kvm_main.c 71 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86_emulate.h"
  19. #include "segment_descriptor.h"
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/gfp.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/reboot.h>
  29. #include <linux/debugfs.h>
  30. #include <linux/highmem.h>
  31. #include <linux/file.h>
  32. #include <linux/sysdev.h>
  33. #include <linux/cpu.h>
  34. #include <linux/sched.h>
  35. #include <linux/cpumask.h>
  36. #include <linux/smp.h>
  37. #include <linux/anon_inodes.h>
  38. #include <asm/processor.h>
  39. #include <asm/msr.h>
  40. #include <asm/io.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/desc.h>
  43. MODULE_AUTHOR("Qumranet");
  44. MODULE_LICENSE("GPL");
  45. static DEFINE_SPINLOCK(kvm_lock);
  46. static LIST_HEAD(vm_list);
  47. static cpumask_t cpus_hardware_enabled;
  48. struct kvm_arch_ops *kvm_arch_ops;
  49. struct kmem_cache *kvm_vcpu_cache;
  50. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  51. static __read_mostly struct preempt_ops kvm_preempt_ops;
  52. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  53. static struct kvm_stats_debugfs_item {
  54. const char *name;
  55. int offset;
  56. struct dentry *dentry;
  57. } debugfs_entries[] = {
  58. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  59. { "pf_guest", STAT_OFFSET(pf_guest) },
  60. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  61. { "invlpg", STAT_OFFSET(invlpg) },
  62. { "exits", STAT_OFFSET(exits) },
  63. { "io_exits", STAT_OFFSET(io_exits) },
  64. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  65. { "signal_exits", STAT_OFFSET(signal_exits) },
  66. { "irq_window", STAT_OFFSET(irq_window_exits) },
  67. { "halt_exits", STAT_OFFSET(halt_exits) },
  68. { "request_irq", STAT_OFFSET(request_irq_exits) },
  69. { "irq_exits", STAT_OFFSET(irq_exits) },
  70. { "light_exits", STAT_OFFSET(light_exits) },
  71. { "efer_reload", STAT_OFFSET(efer_reload) },
  72. { NULL }
  73. };
  74. static struct dentry *debugfs_dir;
  75. #define MAX_IO_MSRS 256
  76. #define CR0_RESERVED_BITS \
  77. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  78. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  79. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  80. #define CR4_RESERVED_BITS \
  81. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  82. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  83. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  84. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  85. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  86. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  87. #ifdef CONFIG_X86_64
  88. // LDT or TSS descriptor in the GDT. 16 bytes.
  89. struct segment_descriptor_64 {
  90. struct segment_descriptor s;
  91. u32 base_higher;
  92. u32 pad_zero;
  93. };
  94. #endif
  95. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  96. unsigned long arg);
  97. unsigned long segment_base(u16 selector)
  98. {
  99. struct descriptor_table gdt;
  100. struct segment_descriptor *d;
  101. unsigned long table_base;
  102. typedef unsigned long ul;
  103. unsigned long v;
  104. if (selector == 0)
  105. return 0;
  106. asm ("sgdt %0" : "=m"(gdt));
  107. table_base = gdt.base;
  108. if (selector & 4) { /* from ldt */
  109. u16 ldt_selector;
  110. asm ("sldt %0" : "=g"(ldt_selector));
  111. table_base = segment_base(ldt_selector);
  112. }
  113. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  114. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  115. #ifdef CONFIG_X86_64
  116. if (d->system == 0
  117. && (d->type == 2 || d->type == 9 || d->type == 11))
  118. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  119. #endif
  120. return v;
  121. }
  122. EXPORT_SYMBOL_GPL(segment_base);
  123. static inline int valid_vcpu(int n)
  124. {
  125. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  126. }
  127. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  128. {
  129. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  130. return;
  131. vcpu->guest_fpu_loaded = 1;
  132. fx_save(&vcpu->host_fx_image);
  133. fx_restore(&vcpu->guest_fx_image);
  134. }
  135. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  136. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  137. {
  138. if (!vcpu->guest_fpu_loaded)
  139. return;
  140. vcpu->guest_fpu_loaded = 0;
  141. fx_save(&vcpu->guest_fx_image);
  142. fx_restore(&vcpu->host_fx_image);
  143. }
  144. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  145. /*
  146. * Switches to specified vcpu, until a matching vcpu_put()
  147. */
  148. static void vcpu_load(struct kvm_vcpu *vcpu)
  149. {
  150. int cpu;
  151. mutex_lock(&vcpu->mutex);
  152. cpu = get_cpu();
  153. preempt_notifier_register(&vcpu->preempt_notifier);
  154. kvm_arch_ops->vcpu_load(vcpu, cpu);
  155. put_cpu();
  156. }
  157. static void vcpu_put(struct kvm_vcpu *vcpu)
  158. {
  159. preempt_disable();
  160. kvm_arch_ops->vcpu_put(vcpu);
  161. preempt_notifier_unregister(&vcpu->preempt_notifier);
  162. preempt_enable();
  163. mutex_unlock(&vcpu->mutex);
  164. }
  165. static void ack_flush(void *_completed)
  166. {
  167. atomic_t *completed = _completed;
  168. atomic_inc(completed);
  169. }
  170. void kvm_flush_remote_tlbs(struct kvm *kvm)
  171. {
  172. int i, cpu, needed;
  173. cpumask_t cpus;
  174. struct kvm_vcpu *vcpu;
  175. atomic_t completed;
  176. atomic_set(&completed, 0);
  177. cpus_clear(cpus);
  178. needed = 0;
  179. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  180. vcpu = kvm->vcpus[i];
  181. if (!vcpu)
  182. continue;
  183. if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
  184. continue;
  185. cpu = vcpu->cpu;
  186. if (cpu != -1 && cpu != raw_smp_processor_id())
  187. if (!cpu_isset(cpu, cpus)) {
  188. cpu_set(cpu, cpus);
  189. ++needed;
  190. }
  191. }
  192. /*
  193. * We really want smp_call_function_mask() here. But that's not
  194. * available, so ipi all cpus in parallel and wait for them
  195. * to complete.
  196. */
  197. for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
  198. smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
  199. while (atomic_read(&completed) != needed) {
  200. cpu_relax();
  201. barrier();
  202. }
  203. }
  204. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  205. {
  206. struct page *page;
  207. int r;
  208. mutex_init(&vcpu->mutex);
  209. vcpu->cpu = -1;
  210. vcpu->mmu.root_hpa = INVALID_PAGE;
  211. vcpu->kvm = kvm;
  212. vcpu->vcpu_id = id;
  213. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  214. if (!page) {
  215. r = -ENOMEM;
  216. goto fail;
  217. }
  218. vcpu->run = page_address(page);
  219. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  220. if (!page) {
  221. r = -ENOMEM;
  222. goto fail_free_run;
  223. }
  224. vcpu->pio_data = page_address(page);
  225. r = kvm_mmu_create(vcpu);
  226. if (r < 0)
  227. goto fail_free_pio_data;
  228. return 0;
  229. fail_free_pio_data:
  230. free_page((unsigned long)vcpu->pio_data);
  231. fail_free_run:
  232. free_page((unsigned long)vcpu->run);
  233. fail:
  234. return -ENOMEM;
  235. }
  236. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  237. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  238. {
  239. kvm_mmu_destroy(vcpu);
  240. free_page((unsigned long)vcpu->pio_data);
  241. free_page((unsigned long)vcpu->run);
  242. }
  243. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  244. static struct kvm *kvm_create_vm(void)
  245. {
  246. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  247. if (!kvm)
  248. return ERR_PTR(-ENOMEM);
  249. kvm_io_bus_init(&kvm->pio_bus);
  250. mutex_init(&kvm->lock);
  251. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  252. kvm_io_bus_init(&kvm->mmio_bus);
  253. spin_lock(&kvm_lock);
  254. list_add(&kvm->vm_list, &vm_list);
  255. spin_unlock(&kvm_lock);
  256. return kvm;
  257. }
  258. /*
  259. * Free any memory in @free but not in @dont.
  260. */
  261. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  262. struct kvm_memory_slot *dont)
  263. {
  264. int i;
  265. if (!dont || free->phys_mem != dont->phys_mem)
  266. if (free->phys_mem) {
  267. for (i = 0; i < free->npages; ++i)
  268. if (free->phys_mem[i])
  269. __free_page(free->phys_mem[i]);
  270. vfree(free->phys_mem);
  271. }
  272. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  273. vfree(free->dirty_bitmap);
  274. free->phys_mem = NULL;
  275. free->npages = 0;
  276. free->dirty_bitmap = NULL;
  277. }
  278. static void kvm_free_physmem(struct kvm *kvm)
  279. {
  280. int i;
  281. for (i = 0; i < kvm->nmemslots; ++i)
  282. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  283. }
  284. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  285. {
  286. int i;
  287. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  288. if (vcpu->pio.guest_pages[i]) {
  289. __free_page(vcpu->pio.guest_pages[i]);
  290. vcpu->pio.guest_pages[i] = NULL;
  291. }
  292. }
  293. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  294. {
  295. vcpu_load(vcpu);
  296. kvm_mmu_unload(vcpu);
  297. vcpu_put(vcpu);
  298. }
  299. static void kvm_free_vcpus(struct kvm *kvm)
  300. {
  301. unsigned int i;
  302. /*
  303. * Unpin any mmu pages first.
  304. */
  305. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  306. if (kvm->vcpus[i])
  307. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  308. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  309. if (kvm->vcpus[i]) {
  310. kvm_arch_ops->vcpu_free(kvm->vcpus[i]);
  311. kvm->vcpus[i] = NULL;
  312. }
  313. }
  314. }
  315. static void kvm_destroy_vm(struct kvm *kvm)
  316. {
  317. spin_lock(&kvm_lock);
  318. list_del(&kvm->vm_list);
  319. spin_unlock(&kvm_lock);
  320. kvm_io_bus_destroy(&kvm->pio_bus);
  321. kvm_io_bus_destroy(&kvm->mmio_bus);
  322. kvm_free_vcpus(kvm);
  323. kvm_free_physmem(kvm);
  324. kfree(kvm);
  325. }
  326. static int kvm_vm_release(struct inode *inode, struct file *filp)
  327. {
  328. struct kvm *kvm = filp->private_data;
  329. kvm_destroy_vm(kvm);
  330. return 0;
  331. }
  332. static void inject_gp(struct kvm_vcpu *vcpu)
  333. {
  334. kvm_arch_ops->inject_gp(vcpu, 0);
  335. }
  336. /*
  337. * Load the pae pdptrs. Return true is they are all valid.
