kvm-ia64.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838
  1. /*
  2. * kvm_ia64.c: Basic KVM suppport On Itanium series processors
  3. *
  4. *
  5. * Copyright (C) 2007, Intel Corporation.
  6. * Xiantao Zhang (xiantao.zhang@intel.com)
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms and conditions of the GNU General Public License,
  10. * version 2, as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along with
  18. * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
  19. * Place - Suite 330, Boston, MA 02111-1307 USA.
  20. *
  21. */
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/fs.h>
  27. #include <linux/smp.h>
  28. #include <linux/kvm_host.h>
  29. #include <linux/kvm.h>
  30. #include <linux/bitops.h>
  31. #include <linux/hrtimer.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/intel-iommu.h>
  34. #include <asm/pgtable.h>
  35. #include <asm/gcc_intrin.h>
  36. #include <asm/pal.h>
  37. #include <asm/cacheflush.h>
  38. #include <asm/div64.h>
  39. #include <asm/tlb.h>
  40. #include <asm/elf.h>
  41. #include "misc.h"
  42. #include "vti.h"
  43. #include "iodev.h"
  44. #include "ioapic.h"
  45. #include "lapic.h"
  46. #include "irq.h"
  47. static unsigned long kvm_vmm_base;
  48. static unsigned long kvm_vsa_base;
  49. static unsigned long kvm_vm_buffer;
  50. static unsigned long kvm_vm_buffer_size;
  51. unsigned long kvm_vmm_gp;
  52. static long vp_env_info;
  53. static struct kvm_vmm_info *kvm_vmm_info;
  54. static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
  55. struct kvm_stats_debugfs_item debugfs_entries[] = {
  56. { NULL }
  57. };
  58. static void kvm_flush_icache(unsigned long start, unsigned long len)
  59. {
  60. int l;
  61. for (l = 0; l < (len + 32); l += 32)
  62. ia64_fc(start + l);
  63. ia64_sync_i();
  64. ia64_srlz_i();
  65. }
  66. static void kvm_flush_tlb_all(void)
  67. {
  68. unsigned long i, j, count0, count1, stride0, stride1, addr;
  69. long flags;
  70. addr = local_cpu_data->ptce_base;
  71. count0 = local_cpu_data->ptce_count[0];
  72. count1 = local_cpu_data->ptce_count[1];
  73. stride0 = local_cpu_data->ptce_stride[0];
  74. stride1 = local_cpu_data->ptce_stride[1];
  75. local_irq_save(flags);
  76. for (i = 0; i < count0; ++i) {
  77. for (j = 0; j < count1; ++j) {
  78. ia64_ptce(addr);
  79. addr += stride1;
  80. }
  81. addr += stride0;
  82. }
  83. local_irq_restore(flags);
  84. ia64_srlz_i(); /* srlz.i implies srlz.d */
  85. }
  86. long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
  87. {
  88. struct ia64_pal_retval iprv;
  89. PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
  90. (u64)opt_handler);
  91. return iprv.status;
  92. }
  93. static DEFINE_SPINLOCK(vp_lock);
  94. void kvm_arch_hardware_enable(void *garbage)
  95. {
  96. long status;
  97. long tmp_base;
  98. unsigned long pte;
  99. unsigned long saved_psr;
  100. int slot;
  101. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
  102. PAGE_KERNEL));
  103. local_irq_save(saved_psr);
  104. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  105. local_irq_restore(saved_psr);
  106. if (slot < 0)
  107. return;
  108. spin_lock(&vp_lock);
  109. status = ia64_pal_vp_init_env(kvm_vsa_base ?
  110. VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
  111. __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
  112. if (status != 0) {
  113. printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
  114. return ;
  115. }
  116. if (!kvm_vsa_base) {
  117. kvm_vsa_base = tmp_base;
  118. printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
  119. }
  120. spin_unlock(&vp_lock);
  121. ia64_ptr_entry(0x3, slot);
  122. }
  123. void kvm_arch_hardware_disable(void *garbage)
  124. {
  125. long status;
  126. int slot;
  127. unsigned long pte;
  128. unsigned long saved_psr;
  129. unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
  130. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
  131. PAGE_KERNEL));
  132. local_irq_save(saved_psr);
  133. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  134. local_irq_restore(saved_psr);
  135. if (slot < 0)
  136. return;
  137. status = ia64_pal_vp_exit_env(host_iva);
  138. if (status)
  139. printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
  140. status);
  141. ia64_ptr_entry(0x3, slot);
  142. }
  143. void kvm_arch_check_processor_compat(void *rtn)
  144. {
  145. *(int *)rtn = 0;
  146. }
  147. int kvm_dev_ioctl_check_extension(long ext)
  148. {
  149. int r;
  150. switch (ext) {
  151. case KVM_CAP_IRQCHIP:
  152. case KVM_CAP_MP_STATE:
  153. r = 1;
  154. break;
  155. case KVM_CAP_COALESCED_MMIO:
  156. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  157. break;
  158. case KVM_CAP_IOMMU:
  159. r = intel_iommu_found();
  160. break;
  161. default:
  162. r = 0;
  163. }
  164. return r;
  165. }
  166. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  167. gpa_t addr, int len, int is_write)
  168. {
  169. struct kvm_io_device *dev;
  170. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len, is_write);
  171. return dev;
  172. }
  173. static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  174. {
  175. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  176. kvm_run->hw.hardware_exit_reason = 1;
  177. return 0;
  178. }
  179. static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  180. {
  181. struct kvm_mmio_req *p;
  182. struct kvm_io_device *mmio_dev;
  183. p = kvm_get_vcpu_ioreq(vcpu);
  184. if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
  185. goto mmio;
  186. vcpu->mmio_needed = 1;
  187. vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
  188. vcpu->mmio_size = kvm_run->mmio.len = p->size;
  189. vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
  190. if (vcpu->mmio_is_write)
  191. memcpy(vcpu->mmio_data, &p->data, p->size);
  192. memcpy(kvm_run->mmio.data, &p->data, p->size);
  193. kvm_run->exit_reason = KVM_EXIT_MMIO;
  194. return 0;
  195. mmio:
  196. mmio_dev = vcpu_find_mmio_dev(vcpu, p->addr, p->size, !p->dir);
  197. if (mmio_dev) {
  198. if (!p->dir)
  199. kvm_iodevice_write(mmio_dev, p->addr, p->size,
  200. &p->data);
  201. else
  202. kvm_iodevice_read(mmio_dev, p->addr, p->size,
  203. &p->data);
  204. } else
  205. printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
  206. p->state = STATE_IORESP_READY;
  207. return 1;
  208. }
  209. static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  210. {
  211. struct exit_ctl_data *p;
  212. p = kvm_get_exit_data(vcpu);
  213. if (p->exit_reason == EXIT_REASON_PAL_CALL)
  214. return kvm_pal_emul(vcpu, kvm_run);
  215. else {
  216. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  217. kvm_run->hw.hardware_exit_reason = 2;
  218. return 0;
  219. }
  220. }
  221. static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  222. {
  223. struct exit_ctl_data *p;
  224. p = kvm_get_exit_data(vcpu);
  225. if (p->exit_reason == EXIT_REASON_SAL_CALL) {
  226. kvm_sal_emul(vcpu);
  227. return 1;
  228. } else {
  229. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  230. kvm_run->hw.hardware_exit_reason = 3;
  231. return 0;
  232. }
  233. }
  234. /*
  235. * offset: address offset to IPI space.
