout,chunksize determine the
  2504. * shape of the array.
  2505. * This will always create an array with a type-0.90.0 superblock.
  2506. * The newer usage is when assembling an array.
  2507. * In this case raid_disks will be 0, and the major_version field is
  2508. * use to determine which style super-blocks are to be found on the devices.
  2509. * The minor and patch _version numbers are also kept incase the
  2510. * super_block handler wishes to interpret them.
  2511. */
  2512. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  2513. {
  2514. if (info->raid_disks == 0) {
  2515. /* just setting version number for superblock loading */
  2516. if (info->major_version < 0 ||
  2517. info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
  2518. super_types[info->major_version].name == NULL) {
  2519. /* maybe try to auto-load a module? */
  2520. printk(KERN_INFO
  2521. "md: superblock version %d not known\n",
  2522. info->major_version);
  2523. return -EINVAL;
  2524. }
  2525. mddev->major_version = info->major_version;
  2526. mddev->minor_version = info->minor_version;
  2527. mddev->patch_version = info->patch_version;
  2528. return 0;
  2529. }
  2530. mddev->major_version = MD_MAJOR_VERSION;
  2531. mddev->minor_version = MD_MINOR_VERSION;
  2532. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  2533. mddev->ctime = get_seconds();
  2534. mddev->level = info->level;
  2535. mddev->size = info->size;
  2536. mddev->raid_disks = info->raid_disks;
  2537. /* don't set md_minor, it is determined by which /dev/md* was
  2538. * openned
  2539. */
  2540. if (info->state & (1<<MD_SB_CLEAN))
  2541. mddev->recovery_cp = MaxSector;
  2542. else
  2543. mddev->recovery_cp = 0;
  2544. mddev->persistent = ! info->not_persistent;
  2545. mddev->layout = info->layout;
  2546. mddev->chunk_size = info->chunk_size;
  2547. mddev->max_disks = MD_SB_DISKS;
  2548. mddev->sb_dirty = 1;
  2549. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  2550. mddev->bitmap_offset = 0;
  2551. /*
  2552. * Generate a 128 bit UUID
  2553. */
  2554. get_random_bytes(mddev->uuid, 16);
  2555. return 0;
  2556. }
  2557. /*
  2558. * update_array_info is used to change the configuration of an
  2559. * on-line array.
  2560. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  2561. * fields in the info are checked against the array.
  2562. * Any differences that cannot be handled will cause an error.
  2563. * Normally, only one change can be managed at a time.
  2564. */
  2565. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  2566. {
  2567. int rv = 0;
  2568. int cnt = 0;
  2569. int state = 0;
  2570. /* calculate expected state,ignoring low bits */
  2571. if (mddev->bitmap && mddev->bitmap_offset)
  2572. state |= (1 << MD_SB_BITMAP_PRESENT);
  2573. if (mddev->major_version != info->major_version ||
  2574. mddev->minor_version != info->minor_version ||
  2575. /* mddev->patch_version != info->patch_version || */
  2576. mddev->ctime != info->ctime ||
  2577. mddev->level != info->level ||
  2578. /* mddev->layout != info->layout || */
  2579. !mddev->persistent != info->not_persistent||
  2580. mddev->chunk_size != info->chunk_size ||
  2581. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  2582. ((state^info->state) & 0xfffffe00)
  2583. )
  2584. return -EINVAL;
  2585. /* Check there is only one change */
  2586. if (mddev->size != info->size) cnt++;
  2587. if (mddev->raid_disks != info->raid_disks) cnt++;
  2588. if (mddev->layout != info->layout) cnt++;
  2589. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
  2590. if (cnt == 0) return 0;
  2591. if (cnt > 1) return -EINVAL;
  2592. if (mddev->layout != info->layout) {
  2593. /* Change layout
  2594. * we don't need to do anything at the md level, the
  2595. * personality will take care of it all.
  2596. */
  2597. if (mddev->pers->reconfig == NULL)
  2598. return -EINVAL;
  2599. else
  2600. return mddev->pers->reconfig(mddev, info->layout, -1);
  2601. }
  2602. if (mddev->size != info->size) {
  2603. mdk_rdev_t * rdev;
  2604. struct list_head *tmp;
  2605. if (mddev->pers->resize == NULL)
  2606. return -EINVAL;
  2607. /* The "size" is the amount of each device that is used.
  2608. * This can only make sense for arrays with redundancy.
  2609. * linear and raid0 always use whatever space is available
  2610. * We can only consider changing the size if no resync
  2611. * or reconstruction is happening, and if the new size
  2612. * is acceptable. It must fit before the sb_offset or,
  2613. * if that is <data_offset, it must fit before the
  2614. * size of each device.
  2615. * If size is zero, we find the largest size that fits.
  2616. */
  2617. if (mddev->sync_thread)
  2618. return -EBUSY;
  2619. ITERATE_RDEV(mddev,rdev,tmp) {
  2620. sector_t avail;
  2621. int fit = (info->size == 0);
  2622. if (rdev->sb_offset > rdev->data_offset)
  2623. avail = (rdev->sb_offset*2) - rdev->data_offset;
  2624. else
  2625. avail = get_capacity(rdev->bdev->bd_disk)
  2626. - rdev->data_offset;
  2627. if (fit && (info->size == 0 || info->size > avail/2))
  2628. info->size = avail/2;
  2629. if (avail < ((sector_t)info->size << 1))
  2630. return -ENOSPC;
  2631. }
  2632. rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
  2633. if (!rv) {
  2634. struct block_device *bdev;
  2635. bdev = bdget_disk(mddev->gendisk, 0);
  2636. if (bdev) {
  2637. down(&bdev->bd_inode->i_sem);
  2638. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2639. up(&bdev->bd_inode->i_sem);
  2640. bdput(bdev);
  2641. }
  2642. }
  2643. }
  2644. if (mddev->raid_disks != info->raid_disks) {
  2645. /* change the number of raid disks */
  2646. if (mddev->pers->reshape == NULL)
  2647. return -EINVAL;
  2648. if (info->raid_disks <= 0 ||
  2649. info->raid_disks >= mddev->max_disks)
  2650. return -EINVAL;
  2651. if (mddev->sync_thread)
  2652. return -EBUSY;
  2653. rv = mddev->pers->reshape(mddev, info->raid_disks);
  2654. if (!rv) {
  2655. struct block_device *bdev;
  2656. bdev = bdget_disk(mddev->gendisk, 0);
  2657. if (bdev) {
  2658. down(&bdev->bd_inode->i_sem);
  2659. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2660. up(&bdev->bd_inode->i_sem);
  2661. bdput(bdev);
  2662. }
  2663. }
  2664. }