  338. */
  339. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  340. {
  341. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  342. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  343. int i;
  344. u64 *pdpt;
  345. int ret;
  346. struct page *page;
  347. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  348. mutex_lock(&vcpu->kvm->lock);
  349. page = gfn_to_page(vcpu->kvm, pdpt_gfn);
  350. if (!page) {
  351. ret = 0;
  352. goto out;
  353. }
  354. pdpt = kmap_atomic(page, KM_USER0);
  355. memcpy(pdpte, pdpt+offset, sizeof(pdpte));
  356. kunmap_atomic(pdpt, KM_USER0);
  357. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  358. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  359. ret = 0;
  360. goto out;
  361. }
  362. }
  363. ret = 1;
  364. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  365. out:
  366. mutex_unlock(&vcpu->kvm->lock);
  367. return ret;
  368. }
  369. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  370. {
  371. if (cr0 & CR0_RESERVED_BITS) {
  372. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  373. cr0, vcpu->cr0);
  374. inject_gp(vcpu);
  375. return;
  376. }
  377. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  378. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  379. inject_gp(vcpu);
  380. return;
  381. }
  382. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  383. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  384. "and a clear PE flag\n");
  385. inject_gp(vcpu);
  386. return;
  387. }
  388. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  389. #ifdef CONFIG_X86_64
  390. if ((vcpu->shadow_efer & EFER_LME)) {
  391. int cs_db, cs_l;
  392. if (!is_pae(vcpu)) {
  393. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  394. "in long mode while PAE is disabled\n");
  395. inject_gp(vcpu);
  396. return;
  397. }
  398. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  399. if (cs_l) {
  400. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  401. "in long mode while CS.L == 1\n");
  402. inject_gp(vcpu);
  403. return;
  404. }
  405. } else
  406. #endif
  407. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  408. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  409. "reserved bits\n");
  410. inject_gp(vcpu);
  411. return;
  412. }
  413. }
  414. kvm_arch_ops->set_cr0(vcpu, cr0);
  415. vcpu->cr0 = cr0;
  416. mutex_lock(&vcpu->kvm->lock);
  417. kvm_mmu_reset_context(vcpu);
  418. mutex_unlock(&vcpu->kvm->lock);
  419. return;
  420. }
  421. EXPORT_SYMBOL_GPL(set_cr0);
  422. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  423. {
  424. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  425. }
  426. EXPORT_SYMBOL_GPL(lmsw);
  427. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  428. {
  429. if (cr4 & CR4_RESERVED_BITS) {
  430. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  431. inject_gp(vcpu);
  432. return;
  433. }
  434. if (is_long_mode(vcpu)) {
  435. if (!(cr4 & X86_CR4_PAE)) {
  436. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  437. "in long mode\n");
  438. inject_gp(vcpu);
  439. return;
  440. }
  441. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  442. && !load_pdptrs(vcpu, vcpu->cr3)) {
  443. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  444. inject_gp(vcpu);
  445. return;
  446. }
  447. if (cr4 & X86_CR4_VMXE) {
  448. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  449. inject_gp(vcpu);
  450. return;
  451. }
  452. kvm_arch_ops->set_cr4(vcpu, cr4);
  453. mutex_lock(&vcpu->kvm->lock);
  454. kvm_mmu_reset_context(vcpu);
  455. mutex_unlock(&vcpu->kvm->lock);
  456. }
  457. EXPORT_SYMBOL_GPL(set_cr4);
  458. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  459. {
  460. if (is_long_mode(vcpu)) {
  461. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  462. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  463. inject_gp(vcpu);
  464. return;
  465. }
  466. } else {
  467. if (is_pae(vcpu)) {
  468. if (cr3 & CR3_PAE_RESERVED_BITS) {
  469. printk(KERN_DEBUG
  470. "set_cr3: #GP, reserved bits\n");
  471. inject_gp(vcpu);
  472. return;
  473. }
  474. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  475. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  476. "reserved bits\n");
  477. inject_gp(vcpu);
  478. return;
  479. }
  480. } else {
  481. if (cr3 & CR3_NONPAE_RESERVED_BITS) {
  482. printk(KERN_DEBUG
  483. "set_cr3: #GP, reserved bits\n");
  484. inject_gp(vcpu);
  485. return;
  486. }
  487. }
  488. }
  489. mutex_lock(&vcpu->kvm->lock);
  490. /*
  491. * Does the new cr3 value map to physical memory? (Note, we
  492. * catch an invalid cr3 even in real-mode, because it would
  493. * cause trouble later on when we turn on paging anyway.)
  494. *
  495. * A real CPU would silently accept an invalid cr3 and would
  496. * attempt to use it - with largely undefined (and often hard
  497. * to debug) behavior on the guest side.
  498. */
  499. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  500. inject_gp(vcpu);
  501. else {
  502. vcpu->cr3 = cr3;
  503. vcpu->mmu.new_cr3(vcpu);
  504. }
  505. mutex_unlock(&vcpu->kvm->lock);
  506. }
  507. EXPORT_SYMBOL_GPL(set_cr3);
  508. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  509. {
  510. if (cr8 & CR8_RESERVED_BITS) {
  511. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  512. inject_gp(vcpu);
  513. return;
  514. }
  515. vcpu->cr8 = cr8;
  516. }
  517. EXPORT_SYMBOL_GPL(set_cr8);
  518. void fx_init(struct kvm_vcpu *vcpu)
  519. {
  520. unsigned after_mxcsr_mask;
  521. /* Initialize guest FPU by resetting ours and saving into guest's */
  522. preempt_disable();
  523. fx_save(&vcpu->host_fx_image);
  524. fpu_init();
  525. fx_save(&vcpu->guest_fx_image);
  526. fx_restore(&vcpu->host_fx_image);
  527. preempt_enable();
  528. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  529. vcpu->guest_fx_image.mxcsr = 0x1f80;
  530. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  531. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  532. }
  533. EXPORT_SYMBOL_GPL(fx_init);
  534. /*
  535. * Allocate some memory and give it an address in the guest physical address
  536. * space.
  537. *
  538. * Discontiguous memory is allowed, mostly for framebuffers.
  539. */
  540. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  541. struct kvm_memory_region *mem)
  542. {
  543. int r;
  544. gfn_t base_gfn;
  545. unsigned long npages;
  546. unsigned long i;
  547. struct kvm_memory_slot *memslot;
  548. struct kvm_memory_slot old, new;
  549. int memory_config_version;
  550. r = -EINVAL;
  551. /* General sanity checks */
  552. if (mem->memory_size & (PAGE_SIZE - 1))
  553. goto out;
  554. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  555. goto out;
  556. if (mem->slot >= KVM_MEMORY_SLOTS)
  557. goto out;
  558. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  559. goto out;
  560. memslot = &kvm->memslots[mem->slot];
  561. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  562. npages = mem->memory_size >> PAGE_SHIFT;
  563. if (!npages)
  564. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  565. raced:
  566. mutex_lock(&kvm->lock);
  567. memory_config_version = kvm->memory_config_version;
  568. new = old = *memslot;
  569. new.base_gfn = base_gfn;
  570. new.npages = npages;
  571. new.flags = mem->flags;
  572. /* Disallow changing a memory slot's size. */
  573. r = -EINVAL;
  574. if (npages && old.npages && npages != old.npages)
  575. goto out_unlock;
  576. /* Check for overlaps */
  577. r = -EEXIST;
  578. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  579. struct kvm_memory_slot *s = &kvm->memslots[i];
  580. if (s == memslot)
  581. continue;
  582. if (!((base_gfn + npages <= s->base_gfn) ||
  583. (base_gfn >= s->base_gfn + s->npages)))
  584. goto out_unlock;
  585. }
  586. /*
  587. * Do memory allocations outside lock. memory_config_version will
  588. * detect any races.
  589. */
  590. mutex_unlock(&kvm->lock);
  591. /* Deallocate if slot is being removed */
  592. if (!npages)
  593. new.phys_mem = NULL;
  594. /* Free page dirty bitmap if unneeded */
  595. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  596. new.dirty_bitmap = NULL;
  597. r = -ENOMEM;
  598. /* Allocate if a slot is being created */
  599. if (npages && !new.phys_mem) {
  600. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  601. if (!new.phys_mem)
  602. goto out_free;
  603. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  604. for (i = 0; i < npages; ++i) {
  605. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  606. | __GFP_ZERO);
  607. if (!new.phys_mem[i])
  608. goto out_free;
  609. set_page_private(new.phys_mem[i],0);
  610. }
  611. }
  612. /* Allocate page dirty bitmap if needed */
  613. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  614. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  615. new.dirty_bitmap = vmalloc(dirty_bytes);
  616. if (!new.dirty_bitmap)
  617. goto out_free;
  618. memset(new.dirty_bitmap, 0, dirty_bytes);
  619. }
  620. mutex_lock(&kvm->lock);
  621. if (memory_config_version != kvm->memory_config_version) {
  622. mutex_unlock(&kvm->lock);
  623. kvm_free_physmem_slot(&new, &old);
  624. goto raced;
  625. }
  626. r = -EAGAIN;
  627. if (kvm->busy)
  628. goto out_unlock;
  629. if (mem->slot >= kvm->nmemslots)
  630. kvm->nmemslots = mem->slot + 1;
  631. *memslot = new;
  632. ++kvm->memory_config_version;
  633. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  634. kvm_flush_remote_tlbs(kvm);
  635. mutex_unlock(&kvm->lock);
  636. kvm_free_physmem_slot(&old, &new);
  637. return 0;
  638. out_unlock:
  639. mutex_unlock(&kvm->lock);
  640. out_free:
  641. kvm_free_physmem_slot(&new, &old);
  642. out:
  643. return r;
  644. }
  645. /*
  646. * Get (and clear) the dirty memory log for a memory slot.
  647. */
  648. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  649. struct kvm_dirty_log *log)
  650. {
  651. struct kvm_memory_slot *memslot;
  652. int r, i;
  653. int n;
  654. unsigned long any = 0;
  655. mutex_lock(&kvm->lock);
  656. /*
  657. * Prevent changes to guest memory configuration even while the lock
  658. * is not taken.
  659. */
  660. ++kvm->busy;
  661. mutex_unlock(&kvm->lock);
  662. r = -EINVAL;
  663. if (log->slot >= KVM_MEMORY_SLOTS)
  664. goto out;
  665. memslot = &kvm->memslots[log->slot];
  666. r = -ENOENT;
  667. if (!memslot->dirty_bitmap)
  668. goto out;
  669. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  670. for (i = 0; !any && i < n/sizeof(long); ++i)
  671. any = memslot->dirty_bitmap[i];
  672. r = -EFAULT;
  673. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  674. goto out;
  675. /* If nothing is dirty, don't bother messing with page tables. */
  676. if (any) {
  677. mutex_lock(&kvm->lock);
  678. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  679. kvm_flush_remote_tlbs(kvm);
  680. memset(memslot->dirty_bitmap, 0, n);
  681. mutex_unlock(&kvm->lock);
  682. }
  683. r = 0;
  684. out:
  685. mutex_lock(&kvm->lock);
  686. --kvm->busy;
  687. mutex_unlock(&kvm->lock);
  688. return r;
  689. }
  690. /*
  691. * Set a new alias region. Aliases map a portion of physical memory into
  692. * another portion. This is useful for memory windows, for example the PC
  693. * VGA region.
