rt2500usb.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930
  1. /*
  2. Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2500usb
  19. Abstract: rt2500usb device specific routines.
  20. Supported chipsets: RT2570.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/slab.h>
  28. #include <linux/usb.h>
  29. #include "rt2x00.h"
  30. #include "rt2x00usb.h"
  31. #include "rt2500usb.h"
  32. /*
  33. * Allow hardware encryption to be disabled.
  34. */
  35. static int modparam_nohwcrypt = 0;
  36. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  37. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  38. /*
  39. * Register access.
  40. * All access to the CSR registers will go through the methods
  41. * rt2500usb_register_read and rt2500usb_register_write.
  42. * BBP and RF register require indirect register access,
  43. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  44. * These indirect registers work with busy bits,
  45. * and we will try maximal REGISTER_BUSY_COUNT times to access
  46. * the register while taking a REGISTER_BUSY_DELAY us delay
  47. * between each attampt. When the busy bit is still set at that time,
  48. * the access attempt is considered to have failed,
  49. * and we will print an error.
  50. * If the csr_mutex is already held then the _lock variants must
  51. * be used instead.
  52. */
  53. static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
  54. const unsigned int offset,
  55. u16 *value)
  56. {
  57. __le16 reg;
  58. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  59. USB_VENDOR_REQUEST_IN, offset,
  60. &reg, sizeof(reg), REGISTER_TIMEOUT);
  61. *value = le16_to_cpu(reg);
  62. }
  63. static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
  64. const unsigned int offset,
  65. u16 *value)
  66. {
  67. __le16 reg;
  68. rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
  69. USB_VENDOR_REQUEST_IN, offset,
  70. &reg, sizeof(reg), REGISTER_TIMEOUT);
  71. *value = le16_to_cpu(reg);
  72. }
  73. static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
  74. const unsigned int offset,
  75. void *value, const u16 length)
  76. {
  77. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  78. USB_VENDOR_REQUEST_IN, offset,
  79. value, length,
  80. REGISTER_TIMEOUT16(length));
  81. }
  82. static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
  83. const unsigned int offset,
  84. u16 value)
  85. {
  86. __le16 reg = cpu_to_le16(value);
  87. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  88. USB_VENDOR_REQUEST_OUT, offset,
  89. &reg, sizeof(reg), REGISTER_TIMEOUT);
  90. }
  91. static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
  92. const unsigned int offset,
  93. u16 value)
  94. {
  95. __le16 reg = cpu_to_le16(value);
  96. rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
  97. USB_VENDOR_REQUEST_OUT, offset,
  98. &reg, sizeof(reg), REGISTER_TIMEOUT);
  99. }
  100. static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
  101. const unsigned int offset,
  102. void *value, const u16 length)
  103. {
  104. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  105. USB_VENDOR_REQUEST_OUT, offset,
  106. value, length,
  107. REGISTER_TIMEOUT16(length));
  108. }
  109. static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
  110. const unsigned int offset,
  111. struct rt2x00_field16 field,
  112. u16 *reg)
  113. {
  114. unsigned int i;
  115. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  116. rt2500usb_register_read_lock(rt2x00dev, offset, reg);
  117. if (!rt2x00_get_field16(*reg, field))
  118. return 1;
  119. udelay(REGISTER_BUSY_DELAY);
  120. }
  121. ERROR(rt2x00dev, "Indirect register access failed: "
  122. "offset=0x%.08x, value=0x%.08x\n", offset, *reg);
  123. *reg = ~0;
  124. return 0;
  125. }
  126. #define WAIT_FOR_BBP(__dev, __reg) \
  127. rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
  128. #define WAIT_FOR_RF(__dev, __reg) \
  129. rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
  130. static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
  131. const unsigned int word, const u8 value)
  132. {
  133. u16 reg;
  134. mutex_lock(&rt2x00dev->csr_mutex);
  135. /*
  136. * Wait until the BBP becomes available, afterwards we
  137. * can safely write the new data into the register.
  138. */
  139. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  140. reg = 0;
  141. rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
  142. rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
  143. rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
  144. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
  145. }
  146. mutex_unlock(&rt2x00dev->csr_mutex);
  147. }
  148. static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
  149. const unsigned int word, u8 *value)
  150. {
  151. u16 reg;
  152. mutex_lock(&rt2x00dev->csr_mutex);
  153. /*
  154. * Wait until the BBP becomes available, afterwards we
  155. * can safely write the read request into the register.
  156. * After the data has been written, we wait until hardware
  157. * returns the correct value, if at any time the register
  158. * doesn't become available in time, reg will be 0xffffffff
  159. * which means we return 0xff to the caller.
  160. */
  161. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  162. reg = 0;
  163. rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
  164. rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
  165. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
  166. if (WAIT_FOR_BBP(rt2x00dev, &reg))
  167. rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
  168. }
  169. *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
  170. mutex_unlock(&rt2x00dev->csr_mutex);
  171. }
  172. static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
  173. const unsigned int word, const u32 value)
  174. {
  175. u16 reg;
  176. mutex_lock(&rt2x00dev->csr_mutex);
  177. /*
  178. * Wait until the RF becomes available, afterwards we
  179. * can safely write the new data into the register.
