Kconfig 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289
  1. config SELECT_MEMORY_MODEL
  2. def_bool y
  3. depends on EXPERIMENTAL || ARCH_SELECT_MEMORY_MODEL
  4. choice
  5. prompt "Memory model"
  6. depends on SELECT_MEMORY_MODEL
  7. default DISCONTIGMEM_MANUAL if ARCH_DISCONTIGMEM_DEFAULT
  8. default SPARSEMEM_MANUAL if ARCH_SPARSEMEM_DEFAULT
  9. default FLATMEM_MANUAL
  10. config FLATMEM_MANUAL
  11. bool "Flat Memory"
  12. depends on !(ARCH_DISCONTIGMEM_ENABLE || ARCH_SPARSEMEM_ENABLE) || ARCH_FLATMEM_ENABLE
  13. help
  14. This option allows you to change some of the ways that
  15. Linux manages its memory internally. Most users will
  16. only have one option here: FLATMEM. This is normal
  17. and a correct option.
  18. Some users of more advanced features like NUMA and
  19. memory hotplug may have different options here.
  20. DISCONTIGMEM is an more mature, better tested system,
  21. but is incompatible with memory hotplug and may suffer
  22. decreased performance over SPARSEMEM. If unsure between
  23. "Sparse Memory" and "Discontiguous Memory", choose
  24. "Discontiguous Memory".
  25. If unsure, choose this option (Flat Memory) over any other.
  26. config DISCONTIGMEM_MANUAL
  27. bool "Discontiguous Memory"
  28. depends on ARCH_DISCONTIGMEM_ENABLE
  29. help
  30. This option provides enhanced support for discontiguous
  31. memory systems, over FLATMEM. These systems have holes
  32. in their physical address spaces, and this option provides
  33. more efficient handling of these holes. However, the vast
  34. majority of hardware has quite flat address spaces, and
  35. can have degraded performance from the extra overhead that
  36. this option imposes.
  37. Many NUMA configurations will have this as the only option.
  38. If unsure, choose "Flat Memory" over this option.
  39. config SPARSEMEM_MANUAL
  40. bool "Sparse Memory"
  41. depends on ARCH_SPARSEMEM_ENABLE
  42. help
  43. This will be the only option for some systems, including
  44. memory hotplug systems. This is normal.
  45. For many other systems, this will be an alternative to
  46. "Discontiguous Memory". This option provides some potential
  47. performance benefits, along with decreased code complexity,
  48. but it is newer, and more experimental.
  49. If unsure, choose "Discontiguous Memory" or "Flat Memory"
  50. over this option.
  51. endchoice
  52. config DISCONTIGMEM
  53. def_bool y
  54. depends on (!SELECT_MEMORY_MODEL && ARCH_DISCONTIGMEM_ENABLE) || DISCONTIGMEM_MANUAL
  55. config SPARSEMEM
  56. def_bool y
  57. depends on (!SELECT_MEMORY_MODEL && ARCH_SPARSEMEM_ENABLE) || SPARSEMEM_MANUAL
  58. config FLATMEM
  59. def_bool y
  60. depends on (!DISCONTIGMEM && !SPARSEMEM) || FLATMEM_MANUAL
  61. config FLAT_NODE_MEM_MAP
  62. def_bool y
  63. depends on !SPARSEMEM
  64. #
  65. # Both the NUMA code and DISCONTIGMEM use arrays of pg_data_t's
  66. # to represent different areas of memory. This variable allows
  67. # those dependencies to exist individually.
  68. #
  69. config NEED_MULTIPLE_NODES
  70. def_bool y
  71. depends on DISCONTIGMEM || NUMA
  72. config HAVE_MEMORY_PRESENT
  73. def_bool y
  74. depends on ARCH_HAVE_MEMORY_PRESENT || SPARSEMEM
  75. #
  76. # SPARSEMEM_EXTREME (which is the default) does some bootmem
  77. # allocations when memory_present() is called. If this cannot
  78. # be done on your architecture, select this option. However,
  79. # statically allocating the mem_section[] array can potentially
  80. # consume vast quantities of .bss, so be careful.