  694. */
  695. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  696. struct kvm_memory_alias *alias)
  697. {
  698. int r, n;
  699. struct kvm_mem_alias *p;
  700. r = -EINVAL;
  701. /* General sanity checks */
  702. if (alias->memory_size & (PAGE_SIZE - 1))
  703. goto out;
  704. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  705. goto out;
  706. if (alias->slot >= KVM_ALIAS_SLOTS)
  707. goto out;
  708. if (alias->guest_phys_addr + alias->memory_size
  709. < alias->guest_phys_addr)
  710. goto out;
  711. if (alias->target_phys_addr + alias->memory_size
  712. < alias->target_phys_addr)
  713. goto out;
  714. mutex_lock(&kvm->lock);
  715. p = &kvm->aliases[alias->slot];
  716. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  717. p->npages = alias->memory_size >> PAGE_SHIFT;
  718. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  719. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  720. if (kvm->aliases[n - 1].npages)
  721. break;
  722. kvm->naliases = n;
  723. kvm_mmu_zap_all(kvm);
  724. mutex_unlock(&kvm->lock);
  725. return 0;
  726. out:
  727. return r;
  728. }
  729. static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  730. {
  731. int i;
  732. struct kvm_mem_alias *alias;
  733. for (i = 0; i < kvm->naliases; ++i) {
  734. alias = &kvm->aliases[i];
  735. if (gfn >= alias->base_gfn
  736. && gfn < alias->base_gfn + alias->npages)
  737. return alias->target_gfn + gfn - alias->base_gfn;
  738. }
  739. return gfn;
  740. }
  741. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  742. {
  743. int i;
  744. for (i = 0; i < kvm->nmemslots; ++i) {
  745. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  746. if (gfn >= memslot->base_gfn
  747. && gfn < memslot->base_gfn + memslot->npages)
  748. return memslot;
  749. }
  750. return NULL;
  751. }
  752. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  753. {
  754. gfn = unalias_gfn(kvm, gfn);
  755. return __gfn_to_memslot(kvm, gfn);
  756. }
  757. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  758. {
  759. struct kvm_memory_slot *slot;
  760. gfn = unalias_gfn(kvm, gfn);
  761. slot = __gfn_to_memslot(kvm, gfn);
  762. if (!slot)
  763. return NULL;
  764. return slot->phys_mem[gfn - slot->base_gfn];
  765. }
  766. EXPORT_SYMBOL_GPL(gfn_to_page);
  767. /* WARNING: Does not work on aliased pages. */
  768. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  769. {
  770. struct kvm_memory_slot *memslot;
  771. memslot = __gfn_to_memslot(kvm, gfn);
  772. if (memslot && memslot->dirty_bitmap) {
  773. unsigned long rel_gfn = gfn - memslot->base_gfn;
  774. /* avoid RMW */
  775. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  776. set_bit(rel_gfn, memslot->dirty_bitmap);
  777. }
  778. }
  779. int emulator_read_std(unsigned long addr,
  780. void *val,
  781. unsigned int bytes,
  782. struct kvm_vcpu *vcpu)
  783. {
  784. void *data = val;
  785. while (bytes) {
  786. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  787. unsigned offset = addr & (PAGE_SIZE-1);
  788. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  789. unsigned long pfn;
  790. struct page *page;
  791. void *page_virt;
  792. if (gpa == UNMAPPED_GVA)
  793. return X86EMUL_PROPAGATE_FAULT;
  794. pfn = gpa >> PAGE_SHIFT;
  795. page = gfn_to_page(vcpu->kvm, pfn);
  796. if (!page)
  797. return X86EMUL_UNHANDLEABLE;
  798. page_virt = kmap_atomic(page, KM_USER0);
  799. memcpy(data, page_virt + offset, tocopy);
  800. kunmap_atomic(page_virt, KM_USER0);
  801. bytes -= tocopy;
  802. data += tocopy;
  803. addr += tocopy;
  804. }
  805. return X86EMUL_CONTINUE;
  806. }
  807. EXPORT_SYMBOL_GPL(emulator_read_std);
  808. static int emulator_write_std(unsigned long addr,
  809. const void *val,
  810. unsigned int bytes,
  811. struct kvm_vcpu *vcpu)
  812. {
  813. pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
  814. return X86EMUL_UNHANDLEABLE;
  815. }
  816. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  817. gpa_t addr)
  818. {
  819. /*
  820. * Note that its important to have this wrapper function because
  821. * in the very near future we will be checking for MMIOs against
  822. * the LAPIC as well as the general MMIO bus
  823. */
  824. return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  825. }
  826. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  827. gpa_t addr)
  828. {
  829. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  830. }
  831. static int emulator_read_emulated(unsigned long addr,
  832. void *val,
  833. unsigned int bytes,
  834. struct kvm_vcpu *vcpu)
  835. {
  836. struct kvm_io_device *mmio_dev;
  837. gpa_t gpa;
  838. if (vcpu->mmio_read_completed) {
  839. memcpy(val, vcpu->mmio_data, bytes);
  840. vcpu->mmio_read_completed = 0;
  841. return X86EMUL_CONTINUE;
  842. } else if (emulator_read_std(addr, val, bytes, vcpu)
  843. == X86EMUL_CONTINUE)
  844. return X86EMUL_CONTINUE;
  845. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  846. if (gpa == UNMAPPED_GVA)
  847. return X86EMUL_PROPAGATE_FAULT;
  848. /*
  849. * Is this MMIO handled locally?
  850. */
  851. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  852. if (mmio_dev) {
  853. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  854. return X86EMUL_CONTINUE;
  855. }
  856. vcpu->mmio_needed = 1;
  857. vcpu->mmio_phys_addr = gpa;
  858. vcpu->mmio_size = bytes;
  859. vcpu->mmio_is_write = 0;
  860. return X86EMUL_UNHANDLEABLE;
  861. }
  862. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  863. const void *val, int bytes)
  864. {
  865. struct page *page;
  866. void *virt;
  867. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  868. return 0;
  869. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  870. if (!page)
  871. return 0;
  872. mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
  873. virt = kmap_atomic(page, KM_USER0);
  874. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  875. memcpy(virt + offset_in_page(gpa), val, bytes);
  876. kunmap_atomic(virt, KM_USER0);
  877. return 1;
  878. }
  879. static int emulator_write_emulated_onepage(unsigned long addr,
  880. const void *val,
  881. unsigned int bytes,
  882. struct kvm_vcpu *vcpu)
  883. {
  884. struct kvm_io_device *mmio_dev;
  885. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  886. if (gpa == UNMAPPED_GVA) {
  887. kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
  888. return X86EMUL_PROPAGATE_FAULT;
  889. }
  890. if (emulator_write_phys(vcpu, gpa, val, bytes))
  891. return X86EMUL_CONTINUE;
  892. /*
  893. * Is this MMIO handled locally?
  894. */
  895. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  896. if (mmio_dev) {
  897. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  898. return X86EMUL_CONTINUE;
  899. }
  900. vcpu->mmio_needed = 1;
  901. vcpu->mmio_phys_addr = gpa;
  902. vcpu->mmio_size = bytes;
  903. vcpu->mmio_is_write = 1;
  904. memcpy(vcpu->mmio_data, val, bytes);
  905. return X86EMUL_CONTINUE;
  906. }
  907. int emulator_write_emulated(unsigned long addr,
  908. const void *val,
  909. unsigned int bytes,
  910. struct kvm_vcpu *vcpu)
  911. {
  912. /* Crossing a page boundary? */
  913. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  914. int rc, now;
  915. now = -addr & ~PAGE_MASK;
  916. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  917. if (rc != X86EMUL_CONTINUE)
  918. return rc;
  919. addr += now;
  920. val += now;
  921. bytes -= now;
  922. }
  923. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  924. }
  925. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  926. static int emulator_cmpxchg_emulated(unsigned long addr,
  927. const void *old,
  928. const void *new,
  929. unsigned int bytes,
  930. struct kvm_vcpu *vcpu)
  931. {
  932. static int reported;
  933. if (!reported) {
  934. reported = 1;
  935. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  936. }
  937. return emulator_write_emulated(addr, new, bytes, vcpu);
  938. }
  939. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  940. {
  941. return kvm_arch_ops->get_segment_base(vcpu, seg);
  942. }
  943. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  944. {
  945. return X86EMUL_CONTINUE;
  946. }
  947. int emulate_clts(struct kvm_vcpu *vcpu)
  948. {
  949. unsigned long cr0;
  950. cr0 = vcpu->cr0 & ~X86_CR0_TS;
  951. kvm_arch_ops->set_cr0(vcpu, cr0);
  952. return X86EMUL_CONTINUE;
  953. }
  954. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  955. {
  956. struct kvm_vcpu *vcpu = ctxt->vcpu;
  957. switch (dr) {
  958. case 0 ... 3:
  959. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  960. return X86EMUL_CONTINUE;
  961. default:
  962. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  963. return X86EMUL_UNHANDLEABLE;
  964. }
  965. }
  966. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  967. {
  968. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  969. int exception;
  970. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  971. if (exception) {
  972. /* FIXME: better handling */
  973. return X86EMUL_UNHANDLEABLE;
  974. }
  975. return X86EMUL_CONTINUE;
  976. }
  977. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  978. {
  979. static int reported;
  980. u8 opcodes[4];
  981. unsigned long rip = ctxt->vcpu->rip;
  982. unsigned long rip_linear;
  983. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  984. if (reported)
  985. return;
  986. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt->vcpu);
  987. printk(KERN_ERR "emulation failed but !mmio_needed?"