  180. */
  181. if (WAIT_FOR_RF(rt2x00dev, &reg)) {
  182. reg = 0;
  183. rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
  184. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
  185. reg = 0;
  186. rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
  187. rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
  188. rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
  189. rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
  190. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
  191. rt2x00_rf_write(rt2x00dev, word, value);
  192. }
  193. mutex_unlock(&rt2x00dev->csr_mutex);
  194. }
  195. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  196. static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
  197. const unsigned int offset,
  198. u32 *value)
  199. {
  200. rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
  201. }
  202. static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
  203. const unsigned int offset,
  204. u32 value)
  205. {
  206. rt2500usb_register_write(rt2x00dev, offset, value);
  207. }
  208. static const struct rt2x00debug rt2500usb_rt2x00debug = {
  209. .owner = THIS_MODULE,
  210. .csr = {
  211. .read = _rt2500usb_register_read,
  212. .write = _rt2500usb_register_write,
  213. .flags = RT2X00DEBUGFS_OFFSET,
  214. .word_base = CSR_REG_BASE,
  215. .word_size = sizeof(u16),
  216. .word_count = CSR_REG_SIZE / sizeof(u16),
  217. },
  218. .eeprom = {
  219. .read = rt2x00_eeprom_read,
  220. .write = rt2x00_eeprom_write,
  221. .word_base = EEPROM_BASE,
  222. .word_size = sizeof(u16),
  223. .word_count = EEPROM_SIZE / sizeof(u16),
  224. },
  225. .bbp = {
  226. .read = rt2500usb_bbp_read,
  227. .write = rt2500usb_bbp_write,
  228. .word_base = BBP_BASE,
  229. .word_size = sizeof(u8),
  230. .word_count = BBP_SIZE / sizeof(u8),
  231. },
  232. .rf = {
  233. .read = rt2x00_rf_read,
  234. .write = rt2500usb_rf_write,
  235. .word_base = RF_BASE,
  236. .word_size = sizeof(u32),
  237. .word_count = RF_SIZE / sizeof(u32),
  238. },
  239. };
  240. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  241. static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  242. {
  243. u16 reg;
  244. rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
  245. return rt2x00_get_field32(reg, MAC_CSR19_BIT7);
  246. }
  247. #ifdef CONFIG_RT2X00_LIB_LEDS
  248. static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
  249. enum led_brightness brightness)
  250. {
  251. struct rt2x00_led *led =
  252. container_of(led_cdev, struct rt2x00_led, led_dev);
  253. unsigned int enabled = brightness != LED_OFF;
  254. u16 reg;
  255. rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
  256. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  257. rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
  258. else if (led->type == LED_TYPE_ACTIVITY)
  259. rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
  260. rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
  261. }
  262. static int rt2500usb_blink_set(struct led_classdev *led_cdev,
  263. unsigned long *delay_on,
  264. unsigned long *delay_off)
  265. {
  266. struct rt2x00_led *led =
  267. container_of(led_cdev, struct rt2x00_led, led_dev);
  268. u16 reg;
  269. rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
  270. rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
  271. rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
  272. rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
  273. return 0;
  274. }
  275. static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
  276. struct rt2x00_led *led,
  277. enum led_type type)
  278. {
  279. led->rt2x00dev = rt2x00dev;
  280. led->type = type;
  281. led->led_dev.brightness_set = rt2500usb_brightness_set;
  282. led->led_dev.blink_set = rt2500usb_blink_set;
  283. led->flags = LED_INITIALIZED;
  284. }
  285. #endif /* CONFIG_RT2X00_LIB_LEDS */
  286. /*
  287. * Configuration handlers.
  288. */
  289. /*
  290. * rt2500usb does not differentiate between shared and pairwise
  291. * keys, so we should use the same function for both key types.
  292. */
  293. static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
  294. struct rt2x00lib_crypto *crypto,
  295. struct ieee80211_key_conf *key)
  296. {
  297. int timeout;
  298. u32 mask;
  299. u16 reg;
  300. if (crypto->cmd == SET_KEY) {
  301. /*
  302. * Pairwise key will always be entry 0, but this
  303. * could collide with a shared key on the same
  304. * position...
  305. */
  306. mask = TXRX_CSR0_KEY_ID.bit_mask;
  307. rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
  308. reg &= mask;
  309. if (reg && reg == mask)
  310. return -ENOSPC;
  311. reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
  312. key->hw_key_idx += reg ? ffz(reg) : 0;
  313. /*
  314. * The encryption key doesn't fit within the CSR cache,
  315. * this means we should allocate it separately and use
  316. * rt2x00usb_vendor_request() to send the key to the hardware.
  317. */
  318. reg = KEY_ENTRY(key->hw_key_idx);
  319. timeout = REGISTER_TIMEOUT32(sizeof(crypto->key));
  320. rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
  321. USB_VENDOR_REQUEST_OUT, reg,
  322. crypto->key,
  323. sizeof(crypto->key),
  324. timeout);
  325. /*
  326. * The driver does not support the IV/EIV generation
  327. * in hardware. However it demands the data to be provided
  328. * both separately as well as inside the frame.
  329. * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
  330. * to ensure rt2x00lib will not strip the data from the
  331. * frame after the copy, now we must tell mac80211
  332. * to generate the IV/EIV data.
  333. */
  334. key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
  335. key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
  336. }
  337. /*
  338. * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
  339. * a particular key is valid.
  340. */
  341. rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
  342. rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
  343. rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
  344. mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
  345. if (crypto->cmd == SET_KEY)
  346. mask |= 1 << key->hw_key_idx;
  347. else if (crypto->cmd == DISABLE_KEY)
  348. mask &= ~(1 << key->hw_key_idx);
  349. rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
  350. rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
  351. return 0;
  352. }
  353. static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
  354. const unsigned int filter_flags)
  355. {
  356. u16 reg;
  357. /*
  358. * Start configuration steps.
  359. * Note that the version error will always be dropped
  360. * and broadcast frames will always be accepted since
  361. * there is no filter for it at this time.
  362. */
  363. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  364. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
  365. !(filter_flags & FIF_FCSFAIL));
  366. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
  367. !(filter_flags & FIF_PLCPFAIL));
  368. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
  369. !(filter_flags & FIF_CONTROL));
  370. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
  371. !(filter_flags & FIF_PROMISC_IN_BSS));
  372. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
  373. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  374. !rt2x00dev->intf_ap_count);
  375. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
  376. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
  377. !(filter_flags & FIF_ALLMULTI));
  378. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
  379. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  380. }
  381. static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
  382. struct rt2x00_intf *intf,
  383. struct rt2x00intf_conf *conf,
  384. const unsigned int flags)
  385. {
  386. unsigned int bcn_preload;
  387. u16 reg;
  388. if (flags & CONFIG_UPDATE_TYPE) {
  389. /*
  390. * Enable beacon config
  391. */
  392. bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
  393. rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
  394. rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
  395. rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
  396. 2 * (conf->type != NL80211_IFTYPE_STATION));
  397. rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
  398. /*
  399. * Enable synchronisation.