  2665. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  2666. if (mddev->pers->quiesce == NULL)
  2667. return -EINVAL;
  2668. if (mddev->recovery || mddev->sync_thread)
  2669. return -EBUSY;
  2670. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  2671. /* add the bitmap */
  2672. if (mddev->bitmap)
  2673. return -EEXIST;
  2674. if (mddev->default_bitmap_offset == 0)
  2675. return -EINVAL;
  2676. mddev->bitmap_offset = mddev->default_bitmap_offset;
  2677. mddev->pers->quiesce(mddev, 1);
  2678. rv = bitmap_create(mddev);
  2679. if (rv)
  2680. bitmap_destroy(mddev);
  2681. mddev->pers->quiesce(mddev, 0);
  2682. } else {
  2683. /* remove the bitmap */
  2684. if (!mddev->bitmap)
  2685. return -ENOENT;
  2686. if (mddev->bitmap->file)
  2687. return -EINVAL;
  2688. mddev->pers->quiesce(mddev, 1);
  2689. bitmap_destroy(mddev);
  2690. mddev->pers->quiesce(mddev, 0);
  2691. mddev->bitmap_offset = 0;
  2692. }
  2693. }
  2694. md_update_sb(mddev);
  2695. return rv;
  2696. }
  2697. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  2698. {
  2699. mdk_rdev_t *rdev;
  2700. if (mddev->pers == NULL)
  2701. return -ENODEV;
  2702. rdev = find_rdev(mddev, dev);
  2703. if (!rdev)
  2704. return -ENODEV;
  2705. md_error(mddev, rdev);
  2706. return 0;
  2707. }
  2708. static int md_ioctl(struct inode *inode, struct file *file,
  2709. unsigned int cmd, unsigned long arg)
  2710. {
  2711. int err = 0;
  2712. void __user *argp = (void __user *)arg;
  2713. struct hd_geometry __user *loc = argp;
  2714. mddev_t *mddev = NULL;
  2715. if (!capable(CAP_SYS_ADMIN))
  2716. return -EACCES;
  2717. /*
  2718. * Commands dealing with the RAID driver but not any
  2719. * particular array:
  2720. */
  2721. switch (cmd)
  2722. {
  2723. case RAID_VERSION:
  2724. err = get_version(argp);
  2725. goto done;
  2726. case PRINT_RAID_DEBUG:
  2727. err = 0;
  2728. md_print_devices();
  2729. goto done;
  2730. #ifndef MODULE
  2731. case RAID_AUTORUN:
  2732. err = 0;
  2733. autostart_arrays(arg);
  2734. goto done;
  2735. #endif
  2736. default:;
  2737. }
  2738. /*
  2739. * Commands creating/starting a new array:
  2740. */
  2741. mddev = inode->i_bdev->bd_disk->private_data;
  2742. if (!mddev) {
  2743. BUG();
  2744. goto abort;
  2745. }
  2746. if (cmd == START_ARRAY) {
  2747. /* START_ARRAY doesn't need to lock the array as autostart_array
  2748. * does the locking, and it could even be a different array
  2749. */
  2750. static int cnt = 3;
  2751. if (cnt > 0 ) {
  2752. printk(KERN_WARNING
  2753. "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
  2754. "This will not be supported beyond July 2006\n",
  2755. current->comm, current->pid);
  2756. cnt--;
  2757. }
  2758. err = autostart_array(new_decode_dev(arg));
  2759. if (err) {
  2760. printk(KERN_WARNING "md: autostart failed!\n");
  2761. goto abort;
  2762. }
  2763. goto done;
  2764. }
  2765. err = mddev_lock(mddev);
  2766. if (err) {
  2767. printk(KERN_INFO
  2768. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  2769. err, cmd);
  2770. goto abort;
  2771. }
  2772. switch (cmd)
  2773. {
  2774. case SET_ARRAY_INFO:
  2775. {
  2776. mdu_array_info_t info;
  2777. if (!arg)
  2778. memset(&info, 0, sizeof(info));
  2779. else if (copy_from_user(&info, argp, sizeof(info))) {
  2780. err = -EFAULT;
  2781. goto abort_unlock;
  2782. }
  2783. if (mddev->pers) {
  2784. err = update_array_info(mddev, &info);
  2785. if (err) {
  2786. printk(KERN_WARNING "md: couldn't update"
  2787. " array info. %d\n", err);
  2788. goto abort_unlock;
  2789. }
  2790. goto done_unlock;
  2791. }
  2792. if (!list_empty(&mddev->disks)) {
  2793. printk(KERN_WARNING
  2794. "md: array %s already has disks!\n",
  2795. mdname(mddev));
  2796. err = -EBUSY;
  2797. goto abort_unlock;
  2798. }
  2799. if (mddev->raid_disks) {
  2800. printk(KERN_WARNING
  2801. "md: array %s already initialised!\n",
  2802. mdname(mddev));
  2803. err = -EBUSY;
  2804. goto abort_unlock;
  2805. }
  2806. err = set_array_info(mddev, &info);
  2807. if (err) {
  2808. printk(KERN_WARNING "md: couldn't set"
  2809. " array info. %d\n", err);
  2810. goto abort_unlock;
  2811. }
  2812. }
  2813. goto done_unlock;
  2814. default:;
  2815. }
  2816. /*
  2817. * Commands querying/configuring an existing array:
  2818. */
  2819. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  2820. * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
  2821. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  2822. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
  2823. err = -ENODEV;
  2824. goto abort_unlock;
  2825. }
  2826. /*
  2827. * Commands even a read-only array can execute:
  2828. */
  2829. switch (cmd)
  2830. {
  2831. case GET_ARRAY_INFO:
  2832. err = get_array_info(mddev, argp);
  2833. goto done_unlock;
  2834. case GET_BITMAP_FILE:
  2835. err = get_bitmap_file(mddev, argp);
  2836. goto done_unlock;
  2837. case GET_DISK_INFO:
  2838. err = get_disk_info(mddev, argp);
  2839. goto done_unlock;
  2840. case RESTART_ARRAY_RW:
  2841. err = restart_array(mddev);
  2842. goto done_unlock;
  2843. case STOP_ARRAY:
  2844. err = do_md_stop (mddev, 0);
  2845. goto done_unlock;
  2846. case STOP_ARRAY_RO:
  2847. err = do_md_stop (mddev, 1);
  2848. goto done_unlock;
  2849. /*
  2850. * We have a problem here : there is no easy way to give a CHS
  2851. * virtual geometry. We currently pretend that we have a 2 heads
  2852. * 4 sectors (with a BIG number of cylinders...). This drives
  2853. * dosfs just mad... ;-)
  2854. */
  2855. case HDIO_GETGEO:
  2856. if (!loc) {
  2857. err = -EINVAL;
  2858. goto abort_unlock;
  2859. }
  2860. err = put_user (2, (char __user *) &loc->heads);
  2861. if (err)
  2862. goto abort_unlock;
  2863. err = put_user (4, (char __user *) &loc->sectors);
  2864. if (err)
  2865. goto abort_unlock;
  2866. err = put_user(get_capacity(mddev->gendisk)/8,
  2867. (short __user *) &loc->cylinders);
  2868. if (err)
  2869. goto abort_unlock;
  2870. err = put_user (get_start_sect(inode->i_bdev),
  2871. (long __user *) &loc->start);
  2872. goto done_unlock;
  2873. }
  2874. /*
  2875. * The remaining ioctls are changing the state of the
  2876. * superblock, so we do not allow them on read-only arrays.