  236. * value: deliver value.
  237. */
  238. static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
  239. uint64_t vector)
  240. {
  241. switch (dm) {
  242. case SAPIC_FIXED:
  243. kvm_apic_set_irq(vcpu, vector, 0);
  244. break;
  245. case SAPIC_NMI:
  246. kvm_apic_set_irq(vcpu, 2, 0);
  247. break;
  248. case SAPIC_EXTINT:
  249. kvm_apic_set_irq(vcpu, 0, 0);
  250. break;
  251. case SAPIC_INIT:
  252. case SAPIC_PMI:
  253. default:
  254. printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
  255. break;
  256. }
  257. }
  258. static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
  259. unsigned long eid)
  260. {
  261. union ia64_lid lid;
  262. int i;
  263. for (i = 0; i < KVM_MAX_VCPUS; i++) {
  264. if (kvm->vcpus[i]) {
  265. lid.val = VCPU_LID(kvm->vcpus[i]);
  266. if (lid.id == id && lid.eid == eid)
  267. return kvm->vcpus[i];
  268. }
  269. }
  270. return NULL;
  271. }
  272. static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  273. {
  274. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  275. struct kvm_vcpu *target_vcpu;
  276. struct kvm_pt_regs *regs;
  277. union ia64_ipi_a addr = p->u.ipi_data.addr;
  278. union ia64_ipi_d data = p->u.ipi_data.data;
  279. target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
  280. if (!target_vcpu)
  281. return handle_vm_error(vcpu, kvm_run);
  282. if (!target_vcpu->arch.launched) {
  283. regs = vcpu_regs(target_vcpu);
  284. regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
  285. regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
  286. target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  287. if (waitqueue_active(&target_vcpu->wq))
  288. wake_up_interruptible(&target_vcpu->wq);
  289. } else {
  290. vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
  291. if (target_vcpu != vcpu)
  292. kvm_vcpu_kick(target_vcpu);
  293. }
  294. return 1;
  295. }
  296. struct call_data {
  297. struct kvm_ptc_g ptc_g_data;
  298. struct kvm_vcpu *vcpu;
  299. };
  300. static void vcpu_global_purge(void *info)
  301. {
  302. struct call_data *p = (struct call_data *)info;
  303. struct kvm_vcpu *vcpu = p->vcpu;
  304. if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  305. return;
  306. set_bit(KVM_REQ_PTC_G, &vcpu->requests);
  307. if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
  308. vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
  309. p->ptc_g_data;
  310. } else {
  311. clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
  312. vcpu->arch.ptc_g_count = 0;
  313. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  314. }
  315. }
  316. static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  317. {
  318. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  319. struct kvm *kvm = vcpu->kvm;
  320. struct call_data call_data;
  321. int i;
  322. call_data.ptc_g_data = p->u.ptc_g_data;
  323. for (i = 0; i < KVM_MAX_VCPUS; i++) {
  324. if (!kvm->vcpus[i] || kvm->vcpus[i]->arch.mp_state ==
  325. KVM_MP_STATE_UNINITIALIZED ||
  326. vcpu == kvm->vcpus[i])
  327. continue;
  328. if (waitqueue_active(&kvm->vcpus[i]->wq))
  329. wake_up_interruptible(&kvm->vcpus[i]->wq);
  330. if (kvm->vcpus[i]->cpu != -1) {
  331. call_data.vcpu = kvm->vcpus[i];
  332. smp_call_function_single(kvm->vcpus[i]->cpu,
  333. vcpu_global_purge, &call_data, 1);
  334. } else
  335. printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
  336. }
  337. return 1;
  338. }
  339. static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  340. {
  341. return 1;
  342. }
  343. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  344. {
  345. ktime_t kt;
  346. long itc_diff;
  347. unsigned long vcpu_now_itc;
  348. unsigned long expires;
  349. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  350. unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
  351. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  352. if (irqchip_in_kernel(vcpu->kvm)) {
  353. vcpu_now_itc = ia64_getreg(_IA64_REG_AR_ITC) + vcpu->arch.itc_offset;
  354. if (time_after(vcpu_now_itc, vpd->itm)) {
  355. vcpu->arch.timer_check = 1;
  356. return 1;
  357. }
  358. itc_diff = vpd->itm - vcpu_now_itc;
  359. if (itc_diff < 0)
  360. itc_diff = -itc_diff;
  361. expires = div64_u64(itc_diff, cyc_per_usec);
  362. kt = ktime_set(0, 1000 * expires);
  363. vcpu->arch.ht_active = 1;
  364. hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
  365. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  366. kvm_vcpu_block(vcpu);
  367. hrtimer_cancel(p_ht);
  368. vcpu->arch.ht_active = 0;
  369. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  370. if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
  371. vcpu->arch.mp_state =
  372. KVM_MP_STATE_RUNNABLE;
  373. if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
  374. return -EINTR;
  375. return 1;
  376. } else {
  377. printk(KERN_ERR"kvm: Unsupported userspace halt!");
  378. return 0;
  379. }
  380. }
  381. static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
  382. struct kvm_run *kvm_run)
  383. {
  384. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  385. return 0;
  386. }
  387. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  388. struct kvm_run *kvm_run)
  389. {
  390. return 1;
  391. }
  392. static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
  393. struct kvm_run *kvm_run)
  394. {
  395. printk("VMM: %s", vcpu->arch.log_buf);
  396. return 1;
  397. }
  398. static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
  399. struct kvm_run *kvm_run) = {
  400. [EXIT_REASON_VM_PANIC] = handle_vm_error,
  401. [EXIT_REASON_MMIO_INSTRUCTION] = handle_mmio,
  402. [EXIT_REASON_PAL_CALL] = handle_pal_call,
  403. [EXIT_REASON_SAL_CALL] = handle_sal_call,
  404. [EXIT_REASON_SWITCH_RR6] = handle_switch_rr6,
  405. [EXIT_REASON_VM_DESTROY] = handle_vm_shutdown,
  406. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  407. [EXIT_REASON_IPI] = handle_ipi,
  408. [EXIT_REASON_PTC_G] = handle_global_purge,
  409. [EXIT_REASON_DEBUG] = handle_vcpu_debug,
  410. };
  411. static const int kvm_vti_max_exit_handlers =
  412. sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
  413. static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
  414. {
  415. struct exit_ctl_data *p_exit_data;
  416. p_exit_data = kvm_get_exit_data(vcpu);
  417. return p_exit_data->exit_reason;
  418. }
  419. /*
  420. * The guest has exited. See if we can fix it or if we need userspace
  421. * assistance.
