fsl_dma.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881
  1. /*
  2. * Freescale DMA ALSA SoC PCM driver
  3. *
  4. * Author: Timur Tabi <timur@freescale.com>
  5. *
  6. * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed
  7. * under the terms of the GNU General Public License version 2. This
  8. * program is licensed "as is" without any warranty of any kind, whether
  9. * express or implied.
  10. *
  11. * This driver implements ASoC support for the Elo DMA controller, which is
  12. * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
  13. * the PCM driver is what handles the DMA buffer.
  14. */
  15. #include <linux/module.h>
  16. #include <linux/init.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/dma-mapping.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/delay.h>
  21. #include <linux/gfp.h>
  22. #include <sound/core.h>
  23. #include <sound/pcm.h>
  24. #include <sound/pcm_params.h>
  25. #include <sound/soc.h>
  26. #include <asm/io.h>
  27. #include "fsl_dma.h"
  28. /*
  29. * The formats that the DMA controller supports, which is anything
  30. * that is 8, 16, or 32 bits.
  31. */
  32. #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
  33. SNDRV_PCM_FMTBIT_U8 | \
  34. SNDRV_PCM_FMTBIT_S16_LE | \
  35. SNDRV_PCM_FMTBIT_S16_BE | \
  36. SNDRV_PCM_FMTBIT_U16_LE | \
  37. SNDRV_PCM_FMTBIT_U16_BE | \
  38. SNDRV_PCM_FMTBIT_S24_LE | \
  39. SNDRV_PCM_FMTBIT_S24_BE | \
  40. SNDRV_PCM_FMTBIT_U24_LE | \
  41. SNDRV_PCM_FMTBIT_U24_BE | \
  42. SNDRV_PCM_FMTBIT_S32_LE | \
  43. SNDRV_PCM_FMTBIT_S32_BE | \
  44. SNDRV_PCM_FMTBIT_U32_LE | \
  45. SNDRV_PCM_FMTBIT_U32_BE)
  46. #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
  47. SNDRV_PCM_RATE_CONTINUOUS)
  48. /* DMA global data. This structure is used by fsl_dma_open() to determine
  49. * which DMA channels to assign to a substream. Unfortunately, ASoC V1 does
  50. * not allow the machine driver to provide this information to the PCM
  51. * driver in advance, and there's no way to differentiate between the two
  52. * DMA controllers. So for now, this driver only supports one SSI device
  53. * using two DMA channels. We cannot support multiple DMA devices.
  54. *
  55. * ssi_stx_phys: bus address of SSI STX register
  56. * ssi_srx_phys: bus address of SSI SRX register
  57. * dma_channel: pointer to the DMA channel's registers
  58. * irq: IRQ for this DMA channel
  59. * assigned: set to 1 if that DMA channel is assigned to a substream
  60. */
  61. static struct {
  62. dma_addr_t ssi_stx_phys;
  63. dma_addr_t ssi_srx_phys;
  64. struct ccsr_dma_channel __iomem *dma_channel[2];
  65. unsigned int irq[2];
  66. unsigned int assigned[2];
  67. } dma_global_data;
  68. /*
  69. * The number of DMA links to use. Two is the bare minimum, but if you
  70. * have really small links you might need more.
  71. */
  72. #define NUM_DMA_LINKS 2
  73. /** fsl_dma_private: p-substream DMA data
  74. *
  75. * Each substream has a 1-to-1 association with a DMA channel.
  76. *
  77. * The link[] array is first because it needs to be aligned on a 32-byte
  78. * boundary, so putting it first will ensure alignment without padding the
  79. * structure.
  80. *
  81. * @link[]: array of link descriptors
  82. * @controller_id: which DMA controller (0, 1, ...)
  83. * @channel_id: which DMA channel on the controller (0, 1, 2, ...)