  2877. * However non-MD ioctls (e.g. get-size) will still come through
  2878. * here and hit the 'default' below, so only disallow
  2879. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  2880. */
  2881. if (_IOC_TYPE(cmd) == MD_MAJOR &&
  2882. mddev->ro && mddev->pers) {
  2883. if (mddev->ro == 2) {
  2884. mddev->ro = 0;
  2885. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2886. md_wakeup_thread(mddev->thread);
  2887. } else {
  2888. err = -EROFS;
  2889. goto abort_unlock;
  2890. }
  2891. }
  2892. switch (cmd)
  2893. {
  2894. case ADD_NEW_DISK:
  2895. {
  2896. mdu_disk_info_t info;
  2897. if (copy_from_user(&info, argp, sizeof(info)))
  2898. err = -EFAULT;
  2899. else
  2900. err = add_new_disk(mddev, &info);
  2901. goto done_unlock;
  2902. }
  2903. case HOT_REMOVE_DISK:
  2904. err = hot_remove_disk(mddev, new_decode_dev(arg));
  2905. goto done_unlock;
  2906. case HOT_ADD_DISK:
  2907. err = hot_add_disk(mddev, new_decode_dev(arg));
  2908. goto done_unlock;
  2909. case SET_DISK_FAULTY:
  2910. err = set_disk_faulty(mddev, new_decode_dev(arg));
  2911. goto done_unlock;
  2912. case RUN_ARRAY:
  2913. err = do_md_run (mddev);
  2914. goto done_unlock;
  2915. case SET_BITMAP_FILE:
  2916. err = set_bitmap_file(mddev, (int)arg);
  2917. goto done_unlock;
  2918. default:
  2919. if (_IOC_TYPE(cmd) == MD_MAJOR)
  2920. printk(KERN_WARNING "md: %s(pid %d) used"
  2921. " obsolete MD ioctl, upgrade your"
  2922. " software to use new ictls.\n",
  2923. current->comm, current->pid);
  2924. err = -EINVAL;
  2925. goto abort_unlock;
  2926. }
  2927. done_unlock:
  2928. abort_unlock:
  2929. mddev_unlock(mddev);
  2930. return err;
  2931. done:
  2932. if (err)
  2933. MD_BUG();
  2934. abort:
  2935. return err;
  2936. }
  2937. static int md_open(struct inode *inode, struct file *file)
  2938. {
  2939. /*
  2940. * Succeed if we can lock the mddev, which confirms that
  2941. * it isn't being stopped right now.
  2942. */
  2943. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2944. int err;
  2945. if ((err = mddev_lock(mddev)))
  2946. goto out;
  2947. err = 0;
  2948. mddev_get(mddev);
  2949. mddev_unlock(mddev);
  2950. check_disk_change(inode->i_bdev);
  2951. out:
  2952. return err;
  2953. }
  2954. static int md_release(struct inode *inode, struct file * file)
  2955. {
  2956. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2957. if (!mddev)
  2958. BUG();
  2959. mddev_put(mddev);
  2960. return 0;
  2961. }
  2962. static int md_media_changed(struct gendisk *disk)
  2963. {
  2964. mddev_t *mddev = disk->private_data;
  2965. return mddev->changed;
  2966. }
  2967. static int md_revalidate(struct gendisk *disk)
  2968. {
  2969. mddev_t *mddev = disk->private_data;
  2970. mddev->changed = 0;
  2971. return 0;
  2972. }
  2973. static struct block_device_operations md_fops =
  2974. {
  2975. .owner = THIS_MODULE,
  2976. .open = md_open,
  2977. .release = md_release,
  2978. .ioctl = md_ioctl,
  2979. .media_changed = md_media_changed,
  2980. .revalidate_disk= md_revalidate,
  2981. };
  2982. static int md_thread(void * arg)
  2983. {
  2984. mdk_thread_t *thread = arg;
  2985. /*
  2986. * md_thread is a 'system-thread', it's priority should be very
  2987. * high. We avoid resource deadlocks individually in each
  2988. * raid personality. (RAID5 does preallocation) We also use RR and
  2989. * the very same RT priority as kswapd, thus we will never get
  2990. * into a priority inversion deadlock.
  2991. *
  2992. * we definitely have to have equal or higher priority than
  2993. * bdflush, otherwise bdflush will deadlock if there are too
  2994. * many dirty RAID5 blocks.
  2995. */
  2996. allow_signal(SIGKILL);
  2997. while (!kthread_should_stop()) {
  2998. /* We need to wait INTERRUPTIBLE so that
  2999. * we don't add to the load-average.
  3000. * That means we need to be sure no signals are
  3001. * pending
  3002. */
  3003. if (signal_pending(current))
  3004. flush_signals(current);
  3005. wait_event_interruptible_timeout
  3006. (thread->wqueue,
  3007. test_bit(THREAD_WAKEUP, &thread->flags)
  3008. || kthread_should_stop(),
  3009. thread->timeout);
  3010. try_to_freeze();
  3011. clear_bit(THREAD_WAKEUP, &thread->flags);
  3012. thread->run(thread->mddev);
  3013. }
  3014. return 0;
  3015. }
  3016. void md_wakeup_thread(mdk_thread_t *thread)
  3017. {
  3018. if (thread) {
  3019. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  3020. set_bit(THREAD_WAKEUP, &thread->flags);
  3021. wake_up(&thread->wqueue);
  3022. }
  3023. }
  3024. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  3025. const char *name)
  3026. {
  3027. mdk_thread_t *thread;
  3028. thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  3029. if (!thread)
  3030. return NULL;
  3031. init_waitqueue_head(&thread->wqueue);
  3032. thread->run = run;
  3033. thread->mddev = mddev;
  3034. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  3035. thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
  3036. if (IS_ERR(thread->tsk)) {
  3037. kfree(thread);
  3038. return NULL;
  3039. }
  3040. return thread;
  3041. }
  3042. void md_unregister_thread(mdk_thread_t *thread)
  3043. {
  3044. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  3045. kthread_stop(thread->tsk);
  3046. kfree(thread);
  3047. }
  3048. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  3049. {
  3050. if (!mddev) {
  3051. MD_BUG();
  3052. return;
  3053. }
  3054. if (!rdev || test_bit(Faulty, &rdev->flags))
  3055. return;
  3056. /*
  3057. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  3058. mdname(mddev),
  3059. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  3060. __builtin_return_address(0),__builtin_return_address(1),
  3061. __builtin_return_address(2),__builtin_return_address(3));
  3062. */
  3063. if (!mddev->pers->error_handler)
  3064. return;
  3065. mddev->pers->error_handler(mddev,rdev);
  3066. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3067. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3068. md_wakeup_thread(mddev->thread);
  3069. md_new_event(mddev);
  3070. }
  3071. /* seq_file implementation /proc/mdstat */
  3072. static void status_unused(struct seq_file *seq)
  3073. {
  3074. int i = 0;
  3075. mdk_rdev_t *rdev;
  3076. struct list_head *tmp;
  3077. seq_printf(seq, "unused devices: ");
  3078. ITERATE_RDEV_PENDING(rdev,tmp) {
  3079. char b[BDEVNAME_SIZE];
  3080. i++;
  3081. seq_printf(seq, "%s ",
  3082. bdevname(rdev->bdev,b));
  3083. }
  3084. if (!i)
  3085. seq_printf(seq, "<none>");
  3086. seq_printf(seq, "\n");
  3087. }
  3088. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  3089. {
  3090. unsigned long max_blocks, resync, res, dt, db, rt;
  3091. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  3092. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3093. max_blocks = mddev->resync_max_sectors >> 1;
  3094. else
  3095. max_blocks = mddev->size;
  3096. /*
  3097. * Should not happen.