  422. */
  423. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  424. {
  425. u32 exit_reason = kvm_get_exit_reason(vcpu);
  426. vcpu->arch.last_exit = exit_reason;
  427. if (exit_reason < kvm_vti_max_exit_handlers
  428. && kvm_vti_exit_handlers[exit_reason])
  429. return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
  430. else {
  431. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  432. kvm_run->hw.hardware_exit_reason = exit_reason;
  433. }
  434. return 0;
  435. }
  436. static inline void vti_set_rr6(unsigned long rr6)
  437. {
  438. ia64_set_rr(RR6, rr6);
  439. ia64_srlz_i();
  440. }
  441. static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
  442. {
  443. unsigned long pte;
  444. struct kvm *kvm = vcpu->kvm;
  445. int r;
  446. /*Insert a pair of tr to map vmm*/
  447. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
  448. r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  449. if (r < 0)
  450. goto out;
  451. vcpu->arch.vmm_tr_slot = r;
  452. /*Insert a pairt of tr to map data of vm*/
  453. pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
  454. r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
  455. pte, KVM_VM_DATA_SHIFT);
  456. if (r < 0)
  457. goto out;
  458. vcpu->arch.vm_tr_slot = r;
  459. r = 0;
  460. out:
  461. return r;
  462. }
  463. static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
  464. {
  465. ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
  466. ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
  467. }
  468. static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
  469. {
  470. int cpu = smp_processor_id();
  471. if (vcpu->arch.last_run_cpu != cpu ||
  472. per_cpu(last_vcpu, cpu) != vcpu) {
  473. per_cpu(last_vcpu, cpu) = vcpu;
  474. vcpu->arch.last_run_cpu = cpu;
  475. kvm_flush_tlb_all();
  476. }
  477. vcpu->arch.host_rr6 = ia64_get_rr(RR6);
  478. vti_set_rr6(vcpu->arch.vmm_rr);
  479. return kvm_insert_vmm_mapping(vcpu);
  480. }
  481. static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
  482. {
  483. kvm_purge_vmm_mapping(vcpu);
  484. vti_set_rr6(vcpu->arch.host_rr6);
  485. }
  486. static int vti_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  487. {
  488. union context *host_ctx, *guest_ctx;
  489. int r;
  490. /*Get host and guest context with guest address space.*/
  491. host_ctx = kvm_get_host_context(vcpu);
  492. guest_ctx = kvm_get_guest_context(vcpu);
  493. r = kvm_vcpu_pre_transition(vcpu);
  494. if (r < 0)
  495. goto out;
  496. kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
  497. kvm_vcpu_post_transition(vcpu);
  498. r = 0;
  499. out:
  500. return r;
  501. }
  502. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  503. {
  504. int r;
  505. again:
  506. preempt_disable();
  507. local_irq_disable();
  508. if (signal_pending(current)) {
  509. local_irq_enable();
  510. preempt_enable();
  511. r = -EINTR;
  512. kvm_run->exit_reason = KVM_EXIT_INTR;
  513. goto out;
  514. }
  515. vcpu->guest_mode = 1;
  516. kvm_guest_enter();
  517. down_read(&vcpu->kvm->slots_lock);
  518. r = vti_vcpu_run(vcpu, kvm_run);
  519. if (r < 0) {
  520. local_irq_enable();
  521. preempt_enable();
  522. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  523. goto out;
  524. }
  525. vcpu->arch.launched = 1;
  526. vcpu->guest_mode = 0;
  527. local_irq_enable();
  528. /*
  529. * We must have an instruction between local_irq_enable() and
  530. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  531. * the interrupt shadow. The stat.exits increment will do nicely.
  532. * But we need to prevent reordering, hence this barrier():
  533. */
  534. barrier();
  535. kvm_guest_exit();
  536. up_read(&vcpu->kvm->slots_lock);
  537. preempt_enable();
  538. r = kvm_handle_exit(kvm_run, vcpu);
  539. if (r > 0) {
  540. if (!need_resched())
  541. goto again;
  542. }
  543. out:
  544. if (r > 0) {
  545. kvm_resched(vcpu);
  546. goto again;
  547. }
  548. return r;
  549. }
  550. static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
  551. {
  552. struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
  553. if (!vcpu->mmio_is_write)
  554. memcpy(&p->data, vcpu->mmio_data, 8);
  555. p->state = STATE_IORESP_READY;
  556. }
  557. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  558. {
  559. int r;
  560. sigset_t sigsaved;
  561. vcpu_load(vcpu);
  562. if (vcpu->sigset_active)
  563. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  564. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  565. kvm_vcpu_block(vcpu);
  566. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  567. r = -EAGAIN;
  568. goto out;
  569. }
  570. if (vcpu->mmio_needed) {
  571. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  572. kvm_set_mmio_data(vcpu);
  573. vcpu->mmio_read_completed = 1;
  574. vcpu->mmio_needed = 0;
  575. }
  576. r = __vcpu_run(vcpu, kvm_run);
  577. out:
  578. if (vcpu->sigset_active)
  579. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  580. vcpu_put(vcpu);
  581. return r;
  582. }
  583. static struct kvm *kvm_alloc_kvm(void)
  584. {
  585. struct kvm *kvm;
  586. uint64_t vm_base;
  587. BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
  588. vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
  589. if (!vm_base)
  590. return ERR_PTR(-ENOMEM);
  591. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  592. kvm = (struct kvm *)(vm_base +
  593. offsetof(struct kvm_vm_data, kvm_vm_struct));
  594. kvm->arch.vm_base = vm_base;
  595. printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
  596. return kvm;
  597. }
  598. struct kvm_io_range {
  599. unsigned long start;
  600. unsigned long size;
  601. unsigned long type;
  602. };
  603. static const struct kvm_io_range io_ranges[] = {
  604. {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
