zfcp_qdio.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471
  1. /*
  2. * zfcp device driver
  3. *
  4. * Setup and helper functions to access QDIO.
  5. *
  6. * Copyright IBM Corporation 2002, 2009
  7. */
  8. #define KMSG_COMPONENT "zfcp"
  9. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  10. #include <linux/slab.h>
  11. #include "zfcp_ext.h"
  12. #include "zfcp_qdio.h"
  13. #define QBUFF_PER_PAGE (PAGE_SIZE / sizeof(struct qdio_buffer))
  14. static int zfcp_qdio_buffers_enqueue(struct qdio_buffer **sbal)
  15. {
  16. int pos;
  17. for (pos = 0; pos < QDIO_MAX_BUFFERS_PER_Q; pos += QBUFF_PER_PAGE) {
  18. sbal[pos] = (struct qdio_buffer *) get_zeroed_page(GFP_KERNEL);
  19. if (!sbal[pos])
  20. return -ENOMEM;
  21. }
  22. for (pos = 0; pos < QDIO_MAX_BUFFERS_PER_Q; pos++)
  23. if (pos % QBUFF_PER_PAGE)
  24. sbal[pos] = sbal[pos - 1] + 1;
  25. return 0;
  26. }
  27. static void zfcp_qdio_handler_error(struct zfcp_qdio *qdio, char *id)
  28. {
  29. struct zfcp_adapter *adapter = qdio->adapter;
  30. dev_warn(&adapter->ccw_device->dev, "A QDIO problem occurred\n");
  31. zfcp_erp_adapter_reopen(adapter,
  32. ZFCP_STATUS_ADAPTER_LINK_UNPLUGGED |
  33. ZFCP_STATUS_COMMON_ERP_FAILED, id, NULL);
  34. }
  35. static void zfcp_qdio_zero_sbals(struct qdio_buffer *sbal[], int first, int cnt)
  36. {
  37. int i, sbal_idx;
  38. for (i = first; i < first + cnt; i++) {
  39. sbal_idx = i % QDIO_MAX_BUFFERS_PER_Q;
  40. memset(sbal[sbal_idx], 0, sizeof(struct qdio_buffer));
  41. }
  42. }
  43. /* this needs to be called prior to updating the queue fill level */
  44. static inline void zfcp_qdio_account(struct zfcp_qdio *qdio)
  45. {
  46. unsigned long long now, span;
  47. int free, used;
  48. spin_lock(&qdio->stat_lock);
  49. now = get_clock_monotonic();
  50. span = (now - qdio->req_q_time) >> 12;
  51. free = atomic_read(&qdio->req_q.count);
  52. used = QDIO_MAX_BUFFERS_PER_Q - free;
  53. qdio->req_q_util += used * span;
  54. qdio->req_q_time = now;
  55. spin_unlock(&qdio->stat_lock);
  56. }
  57. static void zfcp_qdio_int_req(struct ccw_device *cdev, unsigned int qdio_err,
  58. int queue_no, int first, int count,
  59. unsigned long parm)
  60. {
  61. struct zfcp_qdio *qdio = (struct zfcp_qdio *) parm;
  62. struct zfcp_qdio_queue *queue = &qdio->req_q;
  63. if (unlikely(qdio_err)) {
  64. zfcp_dbf_hba_qdio(qdio->adapter->dbf, qdio_err, first,
  65. count);
  66. zfcp_qdio_handler_error(qdio, "qdireq1");
  67. return;
  68. }
  69. /* cleanup all SBALs being program-owned now */
  70. zfcp_qdio_zero_sbals(queue->sbal, first, count);
  71. zfcp_qdio_account(qdio);
  72. atomic_add(count, &queue->count);
  73. wake_up(&qdio->req_q_wq);
  74. }
  75. static void zfcp_qdio_resp_put_back(struct zfcp_qdio *qdio, int processed)
  76. {
  77. struct zfcp_qdio_queue *queue = &qdio->resp_q;
