eeprom_4k.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "hw.h"
  17. static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
  18. {
  19. return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
  20. }
  21. static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
  22. {
  23. return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
  24. }
  25. static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
  26. {
  27. #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
  28. struct ath_common *common = ath9k_hw_common(ah);
  29. u16 *eep_data = (u16 *)&ah->eeprom.map4k;
  30. int addr, eep_start_loc = 0;
  31. eep_start_loc = 64;
  32. if (!ath9k_hw_use_flash(ah)) {
  33. ath_print(common, ATH_DBG_EEPROM,
  34. "Reading from EEPROM, not flash\n");
  35. }
  36. for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
  37. if (!ath9k_hw_nvram_read(common, addr + eep_start_loc, eep_data)) {
  38. ath_print(common, ATH_DBG_EEPROM,
  39. "Unable to read eeprom region \n");
  40. return false;
  41. }
  42. eep_data++;
  43. }
  44. return true;
  45. #undef SIZE_EEPROM_4K
  46. }
  47. static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
  48. {
  49. #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
  50. struct ath_common *common = ath9k_hw_common(ah);
  51. struct ar5416_eeprom_4k *eep =
  52. (struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
  53. u16 *eepdata, temp, magic, magic2;
  54. u32 sum = 0, el;
  55. bool need_swap = false;
  56. int i, addr;
  57. if (!ath9k_hw_use_flash(ah)) {
  58. if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
  59. &magic)) {
  60. ath_print(common, ATH_DBG_FATAL,
  61. "Reading Magic # failed\n");
  62. return false;
  63. }
  64. ath_print(common, ATH_DBG_EEPROM,
  65. "Read Magic = 0x%04X\n", magic);
  66. if (magic != AR5416_EEPROM_MAGIC) {
  67. magic2 = swab16(magic);
  68. if (magic2 == AR5416_EEPROM_MAGIC) {
  69. need_swap = true;
  70. eepdata = (u16 *) (&ah->eeprom);
  71. for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
  72. temp = swab16(*eepdata);
  73. *eepdata = temp;
  74. eepdata++;
  75. }
  76. } else {
  77. ath_print(common, ATH_DBG_FATAL,
  78. "Invalid EEPROM Magic. "
  79. "endianness mismatch.\n");
  80. return -EINVAL;
  81. }
  82. }
  83. }
  84. ath_print(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
  85. need_swap ? "True" : "False");
  86. if (need_swap)
  87. el = swab16(ah->eeprom.map4k.baseEepHeader.length);
  88. else
  89. el = ah->eeprom.map4k.baseEepHeader.length;
  90. if (el > sizeof(struct ar5416_eeprom_4k))
  91. el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
  92. else
  93. el = el / sizeof(u16);
  94. eepdata = (u16 *)(&ah->eeprom);
  95. for (i = 0; i < el; i++)
  96. sum ^= *eepdata++;
  97. if (need_swap) {
  98. u32 integer;
  99. u16 word;
  100. ath_print(common, ATH_DBG_EEPROM,
  101. "EEPROM Endianness is not native.. Changing\n");
  102. word = swab16(eep->baseEepHeader.length);
  103. eep->baseEepHeader.length = word;
  104. word = swab16(eep->baseEepHeader.checksum);
  105. eep->baseEepHeader.checksum = word;
  106. word = swab16(eep->baseEepHeader.version);
  107. eep->baseEepHeader.version = word;
  108. word = swab16(eep->baseEepHeader.regDmn[0]);
  109. eep->baseEepHeader.regDmn[0] = word;
  110. word = swab16(eep->baseEepHeader.regDmn[1]);
  111. eep->baseEepHeader.regDmn[1] = word;
  112. word = swab16(eep->baseEepHeader.rfSilent);
  113. eep->baseEepHeader.rfSilent = word;
  114. word = swab16(eep->baseEepHeader.blueToothOptions);
  115. eep->baseEepHeader.blueToothOptions = word;
  116. word = swab16(eep->baseEepHeader.deviceCap);
  117. eep->baseEepHeader.deviceCap = word;
  118. integer = swab32(eep->modalHeader.antCtrlCommon);
  119. eep->modalHeader.antCtrlCommon = integer;
  120. for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
  121. integer = swab32(eep->modalHeader.antCtrlChain[i]);
  122. eep->modalHeader.antCtrlChain[i] = integer;
  123. }
  124. for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
  125. word = swab16(eep->modalHeader.spurChans[i].spurChan);
  126. eep->modalHeader.spurChans[i].spurChan = word;
  127. }
  128. }
  129. if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
  130. ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
  131. ath_print(common, ATH_DBG_FATAL,
  132. "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
