pxa2xx_spi.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741
  1. /*
  2. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/module.h>
  20. #include <linux/device.h>
  21. #include <linux/ioport.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/spi/spi.h>
  27. #include <linux/workqueue.h>
  28. #include <linux/delay.h>
  29. #include <linux/clk.h>
  30. #include <linux/gpio.h>
  31. #include <linux/slab.h>
  32. #include <asm/io.h>
  33. #include <asm/irq.h>
  34. #include <asm/delay.h>
  35. #include <mach/dma.h>
  36. #include <mach/regs-ssp.h>
  37. #include <mach/ssp.h>
  38. #include <mach/pxa2xx_spi.h>
  39. MODULE_AUTHOR("Stephen Street");
  40. MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  41. MODULE_LICENSE("GPL");
  42. MODULE_ALIAS("platform:pxa2xx-spi");
  43. #define MAX_BUSES 3
  44. #define RX_THRESH_DFLT 8
  45. #define TX_THRESH_DFLT 8
  46. #define TIMOUT_DFLT 1000
  47. #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
  48. #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
  49. #define IS_DMA_ALIGNED(x) ((((u32)(x)) & 0x07) == 0)
  50. #define MAX_DMA_LEN 8191
  51. #define DMA_ALIGNMENT 8
  52. /*
  53. * for testing SSCR1 changes that require SSP restart, basically
  54. * everything except the service and interrupt enables, the pxa270 developer
  55. * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  56. * list, but the PXA255 dev man says all bits without really meaning the
  57. * service and interrupt enables
  58. */
  59. #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  60. | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  61. | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  62. | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  63. | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  64. | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  65. #define DEFINE_SSP_REG(reg, off) \
  66. static inline u32 read_##reg(void const __iomem *p) \
  67. { return __raw_readl(p + (off)); } \
  68. \
  69. static inline void write_##reg(u32 v, void __iomem *p) \
  70. { __raw_writel(v, p + (off)); }
  71. DEFINE_SSP_REG(SSCR0, 0x00)
  72. DEFINE_SSP_REG(SSCR1, 0x04)
  73. DEFINE_SSP_REG(SSSR, 0x08)
  74. DEFINE_SSP_REG(SSITR, 0x0c)
  75. DEFINE_SSP_REG(SSDR, 0x10)
  76. DEFINE_SSP_REG(SSTO, 0x28)
  77. DEFINE_SSP_REG(SSPSP, 0x2c)
  78. #define START_STATE ((void*)0)
  79. #define RUNNING_STATE ((void*)1)
  80. #define DONE_STATE ((void*)2)
  81. #define ERROR_STATE ((void*)-1)
  82. #define QUEUE_RUNNING 0
  83. #define QUEUE_STOPPED 1
  84. struct driver_data {
  85. /* Driver model hookup */
  86. struct platform_device *pdev;
  87. /* SSP Info */
  88. struct ssp_device *ssp;
  89. /* SPI framework hookup */
  90. enum pxa_ssp_type ssp_type;
  91. struct spi_master *master;
  92. /* PXA hookup */
  93. struct pxa2xx_spi_master *master_info;
  94. /* DMA setup stuff */
  95. int rx_channel;
  96. int tx_channel;
  97. u32 *null_dma_buf;
  98. /* SSP register addresses */
  99. void __iomem *ioaddr;
  100. u32 ssdr_physical;
  101. /* SSP masks*/
  102. u32 dma_cr1;
  103. u32 int_cr1;
  104. u32 clear_sr;
  105. u32 mask_sr;
  106. /* Driver message queue */
  107. struct workqueue_struct *workqueue;
  108. struct work_struct pump_messages;
  109. spinlock_t lock;
  110. struct list_head queue;
  111. int busy;
  112. int run;
  113. /* Message Transfer pump */
  114. struct tasklet_struct pump_transfers;
  115. /* Current message transfer state info */
  116. struct spi_message* cur_msg;
  117. struct spi_transfer* cur_transfer;
  118. struct chip_data *cur_chip;
  119. size_t len;
  120. void *tx;
  121. void *tx_end;
  122. void *rx;
  123. void *rx_end;
  124. int dma_mapped;
  125. dma_addr_t rx_dma;
  126. dma_addr_t tx_dma;
  127. size_t rx_map_len;
  128. size_t tx_map_len;
  129. u8 n_bytes;
  130. u32 dma_width;
  131. int (*write)(struct driver_data *drv_data);
  132. int (*read)(struct driver_data *drv_data);
  133. irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
  134. void (*cs_control)(u32 command);
  135. };
  136. struct chip_data {
  137. u32 cr0;
  138. u32 cr1;
  139. u32 psp;
  140. u32 timeout;
  141. u8 n_bytes;
  142. u32 dma_width;
  143. u32 dma_burst_size;
  144. u32 threshold;
  145. u32 dma_threshold;
  146. u8 enable_dma;
  147. u8 bits_per_word;
  148. u32 speed_hz;
  149. int gpio_cs;
  150. int gpio_cs_inverted;
  151. int (*write)(struct driver_data *drv_data);
  152. int (*read)(struct driver_data *drv_data);
  153. void (*cs_control)(u32 command);
  154. };
  155. static void pump_messages(struct work_struct *work);
  156. static void cs_assert(struct driver_data *drv_data)
  157. {
  158. struct chip_data *chip = drv_data->cur_chip;
  159. if (chip->cs_control) {
  160. chip->cs_control(PXA2XX_CS_ASSERT);
  161. return;
  162. }
  163. if (gpio_is_valid(chip->gpio_cs))
  164. gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
  165. }
  166. static void cs_deassert(struct driver_data *drv_data)
  167. {
  168. struct chip_data *chip = drv_data->cur_chip;
  169. if (chip->cs_control) {
  170. chip->cs_control(PXA2XX_CS_DEASSERT);
  171. return;
  172. }
  173. if (gpio_is_valid(chip->gpio_cs))
  174. gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
  175. }
  176. static int flush(struct driver_data *drv_data)
  177. {
  178. unsigned long limit = loops_per_jiffy << 1;
  179. void __iomem *reg = drv_data->ioaddr;
  180. do {
  181. while (read_SSSR(reg) & SSSR_RNE) {
  182. read_SSDR(reg);
  183. }
  184. } while ((read_SSSR(reg) & SSSR_BSY) && --limit);
  185. write_SSSR(SSSR_ROR, reg);
  186. return limit;
  187. }
  188. static int null_writer(struct driver_data *drv_data)
  189. {
  190. void __iomem *reg = drv_data->ioaddr;
  191. u8 n_bytes = drv_data->n_bytes;
  192. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  193. || (drv_data->tx == drv_data->tx_end))
  194. return 0;
  195. write_SSDR(0, reg);
  196. drv_data->tx += n_bytes;
  197. return 1;
  198. }
  199. static int null_reader(struct driver_data *drv_data)
  200. {
  201. void __iomem *reg = drv_data->ioaddr;
  202. u8 n_bytes = drv_data->n_bytes;
  203. while ((read_SSSR(reg) & SSSR_RNE)
