s3c-hsotg.c 85 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272
  1. /* linux/drivers/usb/gadget/s3c-hsotg.c
  2. *
  3. * Copyright 2008 Openmoko, Inc.
  4. * Copyright 2008 Simtec Electronics
  5. * Ben Dooks <ben@simtec.co.uk>
  6. * http://armlinux.simtec.co.uk/
  7. *
  8. * S3C USB2.0 High-speed / OtG driver
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. */
  14. #include <linux/kernel.h>
  15. #include <linux/module.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/debugfs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/delay.h>
  23. #include <linux/io.h>
  24. #include <linux/slab.h>
  25. #include <linux/usb/ch9.h>
  26. #include <linux/usb/gadget.h>
  27. #include <mach/map.h>
  28. #include <plat/regs-usb-hsotg-phy.h>
  29. #include <plat/regs-usb-hsotg.h>
  30. #include <mach/regs-sys.h>
  31. #include <plat/udc-hs.h>
  32. #define DMA_ADDR_INVALID (~((dma_addr_t)0))
  33. /* EP0_MPS_LIMIT
  34. *
  35. * Unfortunately there seems to be a limit of the amount of data that can
  36. * be transfered by IN transactions on EP0. This is either 127 bytes or 3
  37. * packets (which practially means 1 packet and 63 bytes of data) when the
  38. * MPS is set to 64.
  39. *
  40. * This means if we are wanting to move >127 bytes of data, we need to
  41. * split the transactions up, but just doing one packet at a time does
  42. * not work (this may be an implicit DATA0 PID on first packet of the
  43. * transaction) and doing 2 packets is outside the controller's limits.
  44. *
  45. * If we try to lower the MPS size for EP0, then no transfers work properly
  46. * for EP0, and the system will fail basic enumeration. As no cause for this
  47. * has currently been found, we cannot support any large IN transfers for
  48. * EP0.
  49. */
  50. #define EP0_MPS_LIMIT 64
  51. struct s3c_hsotg;
  52. struct s3c_hsotg_req;
  53. /**
  54. * struct s3c_hsotg_ep - driver endpoint definition.
  55. * @ep: The gadget layer representation of the endpoint.
  56. * @name: The driver generated name for the endpoint.
  57. * @queue: Queue of requests for this endpoint.
  58. * @parent: Reference back to the parent device structure.
  59. * @req: The current request that the endpoint is processing. This is
  60. * used to indicate an request has been loaded onto the endpoint
  61. * and has yet to be completed (maybe due to data move, or simply
  62. * awaiting an ack from the core all the data has been completed).
  63. * @debugfs: File entry for debugfs file for this endpoint.
  64. * @lock: State lock to protect contents of endpoint.
  65. * @dir_in: Set to true if this endpoint is of the IN direction, which
  66. * means that it is sending data to the Host.
  67. * @index: The index for the endpoint registers.
  68. * @name: The name array passed to the USB core.
  69. * @halted: Set if the endpoint has been halted.
  70. * @periodic: Set if this is a periodic ep, such as Interrupt
  71. * @sent_zlp: Set if we've sent a zero-length packet.
  72. * @total_data: The total number of data bytes done.
  73. * @fifo_size: The size of the FIFO (for periodic IN endpoints)
  74. * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
  75. * @last_load: The offset of data for the last start of request.
  76. * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
  77. *
  78. * This is the driver's state for each registered enpoint, allowing it
  79. * to keep track of transactions that need doing. Each endpoint has a
  80. * lock to protect the state, to try and avoid using an overall lock
  81. * for the host controller as much as possible.
  82. *
  83. * For periodic IN endpoints, we have fifo_size and fifo_load to try
  84. * and keep track of the amount of data in the periodic FIFO for each
  85. * of these as we don't have a status register that tells us how much
  86. * is in each of them.
  87. */
  88. struct s3c_hsotg_ep {
  89. struct usb_ep ep;
  90. struct list_head queue;
  91. struct s3c_hsotg *parent;
  92. struct s3c_hsotg_req *req;
  93. struct dentry *debugfs;
  94. spinlock_t lock;
  95. unsigned long total_data;
  96. unsigned int size_loaded;
  97. unsigned int last_load;
  98. unsigned int fifo_load;
  99. unsigned short fifo_size;
  100. unsigned char dir_in;
  101. unsigned char index;
  102. unsigned int halted:1;
  103. unsigned int periodic:1;
  104. unsigned int sent_zlp:1;
  105. char name[10];
  106. };
  107. #define S3C_HSOTG_EPS (8+1) /* limit to 9 for the moment */
  108. /**
  109. * struct s3c_hsotg - driver state.
  110. * @dev: The parent device supplied to the probe function
  111. * @driver: USB gadget driver
  112. * @plat: The platform specific configuration data.
  113. * @regs: The memory area mapped for accessing registers.
  114. * @regs_res: The resource that was allocated when claiming register space.
  115. * @irq: The IRQ number we are using
  116. * @debug_root: root directrory for debugfs.
  117. * @debug_file: main status file for debugfs.
  118. * @debug_fifo: FIFO status file for debugfs.
  119. * @ep0_reply: Request used for ep0 reply.
  120. * @ep0_buff: Buffer for EP0 reply data, if needed.
  121. * @ctrl_buff: Buffer for EP0 control requests.
  122. * @ctrl_req: Request for EP0 control packets.
  123. * @eps: The endpoints being supplied to the gadget framework
  124. */
  125. struct s3c_hsotg {
  126. struct device *dev;
  127. struct usb_gadget_driver *driver;
  128. struct s3c_hsotg_plat *plat;
  129. void __iomem *regs;
  130. struct resource *regs_res;
  131. int irq;
  132. struct dentry *debug_root;
  133. struct dentry *debug_file;
  134. struct dentry *debug_fifo;
  135. struct usb_request *ep0_reply;
  136. struct usb_request *ctrl_req;
  137. u8 ep0_buff[8];
  138. u8 ctrl_buff[8];
  139. struct usb_gadget gadget;
  140. struct s3c_hsotg_ep eps[];
  141. };
  142. /**
  143. * struct s3c_hsotg_req - data transfer request
  144. * @req: The USB gadget request
  145. * @queue: The list of requests for the endpoint this is queued for.
  146. * @in_progress: Has already had size/packets written to core
  147. * @mapped: DMA buffer for this request has been mapped via dma_map_single().
  148. */
  149. struct s3c_hsotg_req {
  150. struct usb_request req;
  151. struct list_head queue;
  152. unsigned char in_progress;
  153. unsigned char mapped;
  154. };
  155. /* conversion functions */
  156. static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
  157. {
  158. return container_of(req, struct s3c_hsotg_req, req);
  159. }
  160. static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
  161. {
  162. return container_of(ep, struct s3c_hsotg_ep, ep);
  163. }
  164. static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
  165. {
  166. return container_of(gadget, struct s3c_hsotg, gadget);
  167. }
  168. static inline void __orr32(void __iomem *ptr, u32 val)
  169. {
  170. writel(readl(ptr) | val, ptr);
  171. }
  172. static inline void __bic32(void __iomem *ptr, u32 val)
  173. {
  174. writel(readl(ptr) & ~val, ptr);
  175. }
  176. /* forward decleration of functions */
  177. static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
  178. /**
  179. * using_dma - return the DMA status of the driver.
  180. * @hsotg: The driver state.
  181. *
  182. * Return true if we're using DMA.
  183. *
  184. * Currently, we have the DMA support code worked into everywhere
  185. * that needs it, but the AMBA DMA implementation in the hardware can
  186. * only DMA from 32bit aligned addresses. This means that gadgets such
  187. * as the CDC Ethernet cannot work as they often pass packets which are
  188. * not 32bit aligned.
  189. *
  190. * Unfortunately the choice to use DMA or not is global to the controller
  191. * and seems to be only settable when the controller is being put through
  192. * a core reset. This means we either need to fix the gadgets to take
  193. * account of DMA alignment, or add bounce buffers (yuerk).
  194. *
  195. * Until this issue is sorted out, we always return 'false'.
  196. */
  197. static inline bool using_dma(struct s3c_hsotg *hsotg)
  198. {
  199. return false; /* support is not complete */
  200. }
  201. /**
  202. * s3c_hsotg_en_gsint - enable one or more of the general interrupt
  203. * @hsotg: The device state
  204. * @ints: A bitmask of the interrupts to enable
  205. */
  206. static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
  207. {
  208. u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
  209. u32 new_gsintmsk;
  210. new_gsintmsk = gsintmsk | ints;
  211. if (new_gsintmsk != gsintmsk) {
  212. dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
  213. writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
  214. }
  215. }
  216. /**
  217. * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
  218. * @hsotg: The device state
  219. * @ints: A bitmask of the interrupts to enable
  220. */
  221. static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
  222. {
  223. u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
  224. u32 new_gsintmsk;
  225. new_gsintmsk = gsintmsk & ~ints;
  226. if (new_gsintmsk != gsintmsk)
  227. writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
  228. }
  229. /**
  230. * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
  231. * @hsotg: The device state
  232. * @ep: The endpoint index
  233. * @dir_in: True if direction is in.
  234. * @en: The enable value, true to enable
  235. *
  236. * Set or clear the mask for an individual endpoint's interrupt
  237. * request.
  238. */
  239. static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
  240. unsigned int ep, unsigned int dir_in,
  241. unsigned int en)
  242. {
  243. unsigned long flags;
  244. u32 bit = 1 << ep;
  245. u32 daint;
  246. if (!dir_in)
  247. bit <<= 16;
  248. local_irq_save(flags);
  249. daint = readl(hsotg->regs + S3C_DAINTMSK);
  250. if (en)
  251. daint |= bit;
  252. else
  253. daint &= ~bit;
  254. writel(daint, hsotg->regs + S3C_DAINTMSK);
  255. local_irq_restore(flags);
  256. }
  257. /**
  258. * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
  259. * @hsotg: The device instance.
  260. */
  261. static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
  262. {
  263. /* the ryu 2.6.24 release ahs
  264. writel(0x1C0, hsotg->regs + S3C_GRXFSIZ);
  265. writel(S3C_GNPTXFSIZ_NPTxFStAddr(0x200) |
  266. S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
  267. hsotg->regs + S3C_GNPTXFSIZ);
  268. */
  269. /* set FIFO sizes to 2048/0x1C0 */
  270. writel(2048, hsotg->regs + S3C_GRXFSIZ);
  271. writel(S3C_GNPTXFSIZ_NPTxFStAddr(2048) |
  272. S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
  273. hsotg->regs + S3C_GNPTXFSIZ);
  274. }
  275. /**
  276. * @ep: USB endpoint to allocate request for.
  277. * @flags: Allocation flags
  278. *
  279. * Allocate a new USB request structure appropriate for the specified endpoint
  280. */
  281. static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
  282. gfp_t flags)
  283. {
  284. struct s3c_hsotg_req *req;
  285. req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
  286. if (!req)
  287. return NULL;
  288. INIT_LIST_HEAD(&req->queue);
  289. req->req.dma = DMA_ADDR_INVALID;
  290. return &req->req;
  291. }
  292. /**
  293. * is_ep_periodic - return true if the endpoint is in periodic mode.
  294. * @hs_ep: The endpoint to query.
  295. *
  296. * Returns true if the endpoint is in periodic mode, meaning it is being
  297. * used for an Interrupt or ISO transfer.
  298. */
  299. static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
  300. {
  301. return hs_ep->periodic;
  302. }
  303. /**
  304. * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
  305. * @hsotg: The device state.
  306. * @hs_ep: The endpoint for the request
  307. * @hs_req: The request being processed.
  308. *
  309. * This is the reverse of s3c_hsotg_map_dma(), called for the completion
  310. * of a request to ensure the buffer is ready for access by the caller.
  311. */
  312. static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
  313. struct s3c_hsotg_ep *hs_ep,
  314. struct s3c_hsotg_req *hs_req)
  315. {
  316. struct usb_request *req = &hs_req->req;
  317. enum dma_data_direction dir;
  318. dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
  319. /* ignore this if we're not moving any data */
  320. if (hs_req->req.length == 0)
  321. return;
  322. if (hs_req->mapped) {
  323. /* we mapped this, so unmap and remove the dma */
  324. dma_unmap_single(hsotg->dev, req->dma, req->length, dir);
  325. req->dma = DMA_ADDR_INVALID;
  326. hs_req->mapped = 0;
  327. } else {
  328. dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
  329. }
  330. }
  331. /**
  332. * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
  333. * @hsotg: The controller state.
  334. * @hs_ep: The endpoint we're going to write for.
  335. * @hs_req: The request to write data for.
  336. *
  337. * This is called when the TxFIFO has some space in it to hold a new
  338. * transmission and we have something to give it. The actual setup of
  339. * the data size is done elsewhere, so all we have to do is to actually
  340. * write the data.
  341. *
  342. * The return value is zero if there is more space (or nothing was done)
  343. * otherwise -ENOSPC is returned if the FIFO space was used up.