  988. " rip %lx %02x %02x %02x %02x\n",
  989. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  990. reported = 1;
  991. }
  992. struct x86_emulate_ops emulate_ops = {
  993. .read_std = emulator_read_std,
  994. .write_std = emulator_write_std,
  995. .read_emulated = emulator_read_emulated,
  996. .write_emulated = emulator_write_emulated,
  997. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  998. };
  999. int emulate_instruction(struct kvm_vcpu *vcpu,
  1000. struct kvm_run *run,
  1001. unsigned long cr2,
  1002. u16 error_code)
  1003. {
  1004. struct x86_emulate_ctxt emulate_ctxt;
  1005. int r;
  1006. int cs_db, cs_l;
  1007. vcpu->mmio_fault_cr2 = cr2;
  1008. kvm_arch_ops->cache_regs(vcpu);
  1009. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1010. emulate_ctxt.vcpu = vcpu;
  1011. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  1012. emulate_ctxt.cr2 = cr2;
  1013. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  1014. ? X86EMUL_MODE_REAL : cs_l
  1015. ? X86EMUL_MODE_PROT64 : cs_db
  1016. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1017. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1018. emulate_ctxt.cs_base = 0;
  1019. emulate_ctxt.ds_base = 0;
  1020. emulate_ctxt.es_base = 0;
  1021. emulate_ctxt.ss_base = 0;
  1022. } else {
  1023. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  1024. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  1025. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  1026. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  1027. }
  1028. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  1029. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  1030. vcpu->mmio_is_write = 0;
  1031. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  1032. if ((r || vcpu->mmio_is_write) && run) {
  1033. run->exit_reason = KVM_EXIT_MMIO;
  1034. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1035. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1036. run->mmio.len = vcpu->mmio_size;
  1037. run->mmio.is_write = vcpu->mmio_is_write;
  1038. }
  1039. if (r) {
  1040. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1041. return EMULATE_DONE;
  1042. if (!vcpu->mmio_needed) {
  1043. report_emulation_failure(&emulate_ctxt);
  1044. return EMULATE_FAIL;
  1045. }
  1046. return EMULATE_DO_MMIO;
  1047. }
  1048. kvm_arch_ops->decache_regs(vcpu);
  1049. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  1050. if (vcpu->mmio_is_write) {
  1051. vcpu->mmio_needed = 0;
  1052. return EMULATE_DO_MMIO;
  1053. }
  1054. return EMULATE_DONE;
  1055. }
  1056. EXPORT_SYMBOL_GPL(emulate_instruction);
  1057. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1058. {
  1059. if (vcpu->irq_summary)
  1060. return 1;
  1061. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1062. ++vcpu->stat.halt_exits;
  1063. return 0;
  1064. }
  1065. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1066. int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1067. {
  1068. unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
  1069. kvm_arch_ops->cache_regs(vcpu);
  1070. ret = -KVM_EINVAL;
  1071. #ifdef CONFIG_X86_64
  1072. if (is_long_mode(vcpu)) {
  1073. nr = vcpu->regs[VCPU_REGS_RAX];
  1074. a0 = vcpu->regs[VCPU_REGS_RDI];
  1075. a1 = vcpu->regs[VCPU_REGS_RSI];
  1076. a2 = vcpu->regs[VCPU_REGS_RDX];
  1077. a3 = vcpu->regs[VCPU_REGS_RCX];
  1078. a4 = vcpu->regs[VCPU_REGS_R8];
  1079. a5 = vcpu->regs[VCPU_REGS_R9];
  1080. } else
  1081. #endif
  1082. {
  1083. nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
  1084. a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
  1085. a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
  1086. a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
  1087. a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
  1088. a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
  1089. a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
  1090. }
  1091. switch (nr) {
  1092. default:
  1093. run->hypercall.nr = nr;
  1094. run->hypercall.args[0] = a0;
  1095. run->hypercall.args[1] = a1;
  1096. run->hypercall.args[2] = a2;
  1097. run->hypercall.args[3] = a3;
  1098. run->hypercall.args[4] = a4;
  1099. run->hypercall.args[5] = a5;
  1100. run->hypercall.ret = ret;
  1101. run->hypercall.longmode = is_long_mode(vcpu);
  1102. kvm_arch_ops->decache_regs(vcpu);
  1103. return 0;
  1104. }
  1105. vcpu->regs[VCPU_REGS_RAX] = ret;
  1106. kvm_arch_ops->decache_regs(vcpu);
  1107. return 1;
  1108. }
  1109. EXPORT_SYMBOL_GPL(kvm_hypercall);
  1110. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1111. {
  1112. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1113. }
  1114. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1115. {
  1116. struct descriptor_table dt = { limit, base };
  1117. kvm_arch_ops->set_gdt(vcpu, &dt);
  1118. }
  1119. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1120. {
  1121. struct descriptor_table dt = { limit, base };
  1122. kvm_arch_ops->set_idt(vcpu, &dt);
  1123. }
  1124. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1125. unsigned long *rflags)
  1126. {
  1127. lmsw(vcpu, msw);
  1128. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1129. }
  1130. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1131. {
  1132. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1133. switch (cr) {
  1134. case 0:
  1135. return vcpu->cr0;
  1136. case 2:
  1137. return vcpu->cr2;
  1138. case 3:
  1139. return vcpu->cr3;
  1140. case 4:
  1141. return vcpu->cr4;
  1142. default:
  1143. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1144. return 0;
  1145. }
  1146. }
  1147. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1148. unsigned long *rflags)
  1149. {
  1150. switch (cr) {
  1151. case 0:
  1152. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1153. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1154. break;
  1155. case 2:
  1156. vcpu->cr2 = val;
  1157. break;
  1158. case 3:
  1159. set_cr3(vcpu, val);
  1160. break;
  1161. case 4:
  1162. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1163. break;
  1164. default:
  1165. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1166. }
  1167. }
  1168. /*
  1169. * Register the para guest with the host:
  1170. */
  1171. static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
  1172. {
  1173. struct kvm_vcpu_para_state *para_state;
  1174. hpa_t para_state_hpa, hypercall_hpa;
  1175. struct page *para_state_page;
  1176. unsigned char *hypercall;
  1177. gpa_t hypercall_gpa;
  1178. printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
  1179. printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
  1180. /*
  1181. * Needs to be page aligned:
  1182. */
  1183. if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
  1184. goto err_gp;
  1185. para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
  1186. printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
  1187. if (is_error_hpa(para_state_hpa))
  1188. goto err_gp;
  1189. mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
  1190. para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
  1191. para_state = kmap(para_state_page);
  1192. printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
  1193. printk(KERN_DEBUG ".... size: %d\n", para_state->size);
  1194. para_state->host_version = KVM_PARA_API_VERSION;
  1195. /*
  1196. * We cannot support guests that try to register themselves
  1197. * with a newer API version than the host supports:
  1198. */
  1199. if (para_state->guest_version > KVM_PARA_API_VERSION) {
  1200. para_state->ret = -KVM_EINVAL;
  1201. goto err_kunmap_skip;
  1202. }
  1203. hypercall_gpa = para_state->hypercall_gpa;
  1204. hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
  1205. printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
  1206. if (is_error_hpa(hypercall_hpa)) {
  1207. para_state->ret = -KVM_EINVAL;
  1208. goto err_kunmap_skip;
  1209. }
  1210. printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
  1211. vcpu->para_state_page = para_state_page;
  1212. vcpu->para_state_gpa = para_state_gpa;
  1213. vcpu->hypercall_gpa = hypercall_gpa;
  1214. mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
  1215. hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
  1216. KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
  1217. kvm_arch_ops->patch_hypercall(vcpu, hypercall);
  1218. kunmap_atomic(hypercall, KM_USER1);
  1219. para_state->ret = 0;
  1220. err_kunmap_skip:
  1221. kunmap(para_state_page);
  1222. return 0;
  1223. err_gp:
  1224. return 1;
  1225. }
  1226. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1227. {
  1228. u64 data;
  1229. switch (msr) {
  1230. case 0xc0010010: /* SYSCFG */
  1231. case 0xc0010015: /* HWCR */
  1232. case MSR_IA32_PLATFORM_ID:
  1233. case MSR_IA32_P5_MC_ADDR:
  1234. case MSR_IA32_P5_MC_TYPE:
  1235. case MSR_IA32_MC0_CTL:
  1236. case MSR_IA32_MCG_STATUS:
  1237. case MSR_IA32_MCG_CAP:
  1238. case MSR_IA32_MC0_MISC:
  1239. case MSR_IA32_MC0_MISC+4:
  1240. case MSR_IA32_MC0_MISC+8:
  1241. case MSR_IA32_MC0_MISC+12:
  1242. case MSR_IA32_MC0_MISC+16:
  1243. case MSR_IA32_UCODE_REV:
  1244. case MSR_IA32_PERF_STATUS:
  1245. case MSR_IA32_EBL_CR_POWERON:
  1246. /* MTRR registers */
  1247. case 0xfe:
  1248. case 0x200 ... 0x2ff:
  1249. data = 0;
  1250. break;
  1251. case 0xcd: /* fsb frequency */
  1252. data = 3;
  1253. break;
  1254. case MSR_IA32_APICBASE:
  1255. data = vcpu->apic_base;
  1256. break;
  1257. case MSR_IA32_MISC_ENABLE:
  1258. data = vcpu->ia32_misc_enable_msr;
  1259. break;
  1260. #ifdef CONFIG_X86_64
  1261. case MSR_EFER:
  1262. data = vcpu->shadow_efer;
  1263. break;
  1264. #endif
  1265. default:
  1266. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1267. return 1;
  1268. }
  1269. *pdata = data;
  1270. return 0;
  1271. }
  1272. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1273. /*
  1274. * Reads an msr value (of 'msr_index') into 'pdata'.
  1275. * Returns 0 on success, non-0 otherwise.
  1276. * Assumes vcpu_load() was already called.
  1277. */
  1278. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1279. {
  1280. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  1281. }
  1282. #ifdef CONFIG_X86_64
  1283. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1284. {
  1285. if (efer & EFER_RESERVED_BITS) {
  1286. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1287. efer);
  1288. inject_gp(vcpu);
  1289. return;
  1290. }
  1291. if (is_paging(vcpu)
  1292. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1293. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1294. inject_gp(vcpu);
  1295. return;
  1296. }
  1297. kvm_arch_ops->set_efer(vcpu, efer);
  1298. efer &= ~EFER_LMA;
  1299. efer |= vcpu->shadow_efer & EFER_LMA;
  1300. vcpu->shadow_efer = efer;
  1301. }
  1302. #endif
  1303. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1304. {
  1305. switch (msr) {
  1306. #ifdef CONFIG_X86_64
  1307. case MSR_EFER:
  1308. set_efer(vcpu, data);
  1309. break;
  1310. #endif
  1311. case MSR_IA32_MC0_STATUS:
  1312. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1313. __FUNCTION__, data);
  1314. break;
  1315. case MSR_IA32_MCG_STATUS:
  1316. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1317. __FUNCTION__, data);
  1318. break;
  1319. case MSR_IA32_UCODE_REV:
  1320. case MSR_IA32_UCODE_WRITE:
  1321. case 0x200 ... 0x2ff: /* MTRRs */
  1322. break;
  1323. case MSR_IA32_APICBASE:
  1324. vcpu->apic_base = data;
  1325. break;
  1326. case MSR_IA32_MISC_ENABLE:
  1327. vcpu->ia32_misc_enable_msr = data;
  1328. break;
  1329. /*
  1330. * This is the 'probe whether the host is KVM' logic:
  1331. */
  1332. case MSR_KVM_API_MAGIC:
  1333. return vcpu_register_para(vcpu, data);
  1334. default:
  1335. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
  1336. return 1;
  1337. }
  1338. return 0;
  1339. }
  1340. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1341. /*
  1342. * Writes msr value into into the appropriate "register".
  1343. * Returns 0 on success, non-0 otherwise.
  1344. * Assumes vcpu_load() was already called.
  1345. */
  1346. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1347. {
  1348. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1349. }
  1350. void kvm_resched(struct kvm_vcpu *vcpu)
  1351. {
  1352. if (!need_resched())
  1353. return;
  1354. cond_resched();
  1355. }
  1356. EXPORT_SYMBOL_GPL(kvm_resched);
  1357. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1358. {
  1359. int i;
  1360. u32 function;
  1361. struct kvm_cpuid_entry *e, *best;
  1362. kvm_arch_ops->cache_regs(vcpu);
  1363. function = vcpu->regs[VCPU_REGS_RAX];
  1364. vcpu->regs[VCPU_REGS_RAX] = 0;
  1365. vcpu->regs[VCPU_REGS_RBX] = 0;
  1366. vcpu->regs[VCPU_REGS_RCX] = 0;
  1367. vcpu->regs[VCPU_REGS_RDX] = 0;
  1368. best = NULL;
  1369. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1370. e = &vcpu->cpuid_entries[i];
  1371. if (e->function == function) {
  1372. best = e;
  1373. break;
  1374. }
  1375. /*
  1376. * Both basic or both extended?