  84. * @dma_channel: pointer to the DMA channel's registers
  85. * @irq: IRQ for this DMA channel
  86. * @substream: pointer to the substream object, needed by the ISR
  87. * @ssi_sxx_phys: bus address of the STX or SRX register to use
  88. * @ld_buf_phys: physical address of the LD buffer
  89. * @current_link: index into link[] of the link currently being processed
  90. * @dma_buf_phys: physical address of the DMA buffer
  91. * @dma_buf_next: physical address of the next period to process
  92. * @dma_buf_end: physical address of the byte after the end of the DMA
  93. * @buffer period_size: the size of a single period
  94. * @num_periods: the number of periods in the DMA buffer
  95. */
  96. struct fsl_dma_private {
  97. struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
  98. unsigned int controller_id;
  99. unsigned int channel_id;
  100. struct ccsr_dma_channel __iomem *dma_channel;
  101. unsigned int irq;
  102. struct snd_pcm_substream *substream;
  103. dma_addr_t ssi_sxx_phys;
  104. dma_addr_t ld_buf_phys;
  105. unsigned int current_link;
  106. dma_addr_t dma_buf_phys;
  107. dma_addr_t dma_buf_next;
  108. dma_addr_t dma_buf_end;
  109. size_t period_size;
  110. unsigned int num_periods;
  111. };
  112. /**
  113. * fsl_dma_hardare: define characteristics of the PCM hardware.
  114. *
  115. * The PCM hardware is the Freescale DMA controller. This structure defines
  116. * the capabilities of that hardware.
  117. *
  118. * Since the sampling rate and data format are not controlled by the DMA
  119. * controller, we specify no limits for those values. The only exception is
  120. * period_bytes_min, which is set to a reasonably low value to prevent the
  121. * DMA controller from generating too many interrupts per second.
  122. *
  123. * Since each link descriptor has a 32-bit byte count field, we set
  124. * period_bytes_max to the largest 32-bit number. We also have no maximum
  125. * number of periods.
  126. *
  127. * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
  128. * limitation in the SSI driver requires the sample rates for playback and
  129. * capture to be the same.
  130. */
  131. static const struct snd_pcm_hardware fsl_dma_hardware = {
  132. .info = SNDRV_PCM_INFO_INTERLEAVED |
  133. SNDRV_PCM_INFO_MMAP |
  134. SNDRV_PCM_INFO_MMAP_VALID |
  135. SNDRV_PCM_INFO_JOINT_DUPLEX |
  136. SNDRV_PCM_INFO_PAUSE,
  137. .formats = FSLDMA_PCM_FORMATS,
  138. .rates = FSLDMA_PCM_RATES,
  139. .rate_min = 5512,
  140. .rate_max = 192000,
  141. .period_bytes_min = 512, /* A reasonable limit */
  142. .period_bytes_max = (u32) -1,
  143. .periods_min = NUM_DMA_LINKS,
  144. .periods_max = (unsigned int) -1,
  145. .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
  146. };
  147. /**
  148. * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
  149. *
  150. * This function should be called by the ISR whenever the DMA controller
  151. * halts data transfer.
  152. */
  153. static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
  154. {
  155. unsigned long flags;
  156. snd_pcm_stream_lock_irqsave(substream, flags);
  157. if (snd_pcm_running(substream))
  158. snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
  159. snd_pcm_stream_unlock_irqrestore(substream, flags);
  160. }
  161. /**
  162. * fsl_dma_update_pointers - update LD pointers to point to the next period
  163. *
  164. * As each period is completed, this function changes the the link
  165. * descriptor pointers for that period to point to the next period.
  166. */
  167. static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
  168. {
  169. struct fsl_dma_link_descriptor *link =
  170. &dma_private->link[dma_private->current_link];
  171. /* Update our link descriptors to point to the next period */
  172. if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  173. link->source_addr =
  174. cpu_to_be32(dma_private->dma_buf_next);
  175. else
  176. link->dest_addr =
  177. cpu_to_be32(dma_private->dma_buf_next);
  178. /* Update our variables for next time */
  179. dma_private->dma_buf_next += dma_private->period_size;
  180. if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
  181. dma_private->dma_buf_next = dma_private->dma_buf_phys;
  182. if (++dma_private->current_link >= NUM_DMA_LINKS)
  183. dma_private->current_link = 0;
  184. }
  185. /**
  186. * fsl_dma_isr: interrupt handler for the DMA controller
  187. *
  188. * @irq: IRQ of the DMA channel
  189. * @dev_id: pointer to the dma_private structure for this DMA channel
  190. */
  191. static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
  192. {
  193. struct fsl_dma_private *dma_private = dev_id;
  194. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  195. irqreturn_t ret = IRQ_NONE;
  196. u32 sr, sr2 = 0;
  197. /* We got an interrupt, so read the status register to see what we
  198. were interrupted for.