  344. *
  345. * This routine is only needed for PIO
  346. */
  347. static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
  348. struct s3c_hsotg_ep *hs_ep,
  349. struct s3c_hsotg_req *hs_req)
  350. {
  351. bool periodic = is_ep_periodic(hs_ep);
  352. u32 gnptxsts = readl(hsotg->regs + S3C_GNPTXSTS);
  353. int buf_pos = hs_req->req.actual;
  354. int to_write = hs_ep->size_loaded;
  355. void *data;
  356. int can_write;
  357. int pkt_round;
  358. to_write -= (buf_pos - hs_ep->last_load);
  359. /* if there's nothing to write, get out early */
  360. if (to_write == 0)
  361. return 0;
  362. if (periodic) {
  363. u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
  364. int size_left;
  365. int size_done;
  366. /* work out how much data was loaded so we can calculate
  367. * how much data is left in the fifo. */
  368. size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
  369. dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
  370. __func__, size_left,
  371. hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
  372. /* how much of the data has moved */
  373. size_done = hs_ep->size_loaded - size_left;
  374. /* how much data is left in the fifo */
  375. can_write = hs_ep->fifo_load - size_done;
  376. dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
  377. __func__, can_write);
  378. can_write = hs_ep->fifo_size - can_write;
  379. dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
  380. __func__, can_write);
  381. if (can_write <= 0) {
  382. s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
  383. return -ENOSPC;
  384. }
  385. } else {
  386. if (S3C_GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
  387. dev_dbg(hsotg->dev,
  388. "%s: no queue slots available (0x%08x)\n",
  389. __func__, gnptxsts);
  390. s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
  391. return -ENOSPC;
  392. }
  393. can_write = S3C_GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
  394. }
  395. dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
  396. __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);
  397. /* limit to 512 bytes of data, it seems at least on the non-periodic
  398. * FIFO, requests of >512 cause the endpoint to get stuck with a
  399. * fragment of the end of the transfer in it.
  400. */
  401. if (can_write > 512)
  402. can_write = 512;
  403. /* see if we can write data */
  404. if (to_write > can_write) {
  405. to_write = can_write;
  406. pkt_round = to_write % hs_ep->ep.maxpacket;
  407. /* Not sure, but we probably shouldn't be writing partial
  408. * packets into the FIFO, so round the write down to an
  409. * exact number of packets.
  410. *
  411. * Note, we do not currently check to see if we can ever
  412. * write a full packet or not to the FIFO.
  413. */
  414. if (pkt_round)
  415. to_write -= pkt_round;
  416. /* enable correct FIFO interrupt to alert us when there
  417. * is more room left. */
  418. s3c_hsotg_en_gsint(hsotg,
  419. periodic ? S3C_GINTSTS_PTxFEmp :
  420. S3C_GINTSTS_NPTxFEmp);
  421. }
  422. dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
  423. to_write, hs_req->req.length, can_write, buf_pos);
  424. if (to_write <= 0)
  425. return -ENOSPC;
  426. hs_req->req.actual = buf_pos + to_write;
  427. hs_ep->total_data += to_write;
  428. if (periodic)
  429. hs_ep->fifo_load += to_write;
  430. to_write = DIV_ROUND_UP(to_write, 4);
  431. data = hs_req->req.buf + buf_pos;
  432. writesl(hsotg->regs + S3C_EPFIFO(hs_ep->index), data, to_write);
  433. return (to_write >= can_write) ? -ENOSPC : 0;
  434. }
  435. /**
  436. * get_ep_limit - get the maximum data legnth for this endpoint
  437. * @hs_ep: The endpoint
  438. *
  439. * Return the maximum data that can be queued in one go on a given endpoint
  440. * so that transfers that are too long can be split.
  441. */
  442. static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
  443. {
  444. int index = hs_ep->index;
  445. unsigned maxsize;
  446. unsigned maxpkt;
  447. if (index != 0) {
  448. maxsize = S3C_DxEPTSIZ_XferSize_LIMIT + 1;
  449. maxpkt = S3C_DxEPTSIZ_PktCnt_LIMIT + 1;
  450. } else {
  451. if (hs_ep->dir_in) {
  452. /* maxsize = S3C_DIEPTSIZ0_XferSize_LIMIT + 1; */
  453. maxsize = 64+64+1;
  454. maxpkt = S3C_DIEPTSIZ0_PktCnt_LIMIT + 1;
  455. } else {
  456. maxsize = 0x3f;
  457. maxpkt = 2;
  458. }
  459. }
  460. /* we made the constant loading easier above by using +1 */
  461. maxpkt--;
  462. maxsize--;
  463. /* constrain by packet count if maxpkts*pktsize is greater
  464. * than the length register size. */
  465. if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
  466. maxsize = maxpkt * hs_ep->ep.maxpacket;
  467. return maxsize;
  468. }
  469. /**
  470. * s3c_hsotg_start_req - start a USB request from an endpoint's queue
  471. * @hsotg: The controller state.
  472. * @hs_ep: The endpoint to process a request for
  473. * @hs_req: The request to start.
  474. * @continuing: True if we are doing more for the current request.
  475. *
  476. * Start the given request running by setting the endpoint registers
  477. * appropriately, and writing any data to the FIFOs.
  478. */
  479. static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
  480. struct s3c_hsotg_ep *hs_ep,
  481. struct s3c_hsotg_req *hs_req,
  482. bool continuing)
  483. {
  484. struct usb_request *ureq = &hs_req->req;
  485. int index = hs_ep->index;
  486. int dir_in = hs_ep->dir_in;
  487. u32 epctrl_reg;
  488. u32 epsize_reg;
  489. u32 epsize;
  490. u32 ctrl;
  491. unsigned length;
  492. unsigned packets;
  493. unsigned maxreq;
  494. if (index != 0) {
  495. if (hs_ep->req && !continuing) {
  496. dev_err(hsotg->dev, "%s: active request\n", __func__);
  497. WARN_ON(1);
  498. return;
  499. } else if (hs_ep->req != hs_req && continuing) {
  500. dev_err(hsotg->dev,
  501. "%s: continue different req\n", __func__);
  502. WARN_ON(1);
  503. return;
  504. }
  505. }
  506. epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
  507. epsize_reg = dir_in ? S3C_DIEPTSIZ(index) : S3C_DOEPTSIZ(index);
  508. dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
  509. __func__, readl(hsotg->regs + epctrl_reg), index,
  510. hs_ep->dir_in ? "in" : "out");
  511. length = ureq->length - ureq->actual;
  512. if (0)
  513. dev_dbg(hsotg->dev,
  514. "REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
  515. ureq->buf, length, ureq->dma,
  516. ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
  517. maxreq = get_ep_limit(hs_ep);
  518. if (length > maxreq) {
  519. int round = maxreq % hs_ep->ep.maxpacket;
  520. dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
  521. __func__, length, maxreq, round);
  522. /* round down to multiple of packets */
  523. if (round)
  524. maxreq -= round;
  525. length = maxreq;
  526. }
  527. if (length)
  528. packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
  529. else
  530. packets = 1; /* send one packet if length is zero. */
  531. if (dir_in && index != 0)
  532. epsize = S3C_DxEPTSIZ_MC(1);
  533. else
  534. epsize = 0;
  535. if (index != 0 && ureq->zero) {
  536. /* test for the packets being exactly right for the
  537. * transfer */
  538. if (length == (packets * hs_ep->ep.maxpacket))
  539. packets++;
  540. }
  541. epsize |= S3C_DxEPTSIZ_PktCnt(packets);
  542. epsize |= S3C_DxEPTSIZ_XferSize(length);
  543. dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
  544. __func__, packets, length, ureq->length, epsize, epsize_reg);
  545. /* store the request as the current one we're doing */
  546. hs_ep->req = hs_req;
  547. /* write size / packets */
  548. writel(epsize, hsotg->regs + epsize_reg);
  549. ctrl = readl(hsotg->regs + epctrl_reg);
  550. if (ctrl & S3C_DxEPCTL_Stall) {
  551. dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
  552. /* not sure what we can do here, if it is EP0 then we should
  553. * get this cleared once the endpoint has transmitted the
  554. * STALL packet, otherwise it needs to be cleared by the
  555. * host.
  556. */
  557. }
  558. if (using_dma(hsotg)) {
  559. unsigned int dma_reg;
  560. /* write DMA address to control register, buffer already
  561. * synced by s3c_hsotg_ep_queue(). */
  562. dma_reg = dir_in ? S3C_DIEPDMA(index) : S3C_DOEPDMA(index);
  563. writel(ureq->dma, hsotg->regs + dma_reg);
  564. dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
  565. __func__, ureq->dma, dma_reg);
  566. }
  567. ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
  568. ctrl |= S3C_DxEPCTL_USBActEp;
  569. ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
  570. dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
  571. writel(ctrl, hsotg->regs + epctrl_reg);
  572. /* set these, it seems that DMA support increments past the end
  573. * of the packet buffer so we need to calculate the length from
  574. * this information. */
  575. hs_ep->size_loaded = length;
  576. hs_ep->last_load = ureq->actual;
  577. if (dir_in && !using_dma(hsotg)) {
  578. /* set these anyway, we may need them for non-periodic in */
  579. hs_ep->fifo_load = 0;
  580. s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
  581. }
  582. /* clear the INTknTXFEmpMsk when we start request, more as a aide
  583. * to debugging to see what is going on. */
  584. if (dir_in)
  585. writel(S3C_DIEPMSK_INTknTXFEmpMsk,
  586. hsotg->regs + S3C_DIEPINT(index));
  587. /* Note, trying to clear the NAK here causes problems with transmit
  588. * on the S3C6400 ending up with the TXFIFO becomming full. */
  589. /* check ep is enabled */
  590. if (!(readl(hsotg->regs + epctrl_reg) & S3C_DxEPCTL_EPEna))
  591. dev_warn(hsotg->dev,
  592. "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
  593. index, readl(hsotg->regs + epctrl_reg));
  594. dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
  595. __func__, readl(hsotg->regs + epctrl_reg));
  596. }
  597. /**
  598. * s3c_hsotg_map_dma - map the DMA memory being used for the request
  599. * @hsotg: The device state.
  600. * @hs_ep: The endpoint the request is on.
  601. * @req: The request being processed.
  602. *
  603. * We've been asked to queue a request, so ensure that the memory buffer
  604. * is correctly setup for DMA. If we've been passed an extant DMA address
  605. * then ensure the buffer has been synced to memory. If our buffer has no
  606. * DMA memory, then we map the memory and mark our request to allow us to
  607. * cleanup on completion.
  608. */
  609. static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
  610. struct s3c_hsotg_ep *hs_ep,
  611. struct usb_request *req)
  612. {
  613. enum dma_data_direction dir;
  614. struct s3c_hsotg_req *hs_req = our_req(req);
  615. dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
  616. /* if the length is zero, ignore the DMA data */
  617. if (hs_req->req.length == 0)
  618. return 0;
  619. if (req->dma == DMA_ADDR_INVALID) {
  620. dma_addr_t dma;
  621. dma = dma_map_single(hsotg->dev, req->buf, req->length, dir);
  622. if (unlikely(dma_mapping_error(hsotg->dev, dma)))
  623. goto dma_error;
  624. if (dma & 3) {
  625. dev_err(hsotg->dev, "%s: unaligned dma buffer\n",
  626. __func__);
  627. dma_unmap_single(hsotg->dev, dma, req->length, dir);
  628. return -EINVAL;
  629. }
  630. hs_req->mapped = 1;
  631. req->dma = dma;
  632. } else {
  633. dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
  634. hs_req->mapped = 0;
  635. }
  636. return 0;
  637. dma_error:
  638. dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
  639. __func__, req->buf, req->length);
  640. return -EIO;
  641. }
  642. static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
  643. gfp_t gfp_flags)
  644. {
  645. struct s3c_hsotg_req *hs_req = our_req(req);
  646. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  647. struct s3c_hsotg *hs = hs_ep->parent;
  648. unsigned long irqflags;
  649. bool first;
  650. dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
  651. ep->name, req, req->length, req->buf, req->no_interrupt,
  652. req->zero, req->short_not_ok);
  653. /* initialise status of the request */
  654. INIT_LIST_HEAD(&hs_req->queue);
  655. req->actual = 0;
  656. req->status = -EINPROGRESS;
  657. /* if we're using DMA, sync the buffers as necessary */
  658. if (using_dma(hs)) {
  659. int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
  660. if (ret)
  661. return ret;
  662. }
  663. spin_lock_irqsave(&hs_ep->lock, irqflags);
  664. first = list_empty(&hs_ep->queue);
  665. list_add_tail(&hs_req->queue, &hs_ep->queue);
  666. if (first)
  667. s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
  668. spin_unlock_irqrestore(&hs_ep->lock, irqflags);
  669. return 0;
  670. }
  671. static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
  672. struct usb_request *req)
  673. {
  674. struct s3c_hsotg_req *hs_req = our_req(req);
  675. kfree(hs_req);
  676. }
  677. /**
  678. * s3c_hsotg_complete_oursetup - setup completion callback
  679. * @ep: The endpoint the request was on.
  680. * @req: The request completed.
  681. *
  682. * Called on completion of any requests the driver itself
  683. * submitted that need cleaning up.
  684. */
  685. static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
  686. struct usb_request *req)
  687. {
  688. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  689. struct s3c_hsotg *hsotg = hs_ep->parent;
  690. dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
  691. s3c_hsotg_ep_free_request(ep, req);
  692. }
  693. /**
  694. * ep_from_windex - convert control wIndex value to endpoint
  695. * @hsotg: The driver state.
  696. * @windex: The control request wIndex field (in host order).
  697. *
  698. * Convert the given wIndex into a pointer to an driver endpoint
  699. * structure, or return NULL if it is not a valid endpoint.
  700. */
  701. static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
  702. u32 windex)
  703. {
  704. struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
  705. int dir = (windex & USB_DIR_IN) ? 1 : 0;
  706. int idx = windex & 0x7F;
  707. if (windex >= 0x100)
  708. return NULL;
  709. if (idx > S3C_HSOTG_EPS)
  710. return NULL;
  711. if (idx && ep->dir_in != dir)
  712. return NULL;
  713. return ep;
  714. }
  715. /**
  716. * s3c_hsotg_send_reply - send reply to control request
  717. * @hsotg: The device state
  718. * @ep: Endpoint 0
  719. * @buff: Buffer for request
  720. * @length: Length of reply.
