rt2500pci.c 61 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975
  1. /*
  2. Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2500pci
  19. Abstract: rt2500pci device specific routines.
  20. Supported chipsets: RT2560.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/pci.h>
  28. #include <linux/eeprom_93cx6.h>
  29. #include <linux/slab.h>
  30. #include "rt2x00.h"
  31. #include "rt2x00pci.h"
  32. #include "rt2500pci.h"
  33. /*
  34. * Register access.
  35. * All access to the CSR registers will go through the methods
  36. * rt2x00pci_register_read and rt2x00pci_register_write.
  37. * BBP and RF register require indirect register access,
  38. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  39. * These indirect registers work with busy bits,
  40. * and we will try maximal REGISTER_BUSY_COUNT times to access
  41. * the register while taking a REGISTER_BUSY_DELAY us delay
  42. * between each attampt. When the busy bit is still set at that time,
  43. * the access attempt is considered to have failed,
  44. * and we will print an error.
  45. */
  46. #define WAIT_FOR_BBP(__dev, __reg) \
  47. rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
  48. #define WAIT_FOR_RF(__dev, __reg) \
  49. rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
  50. static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  51. const unsigned int word, const u8 value)
  52. {
  53. u32 reg;
  54. mutex_lock(&rt2x00dev->csr_mutex);
  55. /*
  56. * Wait until the BBP becomes available, afterwards we
  57. * can safely write the new data into the register.
  58. */
  59. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  60. reg = 0;
  61. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  62. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  63. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  64. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  65. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  66. }
  67. mutex_unlock(&rt2x00dev->csr_mutex);
  68. }
  69. static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  70. const unsigned int word, u8 *value)
  71. {
  72. u32 reg;
  73. mutex_lock(&rt2x00dev->csr_mutex);
  74. /*
  75. * Wait until the BBP becomes available, afterwards we
  76. * can safely write the read request into the register.
  77. * After the data has been written, we wait until hardware
  78. * returns the correct value, if at any time the register
  79. * doesn't become available in time, reg will be 0xffffffff
  80. * which means we return 0xff to the caller.
  81. */
  82. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  83. reg = 0;
  84. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  85. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  86. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  87. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  88. WAIT_FOR_BBP(rt2x00dev, &reg);
  89. }
  90. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  91. mutex_unlock(&rt2x00dev->csr_mutex);
  92. }
  93. static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
  94. const unsigned int word, const u32 value)
  95. {
  96. u32 reg;
  97. mutex_lock(&rt2x00dev->csr_mutex);
  98. /*
  99. * Wait until the RF becomes available, afterwards we
  100. * can safely write the new data into the register.
  101. */
  102. if (WAIT_FOR_RF(rt2x00dev, &reg)) {
  103. reg = 0;
  104. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  105. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  106. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  107. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  108. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  109. rt2x00_rf_write(rt2x00dev, word, value);
  110. }
  111. mutex_unlock(&rt2x00dev->csr_mutex);
  112. }
  113. static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  114. {
  115. struct rt2x00_dev *rt2x00dev = eeprom->data;
  116. u32 reg;
  117. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  118. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  119. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  120. eeprom->reg_data_clock =
  121. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  122. eeprom->reg_chip_select =
  123. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  124. }
  125. static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  126. {
  127. struct rt2x00_dev *rt2x00dev = eeprom->data;
  128. u32 reg = 0;
  129. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  130. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  131. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  132. !!eeprom->reg_data_clock);
  133. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  134. !!eeprom->reg_chip_select);
  135. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  136. }
  137. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  138. static const struct rt2x00debug rt2500pci_rt2x00debug = {
  139. .owner = THIS_MODULE,
  140. .csr = {
  141. .read = rt2x00pci_register_read,
  142. .write = rt2x00pci_register_write,
  143. .flags = RT2X00DEBUGFS_OFFSET,
  144. .word_base = CSR_REG_BASE,
  145. .word_size = sizeof(u32),
  146. .word_count = CSR_REG_SIZE / sizeof(u32),
  147. },
  148. .eeprom = {
  149. .read = rt2x00_eeprom_read,
  150. .write = rt2x00_eeprom_write,
  151. .word_base = EEPROM_BASE,
  152. .word_size = sizeof(u16),
  153. .word_count = EEPROM_SIZE / sizeof(u16),
  154. },
  155. .bbp = {
  156. .read = rt2500pci_bbp_read,
  157. .write = rt2500pci_bbp_write,
  158. .word_base = BBP_BASE,
  159. .word_size = sizeof(u8),
  160. .word_count = BBP_SIZE / sizeof(u8),
  161. },
  162. .rf = {
  163. .read = rt2x00_rf_read,
  164. .write = rt2500pci_rf_write,
  165. .word_base = RF_BASE,
  166. .word_size = sizeof(u32),
  167. .word_count = RF_SIZE / sizeof(u32),
  168. },
  169. };
  170. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  171. static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  172. {
  173. u32 reg;
  174. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  175. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  176. }
  177. #ifdef CONFIG_RT2X00_LIB_LEDS
  178. static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
  179. enum led_brightness brightness)
  180. {
  181. struct rt2x00_led *led =
  182. container_of(led_cdev, struct rt2x00_led, led_dev);
  183. unsigned int enabled = brightness != LED_OFF;
  184. u32 reg;
  185. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  186. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  187. rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
  188. else if (led->type == LED_TYPE_ACTIVITY)
  189. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
  190. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  191. }
  192. static int rt2500pci_blink_set(struct led_classdev *led_cdev,
  193. unsigned long *delay_on,
  194. unsigned long *delay_off)
  195. {
  196. struct rt2x00_led *led =
  197. container_of(led_cdev, struct rt2x00_led, led_dev);
  198. u32 reg;
  199. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  200. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
  201. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
  202. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  203. return 0;
  204. }
  205. static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
  206. struct rt2x00_led *led,
  207. enum led_type type)
  208. {
  209. led->rt2x00dev = rt2x00dev;
  210. led->type = type;
  211. led->led_dev.brightness_set = rt2500pci_brightness_set;
  212. led->led_dev.blink_set = rt2500pci_blink_set;
  213. led->flags = LED_INITIALIZED;
  214. }
  215. #endif /* CONFIG_RT2X00_LIB_LEDS */
  216. /*
  217. * Configuration handlers.