  605. {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
  606. {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
  607. {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
  608. {PIB_START, PIB_SIZE, GPFN_PIB},
  609. };
  610. static void kvm_build_io_pmt(struct kvm *kvm)
  611. {
  612. unsigned long i, j;
  613. /* Mark I/O ranges */
  614. for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
  615. i++) {
  616. for (j = io_ranges[i].start;
  617. j < io_ranges[i].start + io_ranges[i].size;
  618. j += PAGE_SIZE)
  619. kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
  620. io_ranges[i].type, 0);
  621. }
  622. }
  623. /*Use unused rids to virtualize guest rid.*/
  624. #define GUEST_PHYSICAL_RR0 0x1739
  625. #define GUEST_PHYSICAL_RR4 0x2739
  626. #define VMM_INIT_RR 0x1660
  627. static void kvm_init_vm(struct kvm *kvm)
  628. {
  629. BUG_ON(!kvm);
  630. kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
  631. kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
  632. kvm->arch.vmm_init_rr = VMM_INIT_RR;
  633. /*
  634. *Fill P2M entries for MMIO/IO ranges
  635. */
  636. kvm_build_io_pmt(kvm);
  637. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  638. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  639. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  640. }
  641. struct kvm *kvm_arch_create_vm(void)
  642. {
  643. struct kvm *kvm = kvm_alloc_kvm();
  644. if (IS_ERR(kvm))
  645. return ERR_PTR(-ENOMEM);
  646. kvm_init_vm(kvm);
  647. return kvm;
  648. }
  649. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
  650. struct kvm_irqchip *chip)
  651. {
  652. int r;
  653. r = 0;
  654. switch (chip->chip_id) {
  655. case KVM_IRQCHIP_IOAPIC:
  656. memcpy(&chip->chip.ioapic, ioapic_irqchip(kvm),
  657. sizeof(struct kvm_ioapic_state));
  658. break;
  659. default:
  660. r = -EINVAL;
  661. break;
  662. }
  663. return r;
  664. }
  665. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  666. {
  667. int r;
  668. r = 0;
  669. switch (chip->chip_id) {
  670. case KVM_IRQCHIP_IOAPIC:
  671. memcpy(ioapic_irqchip(kvm),
  672. &chip->chip.ioapic,
  673. sizeof(struct kvm_ioapic_state));
  674. break;
  675. default:
  676. r = -EINVAL;
  677. break;
  678. }
  679. return r;
  680. }
  681. #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
  682. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  683. {
  684. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  685. int i;
  686. vcpu_load(vcpu);
  687. for (i = 0; i < 16; i++) {
  688. vpd->vgr[i] = regs->vpd.vgr[i];
  689. vpd->vbgr[i] = regs->vpd.vbgr[i];
  690. }
  691. for (i = 0; i < 128; i++)
  692. vpd->vcr[i] = regs->vpd.vcr[i];
  693. vpd->vhpi = regs->vpd.vhpi;
  694. vpd->vnat = regs->vpd.vnat;
  695. vpd->vbnat = regs->vpd.vbnat;
  696. vpd->vpsr = regs->vpd.vpsr;
  697. vpd->vpr = regs->vpd.vpr;
  698. memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
  699. RESTORE_REGS(mp_state);
  700. RESTORE_REGS(vmm_rr);
  701. memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
  702. memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
  703. RESTORE_REGS(itr_regions);
  704. RESTORE_REGS(dtr_regions);
  705. RESTORE_REGS(tc_regions);
  706. RESTORE_REGS(irq_check);
  707. RESTORE_REGS(itc_check);
  708. RESTORE_REGS(timer_check);
  709. RESTORE_REGS(timer_pending);
  710. RESTORE_REGS(last_itc);
  711. for (i = 0; i < 8; i++) {
  712. vcpu->arch.vrr[i] = regs->vrr[i];
  713. vcpu->arch.ibr[i] = regs->ibr[i];
  714. vcpu->arch.dbr[i] = regs->dbr[i];
  715. }
  716. for (i = 0; i < 4; i++)
  717. vcpu->arch.insvc[i] = regs->insvc[i];
  718. RESTORE_REGS(xtp);
  719. RESTORE_REGS(metaphysical_rr0);
  720. RESTORE_REGS(metaphysical_rr4);
  721. RESTORE_REGS(metaphysical_saved_rr0);
  722. RESTORE_REGS(metaphysical_saved_rr4);
  723. RESTORE_REGS(fp_psr);
  724. RESTORE_REGS(saved_gp);
  725. vcpu->arch.irq_new_pending = 1;
  726. vcpu->arch.itc_offset = regs->saved_itc - ia64_getreg(_IA64_REG_AR_ITC);
  727. set_bit(KVM_REQ_RESUME, &vcpu->requests);
  728. vcpu_put(vcpu);
  729. return 0;
  730. }
  731. long kvm_arch_vm_ioctl(struct file *filp,
  732. unsigned int ioctl, unsigned long arg)
  733. {
  734. struct kvm *kvm = filp->private_data;
  735. void __user *argp = (void __user *)arg;
  736. int r = -EINVAL;
  737. switch (ioctl) {
  738. case KVM_SET_MEMORY_REGION: {
  739. struct kvm_memory_region kvm_mem;
  740. struct kvm_userspace_memory_region kvm_userspace_mem;
  741. r = -EFAULT;
  742. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  743. goto out;
  744. kvm_userspace_mem.slot = kvm_mem.slot;
  745. kvm_userspace_mem.flags = kvm_mem.flags;
  746. kvm_userspace_mem.guest_phys_addr =
  747. kvm_mem.guest_phys_addr;
  748. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  749. r = kvm_vm_ioctl_set_memory_region(kvm,
  750. &kvm_userspace_mem, 0);
  751. if (r)
  752. goto out;
  753. break;
  754. }
  755. case KVM_CREATE_IRQCHIP:
  756. r = -EFAULT;
  757. r = kvm_ioapic_init(kvm);
  758. if (r)
  759. goto out;
  760. break;
  761. case KVM_IRQ_LINE: {
  762. struct kvm_irq_level irq_event;
  763. r = -EFAULT;
  764. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  765. goto out;
  766. if (irqchip_in_kernel(kvm)) {
  767. mutex_lock(&kvm->lock);
  768. kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  769. irq_event.irq, irq_event.level);
  770. mutex_unlock(&kvm->lock);
  771. r = 0;
  772. }
  773. break;
  774. }
  775. case KVM_GET_IRQCHIP: {
  776. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  777. struct kvm_irqchip chip;
  778. r = -EFAULT;
  779. if (copy_from_user(&chip, argp, sizeof chip))
  780. goto out;
  781. r = -ENXIO;
  782. if (!irqchip_in_kernel(kvm))
  783. goto out;
  784. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  785. if (r)
  786. goto out;
  787. r = -EFAULT;
  788. if (copy_to_user(argp, &chip, sizeof chip))