  400. */
  401. rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
  402. rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
  403. rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
  404. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  405. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
  406. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
  407. rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
  408. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  409. }
  410. if (flags & CONFIG_UPDATE_MAC)
  411. rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
  412. (3 * sizeof(__le16)));
  413. if (flags & CONFIG_UPDATE_BSSID)
  414. rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
  415. (3 * sizeof(__le16)));
  416. }
  417. static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
  418. struct rt2x00lib_erp *erp)
  419. {
  420. u16 reg;
  421. rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
  422. rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
  423. !!erp->short_preamble);
  424. rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
  425. rt2500usb_register_write(rt2x00dev, TXRX_CSR11, erp->basic_rates);
  426. rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
  427. rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL, erp->beacon_int * 4);
  428. rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
  429. rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
  430. rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
  431. rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
  432. }
  433. static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
  434. struct antenna_setup *ant)
  435. {
  436. u8 r2;
  437. u8 r14;
  438. u16 csr5;
  439. u16 csr6;
  440. /*
  441. * We should never come here because rt2x00lib is supposed
  442. * to catch this and send us the correct antenna explicitely.
  443. */
  444. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  445. ant->tx == ANTENNA_SW_DIVERSITY);
  446. rt2500usb_bbp_read(rt2x00dev, 2, &r2);
  447. rt2500usb_bbp_read(rt2x00dev, 14, &r14);
  448. rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
  449. rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
  450. /*
  451. * Configure the TX antenna.
  452. */
  453. switch (ant->tx) {
  454. case ANTENNA_HW_DIVERSITY:
  455. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
  456. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
  457. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
  458. break;
  459. case ANTENNA_A:
  460. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  461. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
  462. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
  463. break;
  464. case ANTENNA_B:
  465. default:
  466. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  467. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
  468. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
  469. break;
  470. }
  471. /*
  472. * Configure the RX antenna.
  473. */
  474. switch (ant->rx) {
  475. case ANTENNA_HW_DIVERSITY:
  476. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
  477. break;
  478. case ANTENNA_A:
  479. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  480. break;
  481. case ANTENNA_B:
  482. default:
  483. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  484. break;
  485. }
  486. /*
  487. * RT2525E and RT5222 need to flip TX I/Q
  488. */
  489. if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
  490. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  491. rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
  492. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
  493. /*
  494. * RT2525E does not need RX I/Q Flip.
  495. */
  496. if (rt2x00_rf(rt2x00dev, RF2525E))
  497. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  498. } else {
  499. rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
  500. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
  501. }
  502. rt2500usb_bbp_write(rt2x00dev, 2, r2);
  503. rt2500usb_bbp_write(rt2x00dev, 14, r14);
  504. rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
  505. rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
  506. }
  507. static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
  508. struct rf_channel *rf, const int txpower)
  509. {
  510. /*
  511. * Set TXpower.
  512. */
  513. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  514. /*
  515. * For RT2525E we should first set the channel to half band higher.
  516. */
  517. if (rt2x00_rf(rt2x00dev, RF2525E)) {
  518. static const u32 vals[] = {
  519. 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
  520. 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
  521. 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
  522. 0x00000902, 0x00000906
  523. };
  524. rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
  525. if (rf->rf4)
  526. rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
  527. }
  528. rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
  529. rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
  530. rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
  531. if (rf->rf4)
  532. rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
  533. }
  534. static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
  535. const int txpower)
  536. {
  537. u32 rf3;
  538. rt2x00_rf_read(rt2x00dev, 3, &rf3);
  539. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  540. rt2500usb_rf_write(rt2x00dev, 3, rf3);
  541. }
  542. static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
  543. struct rt2x00lib_conf *libconf)
  544. {
  545. enum dev_state state =
  546. (libconf->conf->flags & IEEE80211_CONF_PS) ?
  547. STATE_SLEEP : STATE_AWAKE;
  548. u16 reg;
  549. if (state == STATE_SLEEP) {
  550. rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
  551. rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
  552. rt2x00dev->beacon_int - 20);
  553. rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
  554. libconf->conf->listen_interval - 1);
  555. /* We must first disable autowake before it can be enabled */
  556. rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
  557. rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
  558. rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
  559. rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
  560. }
  561. rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
  562. }
  563. static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
  564. struct rt2x00lib_conf *libconf,
  565. const unsigned int flags)
  566. {
  567. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  568. rt2500usb_config_channel(rt2x00dev, &libconf->rf,
  569. libconf->conf->power_level);
  570. if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
  571. !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
  572. rt2500usb_config_txpower(rt2x00dev,
  573. libconf->conf->power_level);
  574. if (flags & IEEE80211_CONF_CHANGE_PS)
  575. rt2500usb_config_ps(rt2x00dev, libconf);
  576. }
  577. /*
  578. * Link tuning
  579. */
  580. static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
  581. struct link_qual *qual)
  582. {
  583. u16 reg;
  584. /*
  585. * Update FCS error count from register.
  586. */
  587. rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
  588. qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
  589. /*
  590. * Update False CCA count from register.
  591. */
  592. rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
  593. qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
  594. }
  595. static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
  596. struct link_qual *qual)
  597. {
  598. u16 eeprom;
  599. u16 value;
  600. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
  601. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
  602. rt2500usb_bbp_write(rt2x00dev, 24, value);
  603. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
  604. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
  605. rt2500usb_bbp_write(rt2x00dev, 25, value);
  606. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
  607. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
  608. rt2500usb_bbp_write(rt2x00dev, 61, value);
  609. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
  610. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
  611. rt2500usb_bbp_write(rt2x00dev, 17, value);
  612. qual->vgc_level = value;
  613. }
  614. /*
  615. * Initialization functions.