  199. */
  200. sr = in_be32(&dma_channel->sr);
  201. if (sr & CCSR_DMA_SR_TE) {
  202. dev_err(dma_private->substream->pcm->card->dev,
  203. "DMA transmit error (controller=%u channel=%u irq=%u\n",
  204. dma_private->controller_id,
  205. dma_private->channel_id, irq);
  206. fsl_dma_abort_stream(dma_private->substream);
  207. sr2 |= CCSR_DMA_SR_TE;
  208. ret = IRQ_HANDLED;
  209. }
  210. if (sr & CCSR_DMA_SR_CH)
  211. ret = IRQ_HANDLED;
  212. if (sr & CCSR_DMA_SR_PE) {
  213. dev_err(dma_private->substream->pcm->card->dev,
  214. "DMA%u programming error (channel=%u irq=%u)\n",
  215. dma_private->controller_id,
  216. dma_private->channel_id, irq);
  217. fsl_dma_abort_stream(dma_private->substream);
  218. sr2 |= CCSR_DMA_SR_PE;
  219. ret = IRQ_HANDLED;
  220. }
  221. if (sr & CCSR_DMA_SR_EOLNI) {
  222. sr2 |= CCSR_DMA_SR_EOLNI;
  223. ret = IRQ_HANDLED;
  224. }
  225. if (sr & CCSR_DMA_SR_CB)
  226. ret = IRQ_HANDLED;
  227. if (sr & CCSR_DMA_SR_EOSI) {
  228. struct snd_pcm_substream *substream = dma_private->substream;
  229. /* Tell ALSA we completed a period. */
  230. snd_pcm_period_elapsed(substream);
  231. /*
  232. * Update our link descriptors to point to the next period. We
  233. * only need to do this if the number of periods is not equal to
  234. * the number of links.
  235. */
  236. if (dma_private->num_periods != NUM_DMA_LINKS)
  237. fsl_dma_update_pointers(dma_private);
  238. sr2 |= CCSR_DMA_SR_EOSI;
  239. ret = IRQ_HANDLED;
  240. }
  241. if (sr & CCSR_DMA_SR_EOLSI) {
  242. sr2 |= CCSR_DMA_SR_EOLSI;
  243. ret = IRQ_HANDLED;
  244. }
  245. /* Clear the bits that we set */
  246. if (sr2)
  247. out_be32(&dma_channel->sr, sr2);
  248. return ret;
  249. }
  250. /**
  251. * fsl_dma_new: initialize this PCM driver.
  252. *
  253. * This function is called when the codec driver calls snd_soc_new_pcms(),
  254. * once for each .dai_link in the machine driver's snd_soc_card
  255. * structure.
  256. */
  257. static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
  258. struct snd_pcm *pcm)
  259. {
  260. static u64 fsl_dma_dmamask = DMA_BIT_MASK(32);
  261. int ret;
  262. if (!card->dev->dma_mask)
  263. card->dev->dma_mask = &fsl_dma_dmamask;
  264. if (!card->dev->coherent_dma_mask)
  265. card->dev->coherent_dma_mask = fsl_dma_dmamask;
  266. ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
  267. fsl_dma_hardware.buffer_bytes_max,
  268. &pcm->streams[0].substream->dma_buffer);
  269. if (ret) {
  270. dev_err(card->dev,
  271. "Can't allocate playback DMA buffer (size=%u)\n",
  272. fsl_dma_hardware.buffer_bytes_max);
  273. return -ENOMEM;
  274. }
  275. ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
  276. fsl_dma_hardware.buffer_bytes_max,
  277. &pcm->streams[1].substream->dma_buffer);
  278. if (ret) {
  279. snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
  280. dev_err(card->dev,
  281. "Can't allocate capture DMA buffer (size=%u)\n",
  282. fsl_dma_hardware.buffer_bytes_max);
  283. return -ENOMEM;
  284. }
  285. return 0;
  286. }
  287. /**
  288. * fsl_dma_open: open a new substream.