  78. struct ccw_device *cdev = qdio->adapter->ccw_device;
  79. u8 count, start = queue->first;
  80. unsigned int retval;
  81. count = atomic_read(&queue->count) + processed;
  82. retval = do_QDIO(cdev, QDIO_FLAG_SYNC_INPUT, 0, start, count);
  83. if (unlikely(retval)) {
  84. atomic_set(&queue->count, count);
  85. zfcp_erp_adapter_reopen(qdio->adapter, 0, "qdrpb_1", NULL);
  86. } else {
  87. queue->first += count;
  88. queue->first %= QDIO_MAX_BUFFERS_PER_Q;
  89. atomic_set(&queue->count, 0);
  90. }
  91. }
  92. static void zfcp_qdio_int_resp(struct ccw_device *cdev, unsigned int qdio_err,
  93. int queue_no, int first, int count,
  94. unsigned long parm)
  95. {
  96. struct zfcp_qdio *qdio = (struct zfcp_qdio *) parm;
  97. int sbal_idx, sbal_no;
  98. if (unlikely(qdio_err)) {
  99. zfcp_dbf_hba_qdio(qdio->adapter->dbf, qdio_err, first,
  100. count);
  101. zfcp_qdio_handler_error(qdio, "qdires1");
  102. return;
  103. }
  104. /*
  105. * go through all SBALs from input queue currently
  106. * returned by QDIO layer
  107. */
  108. for (sbal_no = 0; sbal_no < count; sbal_no++) {
  109. sbal_idx = (first + sbal_no) % QDIO_MAX_BUFFERS_PER_Q;
  110. /* go through all SBALEs of SBAL */
  111. zfcp_fsf_reqid_check(qdio, sbal_idx);
  112. }
  113. /*
  114. * put range of SBALs back to response queue
  115. * (including SBALs which have already been free before)
  116. */
  117. zfcp_qdio_resp_put_back(qdio, count);
  118. }
  119. static void zfcp_qdio_sbal_limit(struct zfcp_qdio *qdio,
  120. struct zfcp_qdio_req *q_req, int max_sbals)
  121. {
  122. int count = atomic_read(&qdio->req_q.count);
  123. count = min(count, max_sbals);
  124. q_req->sbal_limit = (q_req->sbal_first + count - 1)
  125. % QDIO_MAX_BUFFERS_PER_Q;
  126. }
  127. static struct qdio_buffer_element *
  128. zfcp_qdio_sbal_chain(struct zfcp_qdio *qdio, struct zfcp_qdio_req *q_req,
  129. unsigned long sbtype)
  130. {
  131. struct qdio_buffer_element *sbale;
  132. /* set last entry flag in current SBALE of current SBAL */
  133. sbale = zfcp_qdio_sbale_curr(qdio, q_req);
  134. sbale->flags |= SBAL_FLAGS_LAST_ENTRY;
  135. /* don't exceed last allowed SBAL */
  136. if (q_req->sbal_last == q_req->sbal_limit)
  137. return NULL;
  138. /* set chaining flag in first SBALE of current SBAL */
  139. sbale = zfcp_qdio_sbale_req(qdio, q_req);
  140. sbale->flags |= SBAL_FLAGS0_MORE_SBALS;
  141. /* calculate index of next SBAL */
  142. q_req->sbal_last++;
  143. q_req->sbal_last %= QDIO_MAX_BUFFERS_PER_Q;
  144. /* keep this requests number of SBALs up-to-date */
  145. q_req->sbal_number++;
  146. /* start at first SBALE of new SBAL */
  147. q_req->sbale_curr = 0;
  148. /* set storage-block type for new SBAL */
  149. sbale = zfcp_qdio_sbale_curr(qdio, q_req);
  150. sbale->flags |= sbtype;
  151. return sbale;
  152. }
  153. static struct qdio_buffer_element *
