kvm_main.c 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/mm.h>
  24. #include <linux/miscdevice.h>
  25. #include <linux/vmalloc.h>
  26. #include <linux/reboot.h>
  27. #include <linux/debugfs.h>
  28. #include <linux/highmem.h>
  29. #include <linux/file.h>
  30. #include <linux/sysdev.h>
  31. #include <linux/cpu.h>
  32. #include <linux/sched.h>
  33. #include <linux/cpumask.h>
  34. #include <linux/smp.h>
  35. #include <linux/anon_inodes.h>
  36. #include <linux/profile.h>
  37. #include <linux/kvm_para.h>
  38. #include <linux/pagemap.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/bitops.h>
  42. #include <linux/spinlock.h>
  43. #include <linux/compat.h>
  44. #include <linux/srcu.h>
  45. #include <linux/hugetlb.h>
  46. #include <linux/slab.h>
  47. #include <asm/processor.h>
  48. #include <asm/io.h>
  49. #include <asm/uaccess.h>
  50. #include <asm/pgtable.h>
  51. #include <asm-generic/bitops/le.h>
  52. #include "coalesced_mmio.h"
  53. #define CREATE_TRACE_POINTS
  54. #include <trace/events/kvm.h>
  55. MODULE_AUTHOR("Qumranet");
  56. MODULE_LICENSE("GPL");
  57. /*
  58. * Ordering of locks:
  59. *
  60. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  61. */
  62. DEFINE_SPINLOCK(kvm_lock);
  63. LIST_HEAD(vm_list);
  64. static cpumask_var_t cpus_hardware_enabled;
  65. static int kvm_usage_count = 0;
  66. static atomic_t hardware_enable_failed;
  67. struct kmem_cache *kvm_vcpu_cache;
  68. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  69. static __read_mostly struct preempt_ops kvm_preempt_ops;
  70. struct dentry *kvm_debugfs_dir;
  71. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  72. unsigned long arg);
  73. static int hardware_enable_all(void);
  74. static void hardware_disable_all(void);
  75. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  76. static bool kvm_rebooting;
  77. static bool largepages_enabled = true;
  78. inline int kvm_is_mmio_pfn(pfn_t pfn)
  79. {
  80. if (pfn_valid(pfn)) {
  81. struct page *page = compound_head(pfn_to_page(pfn));
  82. return PageReserved(page);
  83. }
  84. return true;
  85. }
  86. /*
  87. * Switches to specified vcpu, until a matching vcpu_put()
  88. */
  89. void vcpu_load(struct kvm_vcpu *vcpu)
  90. {
  91. int cpu;
  92. mutex_lock(&vcpu->mutex);
  93. cpu = get_cpu();
  94. preempt_notifier_register(&vcpu->preempt_notifier);
  95. kvm_arch_vcpu_load(vcpu, cpu);
  96. put_cpu();
  97. }
  98. void vcpu_put(struct kvm_vcpu *vcpu)
  99. {
  100. preempt_disable();
  101. kvm_arch_vcpu_put(vcpu);
  102. preempt_notifier_unregister(&vcpu->preempt_notifier);
  103. preempt_enable();
  104. mutex_unlock(&vcpu->mutex);
  105. }
  106. static void ack_flush(void *_completed)
  107. {
  108. }
  109. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  110. {
  111. int i, cpu, me;
  112. cpumask_var_t cpus;
  113. bool called = true;
  114. struct kvm_vcpu *vcpu;
  115. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  116. raw_spin_lock(&kvm->requests_lock);
  117. me = smp_processor_id();
  118. kvm_for_each_vcpu(i, vcpu, kvm) {
  119. if (test_and_set_bit(req, &vcpu->requests))
  120. continue;
  121. cpu = vcpu->cpu;
  122. if (cpus != NULL && cpu != -1 && cpu != me)
  123. cpumask_set_cpu(cpu, cpus);
  124. }
  125. if (unlikely(cpus == NULL))
  126. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  127. else if (!cpumask_empty(cpus))
  128. smp_call_function_many(cpus, ack_flush, NULL, 1);
  129. else
  130. called = false;
  131. raw_spin_unlock(&kvm->requests_lock);
  132. free_cpumask_var(cpus);
  133. return called;
  134. }
  135. void kvm_flush_remote_tlbs(struct kvm *kvm)
  136. {
  137. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  138. ++kvm->stat.remote_tlb_flush;
  139. }
  140. void kvm_reload_remote_mmus(struct kvm *kvm)
  141. {
  142. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  143. }
  144. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  145. {
  146. struct page *page;
  147. int r;
  148. mutex_init(&vcpu->mutex);
  149. vcpu->cpu = -1;
  150. vcpu->kvm = kvm;
  151. vcpu->vcpu_id = id;
  152. init_waitqueue_head(&vcpu->wq);
  153. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  154. if (!page) {
  155. r = -ENOMEM;
  156. goto fail;
  157. }
  158. vcpu->run = page_address(page);
  159. r = kvm_arch_vcpu_init(vcpu);
  160. if (r < 0)
  161. goto fail_free_run;
  162. return 0;
  163. fail_free_run:
  164. free_page((unsigned long)vcpu->run);
  165. fail:
  166. return r;
  167. }
  168. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  169. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  170. {
  171. kvm_arch_vcpu_uninit(vcpu);
  172. free_page((unsigned long)vcpu->run);
  173. }
  174. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  175. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  176. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  177. {
  178. return container_of(mn, struct kvm, mmu_notifier);
  179. }
  180. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  181. struct mm_struct *mm,
  182. unsigned long address)
  183. {
  184. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  185. int need_tlb_flush, idx;
  186. /*
  187. * When ->invalidate_page runs, the linux pte has been zapped
  188. * already but the page is still allocated until
  189. * ->invalidate_page returns. So if we increase the sequence
  190. * here the kvm page fault will notice if the spte can't be
  191. * established because the page is going to be freed. If
  192. * instead the kvm page fault establishes the spte before
  193. * ->invalidate_page runs, kvm_unmap_hva will release it
  194. * before returning.
  195. *
  196. * The sequence increase only need to be seen at spin_unlock
  197. * time, and not at spin_lock time.
  198. *
  199. * Increasing the sequence after the spin_unlock would be
  200. * unsafe because the kvm page fault could then establish the
  201. * pte after kvm_unmap_hva returned, without noticing the page
  202. * is going to be freed.
  203. */
  204. idx = srcu_read_lock(&kvm->srcu);
  205. spin_lock(&kvm->mmu_lock);
  206. kvm->mmu_notifier_seq++;
  207. need_tlb_flush = kvm_unmap_hva(kvm, address);
  208. spin_unlock(&kvm->mmu_lock);
  209. srcu_read_unlock(&kvm->srcu, idx);
  210. /* we've to flush the tlb before the pages can be freed */
  211. if (need_tlb_flush)
  212. kvm_flush_remote_tlbs(kvm);
  213. }
  214. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  215. struct mm_struct *mm,
  216. unsigned long address,
  217. pte_t pte)
  218. {
  219. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  220. int idx;
  221. idx = srcu_read_lock(&kvm->srcu);
  222. spin_lock(&kvm->mmu_lock);
  223. kvm->mmu_notifier_seq++;
  224. kvm_set_spte_hva(kvm, address, pte);
  225. spin_unlock(&kvm->mmu_lock);
  226. srcu_read_unlock(&kvm->srcu, idx);
  227. }
  228. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  229. struct mm_struct *mm,
  230. unsigned long start,
  231. unsigned long end)
  232. {
  233. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  234. int need_tlb_flush = 0, idx;
  235. idx = srcu_read_lock(&kvm->srcu);
  236. spin_lock(&kvm->mmu_lock);
  237. /*
  238. * The count increase must become visible at unlock time as no
  239. * spte can be established without taking the mmu_lock and
  240. * count is also read inside the mmu_lock critical section.