  218. */
  219. static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
  220. const unsigned int filter_flags)
  221. {
  222. u32 reg;
  223. /*
  224. * Start configuration steps.
  225. * Note that the version error will always be dropped
  226. * and broadcast frames will always be accepted since
  227. * there is no filter for it at this time.
  228. */
  229. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  230. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  231. !(filter_flags & FIF_FCSFAIL));
  232. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  233. !(filter_flags & FIF_PLCPFAIL));
  234. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  235. !(filter_flags & FIF_CONTROL));
  236. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  237. !(filter_flags & FIF_PROMISC_IN_BSS));
  238. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  239. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  240. !rt2x00dev->intf_ap_count);
  241. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  242. rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
  243. !(filter_flags & FIF_ALLMULTI));
  244. rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
  245. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  246. }
  247. static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
  248. struct rt2x00_intf *intf,
  249. struct rt2x00intf_conf *conf,
  250. const unsigned int flags)
  251. {
  252. struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, QID_BEACON);
  253. unsigned int bcn_preload;
  254. u32 reg;
  255. if (flags & CONFIG_UPDATE_TYPE) {
  256. /*
  257. * Enable beacon config
  258. */
  259. bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
  260. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  261. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
  262. rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
  263. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  264. /*
  265. * Enable synchronisation.
  266. */
  267. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  268. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  269. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
  270. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  271. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  272. }
  273. if (flags & CONFIG_UPDATE_MAC)
  274. rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
  275. conf->mac, sizeof(conf->mac));
  276. if (flags & CONFIG_UPDATE_BSSID)
  277. rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
  278. conf->bssid, sizeof(conf->bssid));
  279. }
  280. static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
  281. struct rt2x00lib_erp *erp)
  282. {
  283. int preamble_mask;
  284. u32 reg;
  285. /*
  286. * When short preamble is enabled, we should set bit 0x08
  287. */
  288. preamble_mask = erp->short_preamble << 3;
  289. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  290. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
  291. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
  292. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  293. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  294. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  295. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  296. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
  297. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  298. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
  299. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  300. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  301. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  302. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  303. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
  304. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  305. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  306. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  307. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  308. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
  309. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  310. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  311. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  312. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  313. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
  314. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  315. rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
  316. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  317. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
  318. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  319. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  320. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, erp->beacon_int * 16);
  321. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, erp->beacon_int * 16);
  322. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  323. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  324. rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
  325. rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
  326. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  327. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  328. rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
  329. rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
  330. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  331. }
  332. static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
  333. struct antenna_setup *ant)
  334. {
  335. u32 reg;
  336. u8 r14;
  337. u8 r2;
  338. /*
  339. * We should never come here because rt2x00lib is supposed
  340. * to catch this and send us the correct antenna explicitely.
  341. */
  342. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  343. ant->tx == ANTENNA_SW_DIVERSITY);
  344. rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
  345. rt2500pci_bbp_read(rt2x00dev, 14, &r14);
  346. rt2500pci_bbp_read(rt2x00dev, 2, &r2);
  347. /*
  348. * Configure the TX antenna.
  349. */
  350. switch (ant->tx) {
  351. case ANTENNA_A:
  352. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  353. rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
  354. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
  355. break;
  356. case ANTENNA_B:
  357. default:
  358. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  359. rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
  360. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
  361. break;
  362. }
  363. /*
  364. * Configure the RX antenna.
  365. */
  366. switch (ant->rx) {
  367. case ANTENNA_A:
  368. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  369. break;
  370. case ANTENNA_B:
  371. default:
  372. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  373. break;
  374. }
  375. /*
  376. * RT2525E and RT5222 need to flip TX I/Q
  377. */
  378. if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
  379. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  380. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
  381. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
  382. /*
  383. * RT2525E does not need RX I/Q Flip.
  384. */
  385. if (rt2x00_rf(rt2x00dev, RF2525E))
  386. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  387. } else {
  388. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
  389. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
  390. }
  391. rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
  392. rt2500pci_bbp_write(rt2x00dev, 14, r14);
  393. rt2500pci_bbp_write(rt2x00dev, 2, r2);
  394. }
  395. static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
  396. struct rf_channel *rf, const int txpower)
  397. {
  398. u8 r70;
  399. /*
  400. * Set TXpower.
  401. */
  402. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  403. /*
  404. * Switch on tuning bits.
  405. * For RT2523 devices we do not need to update the R1 register.
  406. */
  407. if (!rt2x00_rf(rt2x00dev, RF2523))
  408. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  409. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  410. /*
  411. * For RT2525 we should first set the channel to half band higher.
  412. */
  413. if (rt2x00_rf(rt2x00dev, RF2525)) {
  414. static const u32 vals[] = {
  415. 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
  416. 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
  417. 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
  418. 0x00080d2e, 0x00080d3a
  419. };
  420. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  421. rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
  422. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  423. if (rf->rf4)
  424. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  425. }
  426. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  427. rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
  428. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  429. if (rf->rf4)
  430. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  431. /*
  432. * Channel 14 requires the Japan filter bit to be set.
  433. */
  434. r70 = 0x46;
  435. rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
  436. rt2500pci_bbp_write(rt2x00dev, 70, r70);
  437. msleep(1);
  438. /*
  439. * Switch off tuning bits.
  440. * For RT2523 devices we do not need to update the R1 register.
  441. */
  442. if (!rt2x00_rf(rt2x00dev, RF2523)) {
  443. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  444. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  445. }
  446. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  447. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  448. /*
  449. * Clear false CRC during channel switch.