  1377. */
  1378. if (((e->function ^ function) & 0x80000000) == 0)
  1379. if (!best || e->function > best->function)
  1380. best = e;
  1381. }
  1382. if (best) {
  1383. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1384. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1385. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1386. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1387. }
  1388. kvm_arch_ops->decache_regs(vcpu);
  1389. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1390. }
  1391. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1392. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1393. {
  1394. void *p = vcpu->pio_data;
  1395. void *q;
  1396. unsigned bytes;
  1397. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1398. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1399. PAGE_KERNEL);
  1400. if (!q) {
  1401. free_pio_guest_pages(vcpu);
  1402. return -ENOMEM;
  1403. }
  1404. q += vcpu->pio.guest_page_offset;
  1405. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1406. if (vcpu->pio.in)
  1407. memcpy(q, p, bytes);
  1408. else
  1409. memcpy(p, q, bytes);
  1410. q -= vcpu->pio.guest_page_offset;
  1411. vunmap(q);
  1412. free_pio_guest_pages(vcpu);
  1413. return 0;
  1414. }
  1415. static int complete_pio(struct kvm_vcpu *vcpu)
  1416. {
  1417. struct kvm_pio_request *io = &vcpu->pio;
  1418. long delta;
  1419. int r;
  1420. kvm_arch_ops->cache_regs(vcpu);
  1421. if (!io->string) {
  1422. if (io->in)
  1423. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1424. io->size);
  1425. } else {
  1426. if (io->in) {
  1427. r = pio_copy_data(vcpu);
  1428. if (r) {
  1429. kvm_arch_ops->cache_regs(vcpu);
  1430. return r;
  1431. }
  1432. }
  1433. delta = 1;
  1434. if (io->rep) {
  1435. delta *= io->cur_count;
  1436. /*
  1437. * The size of the register should really depend on
  1438. * current address size.
  1439. */
  1440. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1441. }
  1442. if (io->down)
  1443. delta = -delta;
  1444. delta *= io->size;
  1445. if (io->in)
  1446. vcpu->regs[VCPU_REGS_RDI] += delta;
  1447. else
  1448. vcpu->regs[VCPU_REGS_RSI] += delta;
  1449. }
  1450. kvm_arch_ops->decache_regs(vcpu);
  1451. io->count -= io->cur_count;
  1452. io->cur_count = 0;
  1453. if (!io->count)
  1454. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1455. return 0;
  1456. }
  1457. static void kernel_pio(struct kvm_io_device *pio_dev,
  1458. struct kvm_vcpu *vcpu,
  1459. void *pd)
  1460. {
  1461. /* TODO: String I/O for in kernel device */
  1462. if (vcpu->pio.in)
  1463. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1464. vcpu->pio.size,
  1465. pd);
  1466. else
  1467. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1468. vcpu->pio.size,
  1469. pd);
  1470. }
  1471. static void pio_string_write(struct kvm_io_device *pio_dev,
  1472. struct kvm_vcpu *vcpu)
  1473. {
  1474. struct kvm_pio_request *io = &vcpu->pio;
  1475. void *pd = vcpu->pio_data;
  1476. int i;
  1477. for (i = 0; i < io->cur_count; i++) {
  1478. kvm_iodevice_write(pio_dev, io->port,
  1479. io->size,
  1480. pd);
  1481. pd += io->size;
  1482. }
  1483. }
  1484. int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1485. int size, unsigned long count, int string, int down,
  1486. gva_t address, int rep, unsigned port)
  1487. {
  1488. unsigned now, in_page;
  1489. int i, ret = 0;
  1490. int nr_pages = 1;
  1491. struct page *page;
  1492. struct kvm_io_device *pio_dev;
  1493. vcpu->run->exit_reason = KVM_EXIT_IO;
  1494. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1495. vcpu->run->io.size = size;
  1496. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1497. vcpu->run->io.count = count;
  1498. vcpu->run->io.port = port;
  1499. vcpu->pio.count = count;
  1500. vcpu->pio.cur_count = count;
  1501. vcpu->pio.size = size;
  1502. vcpu->pio.in = in;
  1503. vcpu->pio.port = port;
  1504. vcpu->pio.string = string;
  1505. vcpu->pio.down = down;
  1506. vcpu->pio.guest_page_offset = offset_in_page(address);
  1507. vcpu->pio.rep = rep;
  1508. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1509. if (!string) {
  1510. kvm_arch_ops->cache_regs(vcpu);
  1511. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1512. kvm_arch_ops->decache_regs(vcpu);
  1513. if (pio_dev) {
  1514. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1515. complete_pio(vcpu);
  1516. return 1;
  1517. }
  1518. return 0;
  1519. }
  1520. if (!count) {
  1521. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1522. return 1;
  1523. }
  1524. if (!down)
  1525. in_page = PAGE_SIZE - offset_in_page(address);
  1526. else
  1527. in_page = offset_in_page(address) + size;
  1528. now = min(count, (unsigned long)in_page / size);
  1529. if (!now) {
  1530. /*
  1531. * String I/O straddles page boundary. Pin two guest pages
  1532. * so that we satisfy atomicity constraints. Do just one
  1533. * transaction to avoid complexity.
  1534. */
  1535. nr_pages = 2;
  1536. now = 1;
  1537. }
  1538. if (down) {
  1539. /*
  1540. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1541. */
  1542. pr_unimpl(vcpu, "guest string pio down\n");
  1543. inject_gp(vcpu);
  1544. return 1;
  1545. }
  1546. vcpu->run->io.count = now;
  1547. vcpu->pio.cur_count = now;
  1548. for (i = 0; i < nr_pages; ++i) {
  1549. mutex_lock(&vcpu->kvm->lock);
  1550. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1551. if (page)
  1552. get_page(page);
  1553. vcpu->pio.guest_pages[i] = page;
  1554. mutex_unlock(&vcpu->kvm->lock);
  1555. if (!page) {
  1556. inject_gp(vcpu);
  1557. free_pio_guest_pages(vcpu);
  1558. return 1;
  1559. }
  1560. }
  1561. if (!vcpu->pio.in) {
  1562. /* string PIO write */
  1563. ret = pio_copy_data(vcpu);
  1564. if (ret >= 0 && pio_dev) {
  1565. pio_string_write(pio_dev, vcpu);
  1566. complete_pio(vcpu);
  1567. if (vcpu->pio.count == 0)
  1568. ret = 1;
  1569. }
  1570. } else if (pio_dev)
  1571. pr_unimpl(vcpu, "no string pio read support yet, "
  1572. "port %x size %d count %ld\n",
  1573. port, size, count);
  1574. return ret;
  1575. }
  1576. EXPORT_SYMBOL_GPL(kvm_setup_pio);
  1577. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1578. {
  1579. int r;
  1580. sigset_t sigsaved;
  1581. vcpu_load(vcpu);
  1582. if (vcpu->sigset_active)
  1583. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1584. /* re-sync apic's tpr */
  1585. vcpu->cr8 = kvm_run->cr8;
  1586. if (vcpu->pio.cur_count) {
  1587. r = complete_pio(vcpu);
  1588. if (r)
  1589. goto out;
  1590. }
  1591. if (vcpu->mmio_needed) {
  1592. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1593. vcpu->mmio_read_completed = 1;
  1594. vcpu->mmio_needed = 0;
  1595. r = emulate_instruction(vcpu, kvm_run,
  1596. vcpu->mmio_fault_cr2, 0);
  1597. if (r == EMULATE_DO_MMIO) {
  1598. /*
  1599. * Read-modify-write. Back to userspace.
  1600. */
  1601. r = 0;
  1602. goto out;
  1603. }
  1604. }
  1605. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1606. kvm_arch_ops->cache_regs(vcpu);
  1607. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1608. kvm_arch_ops->decache_regs(vcpu);
  1609. }
  1610. r = kvm_arch_ops->run(vcpu, kvm_run);
  1611. out:
  1612. if (vcpu->sigset_active)
  1613. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1614. vcpu_put(vcpu);
  1615. return r;
  1616. }
  1617. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1618. struct kvm_regs *regs)
  1619. {
  1620. vcpu_load(vcpu);
  1621. kvm_arch_ops->cache_regs(vcpu);
  1622. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1623. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1624. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1625. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1626. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1627. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1628. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1629. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1630. #ifdef CONFIG_X86_64
  1631. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1632. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1633. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1634. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1635. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1636. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1637. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1638. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1639. #endif
  1640. regs->rip = vcpu->rip;
  1641. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1642. /*
  1643. * Don't leak debug flags in case they were set for guest debugging
  1644. */
  1645. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1646. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1647. vcpu_put(vcpu);
  1648. return 0;
  1649. }
  1650. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1651. struct kvm_regs *regs)
  1652. {
  1653. vcpu_load(vcpu);
  1654. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1655. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1656. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1657. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1658. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1659. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1660. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1661. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1662. #ifdef CONFIG_X86_64
  1663. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1664. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1665. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1666. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1667. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1668. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1669. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1670. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1671. #endif
  1672. vcpu->rip = regs->rip;
  1673. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1674. kvm_arch_ops->decache_regs(vcpu);
  1675. vcpu_put(vcpu);
  1676. return 0;
  1677. }
  1678. static void get_segment(struct kvm_vcpu *vcpu,
  1679. struct kvm_segment *var, int seg)
  1680. {
  1681. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1682. }
  1683. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1684. struct kvm_sregs *sregs)
  1685. {
  1686. struct descriptor_table dt;
  1687. vcpu_load(vcpu);
  1688. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1689. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1690. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1691. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1692. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1693. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1694. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1695. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1696. kvm_arch_ops->get_idt(vcpu, &dt);
  1697. sregs->idt.limit = dt.limit;
  1698. sregs->idt.base = dt.base;
  1699. kvm_arch_ops->get_gdt(vcpu, &dt);
  1700. sregs->gdt.limit = dt.limit;
  1701. sregs->gdt.base = dt.base;
  1702. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1703. sregs->cr0 = vcpu->cr0;
  1704. sregs->cr2 = vcpu->cr2;
  1705. sregs->cr3 = vcpu->cr3;
  1706. sregs->cr4 = vcpu->cr4;
  1707. sregs->cr8 = vcpu->cr8;
  1708. sregs->efer = vcpu->shadow_efer;
  1709. sregs->apic_base = vcpu->apic_base;
  1710. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1711. sizeof sregs->interrupt_bitmap);
  1712. vcpu_put(vcpu);
  1713. return 0;
  1714. }
  1715. static void set_segment(struct kvm_vcpu *vcpu,
  1716. struct kvm_segment *var, int seg)
  1717. {
  1718. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1719. }
  1720. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1721. struct kvm_sregs *sregs)
  1722. {
  1723. int mmu_reset_needed = 0;
  1724. int i;
  1725. struct descriptor_table dt;
  1726. vcpu_load(vcpu);
  1727. dt.limit = sregs->idt.limit;
  1728. dt.base = sregs->idt.base;
  1729. kvm_arch_ops->set_idt(vcpu, &dt);
  1730. dt.limit = sregs->gdt.limit;
  1731. dt.base = sregs->gdt.base;
  1732. kvm_arch_ops->set_gdt(vcpu, &dt);
  1733. vcpu->cr2 = sregs->cr2;
  1734. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1735. vcpu->cr3 = sregs->cr3;
  1736. vcpu->cr8 = sregs->cr8;
  1737. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1738. #ifdef CONFIG_X86_64
  1739. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1740. #endif
  1741. vcpu->apic_base = sregs->apic_base;
  1742. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1743. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1744. kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
  1745. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1746. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1747. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1748. load_pdptrs(vcpu, vcpu->cr3);
  1749. if (mmu_reset_needed)
  1750. kvm_mmu_reset_context(vcpu);
  1751. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1752. sizeof vcpu->irq_pending);
  1753. vcpu->irq_summary = 0;
  1754. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  1755. if (vcpu->irq_pending[i])
  1756. __set_bit(i, &vcpu->irq_summary);
  1757. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1758. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1759. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1760. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1761. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1762. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1763. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1764. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1765. vcpu_put(vcpu);
  1766. return 0;
  1767. }
  1768. /*
  1769. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1770. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1771. *
  1772. * This list is modified at module load time to reflect the
  1773. * capabilities of the host cpu.