  241. */
  242. kvm->mmu_notifier_count++;
  243. for (; start < end; start += PAGE_SIZE)
  244. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  245. spin_unlock(&kvm->mmu_lock);
  246. srcu_read_unlock(&kvm->srcu, idx);
  247. /* we've to flush the tlb before the pages can be freed */
  248. if (need_tlb_flush)
  249. kvm_flush_remote_tlbs(kvm);
  250. }
  251. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  252. struct mm_struct *mm,
  253. unsigned long start,
  254. unsigned long end)
  255. {
  256. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  257. spin_lock(&kvm->mmu_lock);
  258. /*
  259. * This sequence increase will notify the kvm page fault that
  260. * the page that is going to be mapped in the spte could have
  261. * been freed.
  262. */
  263. kvm->mmu_notifier_seq++;
  264. /*
  265. * The above sequence increase must be visible before the
  266. * below count decrease but both values are read by the kvm
  267. * page fault under mmu_lock spinlock so we don't need to add
  268. * a smb_wmb() here in between the two.
  269. */
  270. kvm->mmu_notifier_count--;
  271. spin_unlock(&kvm->mmu_lock);
  272. BUG_ON(kvm->mmu_notifier_count < 0);
  273. }
  274. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  275. struct mm_struct *mm,
  276. unsigned long address)
  277. {
  278. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  279. int young, idx;
  280. idx = srcu_read_lock(&kvm->srcu);
  281. spin_lock(&kvm->mmu_lock);
  282. young = kvm_age_hva(kvm, address);
  283. spin_unlock(&kvm->mmu_lock);
  284. srcu_read_unlock(&kvm->srcu, idx);
  285. if (young)
  286. kvm_flush_remote_tlbs(kvm);
  287. return young;
  288. }
  289. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  290. struct mm_struct *mm)
  291. {
  292. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  293. int idx;
  294. idx = srcu_read_lock(&kvm->srcu);
  295. kvm_arch_flush_shadow(kvm);
  296. srcu_read_unlock(&kvm->srcu, idx);
  297. }
  298. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  299. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  300. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  301. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  302. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  303. .change_pte = kvm_mmu_notifier_change_pte,
  304. .release = kvm_mmu_notifier_release,
  305. };
  306. static int kvm_init_mmu_notifier(struct kvm *kvm)
  307. {
  308. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  309. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  310. }
  311. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  312. static int kvm_init_mmu_notifier(struct kvm *kvm)
  313. {
  314. return 0;
  315. }
  316. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  317. static struct kvm *kvm_create_vm(void)
  318. {
  319. int r = 0, i;
  320. struct kvm *kvm = kvm_arch_create_vm();
  321. if (IS_ERR(kvm))
  322. goto out;
  323. r = hardware_enable_all();
  324. if (r)
  325. goto out_err_nodisable;
  326. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  327. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  328. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  329. #endif
  330. r = -ENOMEM;
  331. kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  332. if (!kvm->memslots)
  333. goto out_err;
  334. if (init_srcu_struct(&kvm->srcu))
  335. goto out_err;
  336. for (i = 0; i < KVM_NR_BUSES; i++) {
  337. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  338. GFP_KERNEL);
  339. if (!kvm->buses[i]) {
  340. cleanup_srcu_struct(&kvm->srcu);
  341. goto out_err;
  342. }
  343. }
  344. r = kvm_init_mmu_notifier(kvm);
  345. if (r) {
  346. cleanup_srcu_struct(&kvm->srcu);
  347. goto out_err;
  348. }
  349. kvm->mm = current->mm;
  350. atomic_inc(&kvm->mm->mm_count);
  351. spin_lock_init(&kvm->mmu_lock);
  352. raw_spin_lock_init(&kvm->requests_lock);
  353. kvm_eventfd_init(kvm);
  354. mutex_init(&kvm->lock);
  355. mutex_init(&kvm->irq_lock);
  356. mutex_init(&kvm->slots_lock);
  357. atomic_set(&kvm->users_count, 1);
  358. spin_lock(&kvm_lock);
  359. list_add(&kvm->vm_list, &vm_list);
  360. spin_unlock(&kvm_lock);
  361. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  362. kvm_coalesced_mmio_init(kvm);
  363. #endif
  364. out:
  365. return kvm;
  366. out_err:
  367. hardware_disable_all();
  368. out_err_nodisable:
  369. for (i = 0; i < KVM_NR_BUSES; i++)
  370. kfree(kvm->buses[i]);
  371. kfree(kvm->memslots);
  372. kfree(kvm);
  373. return ERR_PTR(r);
  374. }
  375. /*
  376. * Free any memory in @free but not in @dont.
  377. */
  378. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  379. struct kvm_memory_slot *dont)
  380. {
  381. int i;
  382. if (!dont || free->rmap != dont->rmap)
  383. vfree(free->rmap);
  384. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  385. vfree(free->dirty_bitmap);
  386. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  387. if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
  388. vfree(free->lpage_info[i]);
  389. free->lpage_info[i] = NULL;
  390. }
  391. }
  392. free->npages = 0;
  393. free->dirty_bitmap = NULL;
  394. free->rmap = NULL;
  395. }
  396. void kvm_free_physmem(struct kvm *kvm)
  397. {
  398. int i;
  399. struct kvm_memslots *slots = kvm->memslots;
  400. for (i = 0; i < slots->nmemslots; ++i)
  401. kvm_free_physmem_slot(&slots->memslots[i], NULL);
  402. kfree(kvm->memslots);
  403. }
  404. static void kvm_destroy_vm(struct kvm *kvm)
  405. {
  406. int i;
  407. struct mm_struct *mm = kvm->mm;
  408. kvm_arch_sync_events(kvm);
  409. spin_lock(&kvm_lock);
  410. list_del(&kvm->vm_list);
  411. spin_unlock(&kvm_lock);
  412. kvm_free_irq_routing(kvm);
  413. for (i = 0; i < KVM_NR_BUSES; i++)
  414. kvm_io_bus_destroy(kvm->buses[i]);
  415. kvm_coalesced_mmio_free(kvm);
  416. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  417. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  418. #else
  419. kvm_arch_flush_shadow(kvm);
  420. #endif
  421. kvm_arch_destroy_vm(kvm);
  422. hardware_disable_all();
  423. mmdrop(mm);
  424. }
  425. void kvm_get_kvm(struct kvm *kvm)
  426. {
  427. atomic_inc(&kvm->users_count);
  428. }
  429. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  430. void kvm_put_kvm(struct kvm *kvm)
  431. {
  432. if (atomic_dec_and_test(&kvm->users_count))
  433. kvm_destroy_vm(kvm);
  434. }
  435. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  436. static int kvm_vm_release(struct inode *inode, struct file *filp)
  437. {
  438. struct kvm *kvm = filp->private_data;
  439. kvm_irqfd_release(kvm);
  440. kvm_put_kvm(kvm);
  441. return 0;
  442. }
  443. /*
  444. * Allocate some memory and give it an address in the guest physical address
  445. * space.
  446. *
  447. * Discontiguous memory is allowed, mostly for framebuffers.
  448. *
  449. * Must be called holding mmap_sem for write.