  289. *
  290. * Each substream has its own DMA buffer.
  291. *
  292. * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
  293. * descriptors that ping-pong from one period to the next. For example, if
  294. * there are six periods and two link descriptors, this is how they look
  295. * before playback starts:
  296. *
  297. * The last link descriptor
  298. * ____________ points back to the first
  299. * | |
  300. * V |
  301. * ___ ___ |
  302. * | |->| |->|
  303. * |___| |___|
  304. * | |
  305. * | |
  306. * V V
  307. * _________________________________________
  308. * | | | | | | | The DMA buffer is
  309. * | | | | | | | divided into 6 parts
  310. * |______|______|______|______|______|______|
  311. *
  312. * and here's how they look after the first period is finished playing:
  313. *
  314. * ____________
  315. * | |
  316. * V |
  317. * ___ ___ |
  318. * | |->| |->|
  319. * |___| |___|
  320. * | |
  321. * |______________
  322. * | |
  323. * V V
  324. * _________________________________________
  325. * | | | | | | |
  326. * | | | | | | |
  327. * |______|______|______|______|______|______|
  328. *
  329. * The first link descriptor now points to the third period. The DMA
  330. * controller is currently playing the second period. When it finishes, it
  331. * will jump back to the first descriptor and play the third period.
  332. *
  333. * There are four reasons we do this:
  334. *
  335. * 1. The only way to get the DMA controller to automatically restart the
  336. * transfer when it gets to the end of the buffer is to use chaining
  337. * mode. Basic direct mode doesn't offer that feature.
  338. * 2. We need to receive an interrupt at the end of every period. The DMA
  339. * controller can generate an interrupt at the end of every link transfer
  340. * (aka segment). Making each period into a DMA segment will give us the
  341. * interrupts we need.
  342. * 3. By creating only two link descriptors, regardless of the number of
  343. * periods, we do not need to reallocate the link descriptors if the
  344. * number of periods changes.
  345. * 4. All of the audio data is still stored in a single, contiguous DMA
  346. * buffer, which is what ALSA expects. We're just dividing it into
  347. * contiguous parts, and creating a link descriptor for each one.
  348. */
  349. static int fsl_dma_open(struct snd_pcm_substream *substream)
  350. {
  351. struct snd_pcm_runtime *runtime = substream->runtime;
  352. struct fsl_dma_private *dma_private;
  353. struct ccsr_dma_channel __iomem *dma_channel;
  354. dma_addr_t ld_buf_phys;
  355. u64 temp_link; /* Pointer to next link descriptor */
  356. u32 mr;
  357. unsigned int channel;
  358. int ret = 0;
  359. unsigned int i;
  360. /*
  361. * Reject any DMA buffer whose size is not a multiple of the period
  362. * size. We need to make sure that the DMA buffer can be evenly divided
  363. * into periods.