  721. *
  722. * Create a request and queue it on the given endpoint. This is useful as
  723. * an internal method of sending replies to certain control requests, etc.
  724. */
  725. static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
  726. struct s3c_hsotg_ep *ep,
  727. void *buff,
  728. int length)
  729. {
  730. struct usb_request *req;
  731. int ret;
  732. dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
  733. req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
  734. hsotg->ep0_reply = req;
  735. if (!req) {
  736. dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
  737. return -ENOMEM;
  738. }
  739. req->buf = hsotg->ep0_buff;
  740. req->length = length;
  741. req->zero = 1; /* always do zero-length final transfer */
  742. req->complete = s3c_hsotg_complete_oursetup;
  743. if (length)
  744. memcpy(req->buf, buff, length);
  745. else
  746. ep->sent_zlp = 1;
  747. ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
  748. if (ret) {
  749. dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
  750. return ret;
  751. }
  752. return 0;
  753. }
  754. /**
  755. * s3c_hsotg_process_req_status - process request GET_STATUS
  756. * @hsotg: The device state
  757. * @ctrl: USB control request
  758. */
  759. static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
  760. struct usb_ctrlrequest *ctrl)
  761. {
  762. struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
  763. struct s3c_hsotg_ep *ep;
  764. __le16 reply;
  765. int ret;
  766. dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
  767. if (!ep0->dir_in) {
  768. dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
  769. return -EINVAL;
  770. }
  771. switch (ctrl->bRequestType & USB_RECIP_MASK) {
  772. case USB_RECIP_DEVICE:
  773. reply = cpu_to_le16(0); /* bit 0 => self powered,
  774. * bit 1 => remote wakeup */
  775. break;
  776. case USB_RECIP_INTERFACE:
  777. /* currently, the data result should be zero */
  778. reply = cpu_to_le16(0);
  779. break;
  780. case USB_RECIP_ENDPOINT:
  781. ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
  782. if (!ep)
  783. return -ENOENT;
  784. reply = cpu_to_le16(ep->halted ? 1 : 0);
  785. break;
  786. default:
  787. return 0;
  788. }
  789. if (le16_to_cpu(ctrl->wLength) != 2)
  790. return -EINVAL;
  791. ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
  792. if (ret) {
  793. dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
  794. return ret;
  795. }
  796. return 1;
  797. }
  798. static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
  799. /**
  800. * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
  801. * @hsotg: The device state
  802. * @ctrl: USB control request
  803. */
  804. static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
  805. struct usb_ctrlrequest *ctrl)
  806. {
  807. bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
  808. struct s3c_hsotg_ep *ep;
  809. dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
  810. __func__, set ? "SET" : "CLEAR");
  811. if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
  812. ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
  813. if (!ep) {
  814. dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
  815. __func__, le16_to_cpu(ctrl->wIndex));
  816. return -ENOENT;
  817. }
  818. switch (le16_to_cpu(ctrl->wValue)) {
  819. case USB_ENDPOINT_HALT:
  820. s3c_hsotg_ep_sethalt(&ep->ep, set);
  821. break;
  822. default:
  823. return -ENOENT;
  824. }
  825. } else
  826. return -ENOENT; /* currently only deal with endpoint */
  827. return 1;
  828. }
  829. /**
  830. * s3c_hsotg_process_control - process a control request
  831. * @hsotg: The device state
  832. * @ctrl: The control request received
  833. *
  834. * The controller has received the SETUP phase of a control request, and
  835. * needs to work out what to do next (and whether to pass it on to the
  836. * gadget driver).
  837. */
  838. static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
  839. struct usb_ctrlrequest *ctrl)
  840. {
  841. struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
  842. int ret = 0;
  843. u32 dcfg;
  844. ep0->sent_zlp = 0;
  845. dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
  846. ctrl->bRequest, ctrl->bRequestType,
  847. ctrl->wValue, ctrl->wLength);
  848. /* record the direction of the request, for later use when enquing
  849. * packets onto EP0. */
  850. ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
  851. dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
  852. /* if we've no data with this request, then the last part of the
  853. * transaction is going to implicitly be IN. */
  854. if (ctrl->wLength == 0)
  855. ep0->dir_in = 1;
  856. if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
  857. switch (ctrl->bRequest) {
  858. case USB_REQ_SET_ADDRESS:
  859. dcfg = readl(hsotg->regs + S3C_DCFG);
  860. dcfg &= ~S3C_DCFG_DevAddr_MASK;
  861. dcfg |= ctrl->wValue << S3C_DCFG_DevAddr_SHIFT;
  862. writel(dcfg, hsotg->regs + S3C_DCFG);
  863. dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
  864. ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
  865. return;
  866. case USB_REQ_GET_STATUS:
  867. ret = s3c_hsotg_process_req_status(hsotg, ctrl);
  868. break;
  869. case USB_REQ_CLEAR_FEATURE:
  870. case USB_REQ_SET_FEATURE:
  871. ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
  872. break;
  873. }
  874. }
  875. /* as a fallback, try delivering it to the driver to deal with */
  876. if (ret == 0 && hsotg->driver) {
  877. ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
  878. if (ret < 0)
  879. dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
  880. }
  881. if (ret > 0) {
  882. if (!ep0->dir_in) {
  883. /* need to generate zlp in reply or take data */
  884. /* todo - deal with any data we might be sent? */
  885. ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
  886. }
  887. }
  888. /* the request is either unhandlable, or is not formatted correctly
  889. * so respond with a STALL for the status stage to indicate failure.
  890. */
  891. if (ret < 0) {
  892. u32 reg;
  893. u32 ctrl;
  894. dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
  895. reg = (ep0->dir_in) ? S3C_DIEPCTL0 : S3C_DOEPCTL0;
  896. /* S3C_DxEPCTL_Stall will be cleared by EP once it has
  897. * taken effect, so no need to clear later. */
  898. ctrl = readl(hsotg->regs + reg);
  899. ctrl |= S3C_DxEPCTL_Stall;
  900. ctrl |= S3C_DxEPCTL_CNAK;
  901. writel(ctrl, hsotg->regs + reg);
  902. dev_dbg(hsotg->dev,
  903. "writen DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
  904. ctrl, reg, readl(hsotg->regs + reg));
  905. /* don't belive we need to anything more to get the EP
  906. * to reply with a STALL packet */
  907. }
  908. }
  909. static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
  910. /**
  911. * s3c_hsotg_complete_setup - completion of a setup transfer
  912. * @ep: The endpoint the request was on.
  913. * @req: The request completed.
  914. *
  915. * Called on completion of any requests the driver itself submitted for
  916. * EP0 setup packets
  917. */
  918. static void s3c_hsotg_complete_setup(struct usb_ep *ep,
  919. struct usb_request *req)
  920. {
  921. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  922. struct s3c_hsotg *hsotg = hs_ep->parent;
  923. if (req->status < 0) {
  924. dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
  925. return;
  926. }
  927. if (req->actual == 0)
  928. s3c_hsotg_enqueue_setup(hsotg);
  929. else
  930. s3c_hsotg_process_control(hsotg, req->buf);
  931. }
  932. /**
  933. * s3c_hsotg_enqueue_setup - start a request for EP0 packets
  934. * @hsotg: The device state.
  935. *
  936. * Enqueue a request on EP0 if necessary to received any SETUP packets
  937. * received from the host.
  938. */
  939. static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
  940. {
  941. struct usb_request *req = hsotg->ctrl_req;
  942. struct s3c_hsotg_req *hs_req = our_req(req);
  943. int ret;
  944. dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
  945. req->zero = 0;
  946. req->length = 8;
  947. req->buf = hsotg->ctrl_buff;
  948. req->complete = s3c_hsotg_complete_setup;
  949. if (!list_empty(&hs_req->queue)) {
  950. dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
  951. return;
  952. }
  953. hsotg->eps[0].dir_in = 0;
  954. ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
  955. if (ret < 0) {
  956. dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
  957. /* Don't think there's much we can do other than watch the
  958. * driver fail. */
  959. }
  960. }
  961. /**
  962. * get_ep_head - return the first request on the endpoint
  963. * @hs_ep: The controller endpoint to get
  964. *
  965. * Get the first request on the endpoint.
  966. */
  967. static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
  968. {
  969. if (list_empty(&hs_ep->queue))
  970. return NULL;
  971. return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
  972. }
  973. /**
  974. * s3c_hsotg_complete_request - complete a request given to us
  975. * @hsotg: The device state.
  976. * @hs_ep: The endpoint the request was on.
  977. * @hs_req: The request to complete.
  978. * @result: The result code (0 => Ok, otherwise errno)
  979. *
  980. * The given request has finished, so call the necessary completion
  981. * if it has one and then look to see if we can start a new request
  982. * on the endpoint.
  983. *
  984. * Note, expects the ep to already be locked as appropriate.
  985. */
  986. static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
  987. struct s3c_hsotg_ep *hs_ep,
  988. struct s3c_hsotg_req *hs_req,
  989. int result)
  990. {
  991. bool restart;
  992. if (!hs_req) {
  993. dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
  994. return;
  995. }
  996. dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
  997. hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
  998. /* only replace the status if we've not already set an error
  999. * from a previous transaction */
  1000. if (hs_req->req.status == -EINPROGRESS)
  1001. hs_req->req.status = result;
  1002. hs_ep->req = NULL;
  1003. list_del_init(&hs_req->queue);
  1004. if (using_dma(hsotg))
  1005. s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
  1006. /* call the complete request with the locks off, just in case the
  1007. * request tries to queue more work for this endpoint. */
  1008. if (hs_req->req.complete) {
  1009. spin_unlock(&hs_ep->lock);
  1010. hs_req->req.complete(&hs_ep->ep, &hs_req->req);
  1011. spin_lock(&hs_ep->lock);
  1012. }
  1013. /* Look to see if there is anything else to do. Note, the completion
  1014. * of the previous request may have caused a new request to be started
  1015. * so be careful when doing this. */
  1016. if (!hs_ep->req && result >= 0) {
  1017. restart = !list_empty(&hs_ep->queue);
  1018. if (restart) {
  1019. hs_req = get_ep_head(hs_ep);
  1020. s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
  1021. }
  1022. }
  1023. }
  1024. /**
  1025. * s3c_hsotg_complete_request_lock - complete a request given to us (locked)
  1026. * @hsotg: The device state.
  1027. * @hs_ep: The endpoint the request was on.
  1028. * @hs_req: The request to complete.
  1029. * @result: The result code (0 => Ok, otherwise errno)
  1030. *
  1031. * See s3c_hsotg_complete_request(), but called with the endpoint's
  1032. * lock held.
  1033. */
  1034. static void s3c_hsotg_complete_request_lock(struct s3c_hsotg *hsotg,
  1035. struct s3c_hsotg_ep *hs_ep,
  1036. struct s3c_hsotg_req *hs_req,
  1037. int result)
  1038. {
  1039. unsigned long flags;
  1040. spin_lock_irqsave(&hs_ep->lock, flags);
  1041. s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
  1042. spin_unlock_irqrestore(&hs_ep->lock, flags);
  1043. }
  1044. /**
  1045. * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
  1046. * @hsotg: The device state.
  1047. * @ep_idx: The endpoint index for the data
  1048. * @size: The size of data in the fifo, in bytes
  1049. *
  1050. * The FIFO status shows there is data to read from the FIFO for a given
  1051. * endpoint, so sort out whether we need to read the data into a request
  1052. * that has been made for that endpoint.
  1053. */
  1054. static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
  1055. {
  1056. struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
  1057. struct s3c_hsotg_req *hs_req = hs_ep->req;
  1058. void __iomem *fifo = hsotg->regs + S3C_EPFIFO(ep_idx);
  1059. int to_read;
  1060. int max_req;
  1061. int read_ptr;
  1062. if (!hs_req) {
  1063. u32 epctl = readl(hsotg->regs + S3C_DOEPCTL(ep_idx));
  1064. int ptr;
  1065. dev_warn(hsotg->dev,
  1066. "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
  1067. __func__, size, ep_idx, epctl);
  1068. /* dump the data from the FIFO, we've nothing we can do */
  1069. for (ptr = 0; ptr < size; ptr += 4)
  1070. (void)readl(fifo);
  1071. return;
  1072. }
  1073. spin_lock(&hs_ep->lock);
  1074. to_read = size;
  1075. read_ptr = hs_req->req.actual;
  1076. max_req = hs_req->req.length - read_ptr;
  1077. if (to_read > max_req) {
  1078. /* more data appeared than we where willing
  1079. * to deal with in this request.
  1080. */
  1081. /* currently we don't deal this */
  1082. WARN_ON_ONCE(1);
  1083. }
  1084. dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
  1085. __func__, to_read, max_req, read_ptr, hs_req->req.length);
  1086. hs_ep->total_data += to_read;
  1087. hs_req->req.actual += to_read;
  1088. to_read = DIV_ROUND_UP(to_read, 4);
  1089. /* note, we might over-write the buffer end by 3 bytes depending on
  1090. * alignment of the data. */
  1091. readsl(fifo, hs_req->req.buf + read_ptr, to_read);
  1092. spin_unlock(&hs_ep->lock);
  1093. }
  1094. /**
  1095. * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
  1096. * @hsotg: The device instance
  1097. * @req: The request currently on this endpoint
  1098. *
  1099. * Generate a zero-length IN packet request for terminating a SETUP
  1100. * transaction.