  154. zfcp_qdio_sbale_next(struct zfcp_qdio *qdio, struct zfcp_qdio_req *q_req,
  155. unsigned int sbtype)
  156. {
  157. if (q_req->sbale_curr == ZFCP_LAST_SBALE_PER_SBAL)
  158. return zfcp_qdio_sbal_chain(qdio, q_req, sbtype);
  159. q_req->sbale_curr++;
  160. return zfcp_qdio_sbale_curr(qdio, q_req);
  161. }
  162. static void zfcp_qdio_undo_sbals(struct zfcp_qdio *qdio,
  163. struct zfcp_qdio_req *q_req)
  164. {
  165. struct qdio_buffer **sbal = qdio->req_q.sbal;
  166. int first = q_req->sbal_first;
  167. int last = q_req->sbal_last;
  168. int count = (last - first + QDIO_MAX_BUFFERS_PER_Q) %
  169. QDIO_MAX_BUFFERS_PER_Q + 1;
  170. zfcp_qdio_zero_sbals(sbal, first, count);
  171. }
  172. static int zfcp_qdio_fill_sbals(struct zfcp_qdio *qdio,
  173. struct zfcp_qdio_req *q_req,
  174. unsigned int sbtype, void *start_addr,
  175. unsigned int total_length)
  176. {
  177. struct qdio_buffer_element *sbale;
  178. unsigned long remaining, length;
  179. void *addr;
  180. /* split segment up */
  181. for (addr = start_addr, remaining = total_length; remaining > 0;
  182. addr += length, remaining -= length) {
  183. sbale = zfcp_qdio_sbale_next(qdio, q_req, sbtype);
  184. if (!sbale) {
  185. atomic_inc(&qdio->req_q_full);
  186. zfcp_qdio_undo_sbals(qdio, q_req);
  187. return -EINVAL;
  188. }
  189. /* new piece must not exceed next page boundary */
  190. length = min(remaining,
  191. (PAGE_SIZE - ((unsigned long)addr &
  192. (PAGE_SIZE - 1))));
  193. sbale->addr = addr;
  194. sbale->length = length;
  195. }
  196. return 0;
  197. }
  198. /**
  199. * zfcp_qdio_sbals_from_sg - fill SBALs from scatter-gather list
  200. * @fsf_req: request to be processed
  201. * @sbtype: SBALE flags
  202. * @sg: scatter-gather list
  203. * @max_sbals: upper bound for number of SBALs to be used
  204. * Returns: number of bytes, or error (negativ)
  205. */
  206. int zfcp_qdio_sbals_from_sg(struct zfcp_qdio *qdio, struct zfcp_qdio_req *q_req,
  207. unsigned long sbtype, struct scatterlist *sg,
  208. int max_sbals)
  209. {
  210. struct qdio_buffer_element *sbale;
  211. int retval, bytes = 0;
  212. /* figure out last allowed SBAL */
  213. zfcp_qdio_sbal_limit(qdio, q_req, max_sbals);
  214. /* set storage-block type for this request */
  215. sbale = zfcp_qdio_sbale_req(qdio, q_req);
  216. sbale->flags |= sbtype;
  217. for (; sg; sg = sg_next(sg)) {
  218. retval = zfcp_qdio_fill_sbals(qdio, q_req, sbtype,
  219. sg_virt(sg), sg->length);
  220. if (retval < 0)
  221. return retval;
  222. bytes += sg->length;
  223. }
  224. /* assume that no other SBALEs are to follow in the same SBAL */
  225. sbale = zfcp_qdio_sbale_curr(qdio, q_req);
  226. sbale->flags |= SBAL_FLAGS_LAST_ENTRY;
  227. return bytes;
  228. }
  229. /**
  230. * zfcp_qdio_send - set PCI flag in first SBALE and send req to QDIO