  204. && (drv_data->rx < drv_data->rx_end)) {
  205. read_SSDR(reg);
  206. drv_data->rx += n_bytes;
  207. }
  208. return drv_data->rx == drv_data->rx_end;
  209. }
  210. static int u8_writer(struct driver_data *drv_data)
  211. {
  212. void __iomem *reg = drv_data->ioaddr;
  213. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  214. || (drv_data->tx == drv_data->tx_end))
  215. return 0;
  216. write_SSDR(*(u8 *)(drv_data->tx), reg);
  217. ++drv_data->tx;
  218. return 1;
  219. }
  220. static int u8_reader(struct driver_data *drv_data)
  221. {
  222. void __iomem *reg = drv_data->ioaddr;
  223. while ((read_SSSR(reg) & SSSR_RNE)
  224. && (drv_data->rx < drv_data->rx_end)) {
  225. *(u8 *)(drv_data->rx) = read_SSDR(reg);
  226. ++drv_data->rx;
  227. }
  228. return drv_data->rx == drv_data->rx_end;
  229. }
  230. static int u16_writer(struct driver_data *drv_data)
  231. {
  232. void __iomem *reg = drv_data->ioaddr;
  233. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  234. || (drv_data->tx == drv_data->tx_end))
  235. return 0;
  236. write_SSDR(*(u16 *)(drv_data->tx), reg);
  237. drv_data->tx += 2;
  238. return 1;
  239. }
  240. static int u16_reader(struct driver_data *drv_data)
  241. {
  242. void __iomem *reg = drv_data->ioaddr;
  243. while ((read_SSSR(reg) & SSSR_RNE)
  244. && (drv_data->rx < drv_data->rx_end)) {
  245. *(u16 *)(drv_data->rx) = read_SSDR(reg);
  246. drv_data->rx += 2;
  247. }
  248. return drv_data->rx == drv_data->rx_end;
  249. }
  250. static int u32_writer(struct driver_data *drv_data)
  251. {
  252. void __iomem *reg = drv_data->ioaddr;
  253. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  254. || (drv_data->tx == drv_data->tx_end))
  255. return 0;
  256. write_SSDR(*(u32 *)(drv_data->tx), reg);
  257. drv_data->tx += 4;
  258. return 1;
  259. }
  260. static int u32_reader(struct driver_data *drv_data)
  261. {
  262. void __iomem *reg = drv_data->ioaddr;
  263. while ((read_SSSR(reg) & SSSR_RNE)
  264. && (drv_data->rx < drv_data->rx_end)) {
  265. *(u32 *)(drv_data->rx) = read_SSDR(reg);
  266. drv_data->rx += 4;
  267. }
  268. return drv_data->rx == drv_data->rx_end;
  269. }
  270. static void *next_transfer(struct driver_data *drv_data)
  271. {
  272. struct spi_message *msg = drv_data->cur_msg;
  273. struct spi_transfer *trans = drv_data->cur_transfer;
  274. /* Move to next transfer */
  275. if (trans->transfer_list.next != &msg->transfers) {
  276. drv_data->cur_transfer =
  277. list_entry(trans->transfer_list.next,
  278. struct spi_transfer,
  279. transfer_list);
  280. return RUNNING_STATE;
  281. } else
  282. return DONE_STATE;
  283. }
  284. static int map_dma_buffers(struct driver_data *drv_data)
  285. {
  286. struct spi_message *msg = drv_data->cur_msg;
  287. struct device *dev = &msg->spi->dev;
  288. if (!drv_data->cur_chip->enable_dma)
  289. return 0;
  290. if (msg->is_dma_mapped)
  291. return drv_data->rx_dma && drv_data->tx_dma;
  292. if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
  293. return 0;
  294. /* Modify setup if rx buffer is null */
  295. if (drv_data->rx == NULL) {
  296. *drv_data->null_dma_buf = 0;
  297. drv_data->rx = drv_data->null_dma_buf;
  298. drv_data->rx_map_len = 4;
  299. } else
  300. drv_data->rx_map_len = drv_data->len;
  301. /* Modify setup if tx buffer is null */
  302. if (drv_data->tx == NULL) {
  303. *drv_data->null_dma_buf = 0;
  304. drv_data->tx = drv_data->null_dma_buf;
  305. drv_data->tx_map_len = 4;
  306. } else
  307. drv_data->tx_map_len = drv_data->len;
  308. /* Stream map the tx buffer. Always do DMA_TO_DEVICE first
  309. * so we flush the cache *before* invalidating it, in case
  310. * the tx and rx buffers overlap.
  311. */
  312. drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
  313. drv_data->tx_map_len, DMA_TO_DEVICE);
  314. if (dma_mapping_error(dev, drv_data->tx_dma))
  315. return 0;
  316. /* Stream map the rx buffer */
  317. drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
  318. drv_data->rx_map_len, DMA_FROM_DEVICE);
  319. if (dma_mapping_error(dev, drv_data->rx_dma)) {
  320. dma_unmap_single(dev, drv_data->tx_dma,
  321. drv_data->tx_map_len, DMA_TO_DEVICE);
  322. return 0;
  323. }
  324. return 1;
  325. }
  326. static void unmap_dma_buffers(struct driver_data *drv_data)
  327. {
  328. struct device *dev;
  329. if (!drv_data->dma_mapped)
  330. return;
  331. if (!drv_data->cur_msg->is_dma_mapped) {
  332. dev = &drv_data->cur_msg->spi->dev;
  333. dma_unmap_single(dev, drv_data->rx_dma,
  334. drv_data->rx_map_len, DMA_FROM_DEVICE);
  335. dma_unmap_single(dev, drv_data->tx_dma,
  336. drv_data->tx_map_len, DMA_TO_DEVICE);
  337. }
  338. drv_data->dma_mapped = 0;
  339. }
  340. /* caller already set message->status; dma and pio irqs are blocked */
  341. static void giveback(struct driver_data *drv_data)
  342. {
  343. struct spi_transfer* last_transfer;
  344. unsigned long flags;
  345. struct spi_message *msg;
  346. spin_lock_irqsave(&drv_data->lock, flags);
  347. msg = drv_data->cur_msg;
  348. drv_data->cur_msg = NULL;
  349. drv_data->cur_transfer = NULL;
  350. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  351. spin_unlock_irqrestore(&drv_data->lock, flags);
  352. last_transfer = list_entry(msg->transfers.prev,
  353. struct spi_transfer,
  354. transfer_list);
  355. /* Delay if requested before any change in chip select */
  356. if (last_transfer->delay_usecs)
  357. udelay(last_transfer->delay_usecs);
  358. /* Drop chip select UNLESS cs_change is true or we are returning
  359. * a message with an error, or next message is for another chip
  360. */
  361. if (!last_transfer->cs_change)
  362. cs_deassert(drv_data);
  363. else {
  364. struct spi_message *next_msg;
  365. /* Holding of cs was hinted, but we need to make sure
  366. * the next message is for the same chip. Don't waste
  367. * time with the following tests unless this was hinted.
  368. *
  369. * We cannot postpone this until pump_messages, because
  370. * after calling msg->complete (below) the driver that
  371. * sent the current message could be unloaded, which
  372. * could invalidate the cs_control() callback...