  364. */
  365. ret = snd_pcm_hw_constraint_integer(runtime,
  366. SNDRV_PCM_HW_PARAM_PERIODS);
  367. if (ret < 0) {
  368. dev_err(substream->pcm->card->dev, "invalid buffer size\n");
  369. return ret;
  370. }
  371. channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
  372. if (dma_global_data.assigned[channel]) {
  373. dev_err(substream->pcm->card->dev,
  374. "DMA channel already assigned\n");
  375. return -EBUSY;
  376. }
  377. dma_private = dma_alloc_coherent(substream->pcm->card->dev,
  378. sizeof(struct fsl_dma_private), &ld_buf_phys, GFP_KERNEL);
  379. if (!dma_private) {
  380. dev_err(substream->pcm->card->dev,
  381. "can't allocate DMA private data\n");
  382. return -ENOMEM;
  383. }
  384. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  385. dma_private->ssi_sxx_phys = dma_global_data.ssi_stx_phys;
  386. else
  387. dma_private->ssi_sxx_phys = dma_global_data.ssi_srx_phys;
  388. dma_private->dma_channel = dma_global_data.dma_channel[channel];
  389. dma_private->irq = dma_global_data.irq[channel];
  390. dma_private->substream = substream;
  391. dma_private->ld_buf_phys = ld_buf_phys;
  392. dma_private->dma_buf_phys = substream->dma_buffer.addr;
  393. /* We only support one DMA controller for now */
  394. dma_private->controller_id = 0;
  395. dma_private->channel_id = channel;
  396. ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
  397. if (ret) {
  398. dev_err(substream->pcm->card->dev,
  399. "can't register ISR for IRQ %u (ret=%i)\n",
  400. dma_private->irq, ret);
  401. dma_free_coherent(substream->pcm->card->dev,
  402. sizeof(struct fsl_dma_private),
  403. dma_private, dma_private->ld_buf_phys);
  404. return ret;
  405. }
  406. dma_global_data.assigned[channel] = 1;
  407. snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
  408. snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
  409. runtime->private_data = dma_private;
  410. /* Program the fixed DMA controller parameters */
  411. dma_channel = dma_private->dma_channel;
  412. temp_link = dma_private->ld_buf_phys +
  413. sizeof(struct fsl_dma_link_descriptor);
  414. for (i = 0; i < NUM_DMA_LINKS; i++) {
  415. dma_private->link[i].next = cpu_to_be64(temp_link);
  416. temp_link += sizeof(struct fsl_dma_link_descriptor);
  417. }
  418. /* The last link descriptor points to the first */
  419. dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
  420. /* Tell the DMA controller where the first link descriptor is */
  421. out_be32(&dma_channel->clndar,
  422. CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
  423. out_be32(&dma_channel->eclndar,
  424. CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
  425. /* The manual says the BCR must be clear before enabling EMP */
  426. out_be32(&dma_channel->bcr, 0);
  427. /*
  428. * Program the mode register for interrupts, external master control,
  429. * and source/destination hold. Also clear the Channel Abort bit.
  430. */
  431. mr = in_be32(&dma_channel->mr) &
  432. ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
  433. /*
  434. * We want External Master Start and External Master Pause enabled,
  435. * because the SSI is controlling the DMA controller. We want the DMA
  436. * controller to be set up in advance, and then we signal only the SSI
  437. * to start transferring.
  438. *
  439. * We want End-Of-Segment Interrupts enabled, because this will generate
  440. * an interrupt at the end of each segment (each link descriptor
  441. * represents one segment). Each DMA segment is the same thing as an
  442. * ALSA period, so this is how we get an interrupt at the end of every
  443. * period.
  444. *
  445. * We want Error Interrupt enabled, so that we can get an error if
  446. * the DMA controller is mis-programmed somehow.
  447. */
  448. mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
  449. CCSR_DMA_MR_EMS_EN;
  450. /* For playback, we want the destination address to be held. For
  451. capture, set the source address to be held. */
  452. mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
  453. CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
  454. out_be32(&dma_channel->mr, mr);
  455. return 0;
  456. }
  457. /**
  458. * fsl_dma_hw_params: continue initializing the DMA links
  459. *
  460. * This function obtains hardware parameters about the opened stream and
  461. * programs the DMA controller accordingly.
  462. *
  463. * One drawback of big-endian is that when copying integers of different
  464. * sizes to a fixed-sized register, the address to which the integer must be
  465. * copied is dependent on the size of the integer.
  466. *
  467. * For example, if P is the address of a 32-bit register, and X is a 32-bit
  468. * integer, then X should be copied to address P. However, if X is a 16-bit
  469. * integer, then it should be copied to P+2. If X is an 8-bit register,
  470. * then it should be copied to P+3.