  450. */
  451. rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
  452. }
  453. static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
  454. const int txpower)
  455. {
  456. u32 rf3;
  457. rt2x00_rf_read(rt2x00dev, 3, &rf3);
  458. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  459. rt2500pci_rf_write(rt2x00dev, 3, rf3);
  460. }
  461. static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
  462. struct rt2x00lib_conf *libconf)
  463. {
  464. u32 reg;
  465. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  466. rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
  467. libconf->conf->long_frame_max_tx_count);
  468. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
  469. libconf->conf->short_frame_max_tx_count);
  470. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  471. }
  472. static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
  473. struct rt2x00lib_conf *libconf)
  474. {
  475. enum dev_state state =
  476. (libconf->conf->flags & IEEE80211_CONF_PS) ?
  477. STATE_SLEEP : STATE_AWAKE;
  478. u32 reg;
  479. if (state == STATE_SLEEP) {
  480. rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
  481. rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
  482. (rt2x00dev->beacon_int - 20) * 16);
  483. rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
  484. libconf->conf->listen_interval - 1);
  485. /* We must first disable autowake before it can be enabled */
  486. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
  487. rt2x00pci_register_write(rt2x00dev, CSR20, reg);
  488. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
  489. rt2x00pci_register_write(rt2x00dev, CSR20, reg);
  490. }
  491. rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
  492. }
  493. static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
  494. struct rt2x00lib_conf *libconf,
  495. const unsigned int flags)
  496. {
  497. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  498. rt2500pci_config_channel(rt2x00dev, &libconf->rf,
  499. libconf->conf->power_level);
  500. if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
  501. !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
  502. rt2500pci_config_txpower(rt2x00dev,
  503. libconf->conf->power_level);
  504. if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
  505. rt2500pci_config_retry_limit(rt2x00dev, libconf);
  506. if (flags & IEEE80211_CONF_CHANGE_PS)
  507. rt2500pci_config_ps(rt2x00dev, libconf);
  508. }
  509. /*
  510. * Link tuning
  511. */
  512. static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
  513. struct link_qual *qual)
  514. {
  515. u32 reg;
  516. /*
  517. * Update FCS error count from register.
  518. */
  519. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  520. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  521. /*
  522. * Update False CCA count from register.
  523. */
  524. rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
  525. qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
  526. }
  527. static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
  528. struct link_qual *qual, u8 vgc_level)
  529. {
  530. if (qual->vgc_level_reg != vgc_level) {
  531. rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
  532. qual->vgc_level_reg = vgc_level;
  533. }
  534. }
  535. static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
  536. struct link_qual *qual)
  537. {
  538. rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
  539. }
  540. static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
  541. struct link_qual *qual, const u32 count)
  542. {
  543. /*
  544. * To prevent collisions with MAC ASIC on chipsets
  545. * up to version C the link tuning should halt after 20
  546. * seconds while being associated.
  547. */
  548. if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
  549. rt2x00dev->intf_associated && count > 20)
  550. return;
  551. /*
  552. * Chipset versions C and lower should directly continue
  553. * to the dynamic CCA tuning. Chipset version D and higher
  554. * should go straight to dynamic CCA tuning when they
  555. * are not associated.
  556. */
  557. if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
  558. !rt2x00dev->intf_associated)
  559. goto dynamic_cca_tune;
  560. /*
  561. * A too low RSSI will cause too much false CCA which will
  562. * then corrupt the R17 tuning. To remidy this the tuning should
  563. * be stopped (While making sure the R17 value will not exceed limits)
  564. */
  565. if (qual->rssi < -80 && count > 20) {
  566. if (qual->vgc_level_reg >= 0x41)
  567. rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
  568. return;
  569. }
  570. /*
  571. * Special big-R17 for short distance
  572. */
  573. if (qual->rssi >= -58) {
  574. rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
  575. return;
  576. }
  577. /*
  578. * Special mid-R17 for middle distance
  579. */
  580. if (qual->rssi >= -74) {
  581. rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
  582. return;
  583. }
  584. /*
  585. * Leave short or middle distance condition, restore r17
  586. * to the dynamic tuning range.
  587. */
  588. if (qual->vgc_level_reg >= 0x41) {
  589. rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
  590. return;
  591. }
  592. dynamic_cca_tune:
  593. /*
  594. * R17 is inside the dynamic tuning range,
  595. * start tuning the link based on the false cca counter.
  596. */
  597. if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40) {
  598. rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
  599. qual->vgc_level = qual->vgc_level_reg;
  600. } else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32) {
  601. rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
  602. qual->vgc_level = qual->vgc_level_reg;
  603. }
  604. }
  605. /*
  606. * Initialization functions.
  607. */
  608. static bool rt2500pci_get_entry_state(struct queue_entry *entry)
  609. {
  610. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  611. u32 word;
  612. if (entry->queue->qid == QID_RX) {
  613. rt2x00_desc_read(entry_priv->desc, 0, &word);
  614. return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
  615. } else {
  616. rt2x00_desc_read(entry_priv->desc, 0, &word);
  617. return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  618. rt2x00_get_field32(word, TXD_W0_VALID));
  619. }
  620. }
  621. static void rt2500pci_clear_entry(struct queue_entry *entry)
  622. {
  623. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  624. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  625. u32 word;
  626. if (entry->queue->qid == QID_RX) {
  627. rt2x00_desc_read(entry_priv->desc, 1, &word);
  628. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  629. rt2x00_desc_write(entry_priv->desc, 1, word);
  630. rt2x00_desc_read(entry_priv->desc, 0, &word);
  631. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  632. rt2x00_desc_write(entry_priv->desc, 0, word);
  633. } else {
  634. rt2x00_desc_read(entry_priv->desc, 0, &word);
  635. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  636. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  637. rt2x00_desc_write(entry_priv->desc, 0, word);
  638. }
  639. }
  640. static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
  641. {
  642. struct queue_entry_priv_pci *entry_priv;
  643. u32 reg;
  644. /*
  645. * Initialize registers.