  616. */
  617. static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
  618. {
  619. u16 reg;
  620. rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
  621. USB_MODE_TEST, REGISTER_TIMEOUT);
  622. rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
  623. 0x00f0, REGISTER_TIMEOUT);
  624. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  625. rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
  626. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  627. rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
  628. rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
  629. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  630. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
  631. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
  632. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
  633. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  634. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  635. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
  636. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
  637. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
  638. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  639. rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
  640. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
  641. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
  642. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
  643. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
  644. rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
  645. rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
  646. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
  647. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
  648. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
  649. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
  650. rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
  651. rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
  652. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
  653. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
  654. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
  655. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
  656. rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
  657. rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
  658. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
  659. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
  660. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
  661. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
  662. rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
  663. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  664. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
  665. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
  666. rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
  667. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
  668. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  669. rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
  670. rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
  671. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  672. return -EBUSY;
  673. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  674. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
  675. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
  676. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
  677. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  678. if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
  679. rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
  680. rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
  681. } else {
  682. reg = 0;
  683. rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
  684. rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
  685. }
  686. rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
  687. rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
  688. rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
  689. rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
  690. rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
  691. rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
  692. rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
  693. rt2x00dev->rx->data_size);
  694. rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
  695. rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
  696. rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
  697. rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
  698. rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
  699. rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
  700. rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
  701. rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
  702. rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
  703. rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
  704. rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
  705. rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
  706. rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
  707. rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
  708. return 0;
  709. }
  710. static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  711. {
  712. unsigned int i;
  713. u8 value;
  714. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  715. rt2500usb_bbp_read(rt2x00dev, 0, &value);
  716. if ((value != 0xff) && (value != 0x00))
  717. return 0;
  718. udelay(REGISTER_BUSY_DELAY);
  719. }
  720. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  721. return -EACCES;
  722. }
  723. static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
  724. {
  725. unsigned int i;
  726. u16 eeprom;
  727. u8 value;
  728. u8 reg_id;
  729. if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
  730. return -EACCES;
  731. rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
  732. rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
  733. rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
  734. rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
  735. rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
  736. rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
  737. rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
  738. rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
  739. rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
  740. rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
  741. rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
  742. rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
  743. rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
  744. rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
  745. rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
  746. rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
  747. rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
  748. rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
  749. rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
  750. rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
  751. rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
  752. rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
  753. rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
  754. rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
  755. rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
  756. rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
  757. rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
  758. rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
  759. rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
  760. rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
  761. rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
  762. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  763. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  764. if (eeprom != 0xffff && eeprom != 0x0000) {
  765. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  766. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  767. rt2500usb_bbp_write(rt2x00dev, reg_id, value);
  768. }
  769. }
  770. return 0;
  771. }
  772. /*
  773. * Device state switch handlers.
  774. */
  775. static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
  776. enum dev_state state)
  777. {
  778. u16 reg;
  779. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  780. rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
  781. (state == STATE_RADIO_RX_OFF) ||
  782. (state == STATE_RADIO_RX_OFF_LINK));
  783. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  784. }
  785. static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
  786. {
  787. /*
  788. * Initialize all registers.
  789. */
  790. if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
  791. rt2500usb_init_bbp(rt2x00dev)))
  792. return -EIO;
  793. return 0;
  794. }
  795. static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
  796. {
  797. rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
  798. rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
  799. /*
  800. * Disable synchronisation.
  801. */
  802. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
  803. rt2x00usb_disable_radio(rt2x00dev);
  804. }
  805. static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
  806. enum dev_state state)
  807. {
  808. u16 reg;
  809. u16 reg2;
  810. unsigned int i;
  811. char put_to_sleep;
  812. char bbp_state;
  813. char rf_state;
  814. put_to_sleep = (state != STATE_AWAKE);
  815. reg = 0;
  816. rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
  817. rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
  818. rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
  819. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  820. rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
  821. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  822. /*
  823. * Device is not guaranteed to be in the requested state yet.
  824. * We must wait until the register indicates that the
  825. * device has entered the correct state.
  826. */
  827. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  828. rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
  829. bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
  830. rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
  831. if (bbp_state == state && rf_state == state)
  832. return 0;
  833. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  834. msleep(30);
  835. }
  836. return -EBUSY;
  837. }
  838. static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
  839. enum dev_state state)
  840. {
  841. int retval = 0;
  842. switch (state) {
  843. case STATE_RADIO_ON:
  844. retval = rt2500usb_enable_radio(rt2x00dev);
  845. break;
  846. case STATE_RADIO_OFF:
  847. rt2500usb_disable_radio(rt2x00dev);
  848. break;
  849. case STATE_RADIO_RX_ON:
  850. case STATE_RADIO_RX_ON_LINK:
  851. case STATE_RADIO_RX_OFF:
  852. case STATE_RADIO_RX_OFF_LINK:
  853. rt2500usb_toggle_rx(rt2x00dev, state);
  854. break;
  855. case STATE_RADIO_IRQ_ON:
  856. case STATE_RADIO_IRQ_OFF:
  857. /* No support, but no error either */
  858. break;
  859. case STATE_DEEP_SLEEP:
  860. case STATE_SLEEP:
  861. case STATE_STANDBY:
  862. case STATE_AWAKE:
  863. retval = rt2500usb_set_state(rt2x00dev, state);
  864. break;
  865. default:
  866. retval = -ENOTSUPP;
  867. break;
  868. }
  869. if (unlikely(retval))
  870. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  871. state, retval);
  872. return retval;
  873. }
  874. /*
  875. * TX descriptor initialization
  876. */
  877. static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  878. struct sk_buff *skb,
  879. struct txentry_desc *txdesc)
  880. {
  881. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  882. __le32 *txd = skbdesc->desc;
  883. u32 word;
  884. /*
  885. * Start writing the descriptor words.