  471. *
  472. * So for playback of 8-bit samples, the DMA controller must transfer single
  473. * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
  474. * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
  475. *
  476. * For 24-bit samples, the offset is 1 byte. However, the DMA controller
  477. * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
  478. * and 8 bytes at a time). So we do not support packed 24-bit samples.
  479. * 24-bit data must be padded to 32 bits.
  480. */
  481. static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
  482. struct snd_pcm_hw_params *hw_params)
  483. {
  484. struct snd_pcm_runtime *runtime = substream->runtime;
  485. struct fsl_dma_private *dma_private = runtime->private_data;
  486. /* Number of bits per sample */
  487. unsigned int sample_size =
  488. snd_pcm_format_physical_width(params_format(hw_params));
  489. /* Number of bytes per frame */
  490. unsigned int frame_size = 2 * (sample_size / 8);
  491. /* Bus address of SSI STX register */
  492. dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
  493. /* Size of the DMA buffer, in bytes */
  494. size_t buffer_size = params_buffer_bytes(hw_params);
  495. /* Number of bytes per period */
  496. size_t period_size = params_period_bytes(hw_params);
  497. /* Pointer to next period */
  498. dma_addr_t temp_addr = substream->dma_buffer.addr;
  499. /* Pointer to DMA controller */
  500. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  501. u32 mr; /* DMA Mode Register */
  502. unsigned int i;
  503. /* Initialize our DMA tracking variables */
  504. dma_private->period_size = period_size;
  505. dma_private->num_periods = params_periods(hw_params);
  506. dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
  507. dma_private->dma_buf_next = dma_private->dma_buf_phys +
  508. (NUM_DMA_LINKS * period_size);
  509. if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
  510. /* This happens if the number of periods == NUM_DMA_LINKS */
  511. dma_private->dma_buf_next = dma_private->dma_buf_phys;
  512. mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
  513. CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
  514. /* Due to a quirk of the SSI's STX register, the target address
  515. * for the DMA operations depends on the sample size. So we calculate
  516. * that offset here. While we're at it, also tell the DMA controller
  517. * how much data to transfer per sample.
  518. */
  519. switch (sample_size) {
  520. case 8:
  521. mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
  522. ssi_sxx_phys += 3;
  523. break;
  524. case 16:
  525. mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
  526. ssi_sxx_phys += 2;
  527. break;
  528. case 32:
  529. mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
  530. break;
  531. default:
  532. /* We should never get here */
  533. dev_err(substream->pcm->card->dev,
  534. "unsupported sample size %u\n", sample_size);
  535. return -EINVAL;
  536. }
  537. /*
  538. * BWC should always be a multiple of the frame size. BWC determines
  539. * how many bytes are sent/received before the DMA controller checks the
  540. * SSI to see if it needs to stop. For playback, the transmit FIFO can
  541. * hold three frames, so we want to send two frames at a time. For
  542. * capture, the receive FIFO is triggered when it contains one frame, so
  543. * we want to receive one frame at a time.
  544. */
  545. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  546. mr |= CCSR_DMA_MR_BWC(2 * frame_size);
  547. else
  548. mr |= CCSR_DMA_MR_BWC(frame_size);
  549. out_be32(&dma_channel->mr, mr);
  550. for (i = 0; i < NUM_DMA_LINKS; i++) {
  551. struct fsl_dma_link_descriptor *link = &dma_private->link[i];
  552. link->count = cpu_to_be32(period_size);
  553. /* Even though the DMA controller supports 36-bit addressing,
  554. * for simplicity we allow only 32-bit addresses for the audio
  555. * buffer itself. This was enforced in fsl_dma_new() with the
  556. * DMA mask.
  557. *
  558. * The snoop bit tells the DMA controller whether it should tell
  559. * the ECM to snoop during a read or write to an address. For
  560. * audio, we use DMA to transfer data between memory and an I/O
  561. * device (the SSI's STX0 or SRX0 register). Snooping is only
  562. * needed if there is a cache, so we need to snoop memory
  563. * addresses only. For playback, that means we snoop the source
  564. * but not the destination. For capture, we snoop the
  565. * destination but not the source.