  1101. *
  1102. * Note, since we don't write any data to the TxFIFO, then it is
  1103. * currently belived that we do not need to wait for any space in
  1104. * the TxFIFO.
  1105. */
  1106. static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
  1107. struct s3c_hsotg_req *req)
  1108. {
  1109. u32 ctrl;
  1110. if (!req) {
  1111. dev_warn(hsotg->dev, "%s: no request?\n", __func__);
  1112. return;
  1113. }
  1114. if (req->req.length == 0) {
  1115. hsotg->eps[0].sent_zlp = 1;
  1116. s3c_hsotg_enqueue_setup(hsotg);
  1117. return;
  1118. }
  1119. hsotg->eps[0].dir_in = 1;
  1120. hsotg->eps[0].sent_zlp = 1;
  1121. dev_dbg(hsotg->dev, "sending zero-length packet\n");
  1122. /* issue a zero-sized packet to terminate this */
  1123. writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
  1124. S3C_DxEPTSIZ_XferSize(0), hsotg->regs + S3C_DIEPTSIZ(0));
  1125. ctrl = readl(hsotg->regs + S3C_DIEPCTL0);
  1126. ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
  1127. ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
  1128. ctrl |= S3C_DxEPCTL_USBActEp;
  1129. writel(ctrl, hsotg->regs + S3C_DIEPCTL0);
  1130. }
  1131. /**
  1132. * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
  1133. * @hsotg: The device instance
  1134. * @epnum: The endpoint received from
  1135. * @was_setup: Set if processing a SetupDone event.
  1136. *
  1137. * The RXFIFO has delivered an OutDone event, which means that the data
  1138. * transfer for an OUT endpoint has been completed, either by a short
  1139. * packet or by the finish of a transfer.
  1140. */
  1141. static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
  1142. int epnum, bool was_setup)
  1143. {
  1144. struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
  1145. struct s3c_hsotg_req *hs_req = hs_ep->req;
  1146. struct usb_request *req = &hs_req->req;
  1147. int result = 0;
  1148. if (!hs_req) {
  1149. dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
  1150. return;
  1151. }
  1152. if (using_dma(hsotg)) {
  1153. u32 epsize = readl(hsotg->regs + S3C_DOEPTSIZ(epnum));
  1154. unsigned size_done;
  1155. unsigned size_left;
  1156. /* Calculate the size of the transfer by checking how much
  1157. * is left in the endpoint size register and then working it
  1158. * out from the amount we loaded for the transfer.
  1159. *
  1160. * We need to do this as DMA pointers are always 32bit aligned
  1161. * so may overshoot/undershoot the transfer.
  1162. */
  1163. size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
  1164. size_done = hs_ep->size_loaded - size_left;
  1165. size_done += hs_ep->last_load;
  1166. req->actual = size_done;
  1167. }
  1168. if (req->actual < req->length && req->short_not_ok) {
  1169. dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
  1170. __func__, req->actual, req->length);
  1171. /* todo - what should we return here? there's no one else
  1172. * even bothering to check the status. */
  1173. }
  1174. if (epnum == 0) {
  1175. if (!was_setup && req->complete != s3c_hsotg_complete_setup)
  1176. s3c_hsotg_send_zlp(hsotg, hs_req);
  1177. }
  1178. s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, result);
  1179. }
  1180. /**
  1181. * s3c_hsotg_read_frameno - read current frame number
  1182. * @hsotg: The device instance
  1183. *
  1184. * Return the current frame number
  1185. */
  1186. static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
  1187. {
  1188. u32 dsts;
  1189. dsts = readl(hsotg->regs + S3C_DSTS);
  1190. dsts &= S3C_DSTS_SOFFN_MASK;
  1191. dsts >>= S3C_DSTS_SOFFN_SHIFT;
  1192. return dsts;
  1193. }
  1194. /**
  1195. * s3c_hsotg_handle_rx - RX FIFO has data
  1196. * @hsotg: The device instance
  1197. *
  1198. * The IRQ handler has detected that the RX FIFO has some data in it
  1199. * that requires processing, so find out what is in there and do the
  1200. * appropriate read.
  1201. *
  1202. * The RXFIFO is a true FIFO, the packets comming out are still in packet
  1203. * chunks, so if you have x packets received on an endpoint you'll get x
  1204. * FIFO events delivered, each with a packet's worth of data in it.
  1205. *
  1206. * When using DMA, we should not be processing events from the RXFIFO
  1207. * as the actual data should be sent to the memory directly and we turn
  1208. * on the completion interrupts to get notifications of transfer completion.
  1209. */
  1210. static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
  1211. {
  1212. u32 grxstsr = readl(hsotg->regs + S3C_GRXSTSP);
  1213. u32 epnum, status, size;
  1214. WARN_ON(using_dma(hsotg));
  1215. epnum = grxstsr & S3C_GRXSTS_EPNum_MASK;
  1216. status = grxstsr & S3C_GRXSTS_PktSts_MASK;
  1217. size = grxstsr & S3C_GRXSTS_ByteCnt_MASK;
  1218. size >>= S3C_GRXSTS_ByteCnt_SHIFT;
  1219. if (1)
  1220. dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
  1221. __func__, grxstsr, size, epnum);
  1222. #define __status(x) ((x) >> S3C_GRXSTS_PktSts_SHIFT)
  1223. switch (status >> S3C_GRXSTS_PktSts_SHIFT) {
  1224. case __status(S3C_GRXSTS_PktSts_GlobalOutNAK):
  1225. dev_dbg(hsotg->dev, "GlobalOutNAK\n");
  1226. break;
  1227. case __status(S3C_GRXSTS_PktSts_OutDone):
  1228. dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
  1229. s3c_hsotg_read_frameno(hsotg));
  1230. if (!using_dma(hsotg))
  1231. s3c_hsotg_handle_outdone(hsotg, epnum, false);
  1232. break;
  1233. case __status(S3C_GRXSTS_PktSts_SetupDone):
  1234. dev_dbg(hsotg->dev,
  1235. "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
  1236. s3c_hsotg_read_frameno(hsotg),
  1237. readl(hsotg->regs + S3C_DOEPCTL(0)));
  1238. s3c_hsotg_handle_outdone(hsotg, epnum, true);
  1239. break;
  1240. case __status(S3C_GRXSTS_PktSts_OutRX):
  1241. s3c_hsotg_rx_data(hsotg, epnum, size);
  1242. break;
  1243. case __status(S3C_GRXSTS_PktSts_SetupRX):
  1244. dev_dbg(hsotg->dev,
  1245. "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
  1246. s3c_hsotg_read_frameno(hsotg),
  1247. readl(hsotg->regs + S3C_DOEPCTL(0)));
  1248. s3c_hsotg_rx_data(hsotg, epnum, size);
  1249. break;
  1250. default:
  1251. dev_warn(hsotg->dev, "%s: unknown status %08x\n",
  1252. __func__, grxstsr);
  1253. s3c_hsotg_dump(hsotg);
  1254. break;
  1255. }
  1256. }
  1257. /**
  1258. * s3c_hsotg_ep0_mps - turn max packet size into register setting
  1259. * @mps: The maximum packet size in bytes.
  1260. */
  1261. static u32 s3c_hsotg_ep0_mps(unsigned int mps)
  1262. {
  1263. switch (mps) {
  1264. case 64:
  1265. return S3C_D0EPCTL_MPS_64;
  1266. case 32:
  1267. return S3C_D0EPCTL_MPS_32;
  1268. case 16:
  1269. return S3C_D0EPCTL_MPS_16;
  1270. case 8:
  1271. return S3C_D0EPCTL_MPS_8;
  1272. }
  1273. /* bad max packet size, warn and return invalid result */
  1274. WARN_ON(1);
  1275. return (u32)-1;
  1276. }
  1277. /**
  1278. * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
  1279. * @hsotg: The driver state.
  1280. * @ep: The index number of the endpoint
  1281. * @mps: The maximum packet size in bytes
  1282. *
  1283. * Configure the maximum packet size for the given endpoint, updating
  1284. * the hardware control registers to reflect this.
  1285. */
  1286. static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
  1287. unsigned int ep, unsigned int mps)
  1288. {
  1289. struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
  1290. void __iomem *regs = hsotg->regs;
  1291. u32 mpsval;
  1292. u32 reg;
  1293. if (ep == 0) {
  1294. /* EP0 is a special case */
  1295. mpsval = s3c_hsotg_ep0_mps(mps);
  1296. if (mpsval > 3)
  1297. goto bad_mps;
  1298. } else {
  1299. if (mps >= S3C_DxEPCTL_MPS_LIMIT+1)
  1300. goto bad_mps;
  1301. mpsval = mps;
  1302. }
  1303. hs_ep->ep.maxpacket = mps;
  1304. /* update both the in and out endpoint controldir_ registers, even
  1305. * if one of the directions may not be in use. */
  1306. reg = readl(regs + S3C_DIEPCTL(ep));
  1307. reg &= ~S3C_DxEPCTL_MPS_MASK;
  1308. reg |= mpsval;
  1309. writel(reg, regs + S3C_DIEPCTL(ep));
  1310. reg = readl(regs + S3C_DOEPCTL(ep));
  1311. reg &= ~S3C_DxEPCTL_MPS_MASK;
  1312. reg |= mpsval;
  1313. writel(reg, regs + S3C_DOEPCTL(ep));
  1314. return;
  1315. bad_mps:
  1316. dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
  1317. }
  1318. /**
  1319. * s3c_hsotg_trytx - check to see if anything needs transmitting
  1320. * @hsotg: The driver state
  1321. * @hs_ep: The driver endpoint to check.
  1322. *
  1323. * Check to see if there is a request that has data to send, and if so
  1324. * make an attempt to write data into the FIFO.
  1325. */
  1326. static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
  1327. struct s3c_hsotg_ep *hs_ep)
  1328. {
  1329. struct s3c_hsotg_req *hs_req = hs_ep->req;
  1330. if (!hs_ep->dir_in || !hs_req)
  1331. return 0;
  1332. if (hs_req->req.actual < hs_req->req.length) {
  1333. dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
  1334. hs_ep->index);
  1335. return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
  1336. }
  1337. return 0;
  1338. }
  1339. /**
  1340. * s3c_hsotg_complete_in - complete IN transfer
  1341. * @hsotg: The device state.
  1342. * @hs_ep: The endpoint that has just completed.
  1343. *
  1344. * An IN transfer has been completed, update the transfer's state and then
  1345. * call the relevant completion routines.
  1346. */
  1347. static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
  1348. struct s3c_hsotg_ep *hs_ep)
  1349. {
  1350. struct s3c_hsotg_req *hs_req = hs_ep->req;
  1351. u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
  1352. int size_left, size_done;
  1353. if (!hs_req) {
  1354. dev_dbg(hsotg->dev, "XferCompl but no req\n");
  1355. return;
  1356. }
  1357. /* Calculate the size of the transfer by checking how much is left
  1358. * in the endpoint size register and then working it out from
  1359. * the amount we loaded for the transfer.
  1360. *
  1361. * We do this even for DMA, as the transfer may have incremented
  1362. * past the end of the buffer (DMA transfers are always 32bit
  1363. * aligned).
  1364. */
  1365. size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
  1366. size_done = hs_ep->size_loaded - size_left;
  1367. size_done += hs_ep->last_load;
  1368. if (hs_req->req.actual != size_done)
  1369. dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
  1370. __func__, hs_req->req.actual, size_done);
  1371. hs_req->req.actual = size_done;
  1372. /* if we did all of the transfer, and there is more data left
  1373. * around, then try restarting the rest of the request */
  1374. if (!size_left && hs_req->req.actual < hs_req->req.length) {
  1375. dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
  1376. s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
  1377. } else
  1378. s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, 0);
  1379. }
  1380. /**
  1381. * s3c_hsotg_epint - handle an in/out endpoint interrupt
  1382. * @hsotg: The driver state
  1383. * @idx: The index for the endpoint (0..15)
  1384. * @dir_in: Set if this is an IN endpoint
  1385. *
  1386. * Process and clear any interrupt pending for an individual endpoint
  1387. */
  1388. static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
  1389. int dir_in)
  1390. {
  1391. struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
  1392. u32 epint_reg = dir_in ? S3C_DIEPINT(idx) : S3C_DOEPINT(idx);
  1393. u32 epctl_reg = dir_in ? S3C_DIEPCTL(idx) : S3C_DOEPCTL(idx);
  1394. u32 epsiz_reg = dir_in ? S3C_DIEPTSIZ(idx) : S3C_DOEPTSIZ(idx);
  1395. u32 ints;
  1396. u32 clear = 0;
  1397. ints = readl(hsotg->regs + epint_reg);
  1398. dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
  1399. __func__, idx, dir_in ? "in" : "out", ints);
  1400. if (ints & S3C_DxEPINT_XferCompl) {
  1401. dev_dbg(hsotg->dev,
  1402. "%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
  1403. __func__, readl(hsotg->regs + epctl_reg),
  1404. readl(hsotg->regs + epsiz_reg));
  1405. /* we get OutDone from the FIFO, so we only need to look
  1406. * at completing IN requests here */
  1407. if (dir_in) {
  1408. s3c_hsotg_complete_in(hsotg, hs_ep);
  1409. if (idx == 0)
  1410. s3c_hsotg_enqueue_setup(hsotg);
  1411. } else if (using_dma(hsotg)) {
  1412. /* We're using DMA, we need to fire an OutDone here
  1413. * as we ignore the RXFIFO. */
  1414. s3c_hsotg_handle_outdone(hsotg, idx, false);
  1415. }
  1416. clear |= S3C_DxEPINT_XferCompl;
  1417. }
  1418. if (ints & S3C_DxEPINT_EPDisbld) {
  1419. dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
  1420. clear |= S3C_DxEPINT_EPDisbld;
  1421. }
  1422. if (ints & S3C_DxEPINT_AHBErr) {
  1423. dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
  1424. clear |= S3C_DxEPINT_AHBErr;
  1425. }
  1426. if (ints & S3C_DxEPINT_Setup) { /* Setup or Timeout */
  1427. dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
  1428. if (using_dma(hsotg) && idx == 0) {
  1429. /* this is the notification we've received a
  1430. * setup packet. In non-DMA mode we'd get this
  1431. * from the RXFIFO, instead we need to process
  1432. * the setup here. */
  1433. if (dir_in)
  1434. WARN_ON_ONCE(1);
  1435. else
  1436. s3c_hsotg_handle_outdone(hsotg, 0, true);
  1437. }
  1438. clear |= S3C_DxEPINT_Setup;
  1439. }
  1440. if (ints & S3C_DxEPINT_Back2BackSetup) {
  1441. dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
  1442. clear |= S3C_DxEPINT_Back2BackSetup;
  1443. }
  1444. if (dir_in) {
  1445. /* not sure if this is important, but we'll clear it anyway
  1446. */
  1447. if (ints & S3C_DIEPMSK_INTknTXFEmpMsk) {
  1448. dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
  1449. __func__, idx);
  1450. clear |= S3C_DIEPMSK_INTknTXFEmpMsk;
  1451. }
  1452. /* this probably means something bad is happening */
  1453. if (ints & S3C_DIEPMSK_INTknEPMisMsk) {
  1454. dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
  1455. __func__, idx);
  1456. clear |= S3C_DIEPMSK_INTknEPMisMsk;
  1457. }
  1458. }
  1459. writel(clear, hsotg->regs + epint_reg);
  1460. }
  1461. /**
  1462. * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
  1463. * @hsotg: The device state.