  789. goto out;
  790. r = 0;
  791. break;
  792. }
  793. case KVM_SET_IRQCHIP: {
  794. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  795. struct kvm_irqchip chip;
  796. r = -EFAULT;
  797. if (copy_from_user(&chip, argp, sizeof chip))
  798. goto out;
  799. r = -ENXIO;
  800. if (!irqchip_in_kernel(kvm))
  801. goto out;
  802. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  803. if (r)
  804. goto out;
  805. r = 0;
  806. break;
  807. }
  808. default:
  809. ;
  810. }
  811. out:
  812. return r;
  813. }
  814. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  815. struct kvm_sregs *sregs)
  816. {
  817. return -EINVAL;
  818. }
  819. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  820. struct kvm_sregs *sregs)
  821. {
  822. return -EINVAL;
  823. }
  824. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  825. struct kvm_translation *tr)
  826. {
  827. return -EINVAL;
  828. }
  829. static int kvm_alloc_vmm_area(void)
  830. {
  831. if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
  832. kvm_vmm_base = __get_free_pages(GFP_KERNEL,
  833. get_order(KVM_VMM_SIZE));
  834. if (!kvm_vmm_base)
  835. return -ENOMEM;
  836. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  837. kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
  838. printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
  839. kvm_vmm_base, kvm_vm_buffer);
  840. }
  841. return 0;
  842. }
  843. static void kvm_free_vmm_area(void)
  844. {
  845. if (kvm_vmm_base) {
  846. /*Zero this area before free to avoid bits leak!!*/
  847. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  848. free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
  849. kvm_vmm_base = 0;
  850. kvm_vm_buffer = 0;
  851. kvm_vsa_base = 0;
  852. }
  853. }
  854. static void vti_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  855. {
  856. }
  857. static int vti_init_vpd(struct kvm_vcpu *vcpu)
  858. {
  859. int i;
  860. union cpuid3_t cpuid3;
  861. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  862. if (IS_ERR(vpd))
  863. return PTR_ERR(vpd);
  864. /* CPUID init */
  865. for (i = 0; i < 5; i++)
  866. vpd->vcpuid[i] = ia64_get_cpuid(i);
  867. /* Limit the CPUID number to 5 */
  868. cpuid3.value = vpd->vcpuid[3];
  869. cpuid3.number = 4; /* 5 - 1 */
  870. vpd->vcpuid[3] = cpuid3.value;
  871. /*Set vac and vdc fields*/
  872. vpd->vac.a_from_int_cr = 1;
  873. vpd->vac.a_to_int_cr = 1;
  874. vpd->vac.a_from_psr = 1;
  875. vpd->vac.a_from_cpuid = 1;
  876. vpd->vac.a_cover = 1;
  877. vpd->vac.a_bsw = 1;
  878. vpd->vac.a_int = 1;
  879. vpd->vdc.d_vmsw = 1;
  880. /*Set virtual buffer*/
  881. vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
  882. return 0;
  883. }
  884. static int vti_create_vp(struct kvm_vcpu *vcpu)
  885. {
  886. long ret;
  887. struct vpd *vpd = vcpu->arch.vpd;
  888. unsigned long vmm_ivt;
  889. vmm_ivt = kvm_vmm_info->vmm_ivt;
  890. printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
  891. ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
  892. if (ret) {
  893. printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
  894. return -EINVAL;
  895. }
  896. return 0;
  897. }
  898. static void init_ptce_info(struct kvm_vcpu *vcpu)
  899. {
  900. ia64_ptce_info_t ptce = {0};
  901. ia64_get_ptce(&ptce);
  902. vcpu->arch.ptce_base = ptce.base;
  903. vcpu->arch.ptce_count[0] = ptce.count[0];
  904. vcpu->arch.ptce_count[1] = ptce.count[1];
  905. vcpu->arch.ptce_stride[0] = ptce.stride[0];
  906. vcpu->arch.ptce_stride[1] = ptce.stride[1];
  907. }
  908. static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
  909. {
  910. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  911. if (hrtimer_cancel(p_ht))
  912. hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
  913. }
  914. static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
  915. {
  916. struct kvm_vcpu *vcpu;
  917. wait_queue_head_t *q;
  918. vcpu = container_of(data, struct kvm_vcpu, arch.hlt_timer);
  919. q = &vcpu->wq;
  920. if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
  921. goto out;
  922. if (waitqueue_active(q))
  923. wake_up_interruptible(q);
  924. out:
  925. vcpu->arch.timer_fired = 1;
  926. vcpu->arch.timer_check = 1;
  927. return HRTIMER_NORESTART;
  928. }
  929. #define PALE_RESET_ENTRY 0x80000000ffffffb0UL
  930. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  931. {
  932. struct kvm_vcpu *v;
  933. int r;
  934. int i;
  935. long itc_offset;
  936. struct kvm *kvm = vcpu->kvm;
  937. struct kvm_pt_regs *regs = vcpu_regs(vcpu);
  938. union context *p_ctx = &vcpu->arch.guest;
  939. struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
  940. /*Init vcpu context for first run.*/
  941. if (IS_ERR(vmm_vcpu))
  942. return PTR_ERR(vmm_vcpu);
  943. if (vcpu->vcpu_id == 0) {
  944. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  945. /*Set entry address for first run.*/
  946. regs->cr_iip = PALE_RESET_ENTRY;
  947. /*Initialize itc offset for vcpus*/
  948. itc_offset = 0UL - ia64_getreg(_IA64_REG_AR_ITC);
  949. for (i = 0; i < KVM_MAX_VCPUS; i++) {
  950. v = (struct kvm_vcpu *)((char *)vcpu +
  951. sizeof(struct kvm_vcpu_data) * i);
  952. v->arch.itc_offset = itc_offset;
  953. v->arch.last_itc = 0;
  954. }
  955. } else
  956. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  957. r = -ENOMEM;
  958. vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
  959. if (!vcpu->arch.apic)
  960. goto out;
  961. vcpu->arch.apic->vcpu = vcpu;
  962. p_ctx->gr[1] = 0;
  963. p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
  964. p_ctx->gr[13] = (unsigned long)vmm_vcpu;
  965. p_ctx->psr = 0x1008522000UL;
  966. p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
  967. p_ctx->caller_unat = 0;
  968. p_ctx->pr = 0x0;
  969. p_ctx->ar[36] = 0x0; /*unat*/
  970. p_ctx->ar[19] = 0x0; /*rnat*/