  81. #
  82. # This option will also potentially produce smaller runtime code
  83. # with gcc 3.4 and later.
  84. #
  85. config SPARSEMEM_STATIC
  86. bool
  87. #
  88. # Architecture platforms which require a two level mem_section in SPARSEMEM
  89. # must select this option. This is usually for architecture platforms with
  90. # an extremely sparse physical address space.
  91. #
  92. config SPARSEMEM_EXTREME
  93. def_bool y
  94. depends on SPARSEMEM && !SPARSEMEM_STATIC
  95. config SPARSEMEM_VMEMMAP_ENABLE
  96. bool
  97. config SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
  98. def_bool y
  99. depends on SPARSEMEM && X86_64
  100. config SPARSEMEM_VMEMMAP
  101. bool "Sparse Memory virtual memmap"
  102. depends on SPARSEMEM && SPARSEMEM_VMEMMAP_ENABLE
  103. default y
  104. help
  105. SPARSEMEM_VMEMMAP uses a virtually mapped memmap to optimise
  106. pfn_to_page and page_to_pfn operations. This is the most
  107. efficient option when sufficient kernel resources are available.
  108. # eventually, we can have this option just 'select SPARSEMEM'
  109. config MEMORY_HOTPLUG
  110. bool "Allow for memory hot-add"
  111. depends on SPARSEMEM || X86_64_ACPI_NUMA
  112. depends on HOTPLUG && ARCH_ENABLE_MEMORY_HOTPLUG
  113. depends on (IA64 || X86 || PPC_BOOK3S_64 || SUPERH || S390)
  114. config MEMORY_HOTPLUG_SPARSE
  115. def_bool y
  116. depends on SPARSEMEM && MEMORY_HOTPLUG
  117. config MEMORY_HOTREMOVE
  118. bool "Allow for memory hot remove"
  119. depends on MEMORY_HOTPLUG && ARCH_ENABLE_MEMORY_HOTREMOVE
  120. depends on MIGRATION
  121. #
  122. # If we have space for more page flags then we can enable additional
  123. # optimizations and functionality.
  124. #
  125. # Regular Sparsemem takes page flag bits for the sectionid if it does not
  126. # use a virtual memmap. Disable extended page flags for 32 bit platforms
  127. # that require the use of a sectionid in the page flags.
  128. #
  129. config PAGEFLAGS_EXTENDED
  130. def_bool y
  131. depends on 64BIT || SPARSEMEM_VMEMMAP || !SPARSEMEM
  132. # Heavily threaded applications may benefit from splitting the mm-wide
  133. # page_table_lock, so that faults on different parts of the user address
  134. # space can be handled with less contention: split it at this NR_CPUS.
  135. # Default to 4 for wider testing, though 8 might be more appropriate.
  136. # ARM's adjust_pte (unused if VIPT) depends on mm-wide page_table_lock.
  137. # PA-RISC 7xxx's spinlock_t would enlarge struct page from 32 to 44 bytes.
  138. # DEBUG_SPINLOCK and DEBUG_LOCK_ALLOC spinlock_t also enlarge struct page.
  139. #
  140. config SPLIT_PTLOCK_CPUS
  141. int
  142. default "999999" if ARM && !CPU_CACHE_VIPT
  143. default "999999" if PARISC && !PA20
  144. default "999999" if DEBUG_SPINLOCK || DEBUG_LOCK_ALLOC
  145. default "4"
  146. #
  147. # support for page migration
  148. #
  149. config MIGRATION
  150. bool "Page migration"
  151. def_bool y
  152. depends on NUMA || ARCH_ENABLE_MEMORY_HOTREMOVE
  153. help
  154. Allows the migration of the physical location of pages of processes
  155. while the virtual addresses are not changed. This is useful for
  156. example on NUMA systems to put pages nearer to the processors accessing
  157. the page.