  3098. */
  3099. if (!max_blocks) {
  3100. MD_BUG();
  3101. return;
  3102. }
  3103. res = (resync/1024)*1000/(max_blocks/1024 + 1);
  3104. {
  3105. int i, x = res/50, y = 20-x;
  3106. seq_printf(seq, "[");
  3107. for (i = 0; i < x; i++)
  3108. seq_printf(seq, "=");
  3109. seq_printf(seq, ">");
  3110. for (i = 0; i < y; i++)
  3111. seq_printf(seq, ".");
  3112. seq_printf(seq, "] ");
  3113. }
  3114. seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
  3115. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  3116. "resync" : "recovery"),
  3117. res/10, res % 10, resync, max_blocks);
  3118. /*
  3119. * We do not want to overflow, so the order of operands and
  3120. * the * 100 / 100 trick are important. We do a +1 to be
  3121. * safe against division by zero. We only estimate anyway.
  3122. *
  3123. * dt: time from mark until now
  3124. * db: blocks written from mark until now
  3125. * rt: remaining time
  3126. */
  3127. dt = ((jiffies - mddev->resync_mark) / HZ);
  3128. if (!dt) dt++;
  3129. db = resync - (mddev->resync_mark_cnt/2);
  3130. rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
  3131. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  3132. seq_printf(seq, " speed=%ldK/sec", db/dt);
  3133. }
  3134. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  3135. {
  3136. struct list_head *tmp;
  3137. loff_t l = *pos;
  3138. mddev_t *mddev;
  3139. if (l >= 0x10000)
  3140. return NULL;
  3141. if (!l--)
  3142. /* header */
  3143. return (void*)1;
  3144. spin_lock(&all_mddevs_lock);
  3145. list_for_each(tmp,&all_mddevs)
  3146. if (!l--) {
  3147. mddev = list_entry(tmp, mddev_t, all_mddevs);
  3148. mddev_get(mddev);
  3149. spin_unlock(&all_mddevs_lock);
  3150. return mddev;
  3151. }
  3152. spin_unlock(&all_mddevs_lock);
  3153. if (!l--)
  3154. return (void*)2;/* tail */
  3155. return NULL;
  3156. }
  3157. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  3158. {
  3159. struct list_head *tmp;
  3160. mddev_t *next_mddev, *mddev = v;
  3161. ++*pos;
  3162. if (v == (void*)2)
  3163. return NULL;
  3164. spin_lock(&all_mddevs_lock);
  3165. if (v == (void*)1)
  3166. tmp = all_mddevs.next;
  3167. else
  3168. tmp = mddev->all_mddevs.next;
  3169. if (tmp != &all_mddevs)
  3170. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  3171. else {
  3172. next_mddev = (void*)2;
  3173. *pos = 0x10000;
  3174. }
  3175. spin_unlock(&all_mddevs_lock);
  3176. if (v != (void*)1)
  3177. mddev_put(mddev);
  3178. return next_mddev;
  3179. }
  3180. static void md_seq_stop(struct seq_file *seq, void *v)
  3181. {
  3182. mddev_t *mddev = v;
  3183. if (mddev && v != (void*)1 && v != (void*)2)
  3184. mddev_put(mddev);
  3185. }
  3186. struct mdstat_info {
  3187. int event;
  3188. };
  3189. static int md_seq_show(struct seq_file *seq, void *v)
  3190. {
  3191. mddev_t *mddev = v;
  3192. sector_t size;
  3193. struct list_head *tmp2;
  3194. mdk_rdev_t *rdev;
  3195. struct mdstat_info *mi = seq->private;
  3196. int i;
  3197. struct bitmap *bitmap;
  3198. if (v == (void*)1) {
  3199. seq_printf(seq, "Personalities : ");
  3200. spin_lock(&pers_lock);
  3201. for (i = 0; i < MAX_PERSONALITY; i++)
  3202. if (pers[i])
  3203. seq_printf(seq, "[%s] ", pers[i]->name);
  3204. spin_unlock(&pers_lock);
  3205. seq_printf(seq, "\n");
  3206. mi->event = atomic_read(&md_event_count);
  3207. return 0;
  3208. }
  3209. if (v == (void*)2) {
  3210. status_unused(seq);
  3211. return 0;
  3212. }
  3213. if (mddev_lock(mddev)!=0)
  3214. return -EINTR;
  3215. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  3216. seq_printf(seq, "%s : %sactive", mdname(mddev),
  3217. mddev->pers ? "" : "in");
  3218. if (mddev->pers) {
  3219. if (mddev->ro==1)
  3220. seq_printf(seq, " (read-only)");
  3221. if (mddev->ro==2)
  3222. seq_printf(seq, "(auto-read-only)");
  3223. seq_printf(seq, " %s", mddev->pers->name);
  3224. }
  3225. size = 0;
  3226. ITERATE_RDEV(mddev,rdev,tmp2) {
  3227. char b[BDEVNAME_SIZE];
  3228. seq_printf(seq, " %s[%d]",
  3229. bdevname(rdev->bdev,b), rdev->desc_nr);
  3230. if (test_bit(WriteMostly, &rdev->flags))
  3231. seq_printf(seq, "(W)");
  3232. if (test_bit(Faulty, &rdev->flags)) {
  3233. seq_printf(seq, "(F)");
  3234. continue;
  3235. } else if (rdev->raid_disk < 0)
  3236. seq_printf(seq, "(S)"); /* spare */
  3237. size += rdev->size;
  3238. }
  3239. if (!list_empty(&mddev->disks)) {
  3240. if (mddev->pers)
  3241. seq_printf(seq, "\n %llu blocks",
  3242. (unsigned long long)mddev->array_size);
  3243. else
  3244. seq_printf(seq, "\n %llu blocks",
  3245. (unsigned long long)size);
  3246. }
  3247. if (mddev->persistent) {
  3248. if (mddev->major_version != 0 ||
  3249. mddev->minor_version != 90) {
  3250. seq_printf(seq," super %d.%d",
  3251. mddev->major_version,
  3252. mddev->minor_version);
  3253. }
  3254. } else
  3255. seq_printf(seq, " super non-persistent");
  3256. if (mddev->pers) {
  3257. mddev->pers->status (seq, mddev);
  3258. seq_printf(seq, "\n ");
  3259. if (mddev->pers->sync_request) {
  3260. if (mddev->curr_resync > 2) {
  3261. status_resync (seq, mddev);
  3262. seq_printf(seq, "\n ");
  3263. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  3264. seq_printf(seq, "\tresync=DELAYED\n ");