  450. */
  451. int __kvm_set_memory_region(struct kvm *kvm,
  452. struct kvm_userspace_memory_region *mem,
  453. int user_alloc)
  454. {
  455. int r, flush_shadow = 0;
  456. gfn_t base_gfn;
  457. unsigned long npages;
  458. unsigned long i;
  459. struct kvm_memory_slot *memslot;
  460. struct kvm_memory_slot old, new;
  461. struct kvm_memslots *slots, *old_memslots;
  462. r = -EINVAL;
  463. /* General sanity checks */
  464. if (mem->memory_size & (PAGE_SIZE - 1))
  465. goto out;
  466. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  467. goto out;
  468. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  469. goto out;
  470. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  471. goto out;
  472. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  473. goto out;
  474. memslot = &kvm->memslots->memslots[mem->slot];
  475. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  476. npages = mem->memory_size >> PAGE_SHIFT;
  477. if (!npages)
  478. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  479. new = old = *memslot;
  480. new.base_gfn = base_gfn;
  481. new.npages = npages;
  482. new.flags = mem->flags;
  483. /* Disallow changing a memory slot's size. */
  484. r = -EINVAL;
  485. if (npages && old.npages && npages != old.npages)
  486. goto out_free;
  487. /* Check for overlaps */
  488. r = -EEXIST;
  489. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  490. struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
  491. if (s == memslot || !s->npages)
  492. continue;
  493. if (!((base_gfn + npages <= s->base_gfn) ||
  494. (base_gfn >= s->base_gfn + s->npages)))
  495. goto out_free;
  496. }
  497. /* Free page dirty bitmap if unneeded */
  498. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  499. new.dirty_bitmap = NULL;
  500. r = -ENOMEM;
  501. /* Allocate if a slot is being created */
  502. #ifndef CONFIG_S390
  503. if (npages && !new.rmap) {
  504. new.rmap = vmalloc(npages * sizeof(struct page *));
  505. if (!new.rmap)
  506. goto out_free;
  507. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  508. new.user_alloc = user_alloc;
  509. new.userspace_addr = mem->userspace_addr;
  510. }
  511. if (!npages)
  512. goto skip_lpage;
  513. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  514. unsigned long ugfn;
  515. unsigned long j;
  516. int lpages;
  517. int level = i + 2;
  518. /* Avoid unused variable warning if no large pages */
  519. (void)level;
  520. if (new.lpage_info[i])
  521. continue;
  522. lpages = 1 + (base_gfn + npages - 1) /
  523. KVM_PAGES_PER_HPAGE(level);
  524. lpages -= base_gfn / KVM_PAGES_PER_HPAGE(level);
  525. new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
  526. if (!new.lpage_info[i])
  527. goto out_free;
  528. memset(new.lpage_info[i], 0,
  529. lpages * sizeof(*new.lpage_info[i]));
  530. if (base_gfn % KVM_PAGES_PER_HPAGE(level))
  531. new.lpage_info[i][0].write_count = 1;
  532. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE(level))
  533. new.lpage_info[i][lpages - 1].write_count = 1;
  534. ugfn = new.userspace_addr >> PAGE_SHIFT;
  535. /*
  536. * If the gfn and userspace address are not aligned wrt each
  537. * other, or if explicitly asked to, disable large page
  538. * support for this slot
  539. */
  540. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  541. !largepages_enabled)
  542. for (j = 0; j < lpages; ++j)
  543. new.lpage_info[i][j].write_count = 1;
  544. }
  545. skip_lpage:
  546. /* Allocate page dirty bitmap if needed */
  547. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  548. unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(&new);
  549. new.dirty_bitmap = vmalloc(dirty_bytes);
  550. if (!new.dirty_bitmap)
  551. goto out_free;
  552. memset(new.dirty_bitmap, 0, dirty_bytes);
  553. /* destroy any largepage mappings for dirty tracking */
  554. if (old.npages)
  555. flush_shadow = 1;
  556. }
  557. #else /* not defined CONFIG_S390 */
  558. new.user_alloc = user_alloc;
  559. if (user_alloc)
  560. new.userspace_addr = mem->userspace_addr;
  561. #endif /* not defined CONFIG_S390 */
  562. if (!npages) {
  563. r = -ENOMEM;
  564. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  565. if (!slots)
  566. goto out_free;
  567. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  568. if (mem->slot >= slots->nmemslots)
  569. slots->nmemslots = mem->slot + 1;
  570. slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
  571. old_memslots = kvm->memslots;
  572. rcu_assign_pointer(kvm->memslots, slots);
  573. synchronize_srcu_expedited(&kvm->srcu);
  574. /* From this point no new shadow pages pointing to a deleted
  575. * memslot will be created.
  576. *
  577. * validation of sp->gfn happens in:
  578. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  579. * - kvm_is_visible_gfn (mmu_check_roots)
  580. */
  581. kvm_arch_flush_shadow(kvm);
  582. kfree(old_memslots);
  583. }
  584. r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
  585. if (r)
  586. goto out_free;
  587. #ifdef CONFIG_DMAR
  588. /* map the pages in iommu page table */
  589. if (npages) {
  590. r = kvm_iommu_map_pages(kvm, &new);
  591. if (r)
  592. goto out_free;
  593. }
  594. #endif
  595. r = -ENOMEM;
  596. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  597. if (!slots)
  598. goto out_free;
  599. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  600. if (mem->slot >= slots->nmemslots)
  601. slots->nmemslots = mem->slot + 1;
  602. /* actual memory is freed via old in kvm_free_physmem_slot below */
  603. if (!npages) {
  604. new.rmap = NULL;
  605. new.dirty_bitmap = NULL;
  606. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
  607. new.lpage_info[i] = NULL;
  608. }
  609. slots->memslots[mem->slot] = new;
  610. old_memslots = kvm->memslots;
  611. rcu_assign_pointer(kvm->memslots, slots);
  612. synchronize_srcu_expedited(&kvm->srcu);
  613. kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
  614. kvm_free_physmem_slot(&old, &new);
  615. kfree(old_memslots);
  616. if (flush_shadow)
  617. kvm_arch_flush_shadow(kvm);
  618. return 0;
  619. out_free:
  620. kvm_free_physmem_slot(&new, &old);
  621. out:
  622. return r;
  623. }
  624. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  625. int kvm_set_memory_region(struct kvm *kvm,
  626. struct kvm_userspace_memory_region *mem,
  627. int user_alloc)
  628. {
  629. int r;
  630. mutex_lock(&kvm->slots_lock);
  631. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  632. mutex_unlock(&kvm->slots_lock);
  633. return r;
  634. }
  635. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  636. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  637. struct
  638. kvm_userspace_memory_region *mem,
  639. int user_alloc)
  640. {
  641. if (mem->slot >= KVM_MEMORY_SLOTS)
  642. return -EINVAL;
  643. return kvm_set_memory_region(kvm, mem, user_alloc);
  644. }
  645. int kvm_get_dirty_log(struct kvm *kvm,
  646. struct kvm_dirty_log *log, int *is_dirty)
  647. {
  648. struct kvm_memory_slot *memslot;
  649. int r, i;
  650. unsigned long n;
  651. unsigned long any = 0;
  652. r = -EINVAL;
  653. if (log->slot >= KVM_MEMORY_SLOTS)
  654. goto out;
  655. memslot = &kvm->memslots->memslots[log->slot];
  656. r = -ENOENT;
  657. if (!memslot->dirty_bitmap)
  658. goto out;
  659. n = kvm_dirty_bitmap_bytes(memslot);
  660. for (i = 0; !any && i < n/sizeof(long); ++i)
  661. any = memslot->dirty_bitmap[i];
  662. r = -EFAULT;
  663. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  664. goto out;