  373. */
  374. /* get a pointer to the next message, if any */
  375. spin_lock_irqsave(&drv_data->lock, flags);
  376. if (list_empty(&drv_data->queue))
  377. next_msg = NULL;
  378. else
  379. next_msg = list_entry(drv_data->queue.next,
  380. struct spi_message, queue);
  381. spin_unlock_irqrestore(&drv_data->lock, flags);
  382. /* see if the next and current messages point
  383. * to the same chip
  384. */
  385. if (next_msg && next_msg->spi != msg->spi)
  386. next_msg = NULL;
  387. if (!next_msg || msg->state == ERROR_STATE)
  388. cs_deassert(drv_data);
  389. }
  390. msg->state = NULL;
  391. if (msg->complete)
  392. msg->complete(msg->context);
  393. drv_data->cur_chip = NULL;
  394. }
  395. static int wait_ssp_rx_stall(void const __iomem *ioaddr)
  396. {
  397. unsigned long limit = loops_per_jiffy << 1;
  398. while ((read_SSSR(ioaddr) & SSSR_BSY) && --limit)
  399. cpu_relax();
  400. return limit;
  401. }
  402. static int wait_dma_channel_stop(int channel)
  403. {
  404. unsigned long limit = loops_per_jiffy << 1;
  405. while (!(DCSR(channel) & DCSR_STOPSTATE) && --limit)
  406. cpu_relax();
  407. return limit;
  408. }
  409. static void dma_error_stop(struct driver_data *drv_data, const char *msg)
  410. {
  411. void __iomem *reg = drv_data->ioaddr;
  412. /* Stop and reset */
  413. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  414. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  415. write_SSSR(drv_data->clear_sr, reg);
  416. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  417. if (drv_data->ssp_type != PXA25x_SSP)
  418. write_SSTO(0, reg);
  419. flush(drv_data);
  420. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  421. unmap_dma_buffers(drv_data);
  422. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  423. drv_data->cur_msg->state = ERROR_STATE;
  424. tasklet_schedule(&drv_data->pump_transfers);
  425. }
  426. static void dma_transfer_complete(struct driver_data *drv_data)
  427. {
  428. void __iomem *reg = drv_data->ioaddr;
  429. struct spi_message *msg = drv_data->cur_msg;
  430. /* Clear and disable interrupts on SSP and DMA channels*/
  431. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  432. write_SSSR(drv_data->clear_sr, reg);
  433. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  434. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  435. if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
  436. dev_err(&drv_data->pdev->dev,
  437. "dma_handler: dma rx channel stop failed\n");
  438. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  439. dev_err(&drv_data->pdev->dev,
  440. "dma_transfer: ssp rx stall failed\n");
  441. unmap_dma_buffers(drv_data);
  442. /* update the buffer pointer for the amount completed in dma */
  443. drv_data->rx += drv_data->len -
  444. (DCMD(drv_data->rx_channel) & DCMD_LENGTH);
  445. /* read trailing data from fifo, it does not matter how many
  446. * bytes are in the fifo just read until buffer is full
  447. * or fifo is empty, which ever occurs first */
  448. drv_data->read(drv_data);
  449. /* return count of what was actually read */
  450. msg->actual_length += drv_data->len -
  451. (drv_data->rx_end - drv_data->rx);
  452. /* Transfer delays and chip select release are
  453. * handled in pump_transfers or giveback
  454. */
  455. /* Move to next transfer */
  456. msg->state = next_transfer(drv_data);
  457. /* Schedule transfer tasklet */
  458. tasklet_schedule(&drv_data->pump_transfers);
  459. }
  460. static void dma_handler(int channel, void *data)
  461. {
  462. struct driver_data *drv_data = data;
  463. u32 irq_status = DCSR(channel) & DMA_INT_MASK;
  464. if (irq_status & DCSR_BUSERR) {
  465. if (channel == drv_data->tx_channel)
  466. dma_error_stop(drv_data,
  467. "dma_handler: "
  468. "bad bus address on tx channel");
  469. else
  470. dma_error_stop(drv_data,
  471. "dma_handler: "
  472. "bad bus address on rx channel");
  473. return;
  474. }
  475. /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
  476. if ((channel == drv_data->tx_channel)
  477. && (irq_status & DCSR_ENDINTR)
  478. && (drv_data->ssp_type == PXA25x_SSP)) {
  479. /* Wait for rx to stall */
  480. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  481. dev_err(&drv_data->pdev->dev,
  482. "dma_handler: ssp rx stall failed\n");
  483. /* finish this transfer, start the next */
  484. dma_transfer_complete(drv_data);
  485. }
  486. }
  487. static irqreturn_t dma_transfer(struct driver_data *drv_data)
  488. {
  489. u32 irq_status;
  490. void __iomem *reg = drv_data->ioaddr;
  491. irq_status = read_SSSR(reg) & drv_data->mask_sr;
  492. if (irq_status & SSSR_ROR) {
  493. dma_error_stop(drv_data, "dma_transfer: fifo overrun");
  494. return IRQ_HANDLED;
  495. }
  496. /* Check for false positive timeout */
  497. if ((irq_status & SSSR_TINT)
  498. && (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
  499. write_SSSR(SSSR_TINT, reg);
  500. return IRQ_HANDLED;
  501. }
  502. if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
  503. /* Clear and disable timeout interrupt, do the rest in
  504. * dma_transfer_complete */
  505. if (drv_data->ssp_type != PXA25x_SSP)
  506. write_SSTO(0, reg);
  507. /* finish this transfer, start the next */
  508. dma_transfer_complete(drv_data);
  509. return IRQ_HANDLED;
  510. }
  511. /* Opps problem detected */
  512. return IRQ_NONE;
  513. }
  514. static void int_error_stop(struct driver_data *drv_data, const char* msg)
  515. {
  516. void __iomem *reg = drv_data->ioaddr;
  517. /* Stop and reset SSP */
  518. write_SSSR(drv_data->clear_sr, reg);
  519. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  520. if (drv_data->ssp_type != PXA25x_SSP)
  521. write_SSTO(0, reg);
  522. flush(drv_data);
  523. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  524. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  525. drv_data->cur_msg->state = ERROR_STATE;
  526. tasklet_schedule(&drv_data->pump_transfers);
  527. }
  528. static void int_transfer_complete(struct driver_data *drv_data)
  529. {
  530. void __iomem *reg = drv_data->ioaddr;
  531. /* Stop SSP */
  532. write_SSSR(drv_data->clear_sr, reg);
  533. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  534. if (drv_data->ssp_type != PXA25x_SSP)
  535. write_SSTO(0, reg);
  536. /* Update total byte transfered return count actual bytes read */
  537. drv_data->cur_msg->actual_length += drv_data->len -
  538. (drv_data->rx_end - drv_data->rx);
  539. /* Transfer delays and chip select release are
  540. * handled in pump_transfers or giveback
  541. */
  542. /* Move to next transfer */
  543. drv_data->cur_msg->state = next_transfer(drv_data);
  544. /* Schedule transfer tasklet */
  545. tasklet_schedule(&drv_data->pump_transfers);
  546. }
  547. static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