  1464. *
  1465. * Handle updating the device settings after the enumeration phase has
  1466. * been completed.
  1467. */
  1468. static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
  1469. {
  1470. u32 dsts = readl(hsotg->regs + S3C_DSTS);
  1471. int ep0_mps = 0, ep_mps;
  1472. /* This should signal the finish of the enumeration phase
  1473. * of the USB handshaking, so we should now know what rate
  1474. * we connected at. */
  1475. dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
  1476. /* note, since we're limited by the size of transfer on EP0, and
  1477. * it seems IN transfers must be a even number of packets we do
  1478. * not advertise a 64byte MPS on EP0. */
  1479. /* catch both EnumSpd_FS and EnumSpd_FS48 */
  1480. switch (dsts & S3C_DSTS_EnumSpd_MASK) {
  1481. case S3C_DSTS_EnumSpd_FS:
  1482. case S3C_DSTS_EnumSpd_FS48:
  1483. hsotg->gadget.speed = USB_SPEED_FULL;
  1484. dev_info(hsotg->dev, "new device is full-speed\n");
  1485. ep0_mps = EP0_MPS_LIMIT;
  1486. ep_mps = 64;
  1487. break;
  1488. case S3C_DSTS_EnumSpd_HS:
  1489. dev_info(hsotg->dev, "new device is high-speed\n");
  1490. hsotg->gadget.speed = USB_SPEED_HIGH;
  1491. ep0_mps = EP0_MPS_LIMIT;
  1492. ep_mps = 512;
  1493. break;
  1494. case S3C_DSTS_EnumSpd_LS:
  1495. hsotg->gadget.speed = USB_SPEED_LOW;
  1496. dev_info(hsotg->dev, "new device is low-speed\n");
  1497. /* note, we don't actually support LS in this driver at the
  1498. * moment, and the documentation seems to imply that it isn't
  1499. * supported by the PHYs on some of the devices.
  1500. */
  1501. break;
  1502. }
  1503. /* we should now know the maximum packet size for an
  1504. * endpoint, so set the endpoints to a default value. */
  1505. if (ep0_mps) {
  1506. int i;
  1507. s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
  1508. for (i = 1; i < S3C_HSOTG_EPS; i++)
  1509. s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
  1510. }
  1511. /* ensure after enumeration our EP0 is active */
  1512. s3c_hsotg_enqueue_setup(hsotg);
  1513. dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
  1514. readl(hsotg->regs + S3C_DIEPCTL0),
  1515. readl(hsotg->regs + S3C_DOEPCTL0));
  1516. }
  1517. /**
  1518. * kill_all_requests - remove all requests from the endpoint's queue
  1519. * @hsotg: The device state.
  1520. * @ep: The endpoint the requests may be on.
  1521. * @result: The result code to use.
  1522. * @force: Force removal of any current requests
  1523. *
  1524. * Go through the requests on the given endpoint and mark them
  1525. * completed with the given result code.
  1526. */
  1527. static void kill_all_requests(struct s3c_hsotg *hsotg,
  1528. struct s3c_hsotg_ep *ep,
  1529. int result, bool force)
  1530. {
  1531. struct s3c_hsotg_req *req, *treq;
  1532. unsigned long flags;
  1533. spin_lock_irqsave(&ep->lock, flags);
  1534. list_for_each_entry_safe(req, treq, &ep->queue, queue) {
  1535. /* currently, we can't do much about an already
  1536. * running request on an in endpoint */
  1537. if (ep->req == req && ep->dir_in && !force)
  1538. continue;
  1539. s3c_hsotg_complete_request(hsotg, ep, req,
  1540. result);
  1541. }
  1542. spin_unlock_irqrestore(&ep->lock, flags);
  1543. }
  1544. #define call_gadget(_hs, _entry) \
  1545. if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
  1546. (_hs)->driver && (_hs)->driver->_entry) \
  1547. (_hs)->driver->_entry(&(_hs)->gadget);
  1548. /**
  1549. * s3c_hsotg_disconnect_irq - disconnect irq service
  1550. * @hsotg: The device state.
  1551. *
  1552. * A disconnect IRQ has been received, meaning that the host has
  1553. * lost contact with the bus. Remove all current transactions
  1554. * and signal the gadget driver that this has happened.
  1555. */
  1556. static void s3c_hsotg_disconnect_irq(struct s3c_hsotg *hsotg)
  1557. {
  1558. unsigned ep;
  1559. for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
  1560. kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
  1561. call_gadget(hsotg, disconnect);
  1562. }
  1563. /**
  1564. * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
  1565. * @hsotg: The device state:
  1566. * @periodic: True if this is a periodic FIFO interrupt
  1567. */
  1568. static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
  1569. {
  1570. struct s3c_hsotg_ep *ep;
  1571. int epno, ret;
  1572. /* look through for any more data to transmit */
  1573. for (epno = 0; epno < S3C_HSOTG_EPS; epno++) {
  1574. ep = &hsotg->eps[epno];
  1575. if (!ep->dir_in)
  1576. continue;
  1577. if ((periodic && !ep->periodic) ||
  1578. (!periodic && ep->periodic))
  1579. continue;
  1580. ret = s3c_hsotg_trytx(hsotg, ep);
  1581. if (ret < 0)
  1582. break;
  1583. }
  1584. }
  1585. static struct s3c_hsotg *our_hsotg;
  1586. /* IRQ flags which will trigger a retry around the IRQ loop */
  1587. #define IRQ_RETRY_MASK (S3C_GINTSTS_NPTxFEmp | \
  1588. S3C_GINTSTS_PTxFEmp | \
  1589. S3C_GINTSTS_RxFLvl)
  1590. /**
  1591. * s3c_hsotg_irq - handle device interrupt
  1592. * @irq: The IRQ number triggered
  1593. * @pw: The pw value when registered the handler.
  1594. */
  1595. static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
  1596. {
  1597. struct s3c_hsotg *hsotg = pw;
  1598. int retry_count = 8;
  1599. u32 gintsts;
  1600. u32 gintmsk;
  1601. irq_retry:
  1602. gintsts = readl(hsotg->regs + S3C_GINTSTS);
  1603. gintmsk = readl(hsotg->regs + S3C_GINTMSK);
  1604. dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
  1605. __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
  1606. gintsts &= gintmsk;
  1607. if (gintsts & S3C_GINTSTS_OTGInt) {
  1608. u32 otgint = readl(hsotg->regs + S3C_GOTGINT);
  1609. dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
  1610. writel(otgint, hsotg->regs + S3C_GOTGINT);
  1611. writel(S3C_GINTSTS_OTGInt, hsotg->regs + S3C_GINTSTS);
  1612. }
  1613. if (gintsts & S3C_GINTSTS_DisconnInt) {
  1614. dev_dbg(hsotg->dev, "%s: DisconnInt\n", __func__);
  1615. writel(S3C_GINTSTS_DisconnInt, hsotg->regs + S3C_GINTSTS);
  1616. s3c_hsotg_disconnect_irq(hsotg);
  1617. }
  1618. if (gintsts & S3C_GINTSTS_SessReqInt) {
  1619. dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
  1620. writel(S3C_GINTSTS_SessReqInt, hsotg->regs + S3C_GINTSTS);
  1621. }
  1622. if (gintsts & S3C_GINTSTS_EnumDone) {
  1623. s3c_hsotg_irq_enumdone(hsotg);
  1624. writel(S3C_GINTSTS_EnumDone, hsotg->regs + S3C_GINTSTS);
  1625. }
  1626. if (gintsts & S3C_GINTSTS_ConIDStsChng) {
  1627. dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
  1628. readl(hsotg->regs + S3C_DSTS),
  1629. readl(hsotg->regs + S3C_GOTGCTL));
  1630. writel(S3C_GINTSTS_ConIDStsChng, hsotg->regs + S3C_GINTSTS);
  1631. }
  1632. if (gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt)) {
  1633. u32 daint = readl(hsotg->regs + S3C_DAINT);
  1634. u32 daint_out = daint >> S3C_DAINT_OutEP_SHIFT;
  1635. u32 daint_in = daint & ~(daint_out << S3C_DAINT_OutEP_SHIFT);
  1636. int ep;
  1637. dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
  1638. for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
  1639. if (daint_out & 1)
  1640. s3c_hsotg_epint(hsotg, ep, 0);
  1641. }
  1642. for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
  1643. if (daint_in & 1)
  1644. s3c_hsotg_epint(hsotg, ep, 1);
  1645. }
  1646. writel(daint, hsotg->regs + S3C_DAINT);
  1647. writel(gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt),
  1648. hsotg->regs + S3C_GINTSTS);
  1649. }
  1650. if (gintsts & S3C_GINTSTS_USBRst) {
  1651. dev_info(hsotg->dev, "%s: USBRst\n", __func__);
  1652. dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
  1653. readl(hsotg->regs + S3C_GNPTXSTS));
  1654. kill_all_requests(hsotg, &hsotg->eps[0], -ECONNRESET, true);
  1655. /* it seems after a reset we can end up with a situation
  1656. * where the TXFIFO still has data in it... try flushing
  1657. * it to remove anything that may still be in it.
  1658. */
  1659. if (1) {
  1660. writel(S3C_GRSTCTL_TxFNum(0) | S3C_GRSTCTL_TxFFlsh,
  1661. hsotg->regs + S3C_GRSTCTL);
  1662. dev_info(hsotg->dev, "GNPTXSTS=%08x\n",
  1663. readl(hsotg->regs + S3C_GNPTXSTS));
  1664. }
  1665. s3c_hsotg_enqueue_setup(hsotg);
  1666. writel(S3C_GINTSTS_USBRst, hsotg->regs + S3C_GINTSTS);
  1667. }
  1668. /* check both FIFOs */
  1669. if (gintsts & S3C_GINTSTS_NPTxFEmp) {
  1670. dev_dbg(hsotg->dev, "NPTxFEmp\n");
  1671. /* Disable the interrupt to stop it happening again
  1672. * unless one of these endpoint routines decides that
  1673. * it needs re-enabling */
  1674. s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
  1675. s3c_hsotg_irq_fifoempty(hsotg, false);
  1676. writel(S3C_GINTSTS_NPTxFEmp, hsotg->regs + S3C_GINTSTS);
  1677. }
  1678. if (gintsts & S3C_GINTSTS_PTxFEmp) {
  1679. dev_dbg(hsotg->dev, "PTxFEmp\n");
  1680. /* See note in S3C_GINTSTS_NPTxFEmp */
  1681. s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
  1682. s3c_hsotg_irq_fifoempty(hsotg, true);
  1683. writel(S3C_GINTSTS_PTxFEmp, hsotg->regs + S3C_GINTSTS);
  1684. }
  1685. if (gintsts & S3C_GINTSTS_RxFLvl) {
  1686. /* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
  1687. * we need to retry s3c_hsotg_handle_rx if this is still
  1688. * set. */
  1689. s3c_hsotg_handle_rx(hsotg);
  1690. writel(S3C_GINTSTS_RxFLvl, hsotg->regs + S3C_GINTSTS);
  1691. }
  1692. if (gintsts & S3C_GINTSTS_ModeMis) {
  1693. dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
  1694. writel(S3C_GINTSTS_ModeMis, hsotg->regs + S3C_GINTSTS);
  1695. }
  1696. if (gintsts & S3C_GINTSTS_USBSusp) {
  1697. dev_info(hsotg->dev, "S3C_GINTSTS_USBSusp\n");
  1698. writel(S3C_GINTSTS_USBSusp, hsotg->regs + S3C_GINTSTS);
  1699. call_gadget(hsotg, suspend);
  1700. }
  1701. if (gintsts & S3C_GINTSTS_WkUpInt) {
  1702. dev_info(hsotg->dev, "S3C_GINTSTS_WkUpIn\n");
  1703. writel(S3C_GINTSTS_WkUpInt, hsotg->regs + S3C_GINTSTS);
  1704. call_gadget(hsotg, resume);
  1705. }
  1706. if (gintsts & S3C_GINTSTS_ErlySusp) {
  1707. dev_dbg(hsotg->dev, "S3C_GINTSTS_ErlySusp\n");
  1708. writel(S3C_GINTSTS_ErlySusp, hsotg->regs + S3C_GINTSTS);
  1709. }
  1710. /* these next two seem to crop-up occasionally causing the core
  1711. * to shutdown the USB transfer, so try clearing them and logging
  1712. * the occurence. */
  1713. if (gintsts & S3C_GINTSTS_GOUTNakEff) {
  1714. dev_info(hsotg->dev, "GOUTNakEff triggered\n");
  1715. s3c_hsotg_dump(hsotg);
  1716. writel(S3C_DCTL_CGOUTNak, hsotg->regs + S3C_DCTL);
  1717. writel(S3C_GINTSTS_GOUTNakEff, hsotg->regs + S3C_GINTSTS);
  1718. }
  1719. if (gintsts & S3C_GINTSTS_GINNakEff) {
  1720. dev_info(hsotg->dev, "GINNakEff triggered\n");
  1721. s3c_hsotg_dump(hsotg);
  1722. writel(S3C_DCTL_CGNPInNAK, hsotg->regs + S3C_DCTL);
  1723. writel(S3C_GINTSTS_GINNakEff, hsotg->regs + S3C_GINTSTS);
  1724. }
  1725. /* if we've had fifo events, we should try and go around the
  1726. * loop again to see if there's any point in returning yet. */
  1727. if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
  1728. goto irq_retry;
  1729. return IRQ_HANDLED;
  1730. }
  1731. /**
  1732. * s3c_hsotg_ep_enable - enable the given endpoint
  1733. * @ep: The USB endpint to configure
  1734. * @desc: The USB endpoint descriptor to configure with.