  665. if (any)
  666. *is_dirty = 1;
  667. r = 0;
  668. out:
  669. return r;
  670. }
  671. void kvm_disable_largepages(void)
  672. {
  673. largepages_enabled = false;
  674. }
  675. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  676. int is_error_page(struct page *page)
  677. {
  678. return page == bad_page;
  679. }
  680. EXPORT_SYMBOL_GPL(is_error_page);
  681. int is_error_pfn(pfn_t pfn)
  682. {
  683. return pfn == bad_pfn;
  684. }
  685. EXPORT_SYMBOL_GPL(is_error_pfn);
  686. static inline unsigned long bad_hva(void)
  687. {
  688. return PAGE_OFFSET;
  689. }
  690. int kvm_is_error_hva(unsigned long addr)
  691. {
  692. return addr == bad_hva();
  693. }
  694. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  695. struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
  696. {
  697. int i;
  698. struct kvm_memslots *slots = rcu_dereference(kvm->memslots);
  699. for (i = 0; i < slots->nmemslots; ++i) {
  700. struct kvm_memory_slot *memslot = &slots->memslots[i];
  701. if (gfn >= memslot->base_gfn
  702. && gfn < memslot->base_gfn + memslot->npages)
  703. return memslot;
  704. }
  705. return NULL;
  706. }
  707. EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
  708. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  709. {
  710. gfn = unalias_gfn(kvm, gfn);
  711. return gfn_to_memslot_unaliased(kvm, gfn);
  712. }
  713. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  714. {
  715. int i;
  716. struct kvm_memslots *slots = rcu_dereference(kvm->memslots);
  717. gfn = unalias_gfn_instantiation(kvm, gfn);
  718. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  719. struct kvm_memory_slot *memslot = &slots->memslots[i];
  720. if (memslot->flags & KVM_MEMSLOT_INVALID)
  721. continue;
  722. if (gfn >= memslot->base_gfn
  723. && gfn < memslot->base_gfn + memslot->npages)
  724. return 1;
  725. }
  726. return 0;
  727. }
  728. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  729. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  730. {
  731. struct vm_area_struct *vma;
  732. unsigned long addr, size;
  733. size = PAGE_SIZE;
  734. addr = gfn_to_hva(kvm, gfn);
  735. if (kvm_is_error_hva(addr))
  736. return PAGE_SIZE;
  737. down_read(&current->mm->mmap_sem);
  738. vma = find_vma(current->mm, addr);
  739. if (!vma)
  740. goto out;
  741. size = vma_kernel_pagesize(vma);
  742. out:
  743. up_read(&current->mm->mmap_sem);
  744. return size;
  745. }
  746. int memslot_id(struct kvm *kvm, gfn_t gfn)
  747. {
  748. int i;
  749. struct kvm_memslots *slots = rcu_dereference(kvm->memslots);
  750. struct kvm_memory_slot *memslot = NULL;
  751. gfn = unalias_gfn(kvm, gfn);
  752. for (i = 0; i < slots->nmemslots; ++i) {
  753. memslot = &slots->memslots[i];
  754. if (gfn >= memslot->base_gfn
  755. && gfn < memslot->base_gfn + memslot->npages)
  756. break;
  757. }
  758. return memslot - slots->memslots;
  759. }
  760. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  761. {
  762. struct kvm_memory_slot *slot;
  763. gfn = unalias_gfn_instantiation(kvm, gfn);
  764. slot = gfn_to_memslot_unaliased(kvm, gfn);
  765. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  766. return bad_hva();
  767. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  768. }
  769. EXPORT_SYMBOL_GPL(gfn_to_hva);
  770. static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr)
  771. {
  772. struct page *page[1];
  773. int npages;
  774. pfn_t pfn;
  775. might_sleep();
  776. npages = get_user_pages_fast(addr, 1, 1, page);
  777. if (unlikely(npages != 1)) {
  778. struct vm_area_struct *vma;
  779. down_read(&current->mm->mmap_sem);
  780. vma = find_vma(current->mm, addr);
  781. if (vma == NULL || addr < vma->vm_start ||
  782. !(vma->vm_flags & VM_PFNMAP)) {
  783. up_read(&current->mm->mmap_sem);
  784. get_page(bad_page);
  785. return page_to_pfn(bad_page);
  786. }
  787. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  788. up_read(&current->mm->mmap_sem);
  789. BUG_ON(!kvm_is_mmio_pfn(pfn));
  790. } else
  791. pfn = page_to_pfn(page[0]);
  792. return pfn;
  793. }
  794. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  795. {
  796. unsigned long addr;
  797. addr = gfn_to_hva(kvm, gfn);
  798. if (kvm_is_error_hva(addr)) {
  799. get_page(bad_page);
  800. return page_to_pfn(bad_page);
  801. }
  802. return hva_to_pfn(kvm, addr);
  803. }
  804. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  805. static unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
  806. {
  807. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  808. }
  809. pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
  810. struct kvm_memory_slot *slot, gfn_t gfn)
  811. {
  812. unsigned long addr = gfn_to_hva_memslot(slot, gfn);
  813. return hva_to_pfn(kvm, addr);
  814. }
  815. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  816. {
  817. pfn_t pfn;
  818. pfn = gfn_to_pfn(kvm, gfn);
  819. if (!kvm_is_mmio_pfn(pfn))
  820. return pfn_to_page(pfn);
  821. WARN_ON(kvm_is_mmio_pfn(pfn));
  822. get_page(bad_page);
  823. return bad_page;
  824. }
  825. EXPORT_SYMBOL_GPL(gfn_to_page);
  826. void kvm_release_page_clean(struct page *page)
  827. {
  828. kvm_release_pfn_clean(page_to_pfn(page));
  829. }
  830. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  831. void kvm_release_pfn_clean(pfn_t pfn)
  832. {
  833. if (!kvm_is_mmio_pfn(pfn))
  834. put_page(pfn_to_page(pfn));
  835. }
  836. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  837. void kvm_release_page_dirty(struct page *page)
  838. {
  839. kvm_release_pfn_dirty(page_to_pfn(page));
  840. }
  841. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  842. void kvm_release_pfn_dirty(pfn_t pfn)
  843. {
  844. kvm_set_pfn_dirty(pfn);
  845. kvm_release_pfn_clean(pfn);
  846. }
  847. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  848. void kvm_set_page_dirty(struct page *page)
  849. {
  850. kvm_set_pfn_dirty(page_to_pfn(page));
  851. }
  852. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  853. void kvm_set_pfn_dirty(pfn_t pfn)
  854. {
  855. if (!kvm_is_mmio_pfn(pfn)) {
  856. struct page *page = pfn_to_page(pfn);
  857. if (!PageReserved(page))
  858. SetPageDirty(page);
  859. }
  860. }
  861. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  862. void kvm_set_pfn_accessed(pfn_t pfn)
  863. {
  864. if (!kvm_is_mmio_pfn(pfn))
  865. mark_page_accessed(pfn_to_page(pfn));
  866. }
  867. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  868. void kvm_get_pfn(pfn_t pfn)
  869. {
  870. if (!kvm_is_mmio_pfn(pfn))
  871. get_page(pfn_to_page(pfn));
  872. }
  873. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  874. static int next_segment(unsigned long len, int offset)
  875. {
  876. if (len > PAGE_SIZE - offset)
  877. return PAGE_SIZE - offset;
  878. else
  879. return len;
  880. }
  881. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  882. int len)
  883. {
  884. int r;
  885. unsigned long addr;
  886. addr = gfn_to_hva(kvm, gfn);
  887. if (kvm_is_error_hva(addr))
  888. return -EFAULT;
  889. r = copy_from_user(data, (void __user *)addr + offset, len);
  890. if (r)
  891. return -EFAULT;
  892. return 0;
  893. }
  894. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  895. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  896. {
  897. gfn_t gfn = gpa >> PAGE_SHIFT;
  898. int seg;
  899. int offset = offset_in_page(gpa);
  900. int ret;
  901. while ((seg = next_segment(len, offset)) != 0) {