  158. config PHYS_ADDR_T_64BIT
  159. def_bool 64BIT || ARCH_PHYS_ADDR_T_64BIT
  160. config ZONE_DMA_FLAG
  161. int
  162. default "0" if !ZONE_DMA
  163. default "1"
  164. config BOUNCE
  165. def_bool y
  166. depends on BLOCK && MMU && (ZONE_DMA || HIGHMEM)
  167. config NR_QUICK
  168. int
  169. depends on QUICKLIST
  170. default "2" if AVR32
  171. default "1"
  172. config VIRT_TO_BUS
  173. def_bool y
  174. depends on !ARCH_NO_VIRT_TO_BUS
  175. config MMU_NOTIFIER
  176. bool
  177. config KSM
  178. bool "Enable KSM for page merging"
  179. depends on MMU
  180. help
  181. Enable Kernel Samepage Merging: KSM periodically scans those areas
  182. of an application's address space that an app has advised may be
  183. mergeable. When it finds pages of identical content, it replaces
  184. the many instances by a single page with that content, so
  185. saving memory until one or another app needs to modify the content.
  186. Recommended for use with KVM, or with other duplicative applications.
  187. See Documentation/vm/ksm.txt for more information: KSM is inactive
  188. until a program has madvised that an area is MADV_MERGEABLE, and
  189. root has set /sys/kernel/mm/ksm/run to 1 (if CONFIG_SYSFS is set).
  190. config DEFAULT_MMAP_MIN_ADDR
  191. int "Low address space to protect from user allocation"
  192. depends on MMU
  193. default 4096
  194. help
  195. This is the portion of low virtual memory which should be protected
  196. from userspace allocation. Keeping a user from writing to low pages
  197. can help reduce the impact of kernel NULL pointer bugs.
  198. For most ia64, ppc64 and x86 users with lots of address space
  199. a value of 65536 is reasonable and should cause no problems.
  200. On arm and other archs it should not be higher than 32768.
  201. Programs which use vm86 functionality or have some need to map
  202. this low address space will need CAP_SYS_RAWIO or disable this
  203. protection by setting the value to 0.
  204. This value can be changed after boot using the
  205. /proc/sys/vm/mmap_min_addr tunable.
  206. config ARCH_SUPPORTS_MEMORY_FAILURE
  207. bool
  208. config MEMORY_FAILURE
  209. depends on MMU
  210. depends on ARCH_SUPPORTS_MEMORY_FAILURE
  211. bool "Enable recovery from hardware memory errors"
  212. help
  213. Enables code to recover from some memory failures on systems
  214. with MCA recovery. This allows a system to continue running
  215. even when some of its memory has uncorrected errors. This requires
  216. special hardware support and typically ECC memory.
  217. config HWPOISON_INJECT
  218. tristate "HWPoison pages injector"
  219. depends on MEMORY_FAILURE && DEBUG_KERNEL && PROC_FS
  220. select PROC_PAGE_MONITOR
  221. config NOMMU_INITIAL_TRIM_EXCESS
  222. int "Turn on mmap() excess space trimming before booting"
  223. depends on !MMU
  224. default 1
  225. help
  226. The NOMMU mmap() frequently needs to allocate large contiguous chunks
  227. of memory on which to store mappings, but it can only ask the system
  228. allocator for chunks in 2^N*PAGE_SIZE amounts - which is frequently
  229. more than it requires. To deal with this, mmap() is able to trim off
  230. the excess and return it to the allocator.
  231. If trimming is enabled, the excess is trimmed off and returned to the
  232. system allocator, which can cause extra fragmentation, particularly
  233. if there are a lot of transient processes.
  234. If trimming is disabled, the excess is kept, but not used, which for
  235. long-term mappings means that the space is wasted.
  236. Trimming can be dynamically controlled through a sysctl option
  237. (/proc/sys/vm/nr_trim_pages) which specifies the minimum number of
  238. excess pages there must be before trimming should occur, or zero if
  239. no trimming is to occur.
  240. This option specifies the initial value of this option. The default
  241. of 1 says that all excess pages should be trimmed.
  242. See Documentation/nommu-mmap.txt for more information.