  548. {
  549. void __iomem *reg = drv_data->ioaddr;
  550. u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
  551. drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
  552. u32 irq_status = read_SSSR(reg) & irq_mask;
  553. if (irq_status & SSSR_ROR) {
  554. int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
  555. return IRQ_HANDLED;
  556. }
  557. if (irq_status & SSSR_TINT) {
  558. write_SSSR(SSSR_TINT, reg);
  559. if (drv_data->read(drv_data)) {
  560. int_transfer_complete(drv_data);
  561. return IRQ_HANDLED;
  562. }
  563. }
  564. /* Drain rx fifo, Fill tx fifo and prevent overruns */
  565. do {
  566. if (drv_data->read(drv_data)) {
  567. int_transfer_complete(drv_data);
  568. return IRQ_HANDLED;
  569. }
  570. } while (drv_data->write(drv_data));
  571. if (drv_data->read(drv_data)) {
  572. int_transfer_complete(drv_data);
  573. return IRQ_HANDLED;
  574. }
  575. if (drv_data->tx == drv_data->tx_end) {
  576. write_SSCR1(read_SSCR1(reg) & ~SSCR1_TIE, reg);
  577. /* PXA25x_SSP has no timeout, read trailing bytes */
  578. if (drv_data->ssp_type == PXA25x_SSP) {
  579. if (!wait_ssp_rx_stall(reg))
  580. {
  581. int_error_stop(drv_data, "interrupt_transfer: "
  582. "rx stall failed");
  583. return IRQ_HANDLED;
  584. }
  585. if (!drv_data->read(drv_data))
  586. {
  587. int_error_stop(drv_data,
  588. "interrupt_transfer: "
  589. "trailing byte read failed");
  590. return IRQ_HANDLED;
  591. }
  592. int_transfer_complete(drv_data);
  593. }
  594. }
  595. /* We did something */
  596. return IRQ_HANDLED;
  597. }
  598. static irqreturn_t ssp_int(int irq, void *dev_id)
  599. {
  600. struct driver_data *drv_data = dev_id;
  601. void __iomem *reg = drv_data->ioaddr;
  602. if (!drv_data->cur_msg) {
  603. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  604. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  605. if (drv_data->ssp_type != PXA25x_SSP)
  606. write_SSTO(0, reg);
  607. write_SSSR(drv_data->clear_sr, reg);
  608. dev_err(&drv_data->pdev->dev, "bad message state "
  609. "in interrupt handler\n");
  610. /* Never fail */
  611. return IRQ_HANDLED;
  612. }
  613. return drv_data->transfer_handler(drv_data);
  614. }
  615. static int set_dma_burst_and_threshold(struct chip_data *chip,
  616. struct spi_device *spi,
  617. u8 bits_per_word, u32 *burst_code,
  618. u32 *threshold)
  619. {
  620. struct pxa2xx_spi_chip *chip_info =
  621. (struct pxa2xx_spi_chip *)spi->controller_data;
  622. int bytes_per_word;
  623. int burst_bytes;
  624. int thresh_words;
  625. int req_burst_size;
  626. int retval = 0;
  627. /* Set the threshold (in registers) to equal the same amount of data
  628. * as represented by burst size (in bytes). The computation below
  629. * is (burst_size rounded up to nearest 8 byte, word or long word)
  630. * divided by (bytes/register); the tx threshold is the inverse of
  631. * the rx, so that there will always be enough data in the rx fifo
  632. * to satisfy a burst, and there will always be enough space in the
  633. * tx fifo to accept a burst (a tx burst will overwrite the fifo if
  634. * there is not enough space), there must always remain enough empty
  635. * space in the rx fifo for any data loaded to the tx fifo.
  636. * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
  637. * will be 8, or half the fifo;
  638. * The threshold can only be set to 2, 4 or 8, but not 16, because
  639. * to burst 16 to the tx fifo, the fifo would have to be empty;
  640. * however, the minimum fifo trigger level is 1, and the tx will
  641. * request service when the fifo is at this level, with only 15 spaces.
  642. */
  643. /* find bytes/word */
  644. if (bits_per_word <= 8)
  645. bytes_per_word = 1;
  646. else if (bits_per_word <= 16)
  647. bytes_per_word = 2;
  648. else
  649. bytes_per_word = 4;
  650. /* use struct pxa2xx_spi_chip->dma_burst_size if available */
  651. if (chip_info)
  652. req_burst_size = chip_info->dma_burst_size;
  653. else {
  654. switch (chip->dma_burst_size) {
  655. default:
  656. /* if the default burst size is not set,
  657. * do it now */
  658. chip->dma_burst_size = DCMD_BURST8;
  659. case DCMD_BURST8:
  660. req_burst_size = 8;
  661. break;
  662. case DCMD_BURST16:
  663. req_burst_size = 16;
  664. break;
  665. case DCMD_BURST32:
  666. req_burst_size = 32;
  667. break;
  668. }
  669. }
  670. if (req_burst_size <= 8) {
  671. *burst_code = DCMD_BURST8;
  672. burst_bytes = 8;
  673. } else if (req_burst_size <= 16) {
  674. if (bytes_per_word == 1) {
  675. /* don't burst more than 1/2 the fifo */
  676. *burst_code = DCMD_BURST8;
  677. burst_bytes = 8;
  678. retval = 1;
  679. } else {
  680. *burst_code = DCMD_BURST16;
  681. burst_bytes = 16;
  682. }
  683. } else {
  684. if (bytes_per_word == 1) {
  685. /* don't burst more than 1/2 the fifo */
  686. *burst_code = DCMD_BURST8;
  687. burst_bytes = 8;
  688. retval = 1;
  689. } else if (bytes_per_word == 2) {
  690. /* don't burst more than 1/2 the fifo */
  691. *burst_code = DCMD_BURST16;
  692. burst_bytes = 16;
  693. retval = 1;
  694. } else {
  695. *burst_code = DCMD_BURST32;
  696. burst_bytes = 32;
  697. }
  698. }
  699. thresh_words = burst_bytes / bytes_per_word;
  700. /* thresh_words will be between 2 and 8 */
  701. *threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
  702. | (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
  703. return retval;
  704. }
  705. static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
  706. {
  707. unsigned long ssp_clk = clk_get_rate(ssp->clk);
  708. if (ssp->type == PXA25x_SSP)
  709. return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
  710. else
  711. return ((ssp_clk / rate - 1) & 0xfff) << 8;
  712. }
  713. static void pump_transfers(unsigned long data)
  714. {
  715. struct driver_data *drv_data = (struct driver_data *)data;
  716. struct spi_message *message = NULL;
  717. struct spi_transfer *transfer = NULL;
  718. struct spi_transfer *previous = NULL;
  719. struct chip_data *chip = NULL;
  720. struct ssp_device *ssp = drv_data->ssp;
  721. void __iomem *reg = drv_data->ioaddr;
  722. u32 clk_div = 0;
  723. u8 bits = 0;
  724. u32 speed = 0;
  725. u32 cr0;
  726. u32 cr1;
  727. u32 dma_thresh = drv_data->cur_chip->dma_threshold;
  728. u32 dma_burst = drv_data->cur_chip->dma_burst_size;
  729. /* Get current state information */
  730. message = drv_data->cur_msg;
  731. transfer = drv_data->cur_transfer;
  732. chip = drv_data->cur_chip;
  733. /* Handle for abort */
  734. if (message->state == ERROR_STATE) {
  735. message->status = -EIO;
  736. giveback(drv_data);
  737. return;
  738. }
  739. /* Handle end of message */
  740. if (message->state == DONE_STATE) {
  741. message->status = 0;
  742. giveback(drv_data);
  743. return;
  744. }