  902. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  903. if (ret < 0)
  904. return ret;
  905. offset = 0;
  906. len -= seg;
  907. data += seg;
  908. ++gfn;
  909. }
  910. return 0;
  911. }
  912. EXPORT_SYMBOL_GPL(kvm_read_guest);
  913. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  914. unsigned long len)
  915. {
  916. int r;
  917. unsigned long addr;
  918. gfn_t gfn = gpa >> PAGE_SHIFT;
  919. int offset = offset_in_page(gpa);
  920. addr = gfn_to_hva(kvm, gfn);
  921. if (kvm_is_error_hva(addr))
  922. return -EFAULT;
  923. pagefault_disable();
  924. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  925. pagefault_enable();
  926. if (r)
  927. return -EFAULT;
  928. return 0;
  929. }
  930. EXPORT_SYMBOL(kvm_read_guest_atomic);
  931. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  932. int offset, int len)
  933. {
  934. int r;
  935. unsigned long addr;
  936. addr = gfn_to_hva(kvm, gfn);
  937. if (kvm_is_error_hva(addr))
  938. return -EFAULT;
  939. r = copy_to_user((void __user *)addr + offset, data, len);
  940. if (r)
  941. return -EFAULT;
  942. mark_page_dirty(kvm, gfn);
  943. return 0;
  944. }
  945. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  946. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  947. unsigned long len)
  948. {
  949. gfn_t gfn = gpa >> PAGE_SHIFT;
  950. int seg;
  951. int offset = offset_in_page(gpa);
  952. int ret;
  953. while ((seg = next_segment(len, offset)) != 0) {
  954. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  955. if (ret < 0)
  956. return ret;
  957. offset = 0;
  958. len -= seg;
  959. data += seg;
  960. ++gfn;
  961. }
  962. return 0;
  963. }
  964. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  965. {
  966. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  967. }
  968. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  969. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  970. {
  971. gfn_t gfn = gpa >> PAGE_SHIFT;
  972. int seg;
  973. int offset = offset_in_page(gpa);
  974. int ret;
  975. while ((seg = next_segment(len, offset)) != 0) {
  976. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  977. if (ret < 0)
  978. return ret;
  979. offset = 0;
  980. len -= seg;
  981. ++gfn;
  982. }
  983. return 0;
  984. }
  985. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  986. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  987. {
  988. struct kvm_memory_slot *memslot;
  989. gfn = unalias_gfn(kvm, gfn);
  990. memslot = gfn_to_memslot_unaliased(kvm, gfn);
  991. if (memslot && memslot->dirty_bitmap) {
  992. unsigned long rel_gfn = gfn - memslot->base_gfn;
  993. unsigned long *p = memslot->dirty_bitmap +
  994. rel_gfn / BITS_PER_LONG;
  995. int offset = rel_gfn % BITS_PER_LONG;
  996. /* avoid RMW */
  997. if (!generic_test_le_bit(offset, p))
  998. generic___set_le_bit(offset, p);
  999. }
  1000. }
  1001. /*
  1002. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1003. */
  1004. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1005. {
  1006. DEFINE_WAIT(wait);
  1007. for (;;) {
  1008. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1009. if (kvm_arch_vcpu_runnable(vcpu)) {
  1010. set_bit(KVM_REQ_UNHALT, &vcpu->requests);
  1011. break;
  1012. }
  1013. if (kvm_cpu_has_pending_timer(vcpu))
  1014. break;
  1015. if (signal_pending(current))
  1016. break;
  1017. schedule();
  1018. }
  1019. finish_wait(&vcpu->wq, &wait);
  1020. }
  1021. void kvm_resched(struct kvm_vcpu *vcpu)
  1022. {
  1023. if (!need_resched())
  1024. return;
  1025. cond_resched();
  1026. }
  1027. EXPORT_SYMBOL_GPL(kvm_resched);
  1028. void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
  1029. {
  1030. ktime_t expires;
  1031. DEFINE_WAIT(wait);
  1032. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1033. /* Sleep for 100 us, and hope lock-holder got scheduled */
  1034. expires = ktime_add_ns(ktime_get(), 100000UL);
  1035. schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
  1036. finish_wait(&vcpu->wq, &wait);
  1037. }
  1038. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1039. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1040. {
  1041. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1042. struct page *page;
  1043. if (vmf->pgoff == 0)
  1044. page = virt_to_page(vcpu->run);
  1045. #ifdef CONFIG_X86
  1046. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1047. page = virt_to_page(vcpu->arch.pio_data);
  1048. #endif
  1049. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1050. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1051. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1052. #endif
  1053. else
  1054. return VM_FAULT_SIGBUS;
  1055. get_page(page);
  1056. vmf->page = page;
  1057. return 0;
  1058. }
  1059. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1060. .fault = kvm_vcpu_fault,
  1061. };
  1062. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1063. {
  1064. vma->vm_ops = &kvm_vcpu_vm_ops;
  1065. return 0;
  1066. }
  1067. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1068. {
  1069. struct kvm_vcpu *vcpu = filp->private_data;
  1070. kvm_put_kvm(vcpu->kvm);
  1071. return 0;
  1072. }
  1073. static struct file_operations kvm_vcpu_fops = {
  1074. .release = kvm_vcpu_release,
  1075. .unlocked_ioctl = kvm_vcpu_ioctl,
  1076. .compat_ioctl = kvm_vcpu_ioctl,
  1077. .mmap = kvm_vcpu_mmap,
  1078. };
  1079. /*
  1080. * Allocates an inode for the vcpu.
  1081. */
  1082. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1083. {
  1084. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
  1085. }
  1086. /*
  1087. * Creates some virtual cpus. Good luck creating more than one.
  1088. */
  1089. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1090. {
  1091. int r;
  1092. struct kvm_vcpu *vcpu, *v;
  1093. vcpu = kvm_arch_vcpu_create(kvm, id);
  1094. if (IS_ERR(vcpu))
  1095. return PTR_ERR(vcpu);
  1096. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1097. r = kvm_arch_vcpu_setup(vcpu);
  1098. if (r)
  1099. return r;
  1100. mutex_lock(&kvm->lock);
  1101. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1102. r = -EINVAL;
  1103. goto vcpu_destroy;
  1104. }
  1105. kvm_for_each_vcpu(r, v, kvm)
  1106. if (v->vcpu_id == id) {
  1107. r = -EEXIST;
  1108. goto vcpu_destroy;
  1109. }
  1110. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1111. /* Now it's all set up, let userspace reach it */
  1112. kvm_get_kvm(kvm);
  1113. r = create_vcpu_fd(vcpu);
  1114. if (r < 0) {
  1115. kvm_put_kvm(kvm);
  1116. goto vcpu_destroy;
  1117. }
  1118. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1119. smp_wmb();
  1120. atomic_inc(&kvm->online_vcpus);
  1121. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1122. if (kvm->bsp_vcpu_id == id)
  1123. kvm->bsp_vcpu = vcpu;
  1124. #endif
  1125. mutex_unlock(&kvm->lock);
  1126. return r;
  1127. vcpu_destroy:
  1128. mutex_unlock(&kvm->lock);
  1129. kvm_arch_vcpu_destroy(vcpu);
  1130. return r;
  1131. }
  1132. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1133. {
  1134. if (sigset) {
  1135. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1136. vcpu->sigset_active = 1;
  1137. vcpu->sigset = *sigset;
  1138. } else
  1139. vcpu->sigset_active = 0;
  1140. return 0;
  1141. }
  1142. static long kvm_vcpu_ioctl(struct file *filp,
  1143. unsigned int ioctl, unsigned long arg)
  1144. {
  1145. struct kvm_vcpu *vcpu = filp->private_data;
  1146. void __user *argp = (void __user *)arg;
  1147. int r;
  1148. struct kvm_fpu *fpu = NULL;