  886. */
  887. rt2x00_desc_read(txd, 1, &word);
  888. rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
  889. rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
  890. rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
  891. rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
  892. rt2x00_desc_write(txd, 1, word);
  893. rt2x00_desc_read(txd, 2, &word);
  894. rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
  895. rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
  896. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
  897. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
  898. rt2x00_desc_write(txd, 2, word);
  899. if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
  900. _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
  901. _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
  902. }
  903. rt2x00_desc_read(txd, 0, &word);
  904. rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
  905. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  906. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  907. rt2x00_set_field32(&word, TXD_W0_ACK,
  908. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  909. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  910. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  911. rt2x00_set_field32(&word, TXD_W0_OFDM,
  912. (txdesc->rate_mode == RATE_MODE_OFDM));
  913. rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
  914. test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
  915. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  916. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
  917. rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
  918. rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
  919. rt2x00_desc_write(txd, 0, word);
  920. }
  921. /*
  922. * TX data initialization
  923. */
  924. static void rt2500usb_beacondone(struct urb *urb);
  925. static void rt2500usb_write_beacon(struct queue_entry *entry)
  926. {
  927. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  928. struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
  929. struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
  930. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  931. int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
  932. int length;
  933. u16 reg;
  934. /*
  935. * Add the descriptor in front of the skb.
  936. */
  937. skb_push(entry->skb, entry->queue->desc_size);
  938. memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len);
  939. skbdesc->desc = entry->skb->data;
  940. /*
  941. * Disable beaconing while we are reloading the beacon data,
  942. * otherwise we might be sending out invalid data.
  943. */
  944. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  945. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
  946. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  947. /*
  948. * USB devices cannot blindly pass the skb->len as the
  949. * length of the data to usb_fill_bulk_urb. Pass the skb
  950. * to the driver to determine what the length should be.
  951. */
  952. length = rt2x00dev->ops->lib->get_tx_data_len(entry);
  953. usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
  954. entry->skb->data, length, rt2500usb_beacondone,
  955. entry);
  956. /*
  957. * Second we need to create the guardian byte.
  958. * We only need a single byte, so lets recycle
  959. * the 'flags' field we are not using for beacons.
  960. */
  961. bcn_priv->guardian_data = 0;
  962. usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
  963. &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
  964. entry);
  965. /*
  966. * Send out the guardian byte.
  967. */
  968. usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
  969. }
  970. static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
  971. {
  972. int length;
  973. /*
  974. * The length _must_ be a multiple of 2,
  975. * but it must _not_ be a multiple of the USB packet size.
  976. */
  977. length = roundup(entry->skb->len, 2);
  978. length += (2 * !(length % entry->queue->usb_maxpacket));
  979. return length;
  980. }
  981. static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  982. const enum data_queue_qid queue)
  983. {
  984. u16 reg, reg0;
  985. if (queue != QID_BEACON) {
  986. rt2x00usb_kick_tx_queue(rt2x00dev, queue);
  987. return;
  988. }
  989. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  990. if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
  991. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
  992. rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
  993. reg0 = reg;
  994. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
  995. /*
  996. * Beacon generation will fail initially.
  997. * To prevent this we need to change the TXRX_CSR19
  998. * register several times (reg0 is the same as reg
  999. * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
  1000. * and 1 in reg).
  1001. */
  1002. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  1003. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
  1004. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  1005. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
  1006. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  1007. }
  1008. }
  1009. /*
  1010. * RX control handlers
  1011. */
  1012. static void rt2500usb_fill_rxdone(struct queue_entry *entry,
  1013. struct rxdone_entry_desc *rxdesc)
  1014. {
  1015. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1016. struct queue_entry_priv_usb *entry_priv = entry->priv_data;
  1017. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  1018. __le32 *rxd =
  1019. (__le32 *)(entry->skb->data +
  1020. (entry_priv->urb->actual_length -
  1021. entry->queue->desc_size));
  1022. u32 word0;
  1023. u32 word1;
  1024. /*
  1025. * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
  1026. * frame data in rt2x00usb.
  1027. */
  1028. memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
  1029. rxd = (__le32 *)skbdesc->desc;
  1030. /*
  1031. * It is now safe to read the descriptor on all architectures.
  1032. */
  1033. rt2x00_desc_read(rxd, 0, &word0);
  1034. rt2x00_desc_read(rxd, 1, &word1);
  1035. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1036. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1037. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1038. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1039. if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
  1040. rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
  1041. if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
  1042. rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
  1043. }
  1044. if (rxdesc->cipher != CIPHER_NONE) {
  1045. _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
  1046. _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
  1047. rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
  1048. /* ICV is located at the end of frame */
  1049. rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
  1050. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  1051. rxdesc->flags |= RX_FLAG_DECRYPTED;
  1052. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  1053. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  1054. }
  1055. /*
  1056. * Obtain the status about this packet.
  1057. * When frame was received with an OFDM bitrate,
  1058. * the signal is the PLCP value. If it was received with
  1059. * a CCK bitrate the signal is the rate in 100kbit/s.
  1060. */
  1061. rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
  1062. rxdesc->rssi =
  1063. rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
  1064. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1065. if (rt2x00_get_field32(word0, RXD_W0_OFDM))
  1066. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1067. else
  1068. rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
  1069. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1070. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1071. /*
  1072. * Adjust the skb memory window to the frame boundaries.
  1073. */
  1074. skb_trim(entry->skb, rxdesc->size);
  1075. }
  1076. /*
  1077. * Interrupt functions.
  1078. */
  1079. static void rt2500usb_beacondone(struct urb *urb)
  1080. {
  1081. struct queue_entry *entry = (struct queue_entry *)urb->context;
  1082. struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
  1083. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
  1084. return;
  1085. /*
  1086. * Check if this was the guardian beacon,
  1087. * if that was the case we need to send the real beacon now.
  1088. * Otherwise we should free the sk_buffer, the device
  1089. * should be doing the rest of the work now.