  3265. else if (mddev->recovery_cp < MaxSector)
  3266. seq_printf(seq, "\tresync=PENDING\n ");
  3267. }
  3268. } else
  3269. seq_printf(seq, "\n ");
  3270. if ((bitmap = mddev->bitmap)) {
  3271. unsigned long chunk_kb;
  3272. unsigned long flags;
  3273. spin_lock_irqsave(&bitmap->lock, flags);
  3274. chunk_kb = bitmap->chunksize >> 10;
  3275. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  3276. "%lu%s chunk",
  3277. bitmap->pages - bitmap->missing_pages,
  3278. bitmap->pages,
  3279. (bitmap->pages - bitmap->missing_pages)
  3280. << (PAGE_SHIFT - 10),
  3281. chunk_kb ? chunk_kb : bitmap->chunksize,
  3282. chunk_kb ? "KB" : "B");
  3283. if (bitmap->file) {
  3284. seq_printf(seq, ", file: ");
  3285. seq_path(seq, bitmap->file->f_vfsmnt,
  3286. bitmap->file->f_dentry," \t\n");
  3287. }
  3288. seq_printf(seq, "\n");
  3289. spin_unlock_irqrestore(&bitmap->lock, flags);
  3290. }
  3291. seq_printf(seq, "\n");
  3292. }
  3293. mddev_unlock(mddev);
  3294. return 0;
  3295. }
  3296. static struct seq_operations md_seq_ops = {
  3297. .start = md_seq_start,
  3298. .next = md_seq_next,
  3299. .stop = md_seq_stop,
  3300. .show = md_seq_show,
  3301. };
  3302. static int md_seq_open(struct inode *inode, struct file *file)
  3303. {
  3304. int error;
  3305. struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
  3306. if (mi == NULL)
  3307. return -ENOMEM;
  3308. error = seq_open(file, &md_seq_ops);
  3309. if (error)
  3310. kfree(mi);
  3311. else {
  3312. struct seq_file *p = file->private_data;
  3313. p->private = mi;
  3314. mi->event = atomic_read(&md_event_count);
  3315. }
  3316. return error;
  3317. }
  3318. static int md_seq_release(struct inode *inode, struct file *file)
  3319. {
  3320. struct seq_file *m = file->private_data;
  3321. struct mdstat_info *mi = m->private;
  3322. m->private = NULL;
  3323. kfree(mi);
  3324. return seq_release(inode, file);
  3325. }
  3326. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  3327. {
  3328. struct seq_file *m = filp->private_data;
  3329. struct mdstat_info *mi = m->private;
  3330. int mask;
  3331. poll_wait(filp, &md_event_waiters, wait);
  3332. /* always allow read */
  3333. mask = POLLIN | POLLRDNORM;
  3334. if (mi->event != atomic_read(&md_event_count))
  3335. mask |= POLLERR | POLLPRI;
  3336. return mask;
  3337. }
  3338. static struct file_operations md_seq_fops = {
  3339. .open = md_seq_open,
  3340. .read = seq_read,
  3341. .llseek = seq_lseek,
  3342. .release = md_seq_release,
  3343. .poll = mdstat_poll,
  3344. };
  3345. int register_md_personality(int pnum, mdk_personality_t *p)
  3346. {
  3347. if (pnum >= MAX_PERSONALITY) {
  3348. printk(KERN_ERR
  3349. "md: tried to install personality %s as nr %d, but max is %lu\n",
  3350. p->name, pnum, MAX_PERSONALITY-1);
  3351. return -EINVAL;
  3352. }
  3353. spin_lock(&pers_lock);
  3354. if (pers[pnum]) {
  3355. spin_unlock(&pers_lock);
  3356. return -EBUSY;
  3357. }
  3358. pers[pnum] = p;
  3359. printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
  3360. spin_unlock(&pers_lock);
  3361. return 0;
  3362. }
  3363. int unregister_md_personality(int pnum)
  3364. {
  3365. if (pnum >= MAX_PERSONALITY)
  3366. return -EINVAL;
  3367. printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
  3368. spin_lock(&pers_lock);
  3369. pers[pnum] = NULL;
  3370. spin_unlock(&pers_lock);
  3371. return 0;
  3372. }
  3373. static int is_mddev_idle(mddev_t *mddev)
  3374. {
  3375. mdk_rdev_t * rdev;
  3376. struct list_head *tmp;
  3377. int idle;
  3378. unsigned long curr_events;
  3379. idle = 1;
  3380. ITERATE_RDEV(mddev,rdev,tmp) {
  3381. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  3382. curr_events = disk_stat_read(disk, sectors[0]) +
  3383. disk_stat_read(disk, sectors[1]) -
  3384. atomic_read(&disk->sync_io);
  3385. /* The difference between curr_events and last_events
  3386. * will be affected by any new non-sync IO (making
  3387. * curr_events bigger) and any difference in the amount of
  3388. * in-flight syncio (making current_events bigger or smaller)
  3389. * The amount in-flight is currently limited to
  3390. * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
  3391. * which is at most 4096 sectors.
  3392. * These numbers are fairly fragile and should be made
  3393. * more robust, probably by enforcing the
  3394. * 'window size' that md_do_sync sort-of uses.
  3395. *
  3396. * Note: the following is an unsigned comparison.
  3397. */
  3398. if ((curr_events - rdev->last_events + 4096) > 8192) {
  3399. rdev->last_events = curr_events;
  3400. idle = 0;
  3401. }
  3402. }
  3403. return idle;
  3404. }
  3405. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  3406. {
  3407. /* another "blocks" (512byte) blocks have been synced */
  3408. atomic_sub(blocks, &mddev->recovery_active);
  3409. wake_up(&mddev->recovery_wait);
  3410. if (!ok) {
  3411. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3412. md_wakeup_thread(mddev->thread);
  3413. // stop recovery, signal do_sync ....
  3414. }
  3415. }
  3416. /* md_write_start(mddev, bi)
  3417. * If we need to update some array metadata (e.g. 'active' flag
  3418. * in superblock) before writing, schedule a superblock update
  3419. * and wait for it to complete.