  133. sum, ah->eep_ops->get_eeprom_ver(ah));
  134. return -EINVAL;
  135. }
  136. return 0;
  137. #undef EEPROM_4K_SIZE
  138. }
  139. static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
  140. enum eeprom_param param)
  141. {
  142. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  143. struct modal_eep_4k_header *pModal = &eep->modalHeader;
  144. struct base_eep_header_4k *pBase = &eep->baseEepHeader;
  145. switch (param) {
  146. case EEP_NFTHRESH_2:
  147. return pModal->noiseFloorThreshCh[0];
  148. case AR_EEPROM_MAC(0):
  149. return pBase->macAddr[0] << 8 | pBase->macAddr[1];
  150. case AR_EEPROM_MAC(1):
  151. return pBase->macAddr[2] << 8 | pBase->macAddr[3];
  152. case AR_EEPROM_MAC(2):
  153. return pBase->macAddr[4] << 8 | pBase->macAddr[5];
  154. case EEP_REG_0:
  155. return pBase->regDmn[0];
  156. case EEP_REG_1:
  157. return pBase->regDmn[1];
  158. case EEP_OP_CAP:
  159. return pBase->deviceCap;
  160. case EEP_OP_MODE:
  161. return pBase->opCapFlags;
  162. case EEP_RF_SILENT:
  163. return pBase->rfSilent;
  164. case EEP_OB_2:
  165. return pModal->ob_0;
  166. case EEP_DB_2:
  167. return pModal->db1_1;
  168. case EEP_MINOR_REV:
  169. return pBase->version & AR5416_EEP_VER_MINOR_MASK;
  170. case EEP_TX_MASK:
  171. return pBase->txMask;
  172. case EEP_RX_MASK:
  173. return pBase->rxMask;
  174. case EEP_FRAC_N_5G:
  175. return 0;
  176. case EEP_PWR_TABLE_OFFSET:
  177. return AR5416_PWR_TABLE_OFFSET_DB;
  178. default:
  179. return 0;
  180. }
  181. }
  182. static void ath9k_hw_get_4k_gain_boundaries_pdadcs(struct ath_hw *ah,
  183. struct ath9k_channel *chan,
  184. struct cal_data_per_freq_4k *pRawDataSet,
  185. u8 *bChans, u16 availPiers,
  186. u16 tPdGainOverlap, int16_t *pMinCalPower,
  187. u16 *pPdGainBoundaries, u8 *pPDADCValues,
  188. u16 numXpdGains)
  189. {
  190. #define TMP_VAL_VPD_TABLE \
  191. ((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
  192. int i, j, k;
  193. int16_t ss;
  194. u16 idxL = 0, idxR = 0, numPiers;
  195. static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
  196. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  197. static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
  198. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  199. static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
  200. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  201. u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
  202. u8 minPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
  203. u8 maxPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
  204. int16_t vpdStep;
  205. int16_t tmpVal;
  206. u16 sizeCurrVpdTable, maxIndex, tgtIndex;
  207. bool match;
  208. int16_t minDelta = 0;
  209. struct chan_centers centers;
  210. #define PD_GAIN_BOUNDARY_DEFAULT 58;
  211. ath9k_hw_get_channel_centers(ah, chan, &centers);
  212. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  213. if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
  214. break;
  215. }
  216. match = ath9k_hw_get_lower_upper_index(
  217. (u8)FREQ2FBIN(centers.synth_center,
  218. IS_CHAN_2GHZ(chan)), bChans, numPiers,
  219. &idxL, &idxR);
  220. if (match) {
  221. for (i = 0; i < numXpdGains; i++) {
  222. minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
  223. maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
  224. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  225. pRawDataSet[idxL].pwrPdg[i],
  226. pRawDataSet[idxL].vpdPdg[i],
  227. AR5416_EEP4K_PD_GAIN_ICEPTS,
  228. vpdTableI[i]);
  229. }
  230. } else {
  231. for (i = 0; i < numXpdGains; i++) {
  232. pVpdL = pRawDataSet[idxL].vpdPdg[i];
  233. pPwrL = pRawDataSet[idxL].pwrPdg[i];
  234. pVpdR = pRawDataSet[idxR].vpdPdg[i];
  235. pPwrR = pRawDataSet[idxR].pwrPdg[i];
  236. minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
  237. maxPwrT4[i] =
  238. min(pPwrL[AR5416_EEP4K_PD_GAIN_ICEPTS - 1],
  239. pPwrR[AR5416_EEP4K_PD_GAIN_ICEPTS - 1]);
  240. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  241. pPwrL, pVpdL,
  242. AR5416_EEP4K_PD_GAIN_ICEPTS,
  243. vpdTableL[i]);
  244. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  245. pPwrR, pVpdR,
  246. AR5416_EEP4K_PD_GAIN_ICEPTS,
  247. vpdTableR[i]);
  248. for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
  249. vpdTableI[i][j] =
  250. (u8)(ath9k_hw_interpolate((u16)