  646. */
  647. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  648. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
  649. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
  650. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
  651. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
  652. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  653. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  654. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  655. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  656. entry_priv->desc_dma);
  657. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  658. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  659. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  660. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  661. entry_priv->desc_dma);
  662. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  663. entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
  664. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  665. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  666. entry_priv->desc_dma);
  667. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  668. entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
  669. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  670. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  671. entry_priv->desc_dma);
  672. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  673. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  674. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  675. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
  676. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  677. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  678. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  679. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
  680. entry_priv->desc_dma);
  681. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  682. return 0;
  683. }
  684. static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
  685. {
  686. u32 reg;
  687. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  688. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  689. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
  690. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  691. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  692. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  693. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  694. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  695. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  696. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  697. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  698. rt2x00dev->rx->data_size / 128);
  699. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  700. /*
  701. * Always use CWmin and CWmax set in descriptor.
  702. */
  703. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  704. rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
  705. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  706. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  707. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  708. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
  709. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  710. rt2x00_set_field32(&reg, CSR14_TCFP, 0);
  711. rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
  712. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  713. rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
  714. rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
  715. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  716. rt2x00pci_register_write(rt2x00dev, CNT3, 0);
  717. rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
  718. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
  719. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
  720. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
  721. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
  722. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
  723. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
  724. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
  725. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
  726. rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
  727. rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
  728. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
  729. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
  730. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
  731. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
  732. rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
  733. rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
  734. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
  735. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
  736. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
  737. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
  738. rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
  739. rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
  740. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
  741. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
  742. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
  743. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
  744. rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
  745. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  746. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
  747. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  748. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
  749. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  750. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
  751. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  752. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
  753. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
  754. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  755. rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
  756. rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
  757. rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
  758. rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
  759. rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
  760. rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
  761. rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
  762. rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
  763. rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
  764. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  765. rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
  766. rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
  767. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  768. return -EBUSY;
  769. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
  770. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  771. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  772. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  773. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  774. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  775. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  776. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
  777. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
  778. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  779. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
  780. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
  781. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  782. rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
  783. rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
  784. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  785. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  786. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  787. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  788. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  789. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  790. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  791. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  792. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  793. /*
  794. * We must clear the FCS and FIFO error count.
  795. * These registers are cleared on read,
  796. * so we may pass a useless variable to store the value.
  797. */
  798. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  799. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  800. return 0;
  801. }
  802. static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  803. {
  804. unsigned int i;
  805. u8 value;
  806. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  807. rt2500pci_bbp_read(rt2x00dev, 0, &value);
  808. if ((value != 0xff) && (value != 0x00))
  809. return 0;
  810. udelay(REGISTER_BUSY_DELAY);
  811. }
  812. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  813. return -EACCES;
  814. }
  815. static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  816. {
  817. unsigned int i;
  818. u16 eeprom;
  819. u8 reg_id;
  820. u8 value;
  821. if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
  822. return -EACCES;
  823. rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
  824. rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
  825. rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
  826. rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
  827. rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
  828. rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
  829. rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
  830. rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
  831. rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
  832. rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
  833. rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
  834. rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
  835. rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
  836. rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
  837. rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
  838. rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
  839. rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
  840. rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
  841. rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
  842. rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
  843. rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
  844. rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
  845. rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
  846. rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
  847. rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
  848. rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
  849. rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
  850. rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
  851. rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
  852. rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
  853. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  854. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  855. if (eeprom != 0xffff && eeprom != 0x0000) {
  856. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  857. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  858. rt2500pci_bbp_write(rt2x00dev, reg_id, value);
  859. }
  860. }
  861. return 0;
  862. }
  863. /*
  864. * Device state switch handlers.
  865. */
  866. static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  867. enum dev_state state)
  868. {
  869. u32 reg;
  870. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  871. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
  872. (state == STATE_RADIO_RX_OFF) ||
  873. (state == STATE_RADIO_RX_OFF_LINK));
  874. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  875. }
  876. static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  877. enum dev_state state)
  878. {
  879. int mask = (state == STATE_RADIO_IRQ_OFF);
  880. u32 reg;
  881. /*
  882. * When interrupts are being enabled, the interrupt registers
  883. * should clear the register to assure a clean state.
  884. */
  885. if (state == STATE_RADIO_IRQ_ON) {
  886. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  887. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  888. }
  889. /*
  890. * Only toggle the interrupts bits we are going to use.
  891. * Non-checked interrupt bits are disabled by default.
  892. */
  893. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  894. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  895. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  896. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  897. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  898. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  899. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  900. }
  901. static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  902. {
  903. /*
  904. * Initialize all registers.
  905. */
  906. if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
  907. rt2500pci_init_registers(rt2x00dev) ||
  908. rt2500pci_init_bbp(rt2x00dev)))
  909. return -EIO;
  910. return 0;
  911. }
  912. static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  913. {
  914. /*
  915. * Disable power
  916. */
  917. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  918. }
  919. static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
  920. enum dev_state state)
  921. {
  922. u32 reg;
  923. unsigned int i;
  924. char put_to_sleep;
  925. char bbp_state;
  926. char rf_state;
  927. put_to_sleep = (state != STATE_AWAKE);
  928. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  929. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  930. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  931. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  932. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  933. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  934. /*
  935. * Device is not guaranteed to be in the requested state yet.
  936. * We must wait until the register indicates that the
  937. * device has entered the correct state.