  1090. */
  1091. if (bcn_priv->guardian_urb == urb) {
  1092. usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
  1093. } else if (bcn_priv->urb == urb) {
  1094. dev_kfree_skb(entry->skb);
  1095. entry->skb = NULL;
  1096. }
  1097. }
  1098. /*
  1099. * Device probe functions.
  1100. */
  1101. static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1102. {
  1103. u16 word;
  1104. u8 *mac;
  1105. u8 bbp;
  1106. rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
  1107. /*
  1108. * Start validation of the data that has been read.
  1109. */
  1110. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1111. if (!is_valid_ether_addr(mac)) {
  1112. random_ether_addr(mac);
  1113. EEPROM(rt2x00dev, "MAC: %pM\n", mac);
  1114. }
  1115. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1116. if (word == 0xffff) {
  1117. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1118. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1119. ANTENNA_SW_DIVERSITY);
  1120. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1121. ANTENNA_SW_DIVERSITY);
  1122. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
  1123. LED_MODE_DEFAULT);
  1124. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1125. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1126. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1127. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1128. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1129. }
  1130. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1131. if (word == 0xffff) {
  1132. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1133. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1134. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1135. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1136. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1137. }
  1138. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
  1139. if (word == 0xffff) {
  1140. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1141. DEFAULT_RSSI_OFFSET);
  1142. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1143. EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
  1144. }
  1145. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
  1146. if (word == 0xffff) {
  1147. rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
  1148. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
  1149. EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
  1150. }
  1151. /*
  1152. * Switch lower vgc bound to current BBP R17 value,
  1153. * lower the value a bit for better quality.
  1154. */
  1155. rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
  1156. bbp -= 6;
  1157. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
  1158. if (word == 0xffff) {
  1159. rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
  1160. rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
  1161. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
  1162. EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
  1163. } else {
  1164. rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
  1165. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
  1166. }
  1167. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
  1168. if (word == 0xffff) {
  1169. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
  1170. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
  1171. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
  1172. EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
  1173. }
  1174. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
  1175. if (word == 0xffff) {
  1176. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
  1177. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
  1178. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
  1179. EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
  1180. }
  1181. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
  1182. if (word == 0xffff) {
  1183. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
  1184. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
  1185. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
  1186. EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
  1187. }
  1188. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
  1189. if (word == 0xffff) {
  1190. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
  1191. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
  1192. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
  1193. EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
  1194. }
  1195. return 0;
  1196. }
  1197. static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1198. {
  1199. u16 reg;
  1200. u16 value;
  1201. u16 eeprom;
  1202. /*
  1203. * Read EEPROM word for configuration.
  1204. */
  1205. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1206. /*
  1207. * Identify RF chipset.
  1208. */
  1209. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1210. rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
  1211. rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
  1212. if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
  1213. ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
  1214. return -ENODEV;
  1215. }
  1216. if (!rt2x00_rf(rt2x00dev, RF2522) &&
  1217. !rt2x00_rf(rt2x00dev, RF2523) &&
  1218. !rt2x00_rf(rt2x00dev, RF2524) &&
  1219. !rt2x00_rf(rt2x00dev, RF2525) &&
  1220. !rt2x00_rf(rt2x00dev, RF2525E) &&
  1221. !rt2x00_rf(rt2x00dev, RF5222)) {
  1222. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1223. return -ENODEV;
  1224. }
  1225. /*
  1226. * Identify default antenna configuration.
  1227. */
  1228. rt2x00dev->default_ant.tx =
  1229. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1230. rt2x00dev->default_ant.rx =
  1231. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1232. /*
  1233. * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
  1234. * I am not 100% sure about this, but the legacy drivers do not
  1235. * indicate antenna swapping in software is required when
  1236. * diversity is enabled.
  1237. */
  1238. if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
  1239. rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
  1240. if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
  1241. rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
  1242. /*
  1243. * Store led mode, for correct led behaviour.
  1244. */
  1245. #ifdef CONFIG_RT2X00_LIB_LEDS
  1246. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1247. rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1248. if (value == LED_MODE_TXRX_ACTIVITY ||
  1249. value == LED_MODE_DEFAULT ||
  1250. value == LED_MODE_ASUS)
  1251. rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
  1252. LED_TYPE_ACTIVITY);
  1253. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1254. /*
  1255. * Detect if this device has an hardware controlled radio.
  1256. */
  1257. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1258. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1259. /*
  1260. * Check if the BBP tuning should be disabled.
  1261. */
  1262. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1263. if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
  1264. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1265. /*
  1266. * Read the RSSI <-> dBm offset information.