  1774. */
  1775. static u32 msrs_to_save[] = {
  1776. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1777. MSR_K6_STAR,
  1778. #ifdef CONFIG_X86_64
  1779. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1780. #endif
  1781. MSR_IA32_TIME_STAMP_COUNTER,
  1782. };
  1783. static unsigned num_msrs_to_save;
  1784. static u32 emulated_msrs[] = {
  1785. MSR_IA32_MISC_ENABLE,
  1786. };
  1787. static __init void kvm_init_msr_list(void)
  1788. {
  1789. u32 dummy[2];
  1790. unsigned i, j;
  1791. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1792. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1793. continue;
  1794. if (j < i)
  1795. msrs_to_save[j] = msrs_to_save[i];
  1796. j++;
  1797. }
  1798. num_msrs_to_save = j;
  1799. }
  1800. /*
  1801. * Adapt set_msr() to msr_io()'s calling convention
  1802. */
  1803. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1804. {
  1805. return kvm_set_msr(vcpu, index, *data);
  1806. }
  1807. /*
  1808. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1809. *
  1810. * @return number of msrs set successfully.
  1811. */
  1812. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1813. struct kvm_msr_entry *entries,
  1814. int (*do_msr)(struct kvm_vcpu *vcpu,
  1815. unsigned index, u64 *data))
  1816. {
  1817. int i;
  1818. vcpu_load(vcpu);
  1819. for (i = 0; i < msrs->nmsrs; ++i)
  1820. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1821. break;
  1822. vcpu_put(vcpu);
  1823. return i;
  1824. }
  1825. /*
  1826. * Read or write a bunch of msrs. Parameters are user addresses.
  1827. *
  1828. * @return number of msrs set successfully.
  1829. */
  1830. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1831. int (*do_msr)(struct kvm_vcpu *vcpu,
  1832. unsigned index, u64 *data),
  1833. int writeback)
  1834. {
  1835. struct kvm_msrs msrs;
  1836. struct kvm_msr_entry *entries;
  1837. int r, n;
  1838. unsigned size;
  1839. r = -EFAULT;
  1840. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1841. goto out;
  1842. r = -E2BIG;
  1843. if (msrs.nmsrs >= MAX_IO_MSRS)
  1844. goto out;
  1845. r = -ENOMEM;
  1846. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1847. entries = vmalloc(size);
  1848. if (!entries)
  1849. goto out;
  1850. r = -EFAULT;
  1851. if (copy_from_user(entries, user_msrs->entries, size))
  1852. goto out_free;
  1853. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1854. if (r < 0)
  1855. goto out_free;
  1856. r = -EFAULT;
  1857. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1858. goto out_free;
  1859. r = n;
  1860. out_free:
  1861. vfree(entries);
  1862. out:
  1863. return r;
  1864. }
  1865. /*
  1866. * Translate a guest virtual address to a guest physical address.
  1867. */
  1868. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1869. struct kvm_translation *tr)
  1870. {
  1871. unsigned long vaddr = tr->linear_address;
  1872. gpa_t gpa;
  1873. vcpu_load(vcpu);
  1874. mutex_lock(&vcpu->kvm->lock);
  1875. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1876. tr->physical_address = gpa;
  1877. tr->valid = gpa != UNMAPPED_GVA;
  1878. tr->writeable = 1;
  1879. tr->usermode = 0;
  1880. mutex_unlock(&vcpu->kvm->lock);
  1881. vcpu_put(vcpu);
  1882. return 0;
  1883. }
  1884. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1885. struct kvm_interrupt *irq)
  1886. {
  1887. if (irq->irq < 0 || irq->irq >= 256)
  1888. return -EINVAL;
  1889. vcpu_load(vcpu);
  1890. set_bit(irq->irq, vcpu->irq_pending);
  1891. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1892. vcpu_put(vcpu);
  1893. return 0;
  1894. }
  1895. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1896. struct kvm_debug_guest *dbg)
  1897. {
  1898. int r;
  1899. vcpu_load(vcpu);
  1900. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1901. vcpu_put(vcpu);
  1902. return r;
  1903. }
  1904. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  1905. unsigned long address,
  1906. int *type)
  1907. {
  1908. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1909. unsigned long pgoff;
  1910. struct page *page;
  1911. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1912. if (pgoff == 0)
  1913. page = virt_to_page(vcpu->run);
  1914. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  1915. page = virt_to_page(vcpu->pio_data);
  1916. else
  1917. return NOPAGE_SIGBUS;
  1918. get_page(page);
  1919. if (type != NULL)
  1920. *type = VM_FAULT_MINOR;
  1921. return page;
  1922. }
  1923. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1924. .nopage = kvm_vcpu_nopage,
  1925. };
  1926. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1927. {
  1928. vma->vm_ops = &kvm_vcpu_vm_ops;
  1929. return 0;
  1930. }
  1931. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1932. {
  1933. struct kvm_vcpu *vcpu = filp->private_data;
  1934. fput(vcpu->kvm->filp);
  1935. return 0;
  1936. }
  1937. static struct file_operations kvm_vcpu_fops = {
  1938. .release = kvm_vcpu_release,
  1939. .unlocked_ioctl = kvm_vcpu_ioctl,
  1940. .compat_ioctl = kvm_vcpu_ioctl,
  1941. .mmap = kvm_vcpu_mmap,
  1942. };
  1943. /*
  1944. * Allocates an inode for the vcpu.
  1945. */
  1946. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1947. {
  1948. int fd, r;
  1949. struct inode *inode;
  1950. struct file *file;
  1951. r = anon_inode_getfd(&fd, &inode, &file,
  1952. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  1953. if (r)
  1954. return r;
  1955. atomic_inc(&vcpu->kvm->filp->f_count);
  1956. return fd;
  1957. }
  1958. /*
  1959. * Creates some virtual cpus. Good luck creating more than one.
  1960. */
  1961. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1962. {
  1963. int r;
  1964. struct kvm_vcpu *vcpu;
  1965. if (!valid_vcpu(n))
  1966. return -EINVAL;
  1967. vcpu = kvm_arch_ops->vcpu_create(kvm, n);
  1968. if (IS_ERR(vcpu))
  1969. return PTR_ERR(vcpu);
  1970. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1971. /* We do fxsave: this must be aligned. */
  1972. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  1973. vcpu_load(vcpu);
  1974. r = kvm_mmu_setup(vcpu);
  1975. vcpu_put(vcpu);
  1976. if (r < 0)
  1977. goto free_vcpu;
  1978. mutex_lock(&kvm->lock);
  1979. if (kvm->vcpus[n]) {
  1980. r = -EEXIST;
  1981. mutex_unlock(&kvm->lock);
  1982. goto mmu_unload;
  1983. }
  1984. kvm->vcpus[n] = vcpu;
  1985. mutex_unlock(&kvm->lock);
  1986. /* Now it's all set up, let userspace reach it */
  1987. r = create_vcpu_fd(vcpu);
  1988. if (r < 0)
  1989. goto unlink;
  1990. return r;
  1991. unlink:
  1992. mutex_lock(&kvm->lock);
  1993. kvm->vcpus[n] = NULL;
  1994. mutex_unlock(&kvm->lock);
  1995. mmu_unload:
  1996. vcpu_load(vcpu);
  1997. kvm_mmu_unload(vcpu);
  1998. vcpu_put(vcpu);
  1999. free_vcpu:
  2000. kvm_arch_ops->vcpu_free(vcpu);
  2001. return r;
  2002. }
  2003. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  2004. {
  2005. u64 efer;
  2006. int i;
  2007. struct kvm_cpuid_entry *e, *entry;
  2008. rdmsrl(MSR_EFER, efer);
  2009. entry = NULL;
  2010. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  2011. e = &vcpu->cpuid_entries[i];
  2012. if (e->function == 0x80000001) {
  2013. entry = e;
  2014. break;
  2015. }
  2016. }
  2017. if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
  2018. entry->edx &= ~(1 << 20);
  2019. printk(KERN_INFO "kvm: guest NX capability removed\n");
  2020. }
  2021. }
  2022. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  2023. struct kvm_cpuid *cpuid,
  2024. struct kvm_cpuid_entry __user *entries)
  2025. {
  2026. int r;
  2027. r = -E2BIG;
  2028. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2029. goto out;
  2030. r = -EFAULT;
  2031. if (copy_from_user(&vcpu->cpuid_entries, entries,
  2032. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  2033. goto out;
  2034. vcpu->cpuid_nent = cpuid->nent;
  2035. cpuid_fix_nx_cap(vcpu);
  2036. return 0;
  2037. out:
  2038. return r;
  2039. }
  2040. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2041. {
  2042. if (sigset) {
  2043. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2044. vcpu->sigset_active = 1;
  2045. vcpu->sigset = *sigset;
  2046. } else
  2047. vcpu->sigset_active = 0;
  2048. return 0;
  2049. }
  2050. /*
  2051. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2052. * we have asm/x86/processor.h
  2053. */
  2054. struct fxsave {
  2055. u16 cwd;
  2056. u16 swd;
  2057. u16 twd;
  2058. u16 fop;
  2059. u64 rip;
  2060. u64 rdp;
  2061. u32 mxcsr;
  2062. u32 mxcsr_mask;
  2063. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2064. #ifdef CONFIG_X86_64
  2065. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2066. #else
  2067. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2068. #endif
  2069. };
  2070. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2071. {
  2072. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2073. vcpu_load(vcpu);
  2074. memcpy(fpu->fpr, fxsave->st_space, 128);
  2075. fpu->fcw = fxsave->cwd;
  2076. fpu->fsw = fxsave->swd;
  2077. fpu->ftwx = fxsave->twd;
  2078. fpu->last_opcode = fxsave->fop;
  2079. fpu->last_ip = fxsave->rip;
  2080. fpu->last_dp = fxsave->rdp;
  2081. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2082. vcpu_put(vcpu);
  2083. return 0;
  2084. }
  2085. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2086. {
  2087. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2088. vcpu_load(vcpu);