  971. p_ctx->ar[18] = (unsigned long)vmm_vcpu +
  972. ((sizeof(struct kvm_vcpu)+15) & ~15);
  973. p_ctx->ar[64] = 0x0; /*pfs*/
  974. p_ctx->cr[0] = 0x7e04UL;
  975. p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
  976. p_ctx->cr[8] = 0x3c;
  977. /*Initilize region register*/
  978. p_ctx->rr[0] = 0x30;
  979. p_ctx->rr[1] = 0x30;
  980. p_ctx->rr[2] = 0x30;
  981. p_ctx->rr[3] = 0x30;
  982. p_ctx->rr[4] = 0x30;
  983. p_ctx->rr[5] = 0x30;
  984. p_ctx->rr[7] = 0x30;
  985. /*Initilize branch register 0*/
  986. p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
  987. vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
  988. vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
  989. vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
  990. hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  991. vcpu->arch.hlt_timer.function = hlt_timer_fn;
  992. vcpu->arch.last_run_cpu = -1;
  993. vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
  994. vcpu->arch.vsa_base = kvm_vsa_base;
  995. vcpu->arch.__gp = kvm_vmm_gp;
  996. vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
  997. vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
  998. vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
  999. init_ptce_info(vcpu);
  1000. r = 0;
  1001. out:
  1002. return r;
  1003. }
  1004. static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
  1005. {
  1006. unsigned long psr;
  1007. int r;
  1008. local_irq_save(psr);
  1009. r = kvm_insert_vmm_mapping(vcpu);
  1010. if (r)
  1011. goto fail;
  1012. r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
  1013. if (r)
  1014. goto fail;
  1015. r = vti_init_vpd(vcpu);
  1016. if (r) {
  1017. printk(KERN_DEBUG"kvm: vpd init error!!\n");
  1018. goto uninit;
  1019. }
  1020. r = vti_create_vp(vcpu);
  1021. if (r)
  1022. goto uninit;
  1023. kvm_purge_vmm_mapping(vcpu);
  1024. local_irq_restore(psr);
  1025. return 0;
  1026. uninit:
  1027. kvm_vcpu_uninit(vcpu);
  1028. fail:
  1029. local_irq_restore(psr);
  1030. return r;
  1031. }
  1032. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  1033. unsigned int id)
  1034. {
  1035. struct kvm_vcpu *vcpu;
  1036. unsigned long vm_base = kvm->arch.vm_base;
  1037. int r;
  1038. int cpu;
  1039. BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
  1040. r = -EINVAL;
  1041. if (id >= KVM_MAX_VCPUS) {
  1042. printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
  1043. KVM_MAX_VCPUS);
  1044. goto fail;
  1045. }
  1046. r = -ENOMEM;
  1047. if (!vm_base) {
  1048. printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
  1049. goto fail;
  1050. }
  1051. vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
  1052. vcpu_data[id].vcpu_struct));
  1053. vcpu->kvm = kvm;
  1054. cpu = get_cpu();
  1055. vti_vcpu_load(vcpu, cpu);
  1056. r = vti_vcpu_setup(vcpu, id);
  1057. put_cpu();
  1058. if (r) {
  1059. printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
  1060. goto fail;
  1061. }
  1062. return vcpu;
  1063. fail:
  1064. return ERR_PTR(r);
  1065. }
  1066. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  1067. {
  1068. return 0;
  1069. }
  1070. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1071. {
  1072. return -EINVAL;
  1073. }
  1074. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1075. {
  1076. return -EINVAL;
  1077. }
  1078. int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1079. struct kvm_debug_guest *dbg)
  1080. {
  1081. return -EINVAL;
  1082. }
  1083. static void free_kvm(struct kvm *kvm)
  1084. {
  1085. unsigned long vm_base = kvm->arch.vm_base;
  1086. if (vm_base) {
  1087. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  1088. free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
  1089. }
  1090. }
  1091. static void kvm_release_vm_pages(struct kvm *kvm)
  1092. {
  1093. struct kvm_memory_slot *memslot;
  1094. int i, j;
  1095. unsigned long base_gfn;
  1096. for (i = 0; i < kvm->nmemslots; i++) {
  1097. memslot = &kvm->memslots[i];
  1098. base_gfn = memslot->base_gfn;
  1099. for (j = 0; j < memslot->npages; j++) {
  1100. if (memslot->rmap[j])
  1101. put_page((struct page *)memslot->rmap[j]);
  1102. }
  1103. }
  1104. }
  1105. void kvm_arch_destroy_vm(struct kvm *kvm)
  1106. {
  1107. kvm_iommu_unmap_guest(kvm);
  1108. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1109. kvm_free_all_assigned_devices(kvm);
  1110. #endif
  1111. kfree(kvm->arch.vioapic);
  1112. kvm_release_vm_pages(kvm);
  1113. kvm_free_physmem(kvm);
  1114. free_kvm(kvm);
  1115. }
  1116. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1117. {
  1118. }
  1119. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1120. {
  1121. if (cpu != vcpu->cpu) {
  1122. vcpu->cpu = cpu;
  1123. if (vcpu->arch.ht_active)
  1124. kvm_migrate_hlt_timer(vcpu);
  1125. }
  1126. }
  1127. #define SAVE_REGS(_x) regs->_x = vcpu->arch._x
  1128. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1129. {
  1130. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1131. int i;
  1132. vcpu_load(vcpu);
  1133. for (i = 0; i < 16; i++) {
  1134. regs->vpd.vgr[i] = vpd->vgr[i];
  1135. regs->vpd.vbgr[i] = vpd->vbgr[i];
  1136. }
  1137. for (i = 0; i < 128; i++)
  1138. regs->vpd.vcr[i] = vpd->vcr[i];
  1139. regs->vpd.vhpi = vpd->vhpi;
  1140. regs->vpd.vnat = vpd->vnat;
  1141. regs->vpd.vbnat = vpd->vbnat;
  1142. regs->vpd.vpsr = vpd->vpsr;
  1143. regs->vpd.vpr = vpd->vpr;
  1144. memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
  1145. SAVE_REGS(mp_state);
  1146. SAVE_REGS(vmm_rr);
  1147. memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
  1148. memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
  1149. SAVE_REGS(itr_regions);
  1150. SAVE_REGS(dtr_regions);
  1151. SAVE_REGS(tc_regions);
  1152. SAVE_REGS(irq_check);
  1153. SAVE_REGS(itc_check);
  1154. SAVE_REGS(timer_check);