  3420. */
  3421. void md_write_start(mddev_t *mddev, struct bio *bi)
  3422. {
  3423. if (bio_data_dir(bi) != WRITE)
  3424. return;
  3425. BUG_ON(mddev->ro == 1);
  3426. if (mddev->ro == 2) {
  3427. /* need to switch to read/write */
  3428. mddev->ro = 0;
  3429. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3430. md_wakeup_thread(mddev->thread);
  3431. }
  3432. atomic_inc(&mddev->writes_pending);
  3433. if (mddev->in_sync) {
  3434. spin_lock_irq(&mddev->write_lock);
  3435. if (mddev->in_sync) {
  3436. mddev->in_sync = 0;
  3437. mddev->sb_dirty = 1;
  3438. md_wakeup_thread(mddev->thread);
  3439. }
  3440. spin_unlock_irq(&mddev->write_lock);
  3441. }
  3442. wait_event(mddev->sb_wait, mddev->sb_dirty==0);
  3443. }
  3444. void md_write_end(mddev_t *mddev)
  3445. {
  3446. if (atomic_dec_and_test(&mddev->writes_pending)) {
  3447. if (mddev->safemode == 2)
  3448. md_wakeup_thread(mddev->thread);
  3449. else
  3450. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  3451. }
  3452. }
  3453. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  3454. #define SYNC_MARKS 10
  3455. #define SYNC_MARK_STEP (3*HZ)
  3456. static void md_do_sync(mddev_t *mddev)
  3457. {
  3458. mddev_t *mddev2;
  3459. unsigned int currspeed = 0,
  3460. window;
  3461. sector_t max_sectors,j, io_sectors;
  3462. unsigned long mark[SYNC_MARKS];
  3463. sector_t mark_cnt[SYNC_MARKS];
  3464. int last_mark,m;
  3465. struct list_head *tmp;
  3466. sector_t last_check;
  3467. int skipped = 0;
  3468. /* just incase thread restarts... */
  3469. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  3470. return;
  3471. /* we overload curr_resync somewhat here.
  3472. * 0 == not engaged in resync at all
  3473. * 2 == checking that there is no conflict with another sync
  3474. * 1 == like 2, but have yielded to allow conflicting resync to
  3475. * commense
  3476. * other == active in resync - this many blocks
  3477. *
  3478. * Before starting a resync we must have set curr_resync to
  3479. * 2, and then checked that every "conflicting" array has curr_resync
  3480. * less than ours. When we find one that is the same or higher
  3481. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  3482. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  3483. * This will mean we have to start checking from the beginning again.
  3484. *
  3485. */
  3486. do {
  3487. mddev->curr_resync = 2;
  3488. try_again:
  3489. if (kthread_should_stop()) {
  3490. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3491. goto skip;
  3492. }
  3493. ITERATE_MDDEV(mddev2,tmp) {
  3494. if (mddev2 == mddev)
  3495. continue;
  3496. if (mddev2->curr_resync &&
  3497. match_mddev_units(mddev,mddev2)) {
  3498. DEFINE_WAIT(wq);
  3499. if (mddev < mddev2 && mddev->curr_resync == 2) {
  3500. /* arbitrarily yield */
  3501. mddev->curr_resync = 1;
  3502. wake_up(&resync_wait);
  3503. }
  3504. if (mddev > mddev2 && mddev->curr_resync == 1)
  3505. /* no need to wait here, we can wait the next
  3506. * time 'round when curr_resync == 2
  3507. */
  3508. continue;
  3509. prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
  3510. if (!kthread_should_stop() &&
  3511. mddev2->curr_resync >= mddev->curr_resync) {
  3512. printk(KERN_INFO "md: delaying resync of %s"
  3513. " until %s has finished resync (they"
  3514. " share one or more physical units)\n",
  3515. mdname(mddev), mdname(mddev2));
  3516. mddev_put(mddev2);
  3517. schedule();
  3518. finish_wait(&resync_wait, &wq);
  3519. goto try_again;
  3520. }
  3521. finish_wait(&resync_wait, &wq);
  3522. }
  3523. }
  3524. } while (mddev->curr_resync < 2);
  3525. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3526. /* resync follows the size requested by the personality,
  3527. * which defaults to physical size, but can be virtual size
  3528. */
  3529. max_sectors = mddev->resync_max_sectors;
  3530. mddev->resync_mismatches = 0;
  3531. } else
  3532. /* recovery follows the physical size of devices */
  3533. max_sectors = mddev->size << 1;
  3534. printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
  3535. printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
  3536. " %d KB/sec/disc.\n", sysctl_speed_limit_min);
  3537. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  3538. "(but not more than %d KB/sec) for reconstruction.\n",
  3539. sysctl_speed_limit_max);
  3540. is_mddev_idle(mddev); /* this also initializes IO event counters */
  3541. /* we don't use the checkpoint if there's a bitmap */
  3542. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
  3543. && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3544. j = mddev->recovery_cp;
  3545. else
  3546. j = 0;
  3547. io_sectors = 0;
  3548. for (m = 0; m < SYNC_MARKS; m++) {
  3549. mark[m] = jiffies;
  3550. mark_cnt[m] = io_sectors;
  3551. }
  3552. last_mark = 0;
  3553. mddev->resync_mark = mark[last_mark];
  3554. mddev->resync_mark_cnt = mark_cnt[last_mark];
  3555. /*
  3556. * Tune reconstruction:
  3557. */
  3558. window = 32*(PAGE_SIZE/512);
  3559. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  3560. window/2,(unsigned long long) max_sectors/2);
  3561. atomic_set(&mddev->recovery_active, 0);
  3562. init_waitqueue_head(&mddev->recovery_wait);
  3563. last_check = 0;
  3564. if (j>2) {
  3565. printk(KERN_INFO
  3566. "md: resuming recovery of %s from checkpoint.\n",
  3567. mdname(mddev));
  3568. mddev->curr_resync = j;
  3569. }
  3570. while (j < max_sectors) {
  3571. sector_t sectors;
  3572. skipped = 0;
  3573. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  3574. currspeed < sysctl_speed_limit_min);
  3575. if (sectors == 0) {
  3576. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3577. goto out;
  3578. }
  3579. if (!skipped) { /* actual IO requested */
  3580. io_sectors += sectors;
  3581. atomic_add(sectors, &mddev->recovery_active);
  3582. }
  3583. j += sectors;
  3584. if (j>1) mddev->curr_resync = j;
  3585. if (last_check == 0)
  3586. /* this is the earliers that rebuilt will be
  3587. * visible in /proc/mdstat
  3588. */
  3589. md_new_event(mddev);
  3590. if (last_check + window > io_sectors || j == max_sectors)
  3591. continue;
  3592. last_check = io_sectors;
  3593. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  3594. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  3595. break;
  3596. repeat:
  3597. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  3598. /* step marks */
  3599. int next = (last_mark+1) % SYNC_MARKS;
  3600. mddev->resync_mark = mark[next];
  3601. mddev->resync_mark_cnt = mark_cnt[next];
  3602. mark[next] = jiffies;
  3603. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  3604. last_mark = next;
  3605. }
  3606. if (kthread_should_stop()) {
  3607. /*
  3608. * got a signal, exit.