  938. */
  939. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  940. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  941. bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
  942. rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
  943. if (bbp_state == state && rf_state == state)
  944. return 0;
  945. msleep(10);
  946. }
  947. return -EBUSY;
  948. }
  949. static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  950. enum dev_state state)
  951. {
  952. int retval = 0;
  953. switch (state) {
  954. case STATE_RADIO_ON:
  955. retval = rt2500pci_enable_radio(rt2x00dev);
  956. break;
  957. case STATE_RADIO_OFF:
  958. rt2500pci_disable_radio(rt2x00dev);
  959. break;
  960. case STATE_RADIO_RX_ON:
  961. case STATE_RADIO_RX_ON_LINK:
  962. case STATE_RADIO_RX_OFF:
  963. case STATE_RADIO_RX_OFF_LINK:
  964. rt2500pci_toggle_rx(rt2x00dev, state);
  965. break;
  966. case STATE_RADIO_IRQ_ON:
  967. case STATE_RADIO_IRQ_OFF:
  968. rt2500pci_toggle_irq(rt2x00dev, state);
  969. break;
  970. case STATE_DEEP_SLEEP:
  971. case STATE_SLEEP:
  972. case STATE_STANDBY:
  973. case STATE_AWAKE:
  974. retval = rt2500pci_set_state(rt2x00dev, state);
  975. break;
  976. default:
  977. retval = -ENOTSUPP;
  978. break;
  979. }
  980. if (unlikely(retval))
  981. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  982. state, retval);
  983. return retval;
  984. }
  985. /*
  986. * TX descriptor initialization
  987. */
  988. static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  989. struct sk_buff *skb,
  990. struct txentry_desc *txdesc)
  991. {
  992. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  993. struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
  994. __le32 *txd = skbdesc->desc;
  995. u32 word;
  996. /*
  997. * Start writing the descriptor words.
  998. */
  999. rt2x00_desc_read(entry_priv->desc, 1, &word);
  1000. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  1001. rt2x00_desc_write(entry_priv->desc, 1, word);
  1002. rt2x00_desc_read(txd, 2, &word);
  1003. rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
  1004. rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
  1005. rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
  1006. rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
  1007. rt2x00_desc_write(txd, 2, word);
  1008. rt2x00_desc_read(txd, 3, &word);
  1009. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
  1010. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
  1011. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
  1012. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
  1013. rt2x00_desc_write(txd, 3, word);
  1014. rt2x00_desc_read(txd, 10, &word);
  1015. rt2x00_set_field32(&word, TXD_W10_RTS,
  1016. test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
  1017. rt2x00_desc_write(txd, 10, word);
  1018. rt2x00_desc_read(txd, 0, &word);
  1019. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  1020. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  1021. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  1022. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  1023. rt2x00_set_field32(&word, TXD_W0_ACK,
  1024. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  1025. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  1026. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  1027. rt2x00_set_field32(&word, TXD_W0_OFDM,
  1028. (txdesc->rate_mode == RATE_MODE_OFDM));
  1029. rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
  1030. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  1031. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  1032. test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
  1033. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
  1034. rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
  1035. rt2x00_desc_write(txd, 0, word);
  1036. }
  1037. /*
  1038. * TX data initialization
  1039. */
  1040. static void rt2500pci_write_beacon(struct queue_entry *entry)
  1041. {
  1042. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1043. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  1044. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  1045. u32 word;
  1046. u32 reg;
  1047. /*
  1048. * Disable beaconing while we are reloading the beacon data,
  1049. * otherwise we might be sending out invalid data.
  1050. */
  1051. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  1052. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  1053. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1054. /*
  1055. * Replace rt2x00lib allocated descriptor with the
  1056. * pointer to the _real_ hardware descriptor.
  1057. * After that, map the beacon to DMA and update the
  1058. * descriptor.
  1059. */
  1060. memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
  1061. skbdesc->desc = entry_priv->desc;
  1062. rt2x00queue_map_txskb(rt2x00dev, entry->skb);
  1063. rt2x00_desc_read(entry_priv->desc, 1, &word);
  1064. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  1065. rt2x00_desc_write(entry_priv->desc, 1, word);
  1066. }
  1067. static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  1068. const enum data_queue_qid queue)
  1069. {
  1070. u32 reg;
  1071. if (queue == QID_BEACON) {
  1072. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  1073. if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
  1074. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  1075. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  1076. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  1077. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1078. }
  1079. return;
  1080. }
  1081. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  1082. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
  1083. rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
  1084. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
  1085. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  1086. }
  1087. static void rt2500pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
  1088. const enum data_queue_qid qid)
  1089. {
  1090. u32 reg;
  1091. if (qid == QID_BEACON) {
  1092. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  1093. } else {
  1094. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  1095. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  1096. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  1097. }
  1098. }
  1099. /*
  1100. * RX control handlers
  1101. */
  1102. static void rt2500pci_fill_rxdone(struct queue_entry *entry,
  1103. struct rxdone_entry_desc *rxdesc)
  1104. {
  1105. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  1106. u32 word0;
  1107. u32 word2;
  1108. rt2x00_desc_read(entry_priv->desc, 0, &word0);
  1109. rt2x00_desc_read(entry_priv->desc, 2, &word2);
  1110. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1111. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1112. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1113. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1114. /*
  1115. * Obtain the status about this packet.
  1116. * When frame was received with an OFDM bitrate,
  1117. * the signal is the PLCP value. If it was received with
  1118. * a CCK bitrate the signal is the rate in 100kbit/s.
  1119. */
  1120. rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
  1121. rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
  1122. entry->queue->rt2x00dev->rssi_offset;
  1123. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1124. if (rt2x00_get_field32(word0, RXD_W0_OFDM))
  1125. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1126. else
  1127. rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
  1128. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1129. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1130. }
  1131. /*
  1132. * Interrupt functions.
  1133. */
  1134. static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
  1135. const enum data_queue_qid queue_idx)
  1136. {
  1137. struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  1138. struct queue_entry_priv_pci *entry_priv;
  1139. struct queue_entry *entry;
  1140. struct txdone_entry_desc txdesc;
  1141. u32 word;
  1142. while (!rt2x00queue_empty(queue)) {
  1143. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1144. entry_priv = entry->priv_data;
  1145. rt2x00_desc_read(entry_priv->desc, 0, &word);
  1146. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1147. !rt2x00_get_field32(word, TXD_W0_VALID))
  1148. break;
  1149. /*
  1150. * Obtain the status about this packet.