  745. /* Delay if requested at end of transfer before CS change */
  746. if (message->state == RUNNING_STATE) {
  747. previous = list_entry(transfer->transfer_list.prev,
  748. struct spi_transfer,
  749. transfer_list);
  750. if (previous->delay_usecs)
  751. udelay(previous->delay_usecs);
  752. /* Drop chip select only if cs_change is requested */
  753. if (previous->cs_change)
  754. cs_deassert(drv_data);
  755. }
  756. /* Check for transfers that need multiple DMA segments */
  757. if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
  758. /* reject already-mapped transfers; PIO won't always work */
  759. if (message->is_dma_mapped
  760. || transfer->rx_dma || transfer->tx_dma) {
  761. dev_err(&drv_data->pdev->dev,
  762. "pump_transfers: mapped transfer length "
  763. "of %u is greater than %d\n",
  764. transfer->len, MAX_DMA_LEN);
  765. message->status = -EINVAL;
  766. giveback(drv_data);
  767. return;
  768. }
  769. /* warn ... we force this to PIO mode */
  770. if (printk_ratelimit())
  771. dev_warn(&message->spi->dev, "pump_transfers: "
  772. "DMA disabled for transfer length %ld "
  773. "greater than %d\n",
  774. (long)drv_data->len, MAX_DMA_LEN);
  775. }
  776. /* Setup the transfer state based on the type of transfer */
  777. if (flush(drv_data) == 0) {
  778. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  779. message->status = -EIO;
  780. giveback(drv_data);
  781. return;
  782. }
  783. drv_data->n_bytes = chip->n_bytes;
  784. drv_data->dma_width = chip->dma_width;
  785. drv_data->tx = (void *)transfer->tx_buf;
  786. drv_data->tx_end = drv_data->tx + transfer->len;
  787. drv_data->rx = transfer->rx_buf;
  788. drv_data->rx_end = drv_data->rx + transfer->len;
  789. drv_data->rx_dma = transfer->rx_dma;
  790. drv_data->tx_dma = transfer->tx_dma;
  791. drv_data->len = transfer->len & DCMD_LENGTH;
  792. drv_data->write = drv_data->tx ? chip->write : null_writer;
  793. drv_data->read = drv_data->rx ? chip->read : null_reader;
  794. /* Change speed and bit per word on a per transfer */
  795. cr0 = chip->cr0;
  796. if (transfer->speed_hz || transfer->bits_per_word) {
  797. bits = chip->bits_per_word;
  798. speed = chip->speed_hz;
  799. if (transfer->speed_hz)
  800. speed = transfer->speed_hz;
  801. if (transfer->bits_per_word)
  802. bits = transfer->bits_per_word;
  803. clk_div = ssp_get_clk_div(ssp, speed);
  804. if (bits <= 8) {
  805. drv_data->n_bytes = 1;
  806. drv_data->dma_width = DCMD_WIDTH1;
  807. drv_data->read = drv_data->read != null_reader ?
  808. u8_reader : null_reader;
  809. drv_data->write = drv_data->write != null_writer ?
  810. u8_writer : null_writer;
  811. } else if (bits <= 16) {
  812. drv_data->n_bytes = 2;
  813. drv_data->dma_width = DCMD_WIDTH2;
  814. drv_data->read = drv_data->read != null_reader ?
  815. u16_reader : null_reader;
  816. drv_data->write = drv_data->write != null_writer ?
  817. u16_writer : null_writer;
  818. } else if (bits <= 32) {
  819. drv_data->n_bytes = 4;
  820. drv_data->dma_width = DCMD_WIDTH4;
  821. drv_data->read = drv_data->read != null_reader ?
  822. u32_reader : null_reader;
  823. drv_data->write = drv_data->write != null_writer ?
  824. u32_writer : null_writer;
  825. }
  826. /* if bits/word is changed in dma mode, then must check the
  827. * thresholds and burst also */
  828. if (chip->enable_dma) {
  829. if (set_dma_burst_and_threshold(chip, message->spi,
  830. bits, &dma_burst,
  831. &dma_thresh))
  832. if (printk_ratelimit())
  833. dev_warn(&message->spi->dev,
  834. "pump_transfers: "
  835. "DMA burst size reduced to "
  836. "match bits_per_word\n");
  837. }
  838. cr0 = clk_div
  839. | SSCR0_Motorola
  840. | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
  841. | SSCR0_SSE
  842. | (bits > 16 ? SSCR0_EDSS : 0);
  843. }
  844. message->state = RUNNING_STATE;
  845. /* Try to map dma buffer and do a dma transfer if successful, but
  846. * only if the length is non-zero and less than MAX_DMA_LEN.
  847. *
  848. * Zero-length non-descriptor DMA is illegal on PXA2xx; force use
  849. * of PIO instead. Care is needed above because the transfer may
  850. * have have been passed with buffers that are already dma mapped.
  851. * A zero-length transfer in PIO mode will not try to write/read
  852. * to/from the buffers
  853. *
  854. * REVISIT large transfers are exactly where we most want to be
  855. * using DMA. If this happens much, split those transfers into
  856. * multiple DMA segments rather than forcing PIO.
  857. */
  858. drv_data->dma_mapped = 0;
  859. if (drv_data->len > 0 && drv_data->len <= MAX_DMA_LEN)
  860. drv_data->dma_mapped = map_dma_buffers(drv_data);
  861. if (drv_data->dma_mapped) {
  862. /* Ensure we have the correct interrupt handler */
  863. drv_data->transfer_handler = dma_transfer;
  864. /* Setup rx DMA Channel */
  865. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  866. DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
  867. DTADR(drv_data->rx_channel) = drv_data->rx_dma;
  868. if (drv_data->rx == drv_data->null_dma_buf)
  869. /* No target address increment */
  870. DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
  871. | drv_data->dma_width
  872. | dma_burst
  873. | drv_data->len;
  874. else
  875. DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
  876. | DCMD_FLOWSRC
  877. | drv_data->dma_width
  878. | dma_burst
  879. | drv_data->len;
  880. /* Setup tx DMA Channel */
  881. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  882. DSADR(drv_data->tx_channel) = drv_data->tx_dma;
  883. DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
  884. if (drv_data->tx == drv_data->null_dma_buf)
  885. /* No source address increment */
  886. DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
  887. | drv_data->dma_width
  888. | dma_burst
  889. | drv_data->len;
  890. else
  891. DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
  892. | DCMD_FLOWTRG
  893. | drv_data->dma_width
  894. | dma_burst
  895. | drv_data->len;
  896. /* Enable dma end irqs on SSP to detect end of transfer */
  897. if (drv_data->ssp_type == PXA25x_SSP)
  898. DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
  899. /* Clear status and start DMA engine */
  900. cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
  901. write_SSSR(drv_data->clear_sr, reg);
  902. DCSR(drv_data->rx_channel) |= DCSR_RUN;
  903. DCSR(drv_data->tx_channel) |= DCSR_RUN;
  904. } else {
  905. /* Ensure we have the correct interrupt handler */
  906. drv_data->transfer_handler = interrupt_transfer;
  907. /* Clear status */
  908. cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
  909. write_SSSR(drv_data->clear_sr, reg);
  910. }
  911. /* see if we need to reload the config registers */
  912. if ((read_SSCR0(reg) != cr0)
  913. || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