  1155. SAVE_REGS(timer_pending);
  1156. SAVE_REGS(last_itc);
  1157. for (i = 0; i < 8; i++) {
  1158. regs->vrr[i] = vcpu->arch.vrr[i];
  1159. regs->ibr[i] = vcpu->arch.ibr[i];
  1160. regs->dbr[i] = vcpu->arch.dbr[i];
  1161. }
  1162. for (i = 0; i < 4; i++)
  1163. regs->insvc[i] = vcpu->arch.insvc[i];
  1164. regs->saved_itc = vcpu->arch.itc_offset + ia64_getreg(_IA64_REG_AR_ITC);
  1165. SAVE_REGS(xtp);
  1166. SAVE_REGS(metaphysical_rr0);
  1167. SAVE_REGS(metaphysical_rr4);
  1168. SAVE_REGS(metaphysical_saved_rr0);
  1169. SAVE_REGS(metaphysical_saved_rr4);
  1170. SAVE_REGS(fp_psr);
  1171. SAVE_REGS(saved_gp);
  1172. vcpu_put(vcpu);
  1173. return 0;
  1174. }
  1175. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  1176. {
  1177. hrtimer_cancel(&vcpu->arch.hlt_timer);
  1178. kfree(vcpu->arch.apic);
  1179. }
  1180. long kvm_arch_vcpu_ioctl(struct file *filp,
  1181. unsigned int ioctl, unsigned long arg)
  1182. {
  1183. return -EINVAL;
  1184. }
  1185. int kvm_arch_set_memory_region(struct kvm *kvm,
  1186. struct kvm_userspace_memory_region *mem,
  1187. struct kvm_memory_slot old,
  1188. int user_alloc)
  1189. {
  1190. unsigned long i;
  1191. unsigned long pfn;
  1192. int npages = mem->memory_size >> PAGE_SHIFT;
  1193. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  1194. unsigned long base_gfn = memslot->base_gfn;
  1195. if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
  1196. return -ENOMEM;
  1197. for (i = 0; i < npages; i++) {
  1198. pfn = gfn_to_pfn(kvm, base_gfn + i);
  1199. if (!kvm_is_mmio_pfn(pfn)) {
  1200. kvm_set_pmt_entry(kvm, base_gfn + i,
  1201. pfn << PAGE_SHIFT,
  1202. _PAGE_AR_RWX | _PAGE_MA_WB);
  1203. memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
  1204. } else {
  1205. kvm_set_pmt_entry(kvm, base_gfn + i,
  1206. GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
  1207. _PAGE_MA_UC);
  1208. memslot->rmap[i] = 0;
  1209. }
  1210. }
  1211. return 0;
  1212. }
  1213. void kvm_arch_flush_shadow(struct kvm *kvm)
  1214. {
  1215. }
  1216. long kvm_arch_dev_ioctl(struct file *filp,
  1217. unsigned int ioctl, unsigned long arg)
  1218. {
  1219. return -EINVAL;
  1220. }
  1221. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  1222. {
  1223. kvm_vcpu_uninit(vcpu);
  1224. }
  1225. static int vti_cpu_has_kvm_support(void)
  1226. {
  1227. long avail = 1, status = 1, control = 1;
  1228. long ret;
  1229. ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
  1230. if (ret)
  1231. goto out;
  1232. if (!(avail & PAL_PROC_VM_BIT))
  1233. goto out;
  1234. printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
  1235. ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
  1236. if (ret)
  1237. goto out;
  1238. printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
  1239. if (!(vp_env_info & VP_OPCODE)) {
  1240. printk(KERN_WARNING"kvm: No opcode ability on hardware, "
  1241. "vm_env_info:0x%lx\n", vp_env_info);
  1242. }
  1243. return 1;
  1244. out:
  1245. return 0;
  1246. }
  1247. static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
  1248. struct module *module)
  1249. {
  1250. unsigned long module_base;
  1251. unsigned long vmm_size;
  1252. unsigned long vmm_offset, func_offset, fdesc_offset;
  1253. struct fdesc *p_fdesc;
  1254. BUG_ON(!module);
  1255. if (!kvm_vmm_base) {
  1256. printk("kvm: kvm area hasn't been initilized yet!!\n");
  1257. return -EFAULT;
  1258. }
  1259. /*Calculate new position of relocated vmm module.*/
  1260. module_base = (unsigned long)module->module_core;
  1261. vmm_size = module->core_size;
  1262. if (unlikely(vmm_size > KVM_VMM_SIZE))
  1263. return -EFAULT;
  1264. memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
  1265. kvm_flush_icache(kvm_vmm_base, vmm_size);
  1266. /*Recalculate kvm_vmm_info based on new VMM*/
  1267. vmm_offset = vmm_info->vmm_ivt - module_base;
  1268. kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
  1269. printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
  1270. kvm_vmm_info->vmm_ivt);
  1271. fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
  1272. kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
  1273. fdesc_offset);
  1274. func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
  1275. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1276. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1277. p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
  1278. printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
  1279. KVM_VMM_BASE+func_offset);
  1280. fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
  1281. kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
  1282. fdesc_offset);
  1283. func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
  1284. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1285. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1286. p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
  1287. kvm_vmm_gp = p_fdesc->gp;
  1288. printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
  1289. kvm_vmm_info->vmm_entry);
  1290. printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
  1291. KVM_VMM_BASE + func_offset);
  1292. return 0;
  1293. }
  1294. int kvm_arch_init(void *opaque)
  1295. {
  1296. int r;
  1297. struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
  1298. if (!vti_cpu_has_kvm_support()) {
  1299. printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
  1300. r = -EOPNOTSUPP;
  1301. goto out;
  1302. }
  1303. if (kvm_vmm_info) {
  1304. printk(KERN_ERR "kvm: Already loaded VMM module!\n");
  1305. r = -EEXIST;
  1306. goto out;
  1307. }
  1308. r = -ENOMEM;
  1309. kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
  1310. if (!kvm_vmm_info)
  1311. goto out;
  1312. if (kvm_alloc_vmm_area())
  1313. goto out_free0;
  1314. r = kvm_relocate_vmm(vmm_info, vmm_info->module);
  1315. if (r)