  1151. */
  1152. txdesc.flags = 0;
  1153. switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
  1154. case 0: /* Success */
  1155. case 1: /* Success with retry */
  1156. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  1157. break;
  1158. case 2: /* Failure, excessive retries */
  1159. __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
  1160. /* Don't break, this is a failed frame! */
  1161. default: /* Failure */
  1162. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  1163. }
  1164. txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1165. rt2x00lib_txdone(entry, &txdesc);
  1166. }
  1167. }
  1168. static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
  1169. {
  1170. struct rt2x00_dev *rt2x00dev = dev_instance;
  1171. u32 reg;
  1172. /*
  1173. * Get the interrupt sources & saved to local variable.
  1174. * Write register value back to clear pending interrupts.
  1175. */
  1176. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  1177. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  1178. if (!reg)
  1179. return IRQ_NONE;
  1180. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1181. return IRQ_HANDLED;
  1182. /*
  1183. * Handle interrupts, walk through all bits
  1184. * and run the tasks, the bits are checked in order of
  1185. * priority.
  1186. */
  1187. /*
  1188. * 1 - Beacon timer expired interrupt.
  1189. */
  1190. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1191. rt2x00lib_beacondone(rt2x00dev);
  1192. /*
  1193. * 2 - Rx ring done interrupt.
  1194. */
  1195. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1196. rt2x00pci_rxdone(rt2x00dev);
  1197. /*
  1198. * 3 - Atim ring transmit done interrupt.
  1199. */
  1200. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
  1201. rt2500pci_txdone(rt2x00dev, QID_ATIM);
  1202. /*
  1203. * 4 - Priority ring transmit done interrupt.
  1204. */
  1205. if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
  1206. rt2500pci_txdone(rt2x00dev, QID_AC_BE);
  1207. /*
  1208. * 5 - Tx ring transmit done interrupt.
  1209. */
  1210. if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
  1211. rt2500pci_txdone(rt2x00dev, QID_AC_BK);
  1212. return IRQ_HANDLED;
  1213. }
  1214. /*
  1215. * Device probe functions.
  1216. */
  1217. static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1218. {
  1219. struct eeprom_93cx6 eeprom;
  1220. u32 reg;
  1221. u16 word;
  1222. u8 *mac;
  1223. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1224. eeprom.data = rt2x00dev;
  1225. eeprom.register_read = rt2500pci_eepromregister_read;
  1226. eeprom.register_write = rt2500pci_eepromregister_write;
  1227. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1228. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1229. eeprom.reg_data_in = 0;
  1230. eeprom.reg_data_out = 0;
  1231. eeprom.reg_data_clock = 0;
  1232. eeprom.reg_chip_select = 0;
  1233. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1234. EEPROM_SIZE / sizeof(u16));
  1235. /*
  1236. * Start validation of the data that has been read.
  1237. */
  1238. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1239. if (!is_valid_ether_addr(mac)) {
  1240. random_ether_addr(mac);
  1241. EEPROM(rt2x00dev, "MAC: %pM\n", mac);
  1242. }
  1243. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1244. if (word == 0xffff) {
  1245. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1246. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1247. ANTENNA_SW_DIVERSITY);
  1248. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1249. ANTENNA_SW_DIVERSITY);
  1250. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
  1251. LED_MODE_DEFAULT);
  1252. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1253. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1254. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1255. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1256. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1257. }
  1258. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1259. if (word == 0xffff) {
  1260. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1261. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1262. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1263. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1264. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1265. }
  1266. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
  1267. if (word == 0xffff) {
  1268. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1269. DEFAULT_RSSI_OFFSET);
  1270. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1271. EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
  1272. }
  1273. return 0;
  1274. }
  1275. static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1276. {
  1277. u32 reg;
  1278. u16 value;
  1279. u16 eeprom;
  1280. /*
  1281. * Read EEPROM word for configuration.
  1282. */
  1283. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1284. /*
  1285. * Identify RF chipset.
  1286. */
  1287. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1288. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1289. rt2x00_set_chip(rt2x00dev, RT2560, value,
  1290. rt2x00_get_field32(reg, CSR0_REVISION));
  1291. if (!rt2x00_rf(rt2x00dev, RF2522) &&
  1292. !rt2x00_rf(rt2x00dev, RF2523) &&
  1293. !rt2x00_rf(rt2x00dev, RF2524) &&
  1294. !rt2x00_rf(rt2x00dev, RF2525) &&
  1295. !rt2x00_rf(rt2x00dev, RF2525E) &&
  1296. !rt2x00_rf(rt2x00dev, RF5222)) {
  1297. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1298. return -ENODEV;
  1299. }
  1300. /*
  1301. * Identify default antenna configuration.
  1302. */
  1303. rt2x00dev->default_ant.tx =
  1304. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1305. rt2x00dev->default_ant.rx =
  1306. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1307. /*
  1308. * Store led mode, for correct led behaviour.
  1309. */
  1310. #ifdef CONFIG_RT2X00_LIB_LEDS
  1311. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1312. rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1313. if (value == LED_MODE_TXRX_ACTIVITY ||
  1314. value == LED_MODE_DEFAULT ||
  1315. value == LED_MODE_ASUS)
  1316. rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
  1317. LED_TYPE_ACTIVITY);
  1318. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1319. /*
  1320. * Detect if this device has an hardware controlled radio.
  1321. */
  1322. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1323. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1324. /*
  1325. * Check if the BBP tuning should be enabled.
  1326. */
  1327. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1328. if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
  1329. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1330. /*
  1331. * Read the RSSI <-> dBm offset information.