  1735. *
  1736. * This is called from the USB gadget code's usb_ep_enable().
  1737. */
  1738. static int s3c_hsotg_ep_enable(struct usb_ep *ep,
  1739. const struct usb_endpoint_descriptor *desc)
  1740. {
  1741. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  1742. struct s3c_hsotg *hsotg = hs_ep->parent;
  1743. unsigned long flags;
  1744. int index = hs_ep->index;
  1745. u32 epctrl_reg;
  1746. u32 epctrl;
  1747. u32 mps;
  1748. int dir_in;
  1749. dev_dbg(hsotg->dev,
  1750. "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
  1751. __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
  1752. desc->wMaxPacketSize, desc->bInterval);
  1753. /* not to be called for EP0 */
  1754. WARN_ON(index == 0);
  1755. dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
  1756. if (dir_in != hs_ep->dir_in) {
  1757. dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
  1758. return -EINVAL;
  1759. }
  1760. mps = le16_to_cpu(desc->wMaxPacketSize);
  1761. /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
  1762. epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
  1763. epctrl = readl(hsotg->regs + epctrl_reg);
  1764. dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
  1765. __func__, epctrl, epctrl_reg);
  1766. spin_lock_irqsave(&hs_ep->lock, flags);
  1767. epctrl &= ~(S3C_DxEPCTL_EPType_MASK | S3C_DxEPCTL_MPS_MASK);
  1768. epctrl |= S3C_DxEPCTL_MPS(mps);
  1769. /* mark the endpoint as active, otherwise the core may ignore
  1770. * transactions entirely for this endpoint */
  1771. epctrl |= S3C_DxEPCTL_USBActEp;
  1772. /* set the NAK status on the endpoint, otherwise we might try and
  1773. * do something with data that we've yet got a request to process
  1774. * since the RXFIFO will take data for an endpoint even if the
  1775. * size register hasn't been set.
  1776. */
  1777. epctrl |= S3C_DxEPCTL_SNAK;
  1778. /* update the endpoint state */
  1779. hs_ep->ep.maxpacket = mps;
  1780. /* default, set to non-periodic */
  1781. hs_ep->periodic = 0;
  1782. switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
  1783. case USB_ENDPOINT_XFER_ISOC:
  1784. dev_err(hsotg->dev, "no current ISOC support\n");
  1785. return -EINVAL;
  1786. case USB_ENDPOINT_XFER_BULK:
  1787. epctrl |= S3C_DxEPCTL_EPType_Bulk;
  1788. break;
  1789. case USB_ENDPOINT_XFER_INT:
  1790. if (dir_in) {
  1791. /* Allocate our TxFNum by simply using the index
  1792. * of the endpoint for the moment. We could do
  1793. * something better if the host indicates how
  1794. * many FIFOs we are expecting to use. */
  1795. hs_ep->periodic = 1;
  1796. epctrl |= S3C_DxEPCTL_TxFNum(index);
  1797. }
  1798. epctrl |= S3C_DxEPCTL_EPType_Intterupt;
  1799. break;
  1800. case USB_ENDPOINT_XFER_CONTROL:
  1801. epctrl |= S3C_DxEPCTL_EPType_Control;
  1802. break;
  1803. }
  1804. /* for non control endpoints, set PID to D0 */
  1805. if (index)
  1806. epctrl |= S3C_DxEPCTL_SetD0PID;
  1807. dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
  1808. __func__, epctrl);
  1809. writel(epctrl, hsotg->regs + epctrl_reg);
  1810. dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
  1811. __func__, readl(hsotg->regs + epctrl_reg));
  1812. /* enable the endpoint interrupt */
  1813. s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
  1814. spin_unlock_irqrestore(&hs_ep->lock, flags);
  1815. return 0;
  1816. }
  1817. static int s3c_hsotg_ep_disable(struct usb_ep *ep)
  1818. {
  1819. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  1820. struct s3c_hsotg *hsotg = hs_ep->parent;
  1821. int dir_in = hs_ep->dir_in;
  1822. int index = hs_ep->index;
  1823. unsigned long flags;
  1824. u32 epctrl_reg;
  1825. u32 ctrl;
  1826. dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
  1827. if (ep == &hsotg->eps[0].ep) {
  1828. dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
  1829. return -EINVAL;
  1830. }
  1831. epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
  1832. /* terminate all requests with shutdown */
  1833. kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
  1834. spin_lock_irqsave(&hs_ep->lock, flags);
  1835. ctrl = readl(hsotg->regs + epctrl_reg);
  1836. ctrl &= ~S3C_DxEPCTL_EPEna;
  1837. ctrl &= ~S3C_DxEPCTL_USBActEp;
  1838. ctrl |= S3C_DxEPCTL_SNAK;
  1839. dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
  1840. writel(ctrl, hsotg->regs + epctrl_reg);
  1841. /* disable endpoint interrupts */
  1842. s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
  1843. spin_unlock_irqrestore(&hs_ep->lock, flags);
  1844. return 0;
  1845. }
  1846. /**
  1847. * on_list - check request is on the given endpoint
  1848. * @ep: The endpoint to check.
  1849. * @test: The request to test if it is on the endpoint.
  1850. */
  1851. static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
  1852. {
  1853. struct s3c_hsotg_req *req, *treq;
  1854. list_for_each_entry_safe(req, treq, &ep->queue, queue) {
  1855. if (req == test)
  1856. return true;
  1857. }
  1858. return false;
  1859. }
  1860. static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
  1861. {
  1862. struct s3c_hsotg_req *hs_req = our_req(req);
  1863. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  1864. struct s3c_hsotg *hs = hs_ep->parent;
  1865. unsigned long flags;
  1866. dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
  1867. if (hs_req == hs_ep->req) {
  1868. dev_dbg(hs->dev, "%s: already in progress\n", __func__);
  1869. return -EINPROGRESS;
  1870. }
  1871. spin_lock_irqsave(&hs_ep->lock, flags);
  1872. if (!on_list(hs_ep, hs_req)) {
  1873. spin_unlock_irqrestore(&hs_ep->lock, flags);
  1874. return -EINVAL;
  1875. }
  1876. s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
  1877. spin_unlock_irqrestore(&hs_ep->lock, flags);
  1878. return 0;
  1879. }
  1880. static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
  1881. {
  1882. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  1883. struct s3c_hsotg *hs = hs_ep->parent;
  1884. int index = hs_ep->index;
  1885. unsigned long irqflags;
  1886. u32 epreg;
  1887. u32 epctl;
  1888. dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
  1889. spin_lock_irqsave(&hs_ep->lock, irqflags);
  1890. /* write both IN and OUT control registers */
  1891. epreg = S3C_DIEPCTL(index);
  1892. epctl = readl(hs->regs + epreg);
  1893. if (value)
  1894. epctl |= S3C_DxEPCTL_Stall;
  1895. else
  1896. epctl &= ~S3C_DxEPCTL_Stall;
  1897. writel(epctl, hs->regs + epreg);
  1898. epreg = S3C_DOEPCTL(index);
  1899. epctl = readl(hs->regs + epreg);
  1900. if (value)
  1901. epctl |= S3C_DxEPCTL_Stall;
  1902. else
  1903. epctl &= ~S3C_DxEPCTL_Stall;
  1904. writel(epctl, hs->regs + epreg);
  1905. spin_unlock_irqrestore(&hs_ep->lock, irqflags);
  1906. return 0;
  1907. }
  1908. static struct usb_ep_ops s3c_hsotg_ep_ops = {
  1909. .enable = s3c_hsotg_ep_enable,
  1910. .disable = s3c_hsotg_ep_disable,
  1911. .alloc_request = s3c_hsotg_ep_alloc_request,
  1912. .free_request = s3c_hsotg_ep_free_request,
  1913. .queue = s3c_hsotg_ep_queue,
  1914. .dequeue = s3c_hsotg_ep_dequeue,
  1915. .set_halt = s3c_hsotg_ep_sethalt,
  1916. /* note, don't belive we have any call for the fifo routines */
  1917. };
  1918. /**
  1919. * s3c_hsotg_corereset - issue softreset to the core
  1920. * @hsotg: The device state
  1921. *
  1922. * Issue a soft reset to the core, and await the core finishing it.