  566. *
  567. * Note that failing to snoop properly is unlikely to cause
  568. * cache incoherency if the period size is larger than the
  569. * size of L1 cache. This is because filling in one period will
  570. * flush out the data for the previous period. So if you
  571. * increased period_bytes_min to a large enough size, you might
  572. * get more performance by not snooping, and you'll still be
  573. * okay.
  574. */
  575. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  576. link->source_addr = cpu_to_be32(temp_addr);
  577. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
  578. link->dest_addr = cpu_to_be32(ssi_sxx_phys);
  579. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP);
  580. } else {
  581. link->source_addr = cpu_to_be32(ssi_sxx_phys);
  582. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP);
  583. link->dest_addr = cpu_to_be32(temp_addr);
  584. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
  585. }
  586. temp_addr += period_size;
  587. }
  588. return 0;
  589. }
  590. /**
  591. * fsl_dma_pointer: determine the current position of the DMA transfer
  592. *
  593. * This function is called by ALSA when ALSA wants to know where in the
  594. * stream buffer the hardware currently is.
  595. *
  596. * For playback, the SAR register contains the physical address of the most
  597. * recent DMA transfer. For capture, the value is in the DAR register.
  598. *
  599. * The base address of the buffer is stored in the source_addr field of the
  600. * first link descriptor.
  601. */
  602. static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
  603. {
  604. struct snd_pcm_runtime *runtime = substream->runtime;
  605. struct fsl_dma_private *dma_private = runtime->private_data;
  606. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  607. dma_addr_t position;
  608. snd_pcm_uframes_t frames;
  609. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  610. position = in_be32(&dma_channel->sar);
  611. else
  612. position = in_be32(&dma_channel->dar);
  613. /*
  614. * When capture is started, the SSI immediately starts to fill its FIFO.
  615. * This means that the DMA controller is not started until the FIFO is
  616. * full. However, ALSA calls this function before that happens, when
  617. * MR.DAR is still zero. In this case, just return zero to indicate
  618. * that nothing has been received yet.
  619. */
  620. if (!position)
  621. return 0;
  622. if ((position < dma_private->dma_buf_phys) ||
  623. (position > dma_private->dma_buf_end)) {
  624. dev_err(substream->pcm->card->dev,
  625. "dma pointer is out of range, halting stream\n");
  626. return SNDRV_PCM_POS_XRUN;
  627. }
  628. frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
  629. /*
  630. * If the current address is just past the end of the buffer, wrap it
  631. * around.
  632. */
  633. if (frames == runtime->buffer_size)
  634. frames = 0;
  635. return frames;
  636. }
  637. /**
  638. * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
  639. *
  640. * Release the resources allocated in fsl_dma_hw_params() and de-program the
  641. * registers.
  642. *
  643. * This function can be called multiple times.
  644. */
  645. static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
  646. {
  647. struct snd_pcm_runtime *runtime = substream->runtime;
  648. struct fsl_dma_private *dma_private = runtime->private_data;
  649. if (dma_private) {
  650. struct ccsr_dma_channel __iomem *dma_channel;
  651. dma_channel = dma_private->dma_channel;
  652. /* Stop the DMA */
  653. out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
  654. out_be32(&dma_channel->mr, 0);
  655. /* Reset all the other registers */
  656. out_be32(&dma_channel->sr, -1);
  657. out_be32(&dma_channel->clndar, 0);
  658. out_be32(&dma_channel->eclndar, 0);
  659. out_be32(&dma_channel->satr, 0);
  660. out_be32(&dma_channel->sar, 0);
  661. out_be32(&dma_channel->datr, 0);
  662. out_be32(&dma_channel->dar, 0);
  663. out_be32(&dma_channel->bcr, 0);
  664. out_be32(&dma_channel->nlndar, 0);
  665. out_be32(&dma_channel->enlndar, 0);
  666. }
  667. return 0;
  668. }
  669. /**
  670. * fsl_dma_close: close the stream.