  1149. struct kvm_sregs *kvm_sregs = NULL;
  1150. if (vcpu->kvm->mm != current->mm)
  1151. return -EIO;
  1152. switch (ioctl) {
  1153. case KVM_RUN:
  1154. r = -EINVAL;
  1155. if (arg)
  1156. goto out;
  1157. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1158. break;
  1159. case KVM_GET_REGS: {
  1160. struct kvm_regs *kvm_regs;
  1161. r = -ENOMEM;
  1162. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1163. if (!kvm_regs)
  1164. goto out;
  1165. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1166. if (r)
  1167. goto out_free1;
  1168. r = -EFAULT;
  1169. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1170. goto out_free1;
  1171. r = 0;
  1172. out_free1:
  1173. kfree(kvm_regs);
  1174. break;
  1175. }
  1176. case KVM_SET_REGS: {
  1177. struct kvm_regs *kvm_regs;
  1178. r = -ENOMEM;
  1179. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1180. if (!kvm_regs)
  1181. goto out;
  1182. r = -EFAULT;
  1183. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1184. goto out_free2;
  1185. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1186. if (r)
  1187. goto out_free2;
  1188. r = 0;
  1189. out_free2:
  1190. kfree(kvm_regs);
  1191. break;
  1192. }
  1193. case KVM_GET_SREGS: {
  1194. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1195. r = -ENOMEM;
  1196. if (!kvm_sregs)
  1197. goto out;
  1198. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1199. if (r)
  1200. goto out;
  1201. r = -EFAULT;
  1202. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1203. goto out;
  1204. r = 0;
  1205. break;
  1206. }
  1207. case KVM_SET_SREGS: {
  1208. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1209. r = -ENOMEM;
  1210. if (!kvm_sregs)
  1211. goto out;
  1212. r = -EFAULT;
  1213. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1214. goto out;
  1215. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1216. if (r)
  1217. goto out;
  1218. r = 0;
  1219. break;
  1220. }
  1221. case KVM_GET_MP_STATE: {
  1222. struct kvm_mp_state mp_state;
  1223. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1224. if (r)
  1225. goto out;
  1226. r = -EFAULT;
  1227. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1228. goto out;
  1229. r = 0;
  1230. break;
  1231. }
  1232. case KVM_SET_MP_STATE: {
  1233. struct kvm_mp_state mp_state;
  1234. r = -EFAULT;
  1235. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1236. goto out;
  1237. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1238. if (r)
  1239. goto out;
  1240. r = 0;
  1241. break;
  1242. }
  1243. case KVM_TRANSLATE: {
  1244. struct kvm_translation tr;
  1245. r = -EFAULT;
  1246. if (copy_from_user(&tr, argp, sizeof tr))
  1247. goto out;
  1248. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1249. if (r)
  1250. goto out;
  1251. r = -EFAULT;
  1252. if (copy_to_user(argp, &tr, sizeof tr))
  1253. goto out;
  1254. r = 0;
  1255. break;
  1256. }
  1257. case KVM_SET_GUEST_DEBUG: {
  1258. struct kvm_guest_debug dbg;
  1259. r = -EFAULT;
  1260. if (copy_from_user(&dbg, argp, sizeof dbg))
  1261. goto out;
  1262. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1263. if (r)
  1264. goto out;
  1265. r = 0;
  1266. break;
  1267. }
  1268. case KVM_SET_SIGNAL_MASK: {
  1269. struct kvm_signal_mask __user *sigmask_arg = argp;
  1270. struct kvm_signal_mask kvm_sigmask;
  1271. sigset_t sigset, *p;
  1272. p = NULL;
  1273. if (argp) {
  1274. r = -EFAULT;
  1275. if (copy_from_user(&kvm_sigmask, argp,
  1276. sizeof kvm_sigmask))
  1277. goto out;
  1278. r = -EINVAL;
  1279. if (kvm_sigmask.len != sizeof sigset)
  1280. goto out;
  1281. r = -EFAULT;
  1282. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1283. sizeof sigset))
  1284. goto out;
  1285. p = &sigset;
  1286. }
  1287. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1288. break;
  1289. }
  1290. case KVM_GET_FPU: {
  1291. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1292. r = -ENOMEM;
  1293. if (!fpu)
  1294. goto out;
  1295. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1296. if (r)
  1297. goto out;
  1298. r = -EFAULT;
  1299. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1300. goto out;
  1301. r = 0;
  1302. break;
  1303. }
  1304. case KVM_SET_FPU: {
  1305. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1306. r = -ENOMEM;
  1307. if (!fpu)
  1308. goto out;
  1309. r = -EFAULT;
  1310. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1311. goto out;
  1312. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1313. if (r)
  1314. goto out;
  1315. r = 0;
  1316. break;
  1317. }
  1318. default:
  1319. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1320. }
  1321. out:
  1322. kfree(fpu);
  1323. kfree(kvm_sregs);
  1324. return r;
  1325. }
  1326. static long kvm_vm_ioctl(struct file *filp,
  1327. unsigned int ioctl, unsigned long arg)
  1328. {
  1329. struct kvm *kvm = filp->private_data;
  1330. void __user *argp = (void __user *)arg;
  1331. int r;
  1332. if (kvm->mm != current->mm)
  1333. return -EIO;
  1334. switch (ioctl) {
  1335. case KVM_CREATE_VCPU:
  1336. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1337. if (r < 0)
  1338. goto out;
  1339. break;
  1340. case KVM_SET_USER_MEMORY_REGION: {
  1341. struct kvm_userspace_memory_region kvm_userspace_mem;
  1342. r = -EFAULT;
  1343. if (copy_from_user(&kvm_userspace_mem, argp,
  1344. sizeof kvm_userspace_mem))
  1345. goto out;
  1346. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1347. if (r)
  1348. goto out;
  1349. break;
  1350. }
  1351. case KVM_GET_DIRTY_LOG: {
  1352. struct kvm_dirty_log log;
  1353. r = -EFAULT;
  1354. if (copy_from_user(&log, argp, sizeof log))
  1355. goto out;
  1356. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1357. if (r)
  1358. goto out;
  1359. break;
  1360. }
  1361. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1362. case KVM_REGISTER_COALESCED_MMIO: {
  1363. struct kvm_coalesced_mmio_zone zone;
  1364. r = -EFAULT;
  1365. if (copy_from_user(&zone, argp, sizeof zone))
  1366. goto out;
  1367. r = -ENXIO;
  1368. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1369. if (r)
  1370. goto out;
  1371. r = 0;
  1372. break;
  1373. }
  1374. case KVM_UNREGISTER_COALESCED_MMIO: {
  1375. struct kvm_coalesced_mmio_zone zone;
  1376. r = -EFAULT;
  1377. if (copy_from_user(&zone, argp, sizeof zone))
  1378. goto out;
  1379. r = -ENXIO;
  1380. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1381. if (r)
  1382. goto out;
  1383. r = 0;
  1384. break;
  1385. }
  1386. #endif
  1387. case KVM_IRQFD: {
  1388. struct kvm_irqfd data;
  1389. r = -EFAULT;
  1390. if (copy_from_user(&data, argp, sizeof data))
  1391. goto out;
  1392. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1393. break;
  1394. }
  1395. case KVM_IOEVENTFD: {
  1396. struct kvm_ioeventfd data;
  1397. r = -EFAULT;
  1398. if (copy_from_user(&data, argp, sizeof data))
  1399. goto out;
  1400. r = kvm_ioeventfd(kvm, &data);
  1401. break;
  1402. }
  1403. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1404. case KVM_SET_BOOT_CPU_ID:
  1405. r = 0;
  1406. mutex_lock(&kvm->lock);
  1407. if (atomic_read(&kvm->online_vcpus) != 0)
  1408. r = -EBUSY;
  1409. else
  1410. kvm->bsp_vcpu_id = arg;
  1411. mutex_unlock(&kvm->lock);
  1412. break;
  1413. #endif
  1414. default:
  1415. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1416. if (r == -ENOTTY)
  1417. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1418. }
  1419. out:
  1420. return r;
  1421. }