  231. * @qdio: pointer to struct zfcp_qdio
  232. * @q_req: pointer to struct zfcp_qdio_req
  233. * Returns: 0 on success, error otherwise
  234. */
  235. int zfcp_qdio_send(struct zfcp_qdio *qdio, struct zfcp_qdio_req *q_req)
  236. {
  237. struct zfcp_qdio_queue *req_q = &qdio->req_q;
  238. int first = q_req->sbal_first;
  239. int count = q_req->sbal_number;
  240. int retval;
  241. unsigned int qdio_flags = QDIO_FLAG_SYNC_OUTPUT;
  242. zfcp_qdio_account(qdio);
  243. retval = do_QDIO(qdio->adapter->ccw_device, qdio_flags, 0, first,
  244. count);
  245. if (unlikely(retval)) {
  246. zfcp_qdio_zero_sbals(req_q->sbal, first, count);
  247. return retval;
  248. }
  249. /* account for transferred buffers */
  250. atomic_sub(count, &req_q->count);
  251. req_q->first += count;
  252. req_q->first %= QDIO_MAX_BUFFERS_PER_Q;
  253. return 0;
  254. }
  255. static void zfcp_qdio_setup_init_data(struct qdio_initialize *id,
  256. struct zfcp_qdio *qdio)
  257. {
  258. id->cdev = qdio->adapter->ccw_device;
  259. id->q_format = QDIO_ZFCP_QFMT;
  260. memcpy(id->adapter_name, dev_name(&id->cdev->dev), 8);
  261. ASCEBC(id->adapter_name, 8);
  262. id->qib_param_field_format = 0;
  263. id->qib_param_field = NULL;
  264. id->input_slib_elements = NULL;
  265. id->output_slib_elements = NULL;
  266. id->no_input_qs = 1;
  267. id->no_output_qs = 1;
  268. id->input_handler = zfcp_qdio_int_resp;
  269. id->output_handler = zfcp_qdio_int_req;
  270. id->int_parm = (unsigned long) qdio;
  271. id->input_sbal_addr_array = (void **) (qdio->resp_q.sbal);
  272. id->output_sbal_addr_array = (void **) (qdio->req_q.sbal);
  273. }
  274. /**
  275. * zfcp_qdio_allocate - allocate queue memory and initialize QDIO data
  276. * @adapter: pointer to struct zfcp_adapter
  277. * Returns: -ENOMEM on memory allocation error or return value from
  278. * qdio_allocate
  279. */
  280. static int zfcp_qdio_allocate(struct zfcp_qdio *qdio)
  281. {
  282. struct qdio_initialize init_data;
  283. if (zfcp_qdio_buffers_enqueue(qdio->req_q.sbal) ||
  284. zfcp_qdio_buffers_enqueue(qdio->resp_q.sbal))
  285. return -ENOMEM;
  286. zfcp_qdio_setup_init_data(&init_data, qdio);
  287. return qdio_allocate(&init_data);
  288. }
  289. /**
  290. * zfcp_close_qdio - close qdio queues for an adapter
  291. * @qdio: pointer to structure zfcp_qdio
  292. */
  293. void zfcp_qdio_close(struct zfcp_qdio *qdio)
  294. {
  295. struct zfcp_qdio_queue *req_q;
  296. int first, count;
  297. if (!(atomic_read(&qdio->adapter->status) & ZFCP_STATUS_ADAPTER_QDIOUP))
  298. return;
  299. /* clear QDIOUP flag, thus do_QDIO is not called during qdio_shutdown */
  300. req_q = &qdio->req_q;
  301. spin_lock_bh(&qdio->req_q_lock);
  302. atomic_clear_mask(ZFCP_STATUS_ADAPTER_QDIOUP, &qdio->adapter->status);
  303. spin_unlock_bh(&qdio->req_q_lock);
  304. qdio_shutdown(qdio->adapter->ccw_device,