  914. (cr1 & SSCR1_CHANGE_MASK)) {
  915. /* stop the SSP, and update the other bits */
  916. write_SSCR0(cr0 & ~SSCR0_SSE, reg);
  917. if (drv_data->ssp_type != PXA25x_SSP)
  918. write_SSTO(chip->timeout, reg);
  919. /* first set CR1 without interrupt and service enables */
  920. write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
  921. /* restart the SSP */
  922. write_SSCR0(cr0, reg);
  923. } else {
  924. if (drv_data->ssp_type != PXA25x_SSP)
  925. write_SSTO(chip->timeout, reg);
  926. }
  927. cs_assert(drv_data);
  928. /* after chip select, release the data by enabling service
  929. * requests and interrupts, without changing any mode bits */
  930. write_SSCR1(cr1, reg);
  931. }
  932. static void pump_messages(struct work_struct *work)
  933. {
  934. struct driver_data *drv_data =
  935. container_of(work, struct driver_data, pump_messages);
  936. unsigned long flags;
  937. /* Lock queue and check for queue work */
  938. spin_lock_irqsave(&drv_data->lock, flags);
  939. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  940. drv_data->busy = 0;
  941. spin_unlock_irqrestore(&drv_data->lock, flags);
  942. return;
  943. }
  944. /* Make sure we are not already running a message */
  945. if (drv_data->cur_msg) {
  946. spin_unlock_irqrestore(&drv_data->lock, flags);
  947. return;
  948. }
  949. /* Extract head of queue */
  950. drv_data->cur_msg = list_entry(drv_data->queue.next,
  951. struct spi_message, queue);
  952. list_del_init(&drv_data->cur_msg->queue);
  953. /* Initial message state*/
  954. drv_data->cur_msg->state = START_STATE;
  955. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  956. struct spi_transfer,
  957. transfer_list);
  958. /* prepare to setup the SSP, in pump_transfers, using the per
  959. * chip configuration */
  960. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  961. /* Mark as busy and launch transfers */
  962. tasklet_schedule(&drv_data->pump_transfers);
  963. drv_data->busy = 1;
  964. spin_unlock_irqrestore(&drv_data->lock, flags);
  965. }
  966. static int transfer(struct spi_device *spi, struct spi_message *msg)
  967. {
  968. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  969. unsigned long flags;
  970. spin_lock_irqsave(&drv_data->lock, flags);
  971. if (drv_data->run == QUEUE_STOPPED) {
  972. spin_unlock_irqrestore(&drv_data->lock, flags);
  973. return -ESHUTDOWN;
  974. }
  975. msg->actual_length = 0;
  976. msg->status = -EINPROGRESS;
  977. msg->state = START_STATE;
  978. list_add_tail(&msg->queue, &drv_data->queue);
  979. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  980. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  981. spin_unlock_irqrestore(&drv_data->lock, flags);
  982. return 0;
  983. }
  984. static int setup_cs(struct spi_device *spi, struct chip_data *chip,
  985. struct pxa2xx_spi_chip *chip_info)
  986. {
  987. int err = 0;
  988. if (chip == NULL || chip_info == NULL)
  989. return 0;
  990. /* NOTE: setup() can be called multiple times, possibly with
  991. * different chip_info, release previously requested GPIO
  992. */
  993. if (gpio_is_valid(chip->gpio_cs))
  994. gpio_free(chip->gpio_cs);
  995. /* If (*cs_control) is provided, ignore GPIO chip select */
  996. if (chip_info->cs_control) {
  997. chip->cs_control = chip_info->cs_control;
  998. return 0;
  999. }
  1000. if (gpio_is_valid(chip_info->gpio_cs)) {
  1001. err = gpio_request(chip_info->gpio_cs, "SPI_CS");
  1002. if (err) {
  1003. dev_err(&spi->dev, "failed to request chip select "
  1004. "GPIO%d\n", chip_info->gpio_cs);
  1005. return err;
  1006. }
  1007. chip->gpio_cs = chip_info->gpio_cs;
  1008. chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
  1009. err = gpio_direction_output(chip->gpio_cs,
  1010. !chip->gpio_cs_inverted);
  1011. }
  1012. return err;
  1013. }
  1014. static int setup(struct spi_device *spi)
  1015. {
  1016. struct pxa2xx_spi_chip *chip_info = NULL;
  1017. struct chip_data *chip;
  1018. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  1019. struct ssp_device *ssp = drv_data->ssp;
  1020. unsigned int clk_div;
  1021. uint tx_thres = TX_THRESH_DFLT;
  1022. uint rx_thres = RX_THRESH_DFLT;
  1023. if (drv_data->ssp_type != PXA25x_SSP
  1024. && (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
  1025. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  1026. "b/w not 4-32 for type non-PXA25x_SSP\n",
  1027. drv_data->ssp_type, spi->bits_per_word);
  1028. return -EINVAL;
  1029. }
  1030. else if (drv_data->ssp_type == PXA25x_SSP
  1031. && (spi->bits_per_word < 4
  1032. || spi->bits_per_word > 16)) {
  1033. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  1034. "b/w not 4-16 for type PXA25x_SSP\n",
  1035. drv_data->ssp_type, spi->bits_per_word);
  1036. return -EINVAL;
  1037. }
  1038. /* Only alloc on first setup */
  1039. chip = spi_get_ctldata(spi);
  1040. if (!chip) {
  1041. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  1042. if (!chip) {
  1043. dev_err(&spi->dev,
  1044. "failed setup: can't allocate chip data\n");
  1045. return -ENOMEM;
  1046. }
  1047. chip->gpio_cs = -1;
  1048. chip->enable_dma = 0;
  1049. chip->timeout = TIMOUT_DFLT;
  1050. chip->dma_burst_size = drv_data->master_info->enable_dma ?
  1051. DCMD_BURST8 : 0;
  1052. }
  1053. /* protocol drivers may change the chip settings, so...
  1054. * if chip_info exists, use it */
  1055. chip_info = spi->controller_data;
  1056. /* chip_info isn't always needed */
  1057. chip->cr1 = 0;
  1058. if (chip_info) {
  1059. if (chip_info->timeout)
  1060. chip->timeout = chip_info->timeout;
  1061. if (chip_info->tx_threshold)
  1062. tx_thres = chip_info->tx_threshold;
  1063. if (chip_info->rx_threshold)
  1064. rx_thres = chip_info->rx_threshold;
  1065. chip->enable_dma = drv_data->master_info->enable_dma;
  1066. chip->dma_threshold = 0;
  1067. if (chip_info->enable_loopback)
  1068. chip->cr1 = SSCR1_LBM;
  1069. }
  1070. chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
  1071. (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
  1072. /* set dma burst and threshold outside of chip_info path so that if
  1073. * chip_info goes away after setting chip->enable_dma, the
  1074. * burst and threshold can still respond to changes in bits_per_word */
  1075. if (chip->enable_dma) {
  1076. /* set up legal burst and threshold for dma */
  1077. if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
  1078. &chip->dma_burst_size,
  1079. &chip->dma_threshold)) {
  1080. dev_warn(&spi->dev, "in setup: DMA burst size reduced "
  1081. "to match bits_per_word\n");
  1082. }
  1083. }
  1084. clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
  1085. chip->speed_hz = spi->max_speed_hz;
  1086. chip->cr0 = clk_div
  1087. | SSCR0_Motorola
  1088. | SSCR0_DataSize(spi->bits_per_word > 16 ?