  1422. #ifdef CONFIG_COMPAT
  1423. struct compat_kvm_dirty_log {
  1424. __u32 slot;
  1425. __u32 padding1;
  1426. union {
  1427. compat_uptr_t dirty_bitmap; /* one bit per page */
  1428. __u64 padding2;
  1429. };
  1430. };
  1431. static long kvm_vm_compat_ioctl(struct file *filp,
  1432. unsigned int ioctl, unsigned long arg)
  1433. {
  1434. struct kvm *kvm = filp->private_data;
  1435. int r;
  1436. if (kvm->mm != current->mm)
  1437. return -EIO;
  1438. switch (ioctl) {
  1439. case KVM_GET_DIRTY_LOG: {
  1440. struct compat_kvm_dirty_log compat_log;
  1441. struct kvm_dirty_log log;
  1442. r = -EFAULT;
  1443. if (copy_from_user(&compat_log, (void __user *)arg,
  1444. sizeof(compat_log)))
  1445. goto out;
  1446. log.slot = compat_log.slot;
  1447. log.padding1 = compat_log.padding1;
  1448. log.padding2 = compat_log.padding2;
  1449. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  1450. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1451. if (r)
  1452. goto out;
  1453. break;
  1454. }
  1455. default:
  1456. r = kvm_vm_ioctl(filp, ioctl, arg);
  1457. }
  1458. out:
  1459. return r;
  1460. }
  1461. #endif
  1462. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1463. {
  1464. struct page *page[1];
  1465. unsigned long addr;
  1466. int npages;
  1467. gfn_t gfn = vmf->pgoff;
  1468. struct kvm *kvm = vma->vm_file->private_data;
  1469. addr = gfn_to_hva(kvm, gfn);
  1470. if (kvm_is_error_hva(addr))
  1471. return VM_FAULT_SIGBUS;
  1472. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1473. NULL);
  1474. if (unlikely(npages != 1))
  1475. return VM_FAULT_SIGBUS;
  1476. vmf->page = page[0];
  1477. return 0;
  1478. }
  1479. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1480. .fault = kvm_vm_fault,
  1481. };
  1482. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1483. {
  1484. vma->vm_ops = &kvm_vm_vm_ops;
  1485. return 0;
  1486. }
  1487. static struct file_operations kvm_vm_fops = {
  1488. .release = kvm_vm_release,
  1489. .unlocked_ioctl = kvm_vm_ioctl,
  1490. #ifdef CONFIG_COMPAT
  1491. .compat_ioctl = kvm_vm_compat_ioctl,
  1492. #endif
  1493. .mmap = kvm_vm_mmap,
  1494. };
  1495. static int kvm_dev_ioctl_create_vm(void)
  1496. {
  1497. int fd;
  1498. struct kvm *kvm;
  1499. kvm = kvm_create_vm();
  1500. if (IS_ERR(kvm))
  1501. return PTR_ERR(kvm);
  1502. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
  1503. if (fd < 0)
  1504. kvm_put_kvm(kvm);
  1505. return fd;
  1506. }
  1507. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1508. {
  1509. switch (arg) {
  1510. case KVM_CAP_USER_MEMORY:
  1511. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1512. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1513. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1514. case KVM_CAP_SET_BOOT_CPU_ID:
  1515. #endif
  1516. case KVM_CAP_INTERNAL_ERROR_DATA:
  1517. return 1;
  1518. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1519. case KVM_CAP_IRQ_ROUTING:
  1520. return KVM_MAX_IRQ_ROUTES;
  1521. #endif
  1522. default:
  1523. break;
  1524. }
  1525. return kvm_dev_ioctl_check_extension(arg);
  1526. }
  1527. static long kvm_dev_ioctl(struct file *filp,
  1528. unsigned int ioctl, unsigned long arg)
  1529. {
  1530. long r = -EINVAL;
  1531. switch (ioctl) {
  1532. case KVM_GET_API_VERSION:
  1533. r = -EINVAL;
  1534. if (arg)
  1535. goto out;
  1536. r = KVM_API_VERSION;
  1537. break;
  1538. case KVM_CREATE_VM:
  1539. r = -EINVAL;
  1540. if (arg)
  1541. goto out;
  1542. r = kvm_dev_ioctl_create_vm();
  1543. break;
  1544. case KVM_CHECK_EXTENSION:
  1545. r = kvm_dev_ioctl_check_extension_generic(arg);
  1546. break;
  1547. case KVM_GET_VCPU_MMAP_SIZE:
  1548. r = -EINVAL;
  1549. if (arg)
  1550. goto out;
  1551. r = PAGE_SIZE; /* struct kvm_run */
  1552. #ifdef CONFIG_X86
  1553. r += PAGE_SIZE; /* pio data page */
  1554. #endif
  1555. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1556. r += PAGE_SIZE; /* coalesced mmio ring page */
  1557. #endif
  1558. break;
  1559. case KVM_TRACE_ENABLE:
  1560. case KVM_TRACE_PAUSE:
  1561. case KVM_TRACE_DISABLE:
  1562. r = -EOPNOTSUPP;
  1563. break;
  1564. default:
  1565. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1566. }
  1567. out:
  1568. return r;
  1569. }
  1570. static struct file_operations kvm_chardev_ops = {
  1571. .unlocked_ioctl = kvm_dev_ioctl,
  1572. .compat_ioctl = kvm_dev_ioctl,
  1573. };
  1574. static struct miscdevice kvm_dev = {
  1575. KVM_MINOR,
  1576. "kvm",
  1577. &kvm_chardev_ops,
  1578. };
  1579. static void hardware_enable(void *junk)
  1580. {
  1581. int cpu = raw_smp_processor_id();
  1582. int r;
  1583. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1584. return;
  1585. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  1586. r = kvm_arch_hardware_enable(NULL);
  1587. if (r) {
  1588. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1589. atomic_inc(&hardware_enable_failed);
  1590. printk(KERN_INFO "kvm: enabling virtualization on "
  1591. "CPU%d failed\n", cpu);
  1592. }
  1593. }
  1594. static void hardware_disable(void *junk)
  1595. {
  1596. int cpu = raw_smp_processor_id();
  1597. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1598. return;
  1599. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1600. kvm_arch_hardware_disable(NULL);
  1601. }
  1602. static void hardware_disable_all_nolock(void)
  1603. {
  1604. BUG_ON(!kvm_usage_count);
  1605. kvm_usage_count--;
  1606. if (!kvm_usage_count)
  1607. on_each_cpu(hardware_disable, NULL, 1);
  1608. }
  1609. static void hardware_disable_all(void)
  1610. {
  1611. spin_lock(&kvm_lock);
  1612. hardware_disable_all_nolock();
  1613. spin_unlock(&kvm_lock);
  1614. }
  1615. static int hardware_enable_all(void)
  1616. {
  1617. int r = 0;
  1618. spin_lock(&kvm_lock);
  1619. kvm_usage_count++;
  1620. if (kvm_usage_count == 1) {
  1621. atomic_set(&hardware_enable_failed, 0);
  1622. on_each_cpu(hardware_enable, NULL, 1);
  1623. if (atomic_read(&hardware_enable_failed)) {
  1624. hardware_disable_all_nolock();
  1625. r = -EBUSY;
  1626. }
  1627. }
  1628. spin_unlock(&kvm_lock);
  1629. return r;
  1630. }
  1631. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1632. void *v)
  1633. {
  1634. int cpu = (long)v;
  1635. if (!kvm_usage_count)
  1636. return NOTIFY_OK;
  1637. val &= ~CPU_TASKS_FROZEN;
  1638. switch (val) {
  1639. case CPU_DYING:
  1640. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1641. cpu);
  1642. hardware_disable(NULL);
  1643. break;
  1644. case CPU_UP_CANCELED:
  1645. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1646. cpu);
  1647. smp_call_function_single(cpu, hardware_disable, NULL, 1);
  1648. break;
  1649. case CPU_ONLINE:
  1650. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1651. cpu);
  1652. smp_call_function_single(cpu, hardware_enable, NULL, 1);
  1653. break;
  1654. }
  1655. return NOTIFY_OK;
  1656. }
  1657. asmlinkage void kvm_handle_fault_on_reboot(void)
  1658. {
  1659. if (kvm_rebooting)
  1660. /* spin while reset goes on */
  1661. while (true)
  1662. ;
  1663. /* Fault while not rebooting. We want the trace. */
  1664. BUG();
  1665. }
  1666. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  1667. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1668. void *v)
  1669. {
  1670. /*
  1671. * Some (well, at least mine) BIOSes hang on reboot if
  1672. * in vmx root mode.
  1673. *
  1674. * And Intel TXT required VMX off for all cpu when system shutdown.