  1332. */
  1333. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
  1334. rt2x00dev->rssi_offset =
  1335. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1336. return 0;
  1337. }
  1338. /*
  1339. * RF value list for RF2522
  1340. * Supports: 2.4 GHz
  1341. */
  1342. static const struct rf_channel rf_vals_bg_2522[] = {
  1343. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1344. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1345. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1346. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1347. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1348. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1349. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1350. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1351. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1352. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1353. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1354. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1355. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1356. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1357. };
  1358. /*
  1359. * RF value list for RF2523
  1360. * Supports: 2.4 GHz
  1361. */
  1362. static const struct rf_channel rf_vals_bg_2523[] = {
  1363. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1364. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1365. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1366. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1367. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1368. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1369. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1370. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1371. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1372. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1373. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1374. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1375. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1376. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1377. };
  1378. /*
  1379. * RF value list for RF2524
  1380. * Supports: 2.4 GHz
  1381. */
  1382. static const struct rf_channel rf_vals_bg_2524[] = {
  1383. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1384. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1385. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1386. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1387. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1388. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1389. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1390. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1391. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1392. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1393. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1394. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1395. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1396. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1397. };
  1398. /*
  1399. * RF value list for RF2525
  1400. * Supports: 2.4 GHz
  1401. */
  1402. static const struct rf_channel rf_vals_bg_2525[] = {
  1403. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1404. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1405. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1406. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1407. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1408. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1409. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1410. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1411. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1412. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1413. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1414. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1415. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1416. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1417. };
  1418. /*
  1419. * RF value list for RF2525e
  1420. * Supports: 2.4 GHz
  1421. */
  1422. static const struct rf_channel rf_vals_bg_2525e[] = {
  1423. { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
  1424. { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
  1425. { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
  1426. { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
  1427. { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
  1428. { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
  1429. { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
  1430. { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
  1431. { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
  1432. { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
  1433. { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
  1434. { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
  1435. { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
  1436. { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
  1437. };
  1438. /*
  1439. * RF value list for RF5222
  1440. * Supports: 2.4 GHz & 5.2 GHz
  1441. */
  1442. static const struct rf_channel rf_vals_5222[] = {
  1443. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1444. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1445. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1446. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1447. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1448. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1449. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1450. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1451. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1452. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1453. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1454. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1455. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1456. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1457. /* 802.11 UNI / HyperLan 2 */
  1458. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1459. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1460. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1461. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1462. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1463. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1464. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1465. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1466. /* 802.11 HyperLan 2 */
  1467. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1468. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1469. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1470. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1471. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1472. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1473. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1474. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1475. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1476. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1477. /* 802.11 UNII */
  1478. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1479. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1480. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1481. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1482. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1483. };
  1484. static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1485. {
  1486. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1487. struct channel_info *info;
  1488. char *tx_power;
  1489. unsigned int i;
  1490. /*
  1491. * Initialize all hw fields.
  1492. */
  1493. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1494. IEEE80211_HW_SIGNAL_DBM |
  1495. IEEE80211_HW_SUPPORTS_PS |
  1496. IEEE80211_HW_PS_NULLFUNC_STACK;
  1497. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1498. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1499. rt2x00_eeprom_addr(rt2x00dev,
  1500. EEPROM_MAC_ADDR_0));
  1501. /*
  1502. * Initialize hw_mode information.
  1503. */
  1504. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1505. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  1506. if (rt2x00_rf(rt2x00dev, RF2522)) {
  1507. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1508. spec->channels = rf_vals_bg_2522;
  1509. } else if (rt2x00_rf(rt2x00dev, RF2523)) {
  1510. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1511. spec->channels = rf_vals_bg_2523;
  1512. } else if (rt2x00_rf(rt2x00dev, RF2524)) {
  1513. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1514. spec->channels = rf_vals_bg_2524;
  1515. } else if (rt2x00_rf(rt2x00dev, RF2525)) {
  1516. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1517. spec->channels = rf_vals_bg_2525;
  1518. } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
  1519. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1520. spec->channels = rf_vals_bg_2525e;
  1521. } else if (rt2x00_rf(rt2x00dev, RF5222)) {
  1522. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1523. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1524. spec->channels = rf_vals_5222;
  1525. }
  1526. /*
  1527. * Create channel information array
  1528. */
  1529. info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
  1530. if (!info)
  1531. return -ENOMEM;
  1532. spec->channels_info = info;
  1533. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1534. for (i = 0; i < 14; i++)
  1535. info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  1536. if (spec->num_channels > 14) {
  1537. for (i = 14; i < spec->num_channels; i++)
  1538. info[i].tx_power1 = DEFAULT_TXPOWER;
  1539. }
  1540. return 0;
  1541. }
  1542. static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1543. {
  1544. int retval;
  1545. /*
  1546. * Allocate eeprom data.
  1547. */
  1548. retval = rt2500pci_validate_eeprom(rt2x00dev);
  1549. if (retval)
  1550. return retval;
  1551. retval = rt2500pci_init_eeprom(rt2x00dev);
  1552. if (retval)
  1553. return retval;
  1554. /*
  1555. * Initialize hw specifications.
  1556. */
  1557. retval = rt2500pci_probe_hw_mode(rt2x00dev);
  1558. if (retval)
  1559. return retval;
  1560. /*
  1561. * This device requires the atim queue and DMA-mapped skbs.
  1562. */
  1563. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1564. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  1565. /*
  1566. * Set the rssi offset.
  1567. */
  1568. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1569. return 0;
  1570. }
  1571. /*
  1572. * IEEE80211 stack callback functions.