  251. FREQ2FBIN(centers.
  252. synth_center,
  253. IS_CHAN_2GHZ
  254. (chan)),
  255. bChans[idxL], bChans[idxR],
  256. vpdTableL[i][j], vpdTableR[i][j]));
  257. }
  258. }
  259. }
  260. *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
  261. k = 0;
  262. for (i = 0; i < numXpdGains; i++) {
  263. if (i == (numXpdGains - 1))
  264. pPdGainBoundaries[i] =
  265. (u16)(maxPwrT4[i] / 2);
  266. else
  267. pPdGainBoundaries[i] =
  268. (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
  269. pPdGainBoundaries[i] =
  270. min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
  271. if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
  272. minDelta = pPdGainBoundaries[0] - 23;
  273. pPdGainBoundaries[0] = 23;
  274. } else {
  275. minDelta = 0;
  276. }
  277. if (i == 0) {
  278. if (AR_SREV_9280_10_OR_LATER(ah))
  279. ss = (int16_t)(0 - (minPwrT4[i] / 2));
  280. else
  281. ss = 0;
  282. } else {
  283. ss = (int16_t)((pPdGainBoundaries[i - 1] -
  284. (minPwrT4[i] / 2)) -
  285. tPdGainOverlap + 1 + minDelta);
  286. }
  287. vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
  288. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  289. while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  290. tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
  291. pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
  292. ss++;
  293. }
  294. sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
  295. tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
  296. (minPwrT4[i] / 2));
  297. maxIndex = (tgtIndex < sizeCurrVpdTable) ?
  298. tgtIndex : sizeCurrVpdTable;
  299. while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1)))
  300. pPDADCValues[k++] = vpdTableI[i][ss++];
  301. vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
  302. vpdTableI[i][sizeCurrVpdTable - 2]);
  303. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  304. if (tgtIndex >= maxIndex) {
  305. while ((ss <= tgtIndex) &&
  306. (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  307. tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
  308. pPDADCValues[k++] = (u8)((tmpVal > 255) ?
  309. 255 : tmpVal);
  310. ss++;
  311. }
  312. }
  313. }
  314. while (i < AR5416_EEP4K_PD_GAINS_IN_MASK) {
  315. pPdGainBoundaries[i] = PD_GAIN_BOUNDARY_DEFAULT;
  316. i++;
  317. }
  318. while (k < AR5416_NUM_PDADC_VALUES) {
  319. pPDADCValues[k] = pPDADCValues[k - 1];
  320. k++;
  321. }
  322. return;
  323. #undef TMP_VAL_VPD_TABLE
  324. }
  325. static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
  326. struct ath9k_channel *chan,
  327. int16_t *pTxPowerIndexOffset)
  328. {
  329. struct ath_common *common = ath9k_hw_common(ah);
  330. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  331. struct cal_data_per_freq_4k *pRawDataset;
  332. u8 *pCalBChans = NULL;
  333. u16 pdGainOverlap_t2;
  334. static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
  335. u16 gainBoundaries[AR5416_EEP4K_PD_GAINS_IN_MASK];
  336. u16 numPiers, i, j;
  337. int16_t tMinCalPower;
  338. u16 numXpdGain, xpdMask;
  339. u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
  340. u32 reg32, regOffset, regChainOffset;
  341. xpdMask = pEepData->modalHeader.xpdGain;
  342. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  343. AR5416_EEP_MINOR_VER_2) {
  344. pdGainOverlap_t2 =
  345. pEepData->modalHeader.pdGainOverlap;
  346. } else {
  347. pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
  348. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  349. }
  350. pCalBChans = pEepData->calFreqPier2G;
  351. numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
  352. numXpdGain = 0;
  353. for (i = 1; i <= AR5416_EEP4K_PD_GAINS_IN_MASK; i++) {
  354. if ((xpdMask >> (AR5416_EEP4K_PD_GAINS_IN_MASK - i)) & 1) {
  355. if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
  356. break;
  357. xpdGainValues[numXpdGain] =
  358. (u16)(AR5416_EEP4K_PD_GAINS_IN_MASK - i);
  359. numXpdGain++;
  360. }
  361. }
  362. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  363. (numXpdGain - 1) & 0x3);
  364. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  365. xpdGainValues[0]);
  366. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  367. xpdGainValues[1]);
  368. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
  369. for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