  1923. */
  1924. static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
  1925. {
  1926. int timeout;
  1927. u32 grstctl;
  1928. dev_dbg(hsotg->dev, "resetting core\n");
  1929. /* issue soft reset */
  1930. writel(S3C_GRSTCTL_CSftRst, hsotg->regs + S3C_GRSTCTL);
  1931. timeout = 1000;
  1932. do {
  1933. grstctl = readl(hsotg->regs + S3C_GRSTCTL);
  1934. } while (!(grstctl & S3C_GRSTCTL_CSftRst) && timeout-- > 0);
  1935. if (!(grstctl & S3C_GRSTCTL_CSftRst)) {
  1936. dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
  1937. return -EINVAL;
  1938. }
  1939. timeout = 1000;
  1940. while (1) {
  1941. u32 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
  1942. if (timeout-- < 0) {
  1943. dev_info(hsotg->dev,
  1944. "%s: reset failed, GRSTCTL=%08x\n",
  1945. __func__, grstctl);
  1946. return -ETIMEDOUT;
  1947. }
  1948. if (grstctl & S3C_GRSTCTL_CSftRst)
  1949. continue;
  1950. if (!(grstctl & S3C_GRSTCTL_AHBIdle))
  1951. continue;
  1952. break; /* reset done */
  1953. }
  1954. dev_dbg(hsotg->dev, "reset successful\n");
  1955. return 0;
  1956. }
  1957. int usb_gadget_register_driver(struct usb_gadget_driver *driver)
  1958. {
  1959. struct s3c_hsotg *hsotg = our_hsotg;
  1960. int ret;
  1961. if (!hsotg) {
  1962. printk(KERN_ERR "%s: called with no device\n", __func__);
  1963. return -ENODEV;
  1964. }
  1965. if (!driver) {
  1966. dev_err(hsotg->dev, "%s: no driver\n", __func__);
  1967. return -EINVAL;
  1968. }
  1969. if (driver->speed != USB_SPEED_HIGH &&
  1970. driver->speed != USB_SPEED_FULL) {
  1971. dev_err(hsotg->dev, "%s: bad speed\n", __func__);
  1972. }
  1973. if (!driver->bind || !driver->setup) {
  1974. dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
  1975. return -EINVAL;
  1976. }
  1977. WARN_ON(hsotg->driver);
  1978. driver->driver.bus = NULL;
  1979. hsotg->driver = driver;
  1980. hsotg->gadget.dev.driver = &driver->driver;
  1981. hsotg->gadget.dev.dma_mask = hsotg->dev->dma_mask;
  1982. hsotg->gadget.speed = USB_SPEED_UNKNOWN;
  1983. ret = device_add(&hsotg->gadget.dev);
  1984. if (ret) {
  1985. dev_err(hsotg->dev, "failed to register gadget device\n");
  1986. goto err;
  1987. }
  1988. ret = driver->bind(&hsotg->gadget);
  1989. if (ret) {
  1990. dev_err(hsotg->dev, "failed bind %s\n", driver->driver.name);
  1991. hsotg->gadget.dev.driver = NULL;
  1992. hsotg->driver = NULL;
  1993. goto err;
  1994. }
  1995. /* we must now enable ep0 ready for host detection and then
  1996. * set configuration. */
  1997. s3c_hsotg_corereset(hsotg);
  1998. /* set the PLL on, remove the HNP/SRP and set the PHY */
  1999. writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) |
  2000. (0x5 << 10), hsotg->regs + S3C_GUSBCFG);
  2001. /* looks like soft-reset changes state of FIFOs */
  2002. s3c_hsotg_init_fifo(hsotg);
  2003. __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
  2004. writel(1 << 18 | S3C_DCFG_DevSpd_HS, hsotg->regs + S3C_DCFG);
  2005. writel(S3C_GINTSTS_DisconnInt | S3C_GINTSTS_SessReqInt |
  2006. S3C_GINTSTS_ConIDStsChng | S3C_GINTSTS_USBRst |
  2007. S3C_GINTSTS_EnumDone | S3C_GINTSTS_OTGInt |
  2008. S3C_GINTSTS_USBSusp | S3C_GINTSTS_WkUpInt |
  2009. S3C_GINTSTS_GOUTNakEff | S3C_GINTSTS_GINNakEff |
  2010. S3C_GINTSTS_ErlySusp,
  2011. hsotg->regs + S3C_GINTMSK);
  2012. if (using_dma(hsotg))
  2013. writel(S3C_GAHBCFG_GlblIntrEn | S3C_GAHBCFG_DMAEn |
  2014. S3C_GAHBCFG_HBstLen_Incr4,
  2015. hsotg->regs + S3C_GAHBCFG);
  2016. else
  2017. writel(S3C_GAHBCFG_GlblIntrEn, hsotg->regs + S3C_GAHBCFG);
  2018. /* Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
  2019. * up being flooded with interrupts if the host is polling the
  2020. * endpoint to try and read data. */
  2021. writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
  2022. S3C_DIEPMSK_INTknEPMisMsk |
  2023. S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
  2024. hsotg->regs + S3C_DIEPMSK);
  2025. /* don't need XferCompl, we get that from RXFIFO in slave mode. In
  2026. * DMA mode we may need this. */
  2027. writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
  2028. S3C_DOEPMSK_EPDisbldMsk |
  2029. (using_dma(hsotg) ? (S3C_DIEPMSK_XferComplMsk |
  2030. S3C_DIEPMSK_TimeOUTMsk) : 0),
  2031. hsotg->regs + S3C_DOEPMSK);
  2032. writel(0, hsotg->regs + S3C_DAINTMSK);
  2033. dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
  2034. readl(hsotg->regs + S3C_DIEPCTL0),
  2035. readl(hsotg->regs + S3C_DOEPCTL0));
  2036. /* enable in and out endpoint interrupts */
  2037. s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt);
  2038. /* Enable the RXFIFO when in slave mode, as this is how we collect
  2039. * the data. In DMA mode, we get events from the FIFO but also
  2040. * things we cannot process, so do not use it. */
  2041. if (!using_dma(hsotg))
  2042. s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_RxFLvl);
  2043. /* Enable interrupts for EP0 in and out */
  2044. s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
  2045. s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
  2046. __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
  2047. udelay(10); /* see openiboot */
  2048. __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
  2049. dev_info(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + S3C_DCTL));
  2050. /* S3C_DxEPCTL_USBActEp says RO in manual, but seems to be set by
  2051. writing to the EPCTL register.. */
  2052. /* set to read 1 8byte packet */
  2053. writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
  2054. S3C_DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
  2055. writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
  2056. S3C_DxEPCTL_CNAK | S3C_DxEPCTL_EPEna |
  2057. S3C_DxEPCTL_USBActEp,
  2058. hsotg->regs + S3C_DOEPCTL0);
  2059. /* enable, but don't activate EP0in */
  2060. writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
  2061. S3C_DxEPCTL_USBActEp, hsotg->regs + S3C_DIEPCTL0);
  2062. s3c_hsotg_enqueue_setup(hsotg);
  2063. dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
  2064. readl(hsotg->regs + S3C_DIEPCTL0),
  2065. readl(hsotg->regs + S3C_DOEPCTL0));
  2066. /* clear global NAKs */
  2067. writel(S3C_DCTL_CGOUTNak | S3C_DCTL_CGNPInNAK,
  2068. hsotg->regs + S3C_DCTL);
  2069. /* remove the soft-disconnect and let's go */
  2070. __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
  2071. /* report to the user, and return */
  2072. dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
  2073. return 0;
  2074. err:
  2075. hsotg->driver = NULL;
  2076. hsotg->gadget.dev.driver = NULL;
  2077. return ret;
  2078. }
  2079. EXPORT_SYMBOL(usb_gadget_register_driver);
  2080. int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
  2081. {
  2082. struct s3c_hsotg *hsotg = our_hsotg;
  2083. int ep;
  2084. if (!hsotg)
  2085. return -ENODEV;
  2086. if (!driver || driver != hsotg->driver || !driver->unbind)
  2087. return -EINVAL;
  2088. /* all endpoints should be shutdown */
  2089. for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
  2090. s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
  2091. call_gadget(hsotg, disconnect);
  2092. driver->unbind(&hsotg->gadget);
  2093. hsotg->driver = NULL;
  2094. hsotg->gadget.speed = USB_SPEED_UNKNOWN;
  2095. device_del(&hsotg->gadget.dev);
  2096. dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
  2097. driver->driver.name);
  2098. return 0;
  2099. }
  2100. EXPORT_SYMBOL(usb_gadget_unregister_driver);
  2101. static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
  2102. {
  2103. return s3c_hsotg_read_frameno(to_hsotg(gadget));
  2104. }
  2105. static struct usb_gadget_ops s3c_hsotg_gadget_ops = {
  2106. .get_frame = s3c_hsotg_gadget_getframe,
  2107. };
  2108. /**
  2109. * s3c_hsotg_initep - initialise a single endpoint
  2110. * @hsotg: The device state.
  2111. * @hs_ep: The endpoint to be initialised.
  2112. * @epnum: The endpoint number
  2113. *
  2114. * Initialise the given endpoint (as part of the probe and device state
  2115. * creation) to give to the gadget driver. Setup the endpoint name, any
  2116. * direction information and other state that may be required.
  2117. */
  2118. static void __devinit s3c_hsotg_initep(struct s3c_hsotg *hsotg,
  2119. struct s3c_hsotg_ep *hs_ep,
  2120. int epnum)
  2121. {
  2122. u32 ptxfifo;
  2123. char *dir;
  2124. if (epnum == 0)
  2125. dir = "";
  2126. else if ((epnum % 2) == 0) {
  2127. dir = "out";
  2128. } else {
  2129. dir = "in";
  2130. hs_ep->dir_in = 1;
  2131. }
  2132. hs_ep->index = epnum;
  2133. snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
  2134. INIT_LIST_HEAD(&hs_ep->queue);
  2135. INIT_LIST_HEAD(&hs_ep->ep.ep_list);
  2136. spin_lock_init(&hs_ep->lock);
  2137. /* add to the list of endpoints known by the gadget driver */
  2138. if (epnum)
  2139. list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
  2140. hs_ep->parent = hsotg;
  2141. hs_ep->ep.name = hs_ep->name;
  2142. hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
  2143. hs_ep->ep.ops = &s3c_hsotg_ep_ops;
  2144. /* Read the FIFO size for the Periodic TX FIFO, even if we're
  2145. * an OUT endpoint, we may as well do this if in future the
  2146. * code is changed to make each endpoint's direction changeable.
  2147. */
  2148. ptxfifo = readl(hsotg->regs + S3C_DPTXFSIZn(epnum));
  2149. hs_ep->fifo_size = S3C_DPTXFSIZn_DPTxFSize_GET(ptxfifo);
  2150. /* if we're using dma, we need to set the next-endpoint pointer
  2151. * to be something valid.
  2152. */
  2153. if (using_dma(hsotg)) {
  2154. u32 next = S3C_DxEPCTL_NextEp((epnum + 1) % 15);
  2155. writel(next, hsotg->regs + S3C_DIEPCTL(epnum));
  2156. writel(next, hsotg->regs + S3C_DOEPCTL(epnum));
  2157. }
  2158. }
  2159. /**
  2160. * s3c_hsotg_otgreset - reset the OtG phy block
  2161. * @hsotg: The host state.
  2162. *
  2163. * Power up the phy, set the basic configuration and start the PHY.
  2164. */
  2165. static void s3c_hsotg_otgreset(struct s3c_hsotg *hsotg)
  2166. {
  2167. u32 osc;
  2168. writel(0, S3C_PHYPWR);
  2169. mdelay(1);
  2170. osc = hsotg->plat->is_osc ? S3C_PHYCLK_EXT_OSC : 0;
  2171. writel(osc | 0x10, S3C_PHYCLK);
  2172. /* issue a full set of resets to the otg and core */
  2173. writel(S3C_RSTCON_PHY, S3C_RSTCON);
  2174. udelay(20); /* at-least 10uS */
  2175. writel(0, S3C_RSTCON);
  2176. }
  2177. static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
  2178. {
  2179. /* unmask subset of endpoint interrupts */
  2180. writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
  2181. S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
  2182. hsotg->regs + S3C_DIEPMSK);
  2183. writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
  2184. S3C_DOEPMSK_EPDisbldMsk | S3C_DOEPMSK_XferComplMsk,
  2185. hsotg->regs + S3C_DOEPMSK);
  2186. writel(0, hsotg->regs + S3C_DAINTMSK);
  2187. if (0) {
  2188. /* post global nak until we're ready */
  2189. writel(S3C_DCTL_SGNPInNAK | S3C_DCTL_SGOUTNak,
  2190. hsotg->regs + S3C_DCTL);
  2191. }
  2192. /* setup fifos */
  2193. dev_info(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
  2194. readl(hsotg->regs + S3C_GRXFSIZ),
  2195. readl(hsotg->regs + S3C_GNPTXFSIZ));
  2196. s3c_hsotg_init_fifo(hsotg);
  2197. /* set the PLL on, remove the HNP/SRP and set the PHY */
  2198. writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) | (0x5 << 10),
  2199. hsotg->regs + S3C_GUSBCFG);
  2200. writel(using_dma(hsotg) ? S3C_GAHBCFG_DMAEn : 0x0,
  2201. hsotg->regs + S3C_GAHBCFG);
  2202. }
  2203. static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
  2204. {
  2205. struct device *dev = hsotg->dev;
  2206. void __iomem *regs = hsotg->regs;
  2207. u32 val;
  2208. int idx;
  2209. dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
  2210. readl(regs + S3C_DCFG), readl(regs + S3C_DCTL),
  2211. readl(regs + S3C_DIEPMSK));
  2212. dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
  2213. readl(regs + S3C_GAHBCFG), readl(regs + 0x44));
  2214. dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
  2215. readl(regs + S3C_GRXFSIZ), readl(regs + S3C_GNPTXFSIZ));
  2216. /* show periodic fifo settings */
  2217. for (idx = 1; idx <= 15; idx++) {
  2218. val = readl(regs + S3C_DPTXFSIZn(idx));
  2219. dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
  2220. val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
  2221. val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
  2222. }
  2223. for (idx = 0; idx < 15; idx++) {
  2224. dev_info(dev,
  2225. "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
  2226. readl(regs + S3C_DIEPCTL(idx)),
  2227. readl(regs + S3C_DIEPTSIZ(idx)),
  2228. readl(regs + S3C_DIEPDMA(idx)));
  2229. val = readl(regs + S3C_DOEPCTL(idx));
  2230. dev_info(dev,
  2231. "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
  2232. idx, readl(regs + S3C_DOEPCTL(idx)),
  2233. readl(regs + S3C_DOEPTSIZ(idx)),
  2234. readl(regs + S3C_DOEPDMA(idx)));
  2235. }
  2236. dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
  2237. readl(regs + S3C_DVBUSDIS), readl(regs + S3C_DVBUSPULSE));
  2238. }
  2239. /**
  2240. * state_show - debugfs: show overall driver and device state.
  2241. * @seq: The seq file to write to.
  2242. * @v: Unused parameter.
  2243. *
  2244. * This debugfs entry shows the overall state of the hardware and
  2245. * some general information about each of the endpoints available
  2246. * to the system.
  2247. */
  2248. static int state_show(struct seq_file *seq, void *v)
  2249. {
  2250. struct s3c_hsotg *hsotg = seq->private;
  2251. void __iomem *regs = hsotg->regs;
  2252. int idx;
  2253. seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
  2254. readl(regs + S3C_DCFG),
  2255. readl(regs + S3C_DCTL),
  2256. readl(regs + S3C_DSTS));
  2257. seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
  2258. readl(regs + S3C_DIEPMSK), readl(regs + S3C_DOEPMSK));
  2259. seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
  2260. readl(regs + S3C_GINTMSK),
  2261. readl(regs + S3C_GINTSTS));
  2262. seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
  2263. readl(regs + S3C_DAINTMSK),
  2264. readl(regs + S3C_DAINT));
  2265. seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
  2266. readl(regs + S3C_GNPTXSTS),
  2267. readl(regs + S3C_GRXSTSR));
  2268. seq_printf(seq, "\nEndpoint status:\n");
  2269. for (idx = 0; idx < 15; idx++) {
  2270. u32 in, out;
  2271. in = readl(regs + S3C_DIEPCTL(idx));
  2272. out = readl(regs + S3C_DOEPCTL(idx));
  2273. seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
  2274. idx, in, out);
  2275. in = readl(regs + S3C_DIEPTSIZ(idx));
  2276. out = readl(regs + S3C_DOEPTSIZ(idx));
  2277. seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
  2278. in, out);
  2279. seq_printf(seq, "\n");
  2280. }
  2281. return 0;
  2282. }
  2283. static int state_open(struct inode *inode, struct file *file)
  2284. {
  2285. return single_open(file, state_show, inode->i_private);
  2286. }
  2287. static const struct file_operations state_fops = {
  2288. .owner = THIS_MODULE,
  2289. .open = state_open,
  2290. .read = seq_read,
  2291. .llseek = seq_lseek,
  2292. .release = single_release,
  2293. };
  2294. /**
  2295. * fifo_show - debugfs: show the fifo information
  2296. * @seq: The seq_file to write data to.