  1316. goto out_free1;
  1317. return 0;
  1318. out_free1:
  1319. kvm_free_vmm_area();
  1320. out_free0:
  1321. kfree(kvm_vmm_info);
  1322. out:
  1323. return r;
  1324. }
  1325. void kvm_arch_exit(void)
  1326. {
  1327. kvm_free_vmm_area();
  1328. kfree(kvm_vmm_info);
  1329. kvm_vmm_info = NULL;
  1330. }
  1331. static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
  1332. struct kvm_dirty_log *log)
  1333. {
  1334. struct kvm_memory_slot *memslot;
  1335. int r, i;
  1336. long n, base;
  1337. unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
  1338. offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
  1339. r = -EINVAL;
  1340. if (log->slot >= KVM_MEMORY_SLOTS)
  1341. goto out;
  1342. memslot = &kvm->memslots[log->slot];
  1343. r = -ENOENT;
  1344. if (!memslot->dirty_bitmap)
  1345. goto out;
  1346. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1347. base = memslot->base_gfn / BITS_PER_LONG;
  1348. for (i = 0; i < n/sizeof(long); ++i) {
  1349. memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
  1350. dirty_bitmap[base + i] = 0;
  1351. }
  1352. r = 0;
  1353. out:
  1354. return r;
  1355. }
  1356. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1357. struct kvm_dirty_log *log)
  1358. {
  1359. int r;
  1360. int n;
  1361. struct kvm_memory_slot *memslot;
  1362. int is_dirty = 0;
  1363. spin_lock(&kvm->arch.dirty_log_lock);
  1364. r = kvm_ia64_sync_dirty_log(kvm, log);
  1365. if (r)
  1366. goto out;
  1367. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1368. if (r)
  1369. goto out;
  1370. /* If nothing is dirty, don't bother messing with page tables. */
  1371. if (is_dirty) {
  1372. kvm_flush_remote_tlbs(kvm);
  1373. memslot = &kvm->memslots[log->slot];
  1374. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1375. memset(memslot->dirty_bitmap, 0, n);
  1376. }
  1377. r = 0;
  1378. out:
  1379. spin_unlock(&kvm->arch.dirty_log_lock);
  1380. return r;
  1381. }
  1382. int kvm_arch_hardware_setup(void)
  1383. {
  1384. return 0;
  1385. }
  1386. void kvm_arch_hardware_unsetup(void)
  1387. {
  1388. }
  1389. static void vcpu_kick_intr(void *info)
  1390. {
  1391. #ifdef DEBUG
  1392. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  1393. printk(KERN_DEBUG"vcpu_kick_intr %p \n", vcpu);
  1394. #endif
  1395. }
  1396. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  1397. {
  1398. int ipi_pcpu = vcpu->cpu;
  1399. int cpu = get_cpu();
  1400. if (waitqueue_active(&vcpu->wq))
  1401. wake_up_interruptible(&vcpu->wq);
  1402. if (vcpu->guest_mode && cpu != ipi_pcpu)
  1403. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
  1404. put_cpu();
  1405. }
  1406. int kvm_apic_set_irq(struct kvm_vcpu *vcpu, u8 vec, u8 trig)
  1407. {
  1408. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1409. if (!test_and_set_bit(vec, &vpd->irr[0])) {
  1410. vcpu->arch.irq_new_pending = 1;
  1411. kvm_vcpu_kick(vcpu);
  1412. return 1;
  1413. }
  1414. return 0;
  1415. }
  1416. int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
  1417. {
  1418. return apic->vcpu->vcpu_id == dest;
  1419. }
  1420. int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
  1421. {
  1422. return 0;
  1423. }
  1424. struct kvm_vcpu *kvm_get_lowest_prio_vcpu(struct kvm *kvm, u8 vector,
  1425. unsigned long bitmap)
  1426. {
  1427. struct kvm_vcpu *lvcpu = kvm->vcpus[0];
  1428. int i;
  1429. for (i = 1; i < KVM_MAX_VCPUS; i++) {
  1430. if (!kvm->vcpus[i])
  1431. continue;
  1432. if (lvcpu->arch.xtp > kvm->vcpus[i]->arch.xtp)
  1433. lvcpu = kvm->vcpus[i];
  1434. }
  1435. return lvcpu;
  1436. }
  1437. static int find_highest_bits(int *dat)
  1438. {
  1439. u32 bits, bitnum;
  1440. int i;
  1441. /* loop for all 256 bits */
  1442. for (i = 7; i >= 0 ; i--) {
  1443. bits = dat[i];
  1444. if (bits) {
  1445. bitnum = fls(bits);
  1446. return i * 32 + bitnum - 1;
  1447. }
  1448. }
  1449. return -1;
  1450. }
  1451. int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
  1452. {
  1453. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1454. if (vpd->irr[0] & (1UL << NMI_VECTOR))
  1455. return NMI_VECTOR;
  1456. if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
  1457. return ExtINT_VECTOR;
  1458. return find_highest_bits((int *)&vpd->irr[0]);
  1459. }
  1460. int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu)
  1461. {
  1462. if (kvm_highest_pending_irq(vcpu) != -1)
  1463. return 1;
  1464. return 0;
  1465. }
  1466. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  1467. {
  1468. return vcpu->arch.timer_fired;
  1469. }
  1470. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1471. {
  1472. return gfn;
  1473. }
  1474. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  1475. {
  1476. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE;
  1477. }
  1478. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  1479. struct kvm_mp_state *mp_state)
  1480. {
  1481. vcpu_load(vcpu);
  1482. mp_state->mp_state = vcpu->arch.mp_state;
  1483. vcpu_put(vcpu);
  1484. return 0;
  1485. }
  1486. static int vcpu_reset(struct kvm_vcpu *vcpu)
  1487. {
  1488. int r;
  1489. long psr;
  1490. local_irq_save(psr);
  1491. r = kvm_insert_vmm_mapping(vcpu);
  1492. if (r)
  1493. goto fail;
  1494. vcpu->arch.launched = 0;
  1495. kvm_arch_vcpu_uninit(vcpu);
  1496. r = kvm_arch_vcpu_init(vcpu);
  1497. if (r)
  1498. goto fail;
  1499. kvm_purge_vmm_mapping(vcpu);
  1500. r = 0;
  1501. fail:
  1502. local_irq_restore(psr);
  1503. return r;
  1504. }
  1505. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  1506. struct kvm_mp_state *mp_state)
  1507. {
  1508. int r = 0;
  1509. vcpu_load(vcpu);
  1510. vcpu->arch.mp_state = mp_state->mp_state;
  1511. if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
  1512. r = vcpu_reset(vcpu);
  1513. vcpu_put(vcpu);
  1514. return r;
  1515. }