  1675. */
  1676. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1677. kvm_rebooting = true;
  1678. on_each_cpu(hardware_disable, NULL, 1);
  1679. return NOTIFY_OK;
  1680. }
  1681. static struct notifier_block kvm_reboot_notifier = {
  1682. .notifier_call = kvm_reboot,
  1683. .priority = 0,
  1684. };
  1685. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1686. {
  1687. int i;
  1688. for (i = 0; i < bus->dev_count; i++) {
  1689. struct kvm_io_device *pos = bus->devs[i];
  1690. kvm_iodevice_destructor(pos);
  1691. }
  1692. kfree(bus);
  1693. }
  1694. /* kvm_io_bus_write - called under kvm->slots_lock */
  1695. int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1696. int len, const void *val)
  1697. {
  1698. int i;
  1699. struct kvm_io_bus *bus = rcu_dereference(kvm->buses[bus_idx]);
  1700. for (i = 0; i < bus->dev_count; i++)
  1701. if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
  1702. return 0;
  1703. return -EOPNOTSUPP;
  1704. }
  1705. /* kvm_io_bus_read - called under kvm->slots_lock */
  1706. int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1707. int len, void *val)
  1708. {
  1709. int i;
  1710. struct kvm_io_bus *bus = rcu_dereference(kvm->buses[bus_idx]);
  1711. for (i = 0; i < bus->dev_count; i++)
  1712. if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
  1713. return 0;
  1714. return -EOPNOTSUPP;
  1715. }
  1716. /* Caller must hold slots_lock. */
  1717. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1718. struct kvm_io_device *dev)
  1719. {
  1720. struct kvm_io_bus *new_bus, *bus;
  1721. bus = kvm->buses[bus_idx];
  1722. if (bus->dev_count > NR_IOBUS_DEVS-1)
  1723. return -ENOSPC;
  1724. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1725. if (!new_bus)
  1726. return -ENOMEM;
  1727. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  1728. new_bus->devs[new_bus->dev_count++] = dev;
  1729. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  1730. synchronize_srcu_expedited(&kvm->srcu);
  1731. kfree(bus);
  1732. return 0;
  1733. }
  1734. /* Caller must hold slots_lock. */
  1735. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1736. struct kvm_io_device *dev)
  1737. {
  1738. int i, r;
  1739. struct kvm_io_bus *new_bus, *bus;
  1740. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1741. if (!new_bus)
  1742. return -ENOMEM;
  1743. bus = kvm->buses[bus_idx];
  1744. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  1745. r = -ENOENT;
  1746. for (i = 0; i < new_bus->dev_count; i++)
  1747. if (new_bus->devs[i] == dev) {
  1748. r = 0;
  1749. new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
  1750. break;
  1751. }
  1752. if (r) {
  1753. kfree(new_bus);
  1754. return r;
  1755. }
  1756. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  1757. synchronize_srcu_expedited(&kvm->srcu);
  1758. kfree(bus);
  1759. return r;
  1760. }
  1761. static struct notifier_block kvm_cpu_notifier = {
  1762. .notifier_call = kvm_cpu_hotplug,
  1763. .priority = 20, /* must be > scheduler priority */
  1764. };
  1765. static int vm_stat_get(void *_offset, u64 *val)
  1766. {
  1767. unsigned offset = (long)_offset;
  1768. struct kvm *kvm;
  1769. *val = 0;
  1770. spin_lock(&kvm_lock);
  1771. list_for_each_entry(kvm, &vm_list, vm_list)
  1772. *val += *(u32 *)((void *)kvm + offset);
  1773. spin_unlock(&kvm_lock);
  1774. return 0;
  1775. }
  1776. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1777. static int vcpu_stat_get(void *_offset, u64 *val)
  1778. {
  1779. unsigned offset = (long)_offset;
  1780. struct kvm *kvm;
  1781. struct kvm_vcpu *vcpu;
  1782. int i;
  1783. *val = 0;
  1784. spin_lock(&kvm_lock);
  1785. list_for_each_entry(kvm, &vm_list, vm_list)
  1786. kvm_for_each_vcpu(i, vcpu, kvm)
  1787. *val += *(u32 *)((void *)vcpu + offset);
  1788. spin_unlock(&kvm_lock);
  1789. return 0;
  1790. }
  1791. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1792. static const struct file_operations *stat_fops[] = {
  1793. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1794. [KVM_STAT_VM] = &vm_stat_fops,
  1795. };
  1796. static void kvm_init_debug(void)
  1797. {
  1798. struct kvm_stats_debugfs_item *p;
  1799. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  1800. for (p = debugfs_entries; p->name; ++p)
  1801. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  1802. (void *)(long)p->offset,
  1803. stat_fops[p->kind]);
  1804. }
  1805. static void kvm_exit_debug(void)
  1806. {
  1807. struct kvm_stats_debugfs_item *p;
  1808. for (p = debugfs_entries; p->name; ++p)
  1809. debugfs_remove(p->dentry);
  1810. debugfs_remove(kvm_debugfs_dir);
  1811. }
  1812. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1813. {
  1814. if (kvm_usage_count)
  1815. hardware_disable(NULL);
  1816. return 0;
  1817. }
  1818. static int kvm_resume(struct sys_device *dev)
  1819. {
  1820. if (kvm_usage_count)
  1821. hardware_enable(NULL);
  1822. return 0;
  1823. }
  1824. static struct sysdev_class kvm_sysdev_class = {
  1825. .name = "kvm",
  1826. .suspend = kvm_suspend,
  1827. .resume = kvm_resume,
  1828. };
  1829. static struct sys_device kvm_sysdev = {
  1830. .id = 0,
  1831. .cls = &kvm_sysdev_class,
  1832. };
  1833. struct page *bad_page;
  1834. pfn_t bad_pfn;
  1835. static inline
  1836. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1837. {
  1838. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1839. }
  1840. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1841. {
  1842. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1843. kvm_arch_vcpu_load(vcpu, cpu);
  1844. }
  1845. static void kvm_sched_out(struct preempt_notifier *pn,
  1846. struct task_struct *next)
  1847. {
  1848. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1849. kvm_arch_vcpu_put(vcpu);
  1850. }
  1851. int kvm_init(void *opaque, unsigned int vcpu_size,
  1852. struct module *module)
  1853. {
  1854. int r;
  1855. int cpu;
  1856. r = kvm_arch_init(opaque);
  1857. if (r)
  1858. goto out_fail;
  1859. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1860. if (bad_page == NULL) {
  1861. r = -ENOMEM;
  1862. goto out;
  1863. }
  1864. bad_pfn = page_to_pfn(bad_page);
  1865. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  1866. r = -ENOMEM;
  1867. goto out_free_0;
  1868. }
  1869. r = kvm_arch_hardware_setup();
  1870. if (r < 0)
  1871. goto out_free_0a;
  1872. for_each_online_cpu(cpu) {
  1873. smp_call_function_single(cpu,
  1874. kvm_arch_check_processor_compat,
  1875. &r, 1);
  1876. if (r < 0)
  1877. goto out_free_1;
  1878. }
  1879. r = register_cpu_notifier(&kvm_cpu_notifier);
  1880. if (r)
  1881. goto out_free_2;
  1882. register_reboot_notifier(&kvm_reboot_notifier);
  1883. r = sysdev_class_register(&kvm_sysdev_class);
  1884. if (r)
  1885. goto out_free_3;
  1886. r = sysdev_register(&kvm_sysdev);
  1887. if (r)
  1888. goto out_free_4;
  1889. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1890. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1891. __alignof__(struct kvm_vcpu),
  1892. 0, NULL);
  1893. if (!kvm_vcpu_cache) {
  1894. r = -ENOMEM;
  1895. goto out_free_5;
  1896. }
  1897. kvm_chardev_ops.owner = module;
  1898. kvm_vm_fops.owner = module;
  1899. kvm_vcpu_fops.owner = module;
  1900. r = misc_register(&kvm_dev);
  1901. if (r) {
  1902. printk(KERN_ERR "kvm: misc device register failed\n");
  1903. goto out_free;
  1904. }
  1905. kvm_preempt_ops.sched_in = kvm_sched_in;
  1906. kvm_preempt_ops.sched_out = kvm_sched_out;
  1907. kvm_init_debug();
  1908. return 0;
  1909. out_free:
  1910. kmem_cache_destroy(kvm_vcpu_cache);
  1911. out_free_5:
  1912. sysdev_unregister(&kvm_sysdev);
  1913. out_free_4:
  1914. sysdev_class_unregister(&kvm_sysdev_class);
  1915. out_free_3:
  1916. unregister_reboot_notifier(&kvm_reboot_notifier);
  1917. unregister_cpu_notifier(&kvm_cpu_notifier);
  1918. out_free_2:
  1919. out_free_1:
  1920. kvm_arch_hardware_unsetup();
  1921. out_free_0a:
  1922. free_cpumask_var(cpus_hardware_enabled);
  1923. out_free_0:
  1924. __free_page(bad_page);
  1925. out:
  1926. kvm_arch_exit();
  1927. out_fail:
  1928. return r;
  1929. }
  1930. EXPORT_SYMBOL_GPL(kvm_init);
  1931. void kvm_exit(void)
  1932. {
  1933. tracepoint_synchronize_unregister();
  1934. kvm_exit_debug();
  1935. misc_deregister(&kvm_dev);
  1936. kmem_cache_destroy(kvm_vcpu_cache);
  1937. sysdev_unregister(&kvm_sysdev);
  1938. sysdev_class_unregister(&kvm_sysdev_class);
  1939. unregister_reboot_notifier(&kvm_reboot_notifier);
  1940. unregister_cpu_notifier(&kvm_cpu_notifier);
  1941. on_each_cpu(hardware_disable, NULL, 1);
  1942. kvm_arch_hardware_unsetup();
  1943. kvm_arch_exit();
  1944. free_cpumask_var(cpus_hardware_enabled);
  1945. __free_page(bad_page);
  1946. }
  1947. EXPORT_SYMBOL_GPL(kvm_exit);