  3609. */
  3610. printk(KERN_INFO
  3611. "md: md_do_sync() got signal ... exiting\n");
  3612. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3613. goto out;
  3614. }
  3615. /*
  3616. * this loop exits only if either when we are slower than
  3617. * the 'hard' speed limit, or the system was IO-idle for
  3618. * a jiffy.
  3619. * the system might be non-idle CPU-wise, but we only care
  3620. * about not overloading the IO subsystem. (things like an
  3621. * e2fsck being done on the RAID array should execute fast)
  3622. */
  3623. mddev->queue->unplug_fn(mddev->queue);
  3624. cond_resched();
  3625. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  3626. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  3627. if (currspeed > sysctl_speed_limit_min) {
  3628. if ((currspeed > sysctl_speed_limit_max) ||
  3629. !is_mddev_idle(mddev)) {
  3630. msleep(500);
  3631. goto repeat;
  3632. }
  3633. }
  3634. }
  3635. printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
  3636. /*
  3637. * this also signals 'finished resyncing' to md_stop
  3638. */
  3639. out:
  3640. mddev->queue->unplug_fn(mddev->queue);
  3641. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  3642. /* tell personality that we are finished */
  3643. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  3644. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3645. mddev->curr_resync > 2 &&
  3646. mddev->curr_resync >= mddev->recovery_cp) {
  3647. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3648. printk(KERN_INFO
  3649. "md: checkpointing recovery of %s.\n",
  3650. mdname(mddev));
  3651. mddev->recovery_cp = mddev->curr_resync;
  3652. } else
  3653. mddev->recovery_cp = MaxSector;
  3654. }
  3655. skip:
  3656. mddev->curr_resync = 0;
  3657. wake_up(&resync_wait);
  3658. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  3659. md_wakeup_thread(mddev->thread);
  3660. }
  3661. /*
  3662. * This routine is regularly called by all per-raid-array threads to
  3663. * deal with generic issues like resync and super-block update.
  3664. * Raid personalities that don't have a thread (linear/raid0) do not
  3665. * need this as they never do any recovery or update the superblock.
  3666. *
  3667. * It does not do any resync itself, but rather "forks" off other threads
  3668. * to do that as needed.
  3669. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  3670. * "->recovery" and create a thread at ->sync_thread.
  3671. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  3672. * and wakeups up this thread which will reap the thread and finish up.
  3673. * This thread also removes any faulty devices (with nr_pending == 0).
  3674. *
  3675. * The overall approach is:
  3676. * 1/ if the superblock needs updating, update it.
  3677. * 2/ If a recovery thread is running, don't do anything else.
  3678. * 3/ If recovery has finished, clean up, possibly marking spares active.
  3679. * 4/ If there are any faulty devices, remove them.
  3680. * 5/ If array is degraded, try to add spares devices
  3681. * 6/ If array has spares or is not in-sync, start a resync thread.
  3682. */
  3683. void md_check_recovery(mddev_t *mddev)
  3684. {
  3685. mdk_rdev_t *rdev;
  3686. struct list_head *rtmp;
  3687. if (mddev->bitmap)
  3688. bitmap_daemon_work(mddev->bitmap);
  3689. if (mddev->ro)
  3690. return;
  3691. if (signal_pending(current)) {
  3692. if (mddev->pers->sync_request) {
  3693. printk(KERN_INFO "md: %s in immediate safe mode\n",
  3694. mdname(mddev));
  3695. mddev->safemode = 2;
  3696. }
  3697. flush_signals(current);
  3698. }
  3699. if ( ! (
  3700. mddev->sb_dirty ||
  3701. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  3702. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  3703. (mddev->safemode == 1) ||
  3704. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  3705. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  3706. ))
  3707. return;
  3708. if (mddev_trylock(mddev)==0) {
  3709. int spares =0;
  3710. spin_lock_irq(&mddev->write_lock);
  3711. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  3712. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  3713. mddev->in_sync = 1;
  3714. mddev->sb_dirty = 1;
  3715. }
  3716. if (mddev->safemode == 1)
  3717. mddev->safemode = 0;
  3718. spin_unlock_irq(&mddev->write_lock);
  3719. if (mddev->sb_dirty)
  3720. md_update_sb(mddev);
  3721. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  3722. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  3723. /* resync/recovery still happening */
  3724. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3725. goto unlock;
  3726. }
  3727. if (mddev->sync_thread) {
  3728. /* resync has finished, collect result */
  3729. md_unregister_thread(mddev->sync_thread);
  3730. mddev->sync_thread = NULL;
  3731. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3732. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3733. /* success...*/
  3734. /* activate any spares */
  3735. mddev->pers->spare_active(mddev);
  3736. }
  3737. md_update_sb(mddev);
  3738. /* if array is no-longer degraded, then any saved_raid_disk
  3739. * information must be scrapped
  3740. */
  3741. if (!mddev->degraded)
  3742. ITERATE_RDEV(mddev,rdev,rtmp)
  3743. rdev->saved_raid_disk = -1;
  3744. mddev->recovery = 0;
  3745. /* flag recovery needed just to double check */
  3746. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3747. md_new_event(mddev);
  3748. goto unlock;
  3749. }
  3750. /* Clear some bits that don't mean anything, but
  3751. * might be left set
  3752. */
  3753. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3754. clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3755. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3756. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  3757. /* no recovery is running.
  3758. * remove any failed drives, then
  3759. * add spares if possible.
  3760. * Spare are also removed and re-added, to allow
  3761. * the personality to fail the re-add.
  3762. */
  3763. ITERATE_RDEV(mddev,rdev,rtmp)
  3764. if (rdev->raid_disk >= 0 &&
  3765. (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
  3766. atomic_read(&rdev->nr_pending)==0) {
  3767. if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
  3768. char nm[20];
  3769. sprintf(nm,"rd%d", rdev->raid_disk);
  3770. sysfs_remove_link(&mddev->kobj, nm);
  3771. rdev->raid_disk = -1;
  3772. }
  3773. }
  3774. if (mddev->degraded) {
  3775. ITERATE_RDEV(mddev,rdev,rtmp)
  3776. if (rdev->raid_disk < 0
  3777. && !test_bit(Faulty, &rdev->flags)) {
  3778. if (mddev->pers->hot_add_disk(mddev,rdev)) {
  3779. char nm[20];
  3780. sprintf(nm, "rd%d", rdev->raid_disk);
  3781. sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
  3782. spares++;
  3783. md_new_event(mddev);
  3784. } else
  3785. break;
  3786. }
  3787. }
  3788. if (spares) {
  3789. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3790. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3791. } else if (mddev->recovery_cp < MaxSector) {
  3792. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3793. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3794. /* nothing to be done ... */
  3795. goto unlock;
  3796. if (mddev->pers->sync_request) {
  3797. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3798. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  3799. /* We are adding a device or devices to an array
  3800. * which has the bitmap stored on all devices.