  2297. * @v: Unused parameter.
  2298. *
  2299. * Show the FIFO information for the overall fifo and all the
  2300. * periodic transmission FIFOs.
  2301. */
  2302. static int fifo_show(struct seq_file *seq, void *v)
  2303. {
  2304. struct s3c_hsotg *hsotg = seq->private;
  2305. void __iomem *regs = hsotg->regs;
  2306. u32 val;
  2307. int idx;
  2308. seq_printf(seq, "Non-periodic FIFOs:\n");
  2309. seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + S3C_GRXFSIZ));
  2310. val = readl(regs + S3C_GNPTXFSIZ);
  2311. seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
  2312. val >> S3C_GNPTXFSIZ_NPTxFDep_SHIFT,
  2313. val & S3C_GNPTXFSIZ_NPTxFStAddr_MASK);
  2314. seq_printf(seq, "\nPeriodic TXFIFOs:\n");
  2315. for (idx = 1; idx <= 15; idx++) {
  2316. val = readl(regs + S3C_DPTXFSIZn(idx));
  2317. seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
  2318. val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
  2319. val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
  2320. }
  2321. return 0;
  2322. }
  2323. static int fifo_open(struct inode *inode, struct file *file)
  2324. {
  2325. return single_open(file, fifo_show, inode->i_private);
  2326. }
  2327. static const struct file_operations fifo_fops = {
  2328. .owner = THIS_MODULE,
  2329. .open = fifo_open,
  2330. .read = seq_read,
  2331. .llseek = seq_lseek,
  2332. .release = single_release,
  2333. };
  2334. static const char *decode_direction(int is_in)
  2335. {
  2336. return is_in ? "in" : "out";
  2337. }
  2338. /**
  2339. * ep_show - debugfs: show the state of an endpoint.
  2340. * @seq: The seq_file to write data to.
  2341. * @v: Unused parameter.
  2342. *
  2343. * This debugfs entry shows the state of the given endpoint (one is
  2344. * registered for each available).
  2345. */
  2346. static int ep_show(struct seq_file *seq, void *v)
  2347. {
  2348. struct s3c_hsotg_ep *ep = seq->private;
  2349. struct s3c_hsotg *hsotg = ep->parent;
  2350. struct s3c_hsotg_req *req;
  2351. void __iomem *regs = hsotg->regs;
  2352. int index = ep->index;
  2353. int show_limit = 15;
  2354. unsigned long flags;
  2355. seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n",
  2356. ep->index, ep->ep.name, decode_direction(ep->dir_in));
  2357. /* first show the register state */
  2358. seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
  2359. readl(regs + S3C_DIEPCTL(index)),
  2360. readl(regs + S3C_DOEPCTL(index)));
  2361. seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
  2362. readl(regs + S3C_DIEPDMA(index)),
  2363. readl(regs + S3C_DOEPDMA(index)));
  2364. seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
  2365. readl(regs + S3C_DIEPINT(index)),
  2366. readl(regs + S3C_DOEPINT(index)));
  2367. seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
  2368. readl(regs + S3C_DIEPTSIZ(index)),
  2369. readl(regs + S3C_DOEPTSIZ(index)));
  2370. seq_printf(seq, "\n");
  2371. seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
  2372. seq_printf(seq, "total_data=%ld\n", ep->total_data);
  2373. seq_printf(seq, "request list (%p,%p):\n",
  2374. ep->queue.next, ep->queue.prev);
  2375. spin_lock_irqsave(&ep->lock, flags);
  2376. list_for_each_entry(req, &ep->queue, queue) {
  2377. if (--show_limit < 0) {
  2378. seq_printf(seq, "not showing more requests...\n");
  2379. break;
  2380. }
  2381. seq_printf(seq, "%c req %p: %d bytes @%p, ",
  2382. req == ep->req ? '*' : ' ',
  2383. req, req->req.length, req->req.buf);
  2384. seq_printf(seq, "%d done, res %d\n",
  2385. req->req.actual, req->req.status);
  2386. }
  2387. spin_unlock_irqrestore(&ep->lock, flags);
  2388. return 0;
  2389. }
  2390. static int ep_open(struct inode *inode, struct file *file)
  2391. {
  2392. return single_open(file, ep_show, inode->i_private);
  2393. }
  2394. static const struct file_operations ep_fops = {
  2395. .owner = THIS_MODULE,
  2396. .open = ep_open,
  2397. .read = seq_read,
  2398. .llseek = seq_lseek,
  2399. .release = single_release,
  2400. };
  2401. /**
  2402. * s3c_hsotg_create_debug - create debugfs directory and files
  2403. * @hsotg: The driver state
  2404. *
  2405. * Create the debugfs files to allow the user to get information
  2406. * about the state of the system. The directory name is created
  2407. * with the same name as the device itself, in case we end up
  2408. * with multiple blocks in future systems.
  2409. */
  2410. static void __devinit s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
  2411. {
  2412. struct dentry *root;
  2413. unsigned epidx;
  2414. root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
  2415. hsotg->debug_root = root;
  2416. if (IS_ERR(root)) {
  2417. dev_err(hsotg->dev, "cannot create debug root\n");
  2418. return;
  2419. }
  2420. /* create general state file */
  2421. hsotg->debug_file = debugfs_create_file("state", 0444, root,
  2422. hsotg, &state_fops);
  2423. if (IS_ERR(hsotg->debug_file))
  2424. dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
  2425. hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
  2426. hsotg, &fifo_fops);
  2427. if (IS_ERR(hsotg->debug_fifo))
  2428. dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
  2429. /* create one file for each endpoint */
  2430. for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
  2431. struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
  2432. ep->debugfs = debugfs_create_file(ep->name, 0444,
  2433. root, ep, &ep_fops);
  2434. if (IS_ERR(ep->debugfs))
  2435. dev_err(hsotg->dev, "failed to create %s debug file\n",
  2436. ep->name);
  2437. }
  2438. }
  2439. /**
  2440. * s3c_hsotg_delete_debug - cleanup debugfs entries
  2441. * @hsotg: The driver state
  2442. *
  2443. * Cleanup (remove) the debugfs files for use on module exit.
  2444. */
  2445. static void __devexit s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
  2446. {
  2447. unsigned epidx;
  2448. for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
  2449. struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
  2450. debugfs_remove(ep->debugfs);
  2451. }
  2452. debugfs_remove(hsotg->debug_file);
  2453. debugfs_remove(hsotg->debug_fifo);
  2454. debugfs_remove(hsotg->debug_root);
  2455. }
  2456. /**
  2457. * s3c_hsotg_gate - set the hardware gate for the block
  2458. * @pdev: The device we bound to
  2459. * @on: On or off.
  2460. *
  2461. * Set the hardware gate setting into the block. If we end up on
  2462. * something other than an S3C64XX, then we might need to change this
  2463. * to using a platform data callback, or some other mechanism.
  2464. */
  2465. static void s3c_hsotg_gate(struct platform_device *pdev, bool on)
  2466. {
  2467. unsigned long flags;
  2468. u32 others;
  2469. local_irq_save(flags);
  2470. others = __raw_readl(S3C64XX_OTHERS);
  2471. if (on)
  2472. others |= S3C64XX_OTHERS_USBMASK;
  2473. else
  2474. others &= ~S3C64XX_OTHERS_USBMASK;
  2475. __raw_writel(others, S3C64XX_OTHERS);
  2476. local_irq_restore(flags);
  2477. }
  2478. static struct s3c_hsotg_plat s3c_hsotg_default_pdata;
  2479. static int __devinit s3c_hsotg_probe(struct platform_device *pdev)
  2480. {
  2481. struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
  2482. struct device *dev = &pdev->dev;
  2483. struct s3c_hsotg *hsotg;
  2484. struct resource *res;
  2485. int epnum;
  2486. int ret;
  2487. if (!plat)
  2488. plat = &s3c_hsotg_default_pdata;
  2489. hsotg = kzalloc(sizeof(struct s3c_hsotg) +
  2490. sizeof(struct s3c_hsotg_ep) * S3C_HSOTG_EPS,
  2491. GFP_KERNEL);
  2492. if (!hsotg) {
  2493. dev_err(dev, "cannot get memory\n");
  2494. return -ENOMEM;
  2495. }
  2496. hsotg->dev = dev;
  2497. hsotg->plat = plat;
  2498. platform_set_drvdata(pdev, hsotg);
  2499. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  2500. if (!res) {
  2501. dev_err(dev, "cannot find register resource 0\n");
  2502. ret = -EINVAL;
  2503. goto err_mem;
  2504. }
  2505. hsotg->regs_res = request_mem_region(res->start, resource_size(res),
  2506. dev_name(dev));
  2507. if (!hsotg->regs_res) {
  2508. dev_err(dev, "cannot reserve registers\n");
  2509. ret = -ENOENT;
  2510. goto err_mem;
  2511. }
  2512. hsotg->regs = ioremap(res->start, resource_size(res));
  2513. if (!hsotg->regs) {
  2514. dev_err(dev, "cannot map registers\n");
  2515. ret = -ENXIO;
  2516. goto err_regs_res;
  2517. }
  2518. ret = platform_get_irq(pdev, 0);
  2519. if (ret < 0) {
  2520. dev_err(dev, "cannot find IRQ\n");
  2521. goto err_regs;
  2522. }
  2523. hsotg->irq = ret;
  2524. ret = request_irq(ret, s3c_hsotg_irq, 0, dev_name(dev), hsotg);
  2525. if (ret < 0) {
  2526. dev_err(dev, "cannot claim IRQ\n");
  2527. goto err_regs;
  2528. }
  2529. dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
  2530. device_initialize(&hsotg->gadget.dev);
  2531. dev_set_name(&hsotg->gadget.dev, "gadget");
  2532. hsotg->gadget.is_dualspeed = 1;
  2533. hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
  2534. hsotg->gadget.name = dev_name(dev);
  2535. hsotg->gadget.dev.parent = dev;
  2536. hsotg->gadget.dev.dma_mask = dev->dma_mask;
  2537. /* setup endpoint information */
  2538. INIT_LIST_HEAD(&hsotg->gadget.ep_list);
  2539. hsotg->gadget.ep0 = &hsotg->eps[0].ep;
  2540. /* allocate EP0 request */
  2541. hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
  2542. GFP_KERNEL);
  2543. if (!hsotg->ctrl_req) {
  2544. dev_err(dev, "failed to allocate ctrl req\n");
  2545. goto err_regs;
  2546. }
  2547. /* reset the system */
  2548. s3c_hsotg_gate(pdev, true);
  2549. s3c_hsotg_otgreset(hsotg);
  2550. s3c_hsotg_corereset(hsotg);
  2551. s3c_hsotg_init(hsotg);
  2552. /* initialise the endpoints now the core has been initialised */
  2553. for (epnum = 0; epnum < S3C_HSOTG_EPS; epnum++)
  2554. s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
  2555. s3c_hsotg_create_debug(hsotg);
  2556. s3c_hsotg_dump(hsotg);
  2557. our_hsotg = hsotg;
  2558. return 0;
  2559. err_regs:
  2560. iounmap(hsotg->regs);
  2561. err_regs_res:
  2562. release_resource(hsotg->regs_res);
  2563. kfree(hsotg->regs_res);
  2564. err_mem:
  2565. kfree(hsotg);
  2566. return ret;
  2567. }
  2568. static int __devexit s3c_hsotg_remove(struct platform_device *pdev)
  2569. {
  2570. struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
  2571. s3c_hsotg_delete_debug(hsotg);
  2572. usb_gadget_unregister_driver(hsotg->driver);
  2573. free_irq(hsotg->irq, hsotg);
  2574. iounmap(hsotg->regs);
  2575. release_resource(hsotg->regs_res);
  2576. kfree(hsotg->regs_res);
  2577. s3c_hsotg_gate(pdev, false);
  2578. kfree(hsotg);
  2579. return 0;
  2580. }
  2581. #if 1
  2582. #define s3c_hsotg_suspend NULL
  2583. #define s3c_hsotg_resume NULL
  2584. #endif
  2585. static struct platform_driver s3c_hsotg_driver = {
  2586. .driver = {
  2587. .name = "s3c-hsotg",
  2588. .owner = THIS_MODULE,
  2589. },
  2590. .probe = s3c_hsotg_probe,
  2591. .remove = __devexit_p(s3c_hsotg_remove),
  2592. .suspend = s3c_hsotg_suspend,
  2593. .resume = s3c_hsotg_resume,
  2594. };
  2595. static int __init s3c_hsotg_modinit(void)
  2596. {
  2597. return platform_driver_register(&s3c_hsotg_driver);
  2598. }
  2599. static void __exit s3c_hsotg_modexit(void)
  2600. {
  2601. platform_driver_unregister(&s3c_hsotg_driver);
  2602. }
  2603. module_init(s3c_hsotg_modinit);
  2604. module_exit(s3c_hsotg_modexit);
  2605. MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
  2606. MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
  2607. MODULE_LICENSE("GPL");
  2608. MODULE_ALIAS("platform:s3c-hsotg");