  1089. spi->bits_per_word - 16 : spi->bits_per_word)
  1090. | SSCR0_SSE
  1091. | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
  1092. chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
  1093. chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
  1094. | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
  1095. /* NOTE: PXA25x_SSP _could_ use external clocking ... */
  1096. if (drv_data->ssp_type != PXA25x_SSP)
  1097. dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
  1098. clk_get_rate(ssp->clk)
  1099. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  1100. chip->enable_dma ? "DMA" : "PIO");
  1101. else
  1102. dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
  1103. clk_get_rate(ssp->clk) / 2
  1104. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  1105. chip->enable_dma ? "DMA" : "PIO");
  1106. if (spi->bits_per_word <= 8) {
  1107. chip->n_bytes = 1;
  1108. chip->dma_width = DCMD_WIDTH1;
  1109. chip->read = u8_reader;
  1110. chip->write = u8_writer;
  1111. } else if (spi->bits_per_word <= 16) {
  1112. chip->n_bytes = 2;
  1113. chip->dma_width = DCMD_WIDTH2;
  1114. chip->read = u16_reader;
  1115. chip->write = u16_writer;
  1116. } else if (spi->bits_per_word <= 32) {
  1117. chip->cr0 |= SSCR0_EDSS;
  1118. chip->n_bytes = 4;
  1119. chip->dma_width = DCMD_WIDTH4;
  1120. chip->read = u32_reader;
  1121. chip->write = u32_writer;
  1122. } else {
  1123. dev_err(&spi->dev, "invalid wordsize\n");
  1124. return -ENODEV;
  1125. }
  1126. chip->bits_per_word = spi->bits_per_word;
  1127. spi_set_ctldata(spi, chip);
  1128. return setup_cs(spi, chip, chip_info);
  1129. }
  1130. static void cleanup(struct spi_device *spi)
  1131. {
  1132. struct chip_data *chip = spi_get_ctldata(spi);
  1133. if (!chip)
  1134. return;
  1135. if (gpio_is_valid(chip->gpio_cs))
  1136. gpio_free(chip->gpio_cs);
  1137. kfree(chip);
  1138. }
  1139. static int __init init_queue(struct driver_data *drv_data)
  1140. {
  1141. INIT_LIST_HEAD(&drv_data->queue);
  1142. spin_lock_init(&drv_data->lock);
  1143. drv_data->run = QUEUE_STOPPED;
  1144. drv_data->busy = 0;
  1145. tasklet_init(&drv_data->pump_transfers,
  1146. pump_transfers, (unsigned long)drv_data);
  1147. INIT_WORK(&drv_data->pump_messages, pump_messages);
  1148. drv_data->workqueue = create_singlethread_workqueue(
  1149. dev_name(drv_data->master->dev.parent));
  1150. if (drv_data->workqueue == NULL)
  1151. return -EBUSY;
  1152. return 0;
  1153. }
  1154. static int start_queue(struct driver_data *drv_data)
  1155. {
  1156. unsigned long flags;
  1157. spin_lock_irqsave(&drv_data->lock, flags);
  1158. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  1159. spin_unlock_irqrestore(&drv_data->lock, flags);
  1160. return -EBUSY;
  1161. }
  1162. drv_data->run = QUEUE_RUNNING;
  1163. drv_data->cur_msg = NULL;
  1164. drv_data->cur_transfer = NULL;
  1165. drv_data->cur_chip = NULL;
  1166. spin_unlock_irqrestore(&drv_data->lock, flags);
  1167. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  1168. return 0;
  1169. }
  1170. static int stop_queue(struct driver_data *drv_data)
  1171. {
  1172. unsigned long flags;
  1173. unsigned limit = 500;
  1174. int status = 0;
  1175. spin_lock_irqsave(&drv_data->lock, flags);
  1176. /* This is a bit lame, but is optimized for the common execution path.
  1177. * A wait_queue on the drv_data->busy could be used, but then the common
  1178. * execution path (pump_messages) would be required to call wake_up or
  1179. * friends on every SPI message. Do this instead */
  1180. drv_data->run = QUEUE_STOPPED;
  1181. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  1182. spin_unlock_irqrestore(&drv_data->lock, flags);
  1183. msleep(10);
  1184. spin_lock_irqsave(&drv_data->lock, flags);
  1185. }
  1186. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1187. status = -EBUSY;
  1188. spin_unlock_irqrestore(&drv_data->lock, flags);
  1189. return status;
  1190. }
  1191. static int destroy_queue(struct driver_data *drv_data)
  1192. {
  1193. int status;
  1194. status = stop_queue(drv_data);
  1195. /* we are unloading the module or failing to load (only two calls
  1196. * to this routine), and neither call can handle a return value.
  1197. * However, destroy_workqueue calls flush_workqueue, and that will
  1198. * block until all work is done. If the reason that stop_queue
  1199. * timed out is that the work will never finish, then it does no
  1200. * good to call destroy_workqueue, so return anyway. */
  1201. if (status != 0)
  1202. return status;
  1203. destroy_workqueue(drv_data->workqueue);
  1204. return 0;
  1205. }
  1206. static int __init pxa2xx_spi_probe(struct platform_device *pdev)
  1207. {
  1208. struct device *dev = &pdev->dev;
  1209. struct pxa2xx_spi_master *platform_info;
  1210. struct spi_master *master;
  1211. struct driver_data *drv_data;
  1212. struct ssp_device *ssp;
  1213. int status;
  1214. platform_info = dev->platform_data;
  1215. ssp = ssp_request(pdev->id, pdev->name);
  1216. if (ssp == NULL) {
  1217. dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id);
  1218. return -ENODEV;
  1219. }
  1220. /* Allocate master with space for drv_data and null dma buffer */
  1221. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1222. if (!master) {
  1223. dev_err(&pdev->dev, "cannot alloc spi_master\n");
  1224. ssp_free(ssp);
  1225. return -ENOMEM;
  1226. }
  1227. drv_data = spi_master_get_devdata(master);
  1228. drv_data->master = master;
  1229. drv_data->master_info = platform_info;
  1230. drv_data->pdev = pdev;
  1231. drv_data->ssp = ssp;
  1232. /* the spi->mode bits understood by this driver: */
  1233. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
  1234. master->bus_num = pdev->id;
  1235. master->num_chipselect = platform_info->num_chipselect;
  1236. master->dma_alignment = DMA_ALIGNMENT;
  1237. master->cleanup = cleanup;
  1238. master->setup = setup;
  1239. master->transfer = transfer;
  1240. drv_data->ssp_type = ssp->type;
  1241. drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
  1242. sizeof(struct driver_data)), 8);
  1243. drv_data->ioaddr = ssp->mmio_base;
  1244. drv_data->ssdr_physical = ssp->phys_base + SSDR;
  1245. if (ssp->type == PXA25x_SSP) {
  1246. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
  1247. drv_data->dma_cr1 = 0;
  1248. drv_data->clear_sr = SSSR_ROR;
  1249. drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1250. } else {
  1251. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
  1252. drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
  1253. drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
  1254. drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1255. }