  671. */
  672. static int fsl_dma_close(struct snd_pcm_substream *substream)
  673. {
  674. struct snd_pcm_runtime *runtime = substream->runtime;
  675. struct fsl_dma_private *dma_private = runtime->private_data;
  676. int dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
  677. if (dma_private) {
  678. if (dma_private->irq)
  679. free_irq(dma_private->irq, dma_private);
  680. if (dma_private->ld_buf_phys) {
  681. dma_unmap_single(substream->pcm->card->dev,
  682. dma_private->ld_buf_phys,
  683. sizeof(dma_private->link), DMA_TO_DEVICE);
  684. }
  685. /* Deallocate the fsl_dma_private structure */
  686. dma_free_coherent(substream->pcm->card->dev,
  687. sizeof(struct fsl_dma_private),
  688. dma_private, dma_private->ld_buf_phys);
  689. substream->runtime->private_data = NULL;
  690. }
  691. dma_global_data.assigned[dir] = 0;
  692. return 0;
  693. }
  694. /*
  695. * Remove this PCM driver.
  696. */
  697. static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
  698. {
  699. struct snd_pcm_substream *substream;
  700. unsigned int i;
  701. for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
  702. substream = pcm->streams[i].substream;
  703. if (substream) {
  704. snd_dma_free_pages(&substream->dma_buffer);
  705. substream->dma_buffer.area = NULL;
  706. substream->dma_buffer.addr = 0;
  707. }
  708. }
  709. }
  710. static struct snd_pcm_ops fsl_dma_ops = {
  711. .open = fsl_dma_open,
  712. .close = fsl_dma_close,
  713. .ioctl = snd_pcm_lib_ioctl,
  714. .hw_params = fsl_dma_hw_params,
  715. .hw_free = fsl_dma_hw_free,
  716. .pointer = fsl_dma_pointer,
  717. };
  718. struct snd_soc_platform fsl_soc_platform = {
  719. .name = "fsl-dma",
  720. .pcm_ops = &fsl_dma_ops,
  721. .pcm_new = fsl_dma_new,
  722. .pcm_free = fsl_dma_free_dma_buffers,
  723. };
  724. EXPORT_SYMBOL_GPL(fsl_soc_platform);
  725. /**
  726. * fsl_dma_configure: store the DMA parameters from the fabric driver.
  727. *
  728. * This function is called by the ASoC fabric driver to give us the DMA and
  729. * SSI channel information.
  730. *
  731. * Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI
  732. * data when a substream is created, so for now we need to store this data
  733. * into a global variable. This means that we can only support one DMA
  734. * controller, and hence only one SSI.
  735. */
  736. int fsl_dma_configure(struct fsl_dma_info *dma_info)
  737. {
  738. static int initialized;
  739. /* We only support one DMA controller for now */
  740. if (initialized)
  741. return 0;
  742. dma_global_data.ssi_stx_phys = dma_info->ssi_stx_phys;
  743. dma_global_data.ssi_srx_phys = dma_info->ssi_srx_phys;
  744. dma_global_data.dma_channel[0] = dma_info->dma_channel[0];
  745. dma_global_data.dma_channel[1] = dma_info->dma_channel[1];
  746. dma_global_data.irq[0] = dma_info->dma_irq[0];
  747. dma_global_data.irq[1] = dma_info->dma_irq[1];
  748. dma_global_data.assigned[0] = 0;
  749. dma_global_data.assigned[1] = 0;
  750. initialized = 1;
  751. return 1;
  752. }
  753. EXPORT_SYMBOL_GPL(fsl_dma_configure);
  754. static int __init fsl_soc_platform_init(void)
  755. {
  756. return snd_soc_register_platform(&fsl_soc_platform);
  757. }
  758. module_init(fsl_soc_platform_init);
  759. static void __exit fsl_soc_platform_exit(void)
  760. {
  761. snd_soc_unregister_platform(&fsl_soc_platform);
  762. }
  763. module_exit(fsl_soc_platform_exit);
  764. MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
  765. MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module");
  766. MODULE_LICENSE("GPL");