  1267. */
  1268. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
  1269. rt2x00dev->rssi_offset =
  1270. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1271. return 0;
  1272. }
  1273. /*
  1274. * RF value list for RF2522
  1275. * Supports: 2.4 GHz
  1276. */
  1277. static const struct rf_channel rf_vals_bg_2522[] = {
  1278. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1279. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1280. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1281. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1282. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1283. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1284. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1285. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1286. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1287. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1288. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1289. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1290. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1291. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1292. };
  1293. /*
  1294. * RF value list for RF2523
  1295. * Supports: 2.4 GHz
  1296. */
  1297. static const struct rf_channel rf_vals_bg_2523[] = {
  1298. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1299. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1300. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1301. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1302. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1303. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1304. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1305. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1306. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1307. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1308. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1309. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1310. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1311. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1312. };
  1313. /*
  1314. * RF value list for RF2524
  1315. * Supports: 2.4 GHz
  1316. */
  1317. static const struct rf_channel rf_vals_bg_2524[] = {
  1318. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1319. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1320. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1321. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1322. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1323. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1324. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1325. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1326. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1327. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1328. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1329. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1330. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1331. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1332. };
  1333. /*
  1334. * RF value list for RF2525
  1335. * Supports: 2.4 GHz
  1336. */
  1337. static const struct rf_channel rf_vals_bg_2525[] = {
  1338. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1339. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1340. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1341. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1342. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1343. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1344. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1345. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1346. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1347. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1348. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1349. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1350. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1351. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1352. };
  1353. /*
  1354. * RF value list for RF2525e
  1355. * Supports: 2.4 GHz
  1356. */
  1357. static const struct rf_channel rf_vals_bg_2525e[] = {
  1358. { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
  1359. { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
  1360. { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
  1361. { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
  1362. { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
  1363. { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
  1364. { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
  1365. { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
  1366. { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
  1367. { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
  1368. { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
  1369. { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
  1370. { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
  1371. { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
  1372. };
  1373. /*
  1374. * RF value list for RF5222
  1375. * Supports: 2.4 GHz & 5.2 GHz
  1376. */
  1377. static const struct rf_channel rf_vals_5222[] = {
  1378. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1379. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1380. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1381. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1382. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1383. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1384. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1385. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1386. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1387. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1388. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1389. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1390. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1391. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1392. /* 802.11 UNI / HyperLan 2 */
  1393. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1394. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1395. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1396. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1397. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1398. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1399. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1400. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1401. /* 802.11 HyperLan 2 */
  1402. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1403. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1404. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1405. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1406. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1407. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1408. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1409. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1410. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1411. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1412. /* 802.11 UNII */
  1413. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1414. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1415. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1416. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1417. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1418. };
  1419. static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1420. {
  1421. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1422. struct channel_info *info;
  1423. char *tx_power;
  1424. unsigned int i;
  1425. /*
  1426. * Disable powersaving as default.
  1427. */
  1428. rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
  1429. /*
  1430. * Initialize all hw fields.
  1431. */
  1432. rt2x00dev->hw->flags =
  1433. IEEE80211_HW_RX_INCLUDES_FCS |
  1434. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1435. IEEE80211_HW_SIGNAL_DBM |
  1436. IEEE80211_HW_SUPPORTS_PS |
  1437. IEEE80211_HW_PS_NULLFUNC_STACK;
  1438. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1439. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1440. rt2x00_eeprom_addr(rt2x00dev,
  1441. EEPROM_MAC_ADDR_0));
  1442. /*
  1443. * Initialize hw_mode information.
  1444. */
  1445. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1446. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  1447. if (rt2x00_rf(rt2x00dev, RF2522)) {
  1448. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1449. spec->channels = rf_vals_bg_2522;
  1450. } else if (rt2x00_rf(rt2x00dev, RF2523)) {
  1451. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1452. spec->channels = rf_vals_bg_2523;
  1453. } else if (rt2x00_rf(rt2x00dev, RF2524)) {
  1454. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1455. spec->channels = rf_vals_bg_2524;
  1456. } else if (rt2x00_rf(rt2x00dev, RF2525)) {
  1457. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1458. spec->channels = rf_vals_bg_2525;
  1459. } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
  1460. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1461. spec->channels = rf_vals_bg_2525e;
  1462. } else if (rt2x00_rf(rt2x00dev, RF5222)) {
  1463. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1464. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1465. spec->channels = rf_vals_5222;
  1466. }
  1467. /*
  1468. * Create channel information array
  1469. */
  1470. info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
  1471. if (!info)
  1472. return -ENOMEM;
  1473. spec->channels_info = info;
  1474. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1475. for (i = 0; i < 14; i++)
  1476. info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  1477. if (spec->num_channels > 14) {
  1478. for (i = 14; i < spec->num_channels; i++)
  1479. info[i].tx_power1 = DEFAULT_TXPOWER;
  1480. }
  1481. return 0;
  1482. }
  1483. static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
  1484. {
  1485. int retval;
  1486. /*
  1487. * Allocate eeprom data.
  1488. */
  1489. retval = rt2500usb_validate_eeprom(rt2x00dev);
  1490. if (retval)
  1491. return retval;
  1492. retval = rt2500usb_init_eeprom(rt2x00dev);
  1493. if (retval)
  1494. return retval;
  1495. /*
  1496. * Initialize hw specifications.
  1497. */
  1498. retval = rt2500usb_probe_hw_mode(rt2x00dev);
  1499. if (retval)
  1500. return retval;
  1501. /*
  1502. * This device requires the atim queue
  1503. */
  1504. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1505. __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
  1506. if (!modparam_nohwcrypt) {
  1507. __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
  1508. __set_bit(DRIVER_REQUIRE_COPY_IV, &rt2x00dev->flags);
  1509. }
  1510. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1511. /*
  1512. * Set the rssi offset.