  305. QDIO_FLAG_CLEANUP_USING_CLEAR);
  306. /* cleanup used outbound sbals */
  307. count = atomic_read(&req_q->count);
  308. if (count < QDIO_MAX_BUFFERS_PER_Q) {
  309. first = (req_q->first + count) % QDIO_MAX_BUFFERS_PER_Q;
  310. count = QDIO_MAX_BUFFERS_PER_Q - count;
  311. zfcp_qdio_zero_sbals(req_q->sbal, first, count);
  312. }
  313. req_q->first = 0;
  314. atomic_set(&req_q->count, 0);
  315. qdio->resp_q.first = 0;
  316. atomic_set(&qdio->resp_q.count, 0);
  317. }
  318. /**
  319. * zfcp_qdio_open - prepare and initialize response queue
  320. * @qdio: pointer to struct zfcp_qdio
  321. * Returns: 0 on success, otherwise -EIO
  322. */
  323. int zfcp_qdio_open(struct zfcp_qdio *qdio)
  324. {
  325. struct qdio_buffer_element *sbale;
  326. struct qdio_initialize init_data;
  327. struct ccw_device *cdev = qdio->adapter->ccw_device;
  328. int cc;
  329. if (atomic_read(&qdio->adapter->status) & ZFCP_STATUS_ADAPTER_QDIOUP)
  330. return -EIO;
  331. zfcp_qdio_setup_init_data(&init_data, qdio);
  332. if (qdio_establish(&init_data))
  333. goto failed_establish;
  334. if (qdio_activate(cdev))
  335. goto failed_qdio;
  336. for (cc = 0; cc < QDIO_MAX_BUFFERS_PER_Q; cc++) {
  337. sbale = &(qdio->resp_q.sbal[cc]->element[0]);
  338. sbale->length = 0;
  339. sbale->flags = SBAL_FLAGS_LAST_ENTRY;
  340. sbale->addr = NULL;
  341. }
  342. if (do_QDIO(cdev, QDIO_FLAG_SYNC_INPUT, 0, 0,
  343. QDIO_MAX_BUFFERS_PER_Q))
  344. goto failed_qdio;
  345. /* set index of first avalable SBALS / number of available SBALS */
  346. qdio->req_q.first = 0;
  347. atomic_set(&qdio->req_q.count, QDIO_MAX_BUFFERS_PER_Q);
  348. return 0;
  349. failed_qdio:
  350. qdio_shutdown(cdev, QDIO_FLAG_CLEANUP_USING_CLEAR);
  351. failed_establish:
  352. dev_err(&cdev->dev,
  353. "Setting up the QDIO connection to the FCP adapter failed\n");
  354. return -EIO;
  355. }
  356. void zfcp_qdio_destroy(struct zfcp_qdio *qdio)
  357. {
  358. struct qdio_buffer **sbal_req, **sbal_resp;
  359. int p;
  360. if (!qdio)
  361. return;
  362. if (qdio->adapter->ccw_device)
  363. qdio_free(qdio->adapter->ccw_device);
  364. sbal_req = qdio->req_q.sbal;
  365. sbal_resp = qdio->resp_q.sbal;
  366. for (p = 0; p < QDIO_MAX_BUFFERS_PER_Q; p += QBUFF_PER_PAGE) {
  367. free_page((unsigned long) sbal_req[p]);
  368. free_page((unsigned long) sbal_resp[p]);
  369. }
  370. kfree(qdio);
  371. }
  372. int zfcp_qdio_setup(struct zfcp_adapter *adapter)
  373. {
  374. struct zfcp_qdio *qdio;
  375. qdio = kzalloc(sizeof(struct zfcp_qdio), GFP_KERNEL);
  376. if (!qdio)
  377. return -ENOMEM;
  378. qdio->adapter = adapter;
  379. if (zfcp_qdio_allocate(qdio)) {
  380. zfcp_qdio_destroy(qdio);
  381. return -ENOMEM;
  382. }
  383. spin_lock_init(&qdio->req_q_lock);
  384. spin_lock_init(&qdio->stat_lock);
  385. adapter->qdio = qdio;
  386. return 0;
  387. }