  1573. */
  1574. static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
  1575. {
  1576. struct rt2x00_dev *rt2x00dev = hw->priv;
  1577. u64 tsf;
  1578. u32 reg;
  1579. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1580. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1581. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1582. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1583. return tsf;
  1584. }
  1585. static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
  1586. {
  1587. struct rt2x00_dev *rt2x00dev = hw->priv;
  1588. u32 reg;
  1589. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1590. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1591. }
  1592. static const struct ieee80211_ops rt2500pci_mac80211_ops = {
  1593. .tx = rt2x00mac_tx,
  1594. .start = rt2x00mac_start,
  1595. .stop = rt2x00mac_stop,
  1596. .add_interface = rt2x00mac_add_interface,
  1597. .remove_interface = rt2x00mac_remove_interface,
  1598. .config = rt2x00mac_config,
  1599. .configure_filter = rt2x00mac_configure_filter,
  1600. .set_tim = rt2x00mac_set_tim,
  1601. .get_stats = rt2x00mac_get_stats,
  1602. .bss_info_changed = rt2x00mac_bss_info_changed,
  1603. .conf_tx = rt2x00mac_conf_tx,
  1604. .get_tsf = rt2500pci_get_tsf,
  1605. .tx_last_beacon = rt2500pci_tx_last_beacon,
  1606. .rfkill_poll = rt2x00mac_rfkill_poll,
  1607. };
  1608. static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
  1609. .irq_handler = rt2500pci_interrupt,
  1610. .probe_hw = rt2500pci_probe_hw,
  1611. .initialize = rt2x00pci_initialize,
  1612. .uninitialize = rt2x00pci_uninitialize,
  1613. .get_entry_state = rt2500pci_get_entry_state,
  1614. .clear_entry = rt2500pci_clear_entry,
  1615. .set_device_state = rt2500pci_set_device_state,
  1616. .rfkill_poll = rt2500pci_rfkill_poll,
  1617. .link_stats = rt2500pci_link_stats,
  1618. .reset_tuner = rt2500pci_reset_tuner,
  1619. .link_tuner = rt2500pci_link_tuner,
  1620. .write_tx_desc = rt2500pci_write_tx_desc,
  1621. .write_tx_data = rt2x00pci_write_tx_data,
  1622. .write_beacon = rt2500pci_write_beacon,
  1623. .kick_tx_queue = rt2500pci_kick_tx_queue,
  1624. .kill_tx_queue = rt2500pci_kill_tx_queue,
  1625. .fill_rxdone = rt2500pci_fill_rxdone,
  1626. .config_filter = rt2500pci_config_filter,
  1627. .config_intf = rt2500pci_config_intf,
  1628. .config_erp = rt2500pci_config_erp,
  1629. .config_ant = rt2500pci_config_ant,
  1630. .config = rt2500pci_config,
  1631. };
  1632. static const struct data_queue_desc rt2500pci_queue_rx = {
  1633. .entry_num = RX_ENTRIES,
  1634. .data_size = DATA_FRAME_SIZE,
  1635. .desc_size = RXD_DESC_SIZE,
  1636. .priv_size = sizeof(struct queue_entry_priv_pci),
  1637. };
  1638. static const struct data_queue_desc rt2500pci_queue_tx = {
  1639. .entry_num = TX_ENTRIES,
  1640. .data_size = DATA_FRAME_SIZE,
  1641. .desc_size = TXD_DESC_SIZE,
  1642. .priv_size = sizeof(struct queue_entry_priv_pci),
  1643. };
  1644. static const struct data_queue_desc rt2500pci_queue_bcn = {
  1645. .entry_num = BEACON_ENTRIES,
  1646. .data_size = MGMT_FRAME_SIZE,
  1647. .desc_size = TXD_DESC_SIZE,
  1648. .priv_size = sizeof(struct queue_entry_priv_pci),
  1649. };
  1650. static const struct data_queue_desc rt2500pci_queue_atim = {
  1651. .entry_num = ATIM_ENTRIES,
  1652. .data_size = DATA_FRAME_SIZE,
  1653. .desc_size = TXD_DESC_SIZE,
  1654. .priv_size = sizeof(struct queue_entry_priv_pci),
  1655. };
  1656. static const struct rt2x00_ops rt2500pci_ops = {
  1657. .name = KBUILD_MODNAME,
  1658. .max_sta_intf = 1,
  1659. .max_ap_intf = 1,
  1660. .eeprom_size = EEPROM_SIZE,
  1661. .rf_size = RF_SIZE,
  1662. .tx_queues = NUM_TX_QUEUES,
  1663. .extra_tx_headroom = 0,
  1664. .rx = &rt2500pci_queue_rx,
  1665. .tx = &rt2500pci_queue_tx,
  1666. .bcn = &rt2500pci_queue_bcn,
  1667. .atim = &rt2500pci_queue_atim,
  1668. .lib = &rt2500pci_rt2x00_ops,
  1669. .hw = &rt2500pci_mac80211_ops,
  1670. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1671. .debugfs = &rt2500pci_rt2x00debug,
  1672. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1673. };
  1674. /*
  1675. * RT2500pci module information.
  1676. */
  1677. static DEFINE_PCI_DEVICE_TABLE(rt2500pci_device_table) = {
  1678. { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
  1679. { 0, }
  1680. };
  1681. MODULE_AUTHOR(DRV_PROJECT);
  1682. MODULE_VERSION(DRV_VERSION);
  1683. MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
  1684. MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
  1685. MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
  1686. MODULE_LICENSE("GPL");
  1687. static struct pci_driver rt2500pci_driver = {
  1688. .name = KBUILD_MODNAME,
  1689. .id_table = rt2500pci_device_table,
  1690. .probe = rt2x00pci_probe,
  1691. .remove = __devexit_p(rt2x00pci_remove),
  1692. .suspend = rt2x00pci_suspend,
  1693. .resume = rt2x00pci_resume,
  1694. };
  1695. static int __init rt2500pci_init(void)
  1696. {
  1697. return pci_register_driver(&rt2500pci_driver);
  1698. }
  1699. static void __exit rt2500pci_exit(void)
  1700. {
  1701. pci_unregister_driver(&rt2500pci_driver);
  1702. }
  1703. module_init(rt2500pci_init);
  1704. module_exit(rt2500pci_exit);