  2089. memcpy(fxsave->st_space, fpu->fpr, 128);
  2090. fxsave->cwd = fpu->fcw;
  2091. fxsave->swd = fpu->fsw;
  2092. fxsave->twd = fpu->ftwx;
  2093. fxsave->fop = fpu->last_opcode;
  2094. fxsave->rip = fpu->last_ip;
  2095. fxsave->rdp = fpu->last_dp;
  2096. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2097. vcpu_put(vcpu);
  2098. return 0;
  2099. }
  2100. static long kvm_vcpu_ioctl(struct file *filp,
  2101. unsigned int ioctl, unsigned long arg)
  2102. {
  2103. struct kvm_vcpu *vcpu = filp->private_data;
  2104. void __user *argp = (void __user *)arg;
  2105. int r = -EINVAL;
  2106. switch (ioctl) {
  2107. case KVM_RUN:
  2108. r = -EINVAL;
  2109. if (arg)
  2110. goto out;
  2111. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2112. break;
  2113. case KVM_GET_REGS: {
  2114. struct kvm_regs kvm_regs;
  2115. memset(&kvm_regs, 0, sizeof kvm_regs);
  2116. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2117. if (r)
  2118. goto out;
  2119. r = -EFAULT;
  2120. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2121. goto out;
  2122. r = 0;
  2123. break;
  2124. }
  2125. case KVM_SET_REGS: {
  2126. struct kvm_regs kvm_regs;
  2127. r = -EFAULT;
  2128. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2129. goto out;
  2130. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2131. if (r)
  2132. goto out;
  2133. r = 0;
  2134. break;
  2135. }
  2136. case KVM_GET_SREGS: {
  2137. struct kvm_sregs kvm_sregs;
  2138. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2139. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2140. if (r)
  2141. goto out;
  2142. r = -EFAULT;
  2143. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2144. goto out;
  2145. r = 0;
  2146. break;
  2147. }
  2148. case KVM_SET_SREGS: {
  2149. struct kvm_sregs kvm_sregs;
  2150. r = -EFAULT;
  2151. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2152. goto out;
  2153. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2154. if (r)
  2155. goto out;
  2156. r = 0;
  2157. break;
  2158. }
  2159. case KVM_TRANSLATE: {
  2160. struct kvm_translation tr;
  2161. r = -EFAULT;
  2162. if (copy_from_user(&tr, argp, sizeof tr))
  2163. goto out;
  2164. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2165. if (r)
  2166. goto out;
  2167. r = -EFAULT;
  2168. if (copy_to_user(argp, &tr, sizeof tr))
  2169. goto out;
  2170. r = 0;
  2171. break;
  2172. }
  2173. case KVM_INTERRUPT: {
  2174. struct kvm_interrupt irq;
  2175. r = -EFAULT;
  2176. if (copy_from_user(&irq, argp, sizeof irq))
  2177. goto out;
  2178. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2179. if (r)
  2180. goto out;
  2181. r = 0;
  2182. break;
  2183. }
  2184. case KVM_DEBUG_GUEST: {
  2185. struct kvm_debug_guest dbg;
  2186. r = -EFAULT;
  2187. if (copy_from_user(&dbg, argp, sizeof dbg))
  2188. goto out;
  2189. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2190. if (r)
  2191. goto out;
  2192. r = 0;
  2193. break;
  2194. }
  2195. case KVM_GET_MSRS:
  2196. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2197. break;
  2198. case KVM_SET_MSRS:
  2199. r = msr_io(vcpu, argp, do_set_msr, 0);
  2200. break;
  2201. case KVM_SET_CPUID: {
  2202. struct kvm_cpuid __user *cpuid_arg = argp;
  2203. struct kvm_cpuid cpuid;
  2204. r = -EFAULT;
  2205. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2206. goto out;
  2207. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2208. if (r)
  2209. goto out;
  2210. break;
  2211. }
  2212. case KVM_SET_SIGNAL_MASK: {
  2213. struct kvm_signal_mask __user *sigmask_arg = argp;
  2214. struct kvm_signal_mask kvm_sigmask;
  2215. sigset_t sigset, *p;
  2216. p = NULL;
  2217. if (argp) {
  2218. r = -EFAULT;
  2219. if (copy_from_user(&kvm_sigmask, argp,
  2220. sizeof kvm_sigmask))
  2221. goto out;
  2222. r = -EINVAL;
  2223. if (kvm_sigmask.len != sizeof sigset)
  2224. goto out;
  2225. r = -EFAULT;
  2226. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2227. sizeof sigset))
  2228. goto out;
  2229. p = &sigset;
  2230. }
  2231. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2232. break;
  2233. }
  2234. case KVM_GET_FPU: {
  2235. struct kvm_fpu fpu;
  2236. memset(&fpu, 0, sizeof fpu);
  2237. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2238. if (r)
  2239. goto out;
  2240. r = -EFAULT;
  2241. if (copy_to_user(argp, &fpu, sizeof fpu))
  2242. goto out;
  2243. r = 0;
  2244. break;
  2245. }
  2246. case KVM_SET_FPU: {
  2247. struct kvm_fpu fpu;
  2248. r = -EFAULT;
  2249. if (copy_from_user(&fpu, argp, sizeof fpu))
  2250. goto out;
  2251. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2252. if (r)
  2253. goto out;
  2254. r = 0;
  2255. break;
  2256. }
  2257. default:
  2258. ;
  2259. }
  2260. out:
  2261. return r;
  2262. }
  2263. static long kvm_vm_ioctl(struct file *filp,
  2264. unsigned int ioctl, unsigned long arg)
  2265. {
  2266. struct kvm *kvm = filp->private_data;
  2267. void __user *argp = (void __user *)arg;
  2268. int r = -EINVAL;
  2269. switch (ioctl) {
  2270. case KVM_CREATE_VCPU:
  2271. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2272. if (r < 0)
  2273. goto out;
  2274. break;
  2275. case KVM_SET_MEMORY_REGION: {
  2276. struct kvm_memory_region kvm_mem;
  2277. r = -EFAULT;
  2278. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2279. goto out;
  2280. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
  2281. if (r)
  2282. goto out;
  2283. break;
  2284. }
  2285. case KVM_GET_DIRTY_LOG: {
  2286. struct kvm_dirty_log log;
  2287. r = -EFAULT;
  2288. if (copy_from_user(&log, argp, sizeof log))
  2289. goto out;
  2290. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2291. if (r)
  2292. goto out;
  2293. break;
  2294. }
  2295. case KVM_SET_MEMORY_ALIAS: {
  2296. struct kvm_memory_alias alias;
  2297. r = -EFAULT;
  2298. if (copy_from_user(&alias, argp, sizeof alias))
  2299. goto out;
  2300. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2301. if (r)
  2302. goto out;
  2303. break;
  2304. }
  2305. default:
  2306. ;
  2307. }
  2308. out:
  2309. return r;
  2310. }
  2311. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2312. unsigned long address,
  2313. int *type)
  2314. {
  2315. struct kvm *kvm = vma->vm_file->private_data;
  2316. unsigned long pgoff;
  2317. struct page *page;
  2318. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2319. page = gfn_to_page(kvm, pgoff);
  2320. if (!page)
  2321. return NOPAGE_SIGBUS;
  2322. get_page(page);
  2323. if (type != NULL)
  2324. *type = VM_FAULT_MINOR;
  2325. return page;
  2326. }
  2327. static struct vm_operations_struct kvm_vm_vm_ops = {
  2328. .nopage = kvm_vm_nopage,
  2329. };
  2330. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2331. {
  2332. vma->vm_ops = &kvm_vm_vm_ops;
  2333. return 0;
  2334. }
  2335. static struct file_operations kvm_vm_fops = {
  2336. .release = kvm_vm_release,
  2337. .unlocked_ioctl = kvm_vm_ioctl,
  2338. .compat_ioctl = kvm_vm_ioctl,
  2339. .mmap = kvm_vm_mmap,
  2340. };
  2341. static int kvm_dev_ioctl_create_vm(void)
  2342. {
  2343. int fd, r;
  2344. struct inode *inode;
  2345. struct file *file;
  2346. struct kvm *kvm;
  2347. kvm = kvm_create_vm();
  2348. if (IS_ERR(kvm))
  2349. return PTR_ERR(kvm);
  2350. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2351. if (r) {
  2352. kvm_destroy_vm(kvm);
  2353. return r;
  2354. }
  2355. kvm->filp = file;
  2356. return fd;
  2357. }
  2358. static long kvm_dev_ioctl(struct file *filp,
  2359. unsigned int ioctl, unsigned long arg)
  2360. {
  2361. void __user *argp = (void __user *)arg;
  2362. long r = -EINVAL;
  2363. switch (ioctl) {
  2364. case KVM_GET_API_VERSION:
  2365. r = -EINVAL;
  2366. if (arg)
  2367. goto out;
  2368. r = KVM_API_VERSION;
  2369. break;
  2370. case KVM_CREATE_VM:
  2371. r = -EINVAL;
  2372. if (arg)
  2373. goto out;
  2374. r = kvm_dev_ioctl_create_vm();
  2375. break;
  2376. case KVM_GET_MSR_INDEX_LIST: {
  2377. struct kvm_msr_list __user *user_msr_list = argp;
  2378. struct kvm_msr_list msr_list;
  2379. unsigned n;
  2380. r = -EFAULT;
  2381. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2382. goto out;
  2383. n = msr_list.nmsrs;
  2384. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2385. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2386. goto out;
  2387. r = -E2BIG;
  2388. if (n < num_msrs_to_save)
  2389. goto out;
  2390. r = -EFAULT;
  2391. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2392. num_msrs_to_save * sizeof(u32)))
  2393. goto out;
  2394. if (copy_to_user(user_msr_list->indices
  2395. + num_msrs_to_save * sizeof(u32),
  2396. &emulated_msrs,
  2397. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2398. goto out;
  2399. r = 0;
  2400. break;
  2401. }
  2402. case KVM_CHECK_EXTENSION:
  2403. /*
  2404. * No extensions defined at present.
  2405. */
  2406. r = 0;
  2407. break;
  2408. case KVM_GET_VCPU_MMAP_SIZE:
  2409. r = -EINVAL;
  2410. if (arg)
  2411. goto out;
  2412. r = 2 * PAGE_SIZE;
  2413. break;
  2414. default:
  2415. ;
  2416. }
  2417. out:
  2418. return r;
  2419. }
  2420. static struct file_operations kvm_chardev_ops = {
  2421. .unlocked_ioctl = kvm_dev_ioctl,
  2422. .compat_ioctl = kvm_dev_ioctl,
  2423. };
  2424. static struct miscdevice kvm_dev = {
  2425. KVM_MINOR,
  2426. "kvm",
  2427. &kvm_chardev_ops,
  2428. };
  2429. /*
  2430. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2431. * cached on it.