  1513. */
  1514. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1515. return 0;
  1516. }
  1517. static const struct ieee80211_ops rt2500usb_mac80211_ops = {
  1518. .tx = rt2x00mac_tx,
  1519. .start = rt2x00mac_start,
  1520. .stop = rt2x00mac_stop,
  1521. .add_interface = rt2x00mac_add_interface,
  1522. .remove_interface = rt2x00mac_remove_interface,
  1523. .config = rt2x00mac_config,
  1524. .configure_filter = rt2x00mac_configure_filter,
  1525. .set_tim = rt2x00mac_set_tim,
  1526. .set_key = rt2x00mac_set_key,
  1527. .get_stats = rt2x00mac_get_stats,
  1528. .bss_info_changed = rt2x00mac_bss_info_changed,
  1529. .conf_tx = rt2x00mac_conf_tx,
  1530. .rfkill_poll = rt2x00mac_rfkill_poll,
  1531. };
  1532. static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
  1533. .probe_hw = rt2500usb_probe_hw,
  1534. .initialize = rt2x00usb_initialize,
  1535. .uninitialize = rt2x00usb_uninitialize,
  1536. .clear_entry = rt2x00usb_clear_entry,
  1537. .set_device_state = rt2500usb_set_device_state,
  1538. .rfkill_poll = rt2500usb_rfkill_poll,
  1539. .link_stats = rt2500usb_link_stats,
  1540. .reset_tuner = rt2500usb_reset_tuner,
  1541. .write_tx_desc = rt2500usb_write_tx_desc,
  1542. .write_tx_data = rt2x00usb_write_tx_data,
  1543. .write_beacon = rt2500usb_write_beacon,
  1544. .get_tx_data_len = rt2500usb_get_tx_data_len,
  1545. .kick_tx_queue = rt2500usb_kick_tx_queue,
  1546. .kill_tx_queue = rt2x00usb_kill_tx_queue,
  1547. .fill_rxdone = rt2500usb_fill_rxdone,
  1548. .config_shared_key = rt2500usb_config_key,
  1549. .config_pairwise_key = rt2500usb_config_key,
  1550. .config_filter = rt2500usb_config_filter,
  1551. .config_intf = rt2500usb_config_intf,
  1552. .config_erp = rt2500usb_config_erp,
  1553. .config_ant = rt2500usb_config_ant,
  1554. .config = rt2500usb_config,
  1555. };
  1556. static const struct data_queue_desc rt2500usb_queue_rx = {
  1557. .entry_num = RX_ENTRIES,
  1558. .data_size = DATA_FRAME_SIZE,
  1559. .desc_size = RXD_DESC_SIZE,
  1560. .priv_size = sizeof(struct queue_entry_priv_usb),
  1561. };
  1562. static const struct data_queue_desc rt2500usb_queue_tx = {
  1563. .entry_num = TX_ENTRIES,
  1564. .data_size = DATA_FRAME_SIZE,
  1565. .desc_size = TXD_DESC_SIZE,
  1566. .priv_size = sizeof(struct queue_entry_priv_usb),
  1567. };
  1568. static const struct data_queue_desc rt2500usb_queue_bcn = {
  1569. .entry_num = BEACON_ENTRIES,
  1570. .data_size = MGMT_FRAME_SIZE,
  1571. .desc_size = TXD_DESC_SIZE,
  1572. .priv_size = sizeof(struct queue_entry_priv_usb_bcn),
  1573. };
  1574. static const struct data_queue_desc rt2500usb_queue_atim = {
  1575. .entry_num = ATIM_ENTRIES,
  1576. .data_size = DATA_FRAME_SIZE,
  1577. .desc_size = TXD_DESC_SIZE,
  1578. .priv_size = sizeof(struct queue_entry_priv_usb),
  1579. };
  1580. static const struct rt2x00_ops rt2500usb_ops = {
  1581. .name = KBUILD_MODNAME,
  1582. .max_sta_intf = 1,
  1583. .max_ap_intf = 1,
  1584. .eeprom_size = EEPROM_SIZE,
  1585. .rf_size = RF_SIZE,
  1586. .tx_queues = NUM_TX_QUEUES,
  1587. .extra_tx_headroom = TXD_DESC_SIZE,
  1588. .rx = &rt2500usb_queue_rx,
  1589. .tx = &rt2500usb_queue_tx,
  1590. .bcn = &rt2500usb_queue_bcn,
  1591. .atim = &rt2500usb_queue_atim,
  1592. .lib = &rt2500usb_rt2x00_ops,
  1593. .hw = &rt2500usb_mac80211_ops,
  1594. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1595. .debugfs = &rt2500usb_rt2x00debug,
  1596. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1597. };
  1598. /*
  1599. * rt2500usb module information.
  1600. */
  1601. static struct usb_device_id rt2500usb_device_table[] = {
  1602. /* ASUS */
  1603. { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
  1604. { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
  1605. /* Belkin */
  1606. { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
  1607. { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
  1608. { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
  1609. /* Cisco Systems */
  1610. { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
  1611. { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
  1612. { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
  1613. /* CNet */
  1614. { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt2500usb_ops) },
  1615. /* Conceptronic */
  1616. { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
  1617. /* D-LINK */
  1618. { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
  1619. /* Gigabyte */
  1620. { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
  1621. { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
  1622. /* Hercules */
  1623. { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
  1624. /* Melco */
  1625. { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
  1626. { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
  1627. { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
  1628. { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
  1629. { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
  1630. /* MSI */
  1631. { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
  1632. { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
  1633. { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
  1634. /* Ralink */
  1635. { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
  1636. { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
  1637. { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
  1638. { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
  1639. /* Sagem */
  1640. { USB_DEVICE(0x079b, 0x004b), USB_DEVICE_DATA(&rt2500usb_ops) },
  1641. /* Siemens */
  1642. { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
  1643. /* SMC */
  1644. { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
  1645. /* Spairon */
  1646. { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
  1647. /* SURECOM */
  1648. { USB_DEVICE(0x0769, 0x11f3), USB_DEVICE_DATA(&rt2500usb_ops) },
  1649. /* Trust */
  1650. { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
  1651. /* VTech */
  1652. { USB_DEVICE(0x0f88, 0x3012), USB_DEVICE_DATA(&rt2500usb_ops) },
  1653. /* Zinwell */
  1654. { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
  1655. { 0, }
  1656. };
  1657. MODULE_AUTHOR(DRV_PROJECT);
  1658. MODULE_VERSION(DRV_VERSION);
  1659. MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
  1660. MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
  1661. MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
  1662. MODULE_LICENSE("GPL");
  1663. static struct usb_driver rt2500usb_driver = {
  1664. .name = KBUILD_MODNAME,
  1665. .id_table = rt2500usb_device_table,
  1666. .probe = rt2x00usb_probe,
  1667. .disconnect = rt2x00usb_disconnect,
  1668. .suspend = rt2x00usb_suspend,
  1669. .resume = rt2x00usb_resume,
  1670. };
  1671. static int __init rt2500usb_init(void)
  1672. {
  1673. return usb_register(&rt2500usb_driver);
  1674. }
  1675. static void __exit rt2500usb_exit(void)
  1676. {
  1677. usb_deregister(&rt2500usb_driver);
  1678. }
  1679. module_init(rt2500usb_init);
  1680. module_exit(rt2500usb_exit);