  1256. status = request_irq(ssp->irq, ssp_int, 0, dev_name(dev), drv_data);
  1257. if (status < 0) {
  1258. dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
  1259. goto out_error_master_alloc;
  1260. }
  1261. /* Setup DMA if requested */
  1262. drv_data->tx_channel = -1;
  1263. drv_data->rx_channel = -1;
  1264. if (platform_info->enable_dma) {
  1265. /* Get two DMA channels (rx and tx) */
  1266. drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
  1267. DMA_PRIO_HIGH,
  1268. dma_handler,
  1269. drv_data);
  1270. if (drv_data->rx_channel < 0) {
  1271. dev_err(dev, "problem (%d) requesting rx channel\n",
  1272. drv_data->rx_channel);
  1273. status = -ENODEV;
  1274. goto out_error_irq_alloc;
  1275. }
  1276. drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
  1277. DMA_PRIO_MEDIUM,
  1278. dma_handler,
  1279. drv_data);
  1280. if (drv_data->tx_channel < 0) {
  1281. dev_err(dev, "problem (%d) requesting tx channel\n",
  1282. drv_data->tx_channel);
  1283. status = -ENODEV;
  1284. goto out_error_dma_alloc;
  1285. }
  1286. DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
  1287. DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
  1288. }
  1289. /* Enable SOC clock */
  1290. clk_enable(ssp->clk);
  1291. /* Load default SSP configuration */
  1292. write_SSCR0(0, drv_data->ioaddr);
  1293. write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
  1294. SSCR1_TxTresh(TX_THRESH_DFLT),
  1295. drv_data->ioaddr);
  1296. write_SSCR0(SSCR0_SerClkDiv(2)
  1297. | SSCR0_Motorola
  1298. | SSCR0_DataSize(8),
  1299. drv_data->ioaddr);
  1300. if (drv_data->ssp_type != PXA25x_SSP)
  1301. write_SSTO(0, drv_data->ioaddr);
  1302. write_SSPSP(0, drv_data->ioaddr);
  1303. /* Initial and start queue */
  1304. status = init_queue(drv_data);
  1305. if (status != 0) {
  1306. dev_err(&pdev->dev, "problem initializing queue\n");
  1307. goto out_error_clock_enabled;
  1308. }
  1309. status = start_queue(drv_data);
  1310. if (status != 0) {
  1311. dev_err(&pdev->dev, "problem starting queue\n");
  1312. goto out_error_clock_enabled;
  1313. }
  1314. /* Register with the SPI framework */
  1315. platform_set_drvdata(pdev, drv_data);
  1316. status = spi_register_master(master);
  1317. if (status != 0) {
  1318. dev_err(&pdev->dev, "problem registering spi master\n");
  1319. goto out_error_queue_alloc;
  1320. }
  1321. return status;
  1322. out_error_queue_alloc:
  1323. destroy_queue(drv_data);
  1324. out_error_clock_enabled:
  1325. clk_disable(ssp->clk);
  1326. out_error_dma_alloc:
  1327. if (drv_data->tx_channel != -1)
  1328. pxa_free_dma(drv_data->tx_channel);
  1329. if (drv_data->rx_channel != -1)
  1330. pxa_free_dma(drv_data->rx_channel);
  1331. out_error_irq_alloc:
  1332. free_irq(ssp->irq, drv_data);
  1333. out_error_master_alloc:
  1334. spi_master_put(master);
  1335. ssp_free(ssp);
  1336. return status;
  1337. }
  1338. static int pxa2xx_spi_remove(struct platform_device *pdev)
  1339. {
  1340. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1341. struct ssp_device *ssp;
  1342. int status = 0;
  1343. if (!drv_data)
  1344. return 0;
  1345. ssp = drv_data->ssp;
  1346. /* Remove the queue */
  1347. status = destroy_queue(drv_data);
  1348. if (status != 0)
  1349. /* the kernel does not check the return status of this
  1350. * this routine (mod->exit, within the kernel). Therefore
  1351. * nothing is gained by returning from here, the module is
  1352. * going away regardless, and we should not leave any more
  1353. * resources allocated than necessary. We cannot free the
  1354. * message memory in drv_data->queue, but we can release the
  1355. * resources below. I think the kernel should honor -EBUSY
  1356. * returns but... */
  1357. dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
  1358. "complete, message memory not freed\n");
  1359. /* Disable the SSP at the peripheral and SOC level */
  1360. write_SSCR0(0, drv_data->ioaddr);
  1361. clk_disable(ssp->clk);
  1362. /* Release DMA */
  1363. if (drv_data->master_info->enable_dma) {
  1364. DRCMR(ssp->drcmr_rx) = 0;
  1365. DRCMR(ssp->drcmr_tx) = 0;
  1366. pxa_free_dma(drv_data->tx_channel);
  1367. pxa_free_dma(drv_data->rx_channel);
  1368. }
  1369. /* Release IRQ */
  1370. free_irq(ssp->irq, drv_data);
  1371. /* Release SSP */
  1372. ssp_free(ssp);
  1373. /* Disconnect from the SPI framework */
  1374. spi_unregister_master(drv_data->master);
  1375. /* Prevent double remove */
  1376. platform_set_drvdata(pdev, NULL);
  1377. return 0;
  1378. }
  1379. static void pxa2xx_spi_shutdown(struct platform_device *pdev)
  1380. {
  1381. int status = 0;
  1382. if ((status = pxa2xx_spi_remove(pdev)) != 0)
  1383. dev_err(&pdev->dev, "shutdown failed with %d\n", status);
  1384. }
  1385. #ifdef CONFIG_PM
  1386. static int pxa2xx_spi_suspend(struct device *dev)
  1387. {
  1388. struct driver_data *drv_data = dev_get_drvdata(dev);
  1389. struct ssp_device *ssp = drv_data->ssp;
  1390. int status = 0;
  1391. status = stop_queue(drv_data);
  1392. if (status != 0)
  1393. return status;
  1394. write_SSCR0(0, drv_data->ioaddr);
  1395. clk_disable(ssp->clk);
  1396. return 0;
  1397. }
  1398. static int pxa2xx_spi_resume(struct device *dev)
  1399. {
  1400. struct driver_data *drv_data = dev_get_drvdata(dev);
  1401. struct ssp_device *ssp = drv_data->ssp;
  1402. int status = 0;
  1403. if (drv_data->rx_channel != -1)
  1404. DRCMR(drv_data->ssp->drcmr_rx) =
  1405. DRCMR_MAPVLD | drv_data->rx_channel;
  1406. if (drv_data->tx_channel != -1)
  1407. DRCMR(drv_data->ssp->drcmr_tx) =
  1408. DRCMR_MAPVLD | drv_data->tx_channel;
  1409. /* Enable the SSP clock */
  1410. clk_enable(ssp->clk);
  1411. /* Start the queue running */
  1412. status = start_queue(drv_data);
  1413. if (status != 0) {
  1414. dev_err(dev, "problem starting queue (%d)\n", status);
  1415. return status;
  1416. }
  1417. return 0;
  1418. }
  1419. static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
  1420. .suspend = pxa2xx_spi_suspend,
  1421. .resume = pxa2xx_spi_resume,
  1422. };
  1423. #endif
  1424. static struct platform_driver driver = {
  1425. .driver = {
  1426. .name = "pxa2xx-spi",
  1427. .owner = THIS_MODULE,
  1428. #ifdef CONFIG_PM
  1429. .pm = &pxa2xx_spi_pm_ops,
  1430. #endif
  1431. },
  1432. .remove = pxa2xx_spi_remove,
  1433. .shutdown = pxa2xx_spi_shutdown,
  1434. };
  1435. static int __init pxa2xx_spi_init(void)
  1436. {
  1437. return platform_driver_probe(&driver, pxa2xx_spi_probe);
  1438. }
  1439. subsys_initcall(pxa2xx_spi_init);
  1440. static void __exit pxa2xx_spi_exit(void)
  1441. {
  1442. platform_driver_unregister(&driver);
  1443. }
  1444. module_exit(pxa2xx_spi_exit);