  2432. */
  2433. static void decache_vcpus_on_cpu(int cpu)
  2434. {
  2435. struct kvm *vm;
  2436. struct kvm_vcpu *vcpu;
  2437. int i;
  2438. spin_lock(&kvm_lock);
  2439. list_for_each_entry(vm, &vm_list, vm_list)
  2440. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2441. vcpu = vm->vcpus[i];
  2442. if (!vcpu)
  2443. continue;
  2444. /*
  2445. * If the vcpu is locked, then it is running on some
  2446. * other cpu and therefore it is not cached on the
  2447. * cpu in question.
  2448. *
  2449. * If it's not locked, check the last cpu it executed
  2450. * on.
  2451. */
  2452. if (mutex_trylock(&vcpu->mutex)) {
  2453. if (vcpu->cpu == cpu) {
  2454. kvm_arch_ops->vcpu_decache(vcpu);
  2455. vcpu->cpu = -1;
  2456. }
  2457. mutex_unlock(&vcpu->mutex);
  2458. }
  2459. }
  2460. spin_unlock(&kvm_lock);
  2461. }
  2462. static void hardware_enable(void *junk)
  2463. {
  2464. int cpu = raw_smp_processor_id();
  2465. if (cpu_isset(cpu, cpus_hardware_enabled))
  2466. return;
  2467. cpu_set(cpu, cpus_hardware_enabled);
  2468. kvm_arch_ops->hardware_enable(NULL);
  2469. }
  2470. static void hardware_disable(void *junk)
  2471. {
  2472. int cpu = raw_smp_processor_id();
  2473. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2474. return;
  2475. cpu_clear(cpu, cpus_hardware_enabled);
  2476. decache_vcpus_on_cpu(cpu);
  2477. kvm_arch_ops->hardware_disable(NULL);
  2478. }
  2479. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2480. void *v)
  2481. {
  2482. int cpu = (long)v;
  2483. switch (val) {
  2484. case CPU_DYING:
  2485. case CPU_DYING_FROZEN:
  2486. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2487. cpu);
  2488. hardware_disable(NULL);
  2489. break;
  2490. case CPU_UP_CANCELED:
  2491. case CPU_UP_CANCELED_FROZEN:
  2492. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2493. cpu);
  2494. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2495. break;
  2496. case CPU_ONLINE:
  2497. case CPU_ONLINE_FROZEN:
  2498. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2499. cpu);
  2500. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2501. break;
  2502. }
  2503. return NOTIFY_OK;
  2504. }
  2505. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2506. void *v)
  2507. {
  2508. if (val == SYS_RESTART) {
  2509. /*
  2510. * Some (well, at least mine) BIOSes hang on reboot if
  2511. * in vmx root mode.
  2512. */
  2513. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2514. on_each_cpu(hardware_disable, NULL, 0, 1);
  2515. }
  2516. return NOTIFY_OK;
  2517. }
  2518. static struct notifier_block kvm_reboot_notifier = {
  2519. .notifier_call = kvm_reboot,
  2520. .priority = 0,
  2521. };
  2522. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2523. {
  2524. memset(bus, 0, sizeof(*bus));
  2525. }
  2526. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2527. {
  2528. int i;
  2529. for (i = 0; i < bus->dev_count; i++) {
  2530. struct kvm_io_device *pos = bus->devs[i];
  2531. kvm_iodevice_destructor(pos);
  2532. }
  2533. }
  2534. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2535. {
  2536. int i;
  2537. for (i = 0; i < bus->dev_count; i++) {
  2538. struct kvm_io_device *pos = bus->devs[i];
  2539. if (pos->in_range(pos, addr))
  2540. return pos;
  2541. }
  2542. return NULL;
  2543. }
  2544. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2545. {
  2546. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2547. bus->devs[bus->dev_count++] = dev;
  2548. }
  2549. static struct notifier_block kvm_cpu_notifier = {
  2550. .notifier_call = kvm_cpu_hotplug,
  2551. .priority = 20, /* must be > scheduler priority */
  2552. };
  2553. static u64 stat_get(void *_offset)
  2554. {
  2555. unsigned offset = (long)_offset;
  2556. u64 total = 0;
  2557. struct kvm *kvm;
  2558. struct kvm_vcpu *vcpu;
  2559. int i;
  2560. spin_lock(&kvm_lock);
  2561. list_for_each_entry(kvm, &vm_list, vm_list)
  2562. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2563. vcpu = kvm->vcpus[i];
  2564. if (vcpu)
  2565. total += *(u32 *)((void *)vcpu + offset);
  2566. }
  2567. spin_unlock(&kvm_lock);
  2568. return total;
  2569. }
  2570. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  2571. static __init void kvm_init_debug(void)
  2572. {
  2573. struct kvm_stats_debugfs_item *p;
  2574. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2575. for (p = debugfs_entries; p->name; ++p)
  2576. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2577. (void *)(long)p->offset,
  2578. &stat_fops);
  2579. }
  2580. static void kvm_exit_debug(void)
  2581. {
  2582. struct kvm_stats_debugfs_item *p;
  2583. for (p = debugfs_entries; p->name; ++p)
  2584. debugfs_remove(p->dentry);
  2585. debugfs_remove(debugfs_dir);
  2586. }
  2587. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2588. {
  2589. hardware_disable(NULL);
  2590. return 0;
  2591. }
  2592. static int kvm_resume(struct sys_device *dev)
  2593. {
  2594. hardware_enable(NULL);
  2595. return 0;
  2596. }
  2597. static struct sysdev_class kvm_sysdev_class = {
  2598. set_kset_name("kvm"),
  2599. .suspend = kvm_suspend,
  2600. .resume = kvm_resume,
  2601. };
  2602. static struct sys_device kvm_sysdev = {
  2603. .id = 0,
  2604. .cls = &kvm_sysdev_class,
  2605. };
  2606. hpa_t bad_page_address;
  2607. static inline
  2608. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2609. {
  2610. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2611. }
  2612. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2613. {
  2614. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2615. kvm_arch_ops->vcpu_load(vcpu, cpu);
  2616. }
  2617. static void kvm_sched_out(struct preempt_notifier *pn,
  2618. struct task_struct *next)
  2619. {
  2620. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2621. kvm_arch_ops->vcpu_put(vcpu);
  2622. }
  2623. int kvm_init_arch(struct kvm_arch_ops *ops, unsigned int vcpu_size,
  2624. struct module *module)
  2625. {
  2626. int r;
  2627. int cpu;
  2628. if (kvm_arch_ops) {
  2629. printk(KERN_ERR "kvm: already loaded the other module\n");
  2630. return -EEXIST;
  2631. }
  2632. if (!ops->cpu_has_kvm_support()) {
  2633. printk(KERN_ERR "kvm: no hardware support\n");
  2634. return -EOPNOTSUPP;
  2635. }
  2636. if (ops->disabled_by_bios()) {
  2637. printk(KERN_ERR "kvm: disabled by bios\n");
  2638. return -EOPNOTSUPP;
  2639. }
  2640. kvm_arch_ops = ops;
  2641. r = kvm_arch_ops->hardware_setup();
  2642. if (r < 0)
  2643. goto out;
  2644. for_each_online_cpu(cpu) {
  2645. smp_call_function_single(cpu,
  2646. kvm_arch_ops->check_processor_compatibility,
  2647. &r, 0, 1);
  2648. if (r < 0)
  2649. goto out_free_0;
  2650. }
  2651. on_each_cpu(hardware_enable, NULL, 0, 1);
  2652. r = register_cpu_notifier(&kvm_cpu_notifier);
  2653. if (r)
  2654. goto out_free_1;
  2655. register_reboot_notifier(&kvm_reboot_notifier);
  2656. r = sysdev_class_register(&kvm_sysdev_class);
  2657. if (r)
  2658. goto out_free_2;
  2659. r = sysdev_register(&kvm_sysdev);
  2660. if (r)
  2661. goto out_free_3;
  2662. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2663. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2664. __alignof__(struct kvm_vcpu), 0, 0);
  2665. if (!kvm_vcpu_cache) {
  2666. r = -ENOMEM;
  2667. goto out_free_4;
  2668. }
  2669. kvm_chardev_ops.owner = module;
  2670. r = misc_register(&kvm_dev);
  2671. if (r) {
  2672. printk (KERN_ERR "kvm: misc device register failed\n");
  2673. goto out_free;
  2674. }
  2675. kvm_preempt_ops.sched_in = kvm_sched_in;
  2676. kvm_preempt_ops.sched_out = kvm_sched_out;
  2677. return r;
  2678. out_free:
  2679. kmem_cache_destroy(kvm_vcpu_cache);
  2680. out_free_4:
  2681. sysdev_unregister(&kvm_sysdev);
  2682. out_free_3:
  2683. sysdev_class_unregister(&kvm_sysdev_class);
  2684. out_free_2:
  2685. unregister_reboot_notifier(&kvm_reboot_notifier);
  2686. unregister_cpu_notifier(&kvm_cpu_notifier);
  2687. out_free_1:
  2688. on_each_cpu(hardware_disable, NULL, 0, 1);
  2689. out_free_0:
  2690. kvm_arch_ops->hardware_unsetup();
  2691. out:
  2692. kvm_arch_ops = NULL;
  2693. return r;
  2694. }
  2695. void kvm_exit_arch(void)
  2696. {
  2697. misc_deregister(&kvm_dev);
  2698. kmem_cache_destroy(kvm_vcpu_cache);
  2699. sysdev_unregister(&kvm_sysdev);
  2700. sysdev_class_unregister(&kvm_sysdev_class);
  2701. unregister_reboot_notifier(&kvm_reboot_notifier);
  2702. unregister_cpu_notifier(&kvm_cpu_notifier);
  2703. on_each_cpu(hardware_disable, NULL, 0, 1);
  2704. kvm_arch_ops->hardware_unsetup();
  2705. kvm_arch_ops = NULL;
  2706. }
  2707. static __init int kvm_init(void)
  2708. {
  2709. static struct page *bad_page;
  2710. int r;
  2711. r = kvm_mmu_module_init();
  2712. if (r)
  2713. goto out4;
  2714. kvm_init_debug();
  2715. kvm_init_msr_list();
  2716. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  2717. r = -ENOMEM;
  2718. goto out;
  2719. }
  2720. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  2721. memset(__va(bad_page_address), 0, PAGE_SIZE);
  2722. return 0;
  2723. out:
  2724. kvm_exit_debug();
  2725. kvm_mmu_module_exit();
  2726. out4:
  2727. return r;
  2728. }
  2729. static __exit void kvm_exit(void)
  2730. {
  2731. kvm_exit_debug();
  2732. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  2733. kvm_mmu_module_exit();
  2734. }
  2735. module_init(kvm_init)
  2736. module_exit(kvm_exit)
  2737. EXPORT_SYMBOL_GPL(kvm_init_arch);
  2738. EXPORT_SYMBOL_GPL(kvm_exit_arch);