  3801. * So make sure all bitmap pages get written
  3802. */
  3803. bitmap_write_all(mddev->bitmap);
  3804. }
  3805. mddev->sync_thread = md_register_thread(md_do_sync,
  3806. mddev,
  3807. "%s_resync");
  3808. if (!mddev->sync_thread) {
  3809. printk(KERN_ERR "%s: could not start resync"
  3810. " thread...\n",
  3811. mdname(mddev));
  3812. /* leave the spares where they are, it shouldn't hurt */
  3813. mddev->recovery = 0;
  3814. } else
  3815. md_wakeup_thread(mddev->sync_thread);
  3816. md_new_event(mddev);
  3817. }
  3818. unlock:
  3819. mddev_unlock(mddev);
  3820. }
  3821. }
  3822. static int md_notify_reboot(struct notifier_block *this,
  3823. unsigned long code, void *x)
  3824. {
  3825. struct list_head *tmp;
  3826. mddev_t *mddev;
  3827. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  3828. printk(KERN_INFO "md: stopping all md devices.\n");
  3829. ITERATE_MDDEV(mddev,tmp)
  3830. if (mddev_trylock(mddev)==0)
  3831. do_md_stop (mddev, 1);
  3832. /*
  3833. * certain more exotic SCSI devices are known to be
  3834. * volatile wrt too early system reboots. While the
  3835. * right place to handle this issue is the given
  3836. * driver, we do want to have a safe RAID driver ...
  3837. */
  3838. mdelay(1000*1);
  3839. }
  3840. return NOTIFY_DONE;
  3841. }
  3842. static struct notifier_block md_notifier = {
  3843. .notifier_call = md_notify_reboot,
  3844. .next = NULL,
  3845. .priority = INT_MAX, /* before any real devices */
  3846. };
  3847. static void md_geninit(void)
  3848. {
  3849. struct proc_dir_entry *p;
  3850. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  3851. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  3852. if (p)
  3853. p->proc_fops = &md_seq_fops;
  3854. }
  3855. static int __init md_init(void)
  3856. {
  3857. int minor;
  3858. printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
  3859. " MD_SB_DISKS=%d\n",
  3860. MD_MAJOR_VERSION, MD_MINOR_VERSION,
  3861. MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
  3862. printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
  3863. BITMAP_MINOR);
  3864. if (register_blkdev(MAJOR_NR, "md"))
  3865. return -1;
  3866. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  3867. unregister_blkdev(MAJOR_NR, "md");
  3868. return -1;
  3869. }
  3870. devfs_mk_dir("md");
  3871. blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
  3872. md_probe, NULL, NULL);
  3873. blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
  3874. md_probe, NULL, NULL);
  3875. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3876. devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
  3877. S_IFBLK|S_IRUSR|S_IWUSR,
  3878. "md/%d", minor);
  3879. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3880. devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
  3881. S_IFBLK|S_IRUSR|S_IWUSR,
  3882. "md/mdp%d", minor);
  3883. register_reboot_notifier(&md_notifier);
  3884. raid_table_header = register_sysctl_table(raid_root_table, 1);
  3885. md_geninit();
  3886. return (0);
  3887. }
  3888. #ifndef MODULE
  3889. /*
  3890. * Searches all registered partitions for autorun RAID arrays
  3891. * at boot time.
  3892. */
  3893. static dev_t detected_devices[128];
  3894. static int dev_cnt;
  3895. void md_autodetect_dev(dev_t dev)
  3896. {
  3897. if (dev_cnt >= 0 && dev_cnt < 127)
  3898. detected_devices[dev_cnt++] = dev;
  3899. }
  3900. static void autostart_arrays(int part)
  3901. {
  3902. mdk_rdev_t *rdev;
  3903. int i;
  3904. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  3905. for (i = 0; i < dev_cnt; i++) {
  3906. dev_t dev = detected_devices[i];
  3907. rdev = md_import_device(dev,0, 0);
  3908. if (IS_ERR(rdev))
  3909. continue;
  3910. if (test_bit(Faulty, &rdev->flags)) {
  3911. MD_BUG();
  3912. continue;
  3913. }
  3914. list_add(&rdev->same_set, &pending_raid_disks);
  3915. }
  3916. dev_cnt = 0;
  3917. autorun_devices(part);
  3918. }
  3919. #endif
  3920. static __exit void md_exit(void)
  3921. {
  3922. mddev_t *mddev;
  3923. struct list_head *tmp;
  3924. int i;
  3925. blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
  3926. blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
  3927. for (i=0; i < MAX_MD_DEVS; i++)
  3928. devfs_remove("md/%d", i);
  3929. for (i=0; i < MAX_MD_DEVS; i++)
  3930. devfs_remove("md/d%d", i);
  3931. devfs_remove("md");
  3932. unregister_blkdev(MAJOR_NR,"md");
  3933. unregister_blkdev(mdp_major, "mdp");
  3934. unregister_reboot_notifier(&md_notifier);
  3935. unregister_sysctl_table(raid_table_header);
  3936. remove_proc_entry("mdstat", NULL);
  3937. ITERATE_MDDEV(mddev,tmp) {
  3938. struct gendisk *disk = mddev->gendisk;
  3939. if (!disk)
  3940. continue;
  3941. export_array(mddev);
  3942. del_gendisk(disk);
  3943. put_disk(disk);
  3944. mddev->gendisk = NULL;
  3945. mddev_put(mddev);
  3946. }
  3947. }
  3948. module_init(md_init)
  3949. module_exit(md_exit)
  3950. static int get_ro(char *buffer, struct kernel_param *kp)
  3951. {
  3952. return sprintf(buffer, "%d", start_readonly);
  3953. }
  3954. static int set_ro(const char *val, struct kernel_param *kp)
  3955. {
  3956. char *e;
  3957. int num = simple_strtoul(val, &e, 10);
  3958. if (*val && (*e == '\0' || *e == '\n')) {
  3959. start_readonly = num;
  3960. return 0;;
  3961. }
  3962. return -EINVAL;
  3963. }
  3964. module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
  3965. module_param(start_dirty_degraded, int, 0644);
  3966. EXPORT_SYMBOL(register_md_personality);
  3967. EXPORT_SYMBOL(unregister_md_personality);
  3968. EXPORT_SYMBOL(md_error);
  3969. EXPORT_SYMBOL(md_done_sync);
  3970. EXPORT_SYMBOL(md_write_start);
  3971. EXPORT_SYMBOL(md_write_end);
  3972. EXPORT_SYMBOL(md_register_thread);
  3973. EXPORT_SYMBOL(md_unregister_thread);
  3974. EXPORT_SYMBOL(md_wakeup_thread);
  3975. EXPORT_SYMBOL(md_print_devices);
  3976. EXPORT_SYMBOL(md_check_recovery);
  3977. MODULE_LICENSE("GPL");
  3978. MODULE_ALIAS("md");
  3979. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);