  370. if (AR_SREV_5416_20_OR_LATER(ah) &&
  371. (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
  372. (i != 0)) {
  373. regChainOffset = (i == 1) ? 0x2000 : 0x1000;
  374. } else
  375. regChainOffset = i * 0x1000;
  376. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  377. pRawDataset = pEepData->calPierData2G[i];
  378. ath9k_hw_get_4k_gain_boundaries_pdadcs(ah, chan,
  379. pRawDataset, pCalBChans,
  380. numPiers, pdGainOverlap_t2,
  381. &tMinCalPower, gainBoundaries,
  382. pdadcValues, numXpdGain);
  383. if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
  384. REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
  385. SM(pdGainOverlap_t2,
  386. AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
  387. | SM(gainBoundaries[0],
  388. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
  389. | SM(gainBoundaries[1],
  390. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
  391. | SM(gainBoundaries[2],
  392. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
  393. | SM(gainBoundaries[3],
  394. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
  395. }
  396. regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
  397. for (j = 0; j < 32; j++) {
  398. reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
  399. ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
  400. ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
  401. ((pdadcValues[4 * j + 3] & 0xFF) << 24);
  402. REG_WRITE(ah, regOffset, reg32);
  403. ath_print(common, ATH_DBG_EEPROM,
  404. "PDADC (%d,%4x): %4.4x %8.8x\n",
  405. i, regChainOffset, regOffset,
  406. reg32);
  407. ath_print(common, ATH_DBG_EEPROM,
  408. "PDADC: Chain %d | "
  409. "PDADC %3d Value %3d | "
  410. "PDADC %3d Value %3d | "
  411. "PDADC %3d Value %3d | "
  412. "PDADC %3d Value %3d |\n",
  413. i, 4 * j, pdadcValues[4 * j],
  414. 4 * j + 1, pdadcValues[4 * j + 1],
  415. 4 * j + 2, pdadcValues[4 * j + 2],
  416. 4 * j + 3,
  417. pdadcValues[4 * j + 3]);
  418. regOffset += 4;
  419. }
  420. }
  421. }
  422. *pTxPowerIndexOffset = 0;
  423. }
  424. static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
  425. struct ath9k_channel *chan,
  426. int16_t *ratesArray,
  427. u16 cfgCtl,
  428. u16 AntennaReduction,
  429. u16 twiceMaxRegulatoryPower,
  430. u16 powerLimit)
  431. {
  432. #define CMP_TEST_GRP \
  433. (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  434. pEepData->ctlIndex[i]) \
  435. || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  436. ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
  437. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  438. int i;
  439. int16_t twiceLargestAntenna;
  440. u16 twiceMinEdgePower;
  441. u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  442. u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
  443. u16 numCtlModes, *pCtlMode, ctlMode, freq;
  444. struct chan_centers centers;
  445. struct cal_ctl_data_4k *rep;
  446. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  447. static const u16 tpScaleReductionTable[5] =
  448. { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
  449. struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
  450. 0, { 0, 0, 0, 0}
  451. };
  452. struct cal_target_power_leg targetPowerOfdmExt = {
  453. 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
  454. 0, { 0, 0, 0, 0 }
  455. };
  456. struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
  457. 0, {0, 0, 0, 0}
  458. };
  459. u16 ctlModesFor11g[] =
  460. { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
  461. CTL_2GHT40
  462. };
  463. ath9k_hw_get_channel_centers(ah, chan, &centers);
  464. twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
  465. twiceLargestAntenna = (int16_t)min(AntennaReduction -
  466. twiceLargestAntenna, 0);
  467. maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
  468. if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
  469. maxRegAllowedPower -=
  470. (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
  471. }
  472. scaledPower = min(powerLimit, maxRegAllowedPower);
  473. scaledPower = max((u16)0, scaledPower);
  474. numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
  475. pCtlMode = ctlModesFor11g;
  476. ath9k_hw_get_legacy_target_powers(ah, chan,
  477. pEepData->calTargetPowerCck,
  478. AR5416_NUM_2G_CCK_TARGET_POWERS,
  479. &targetPowerCck, 4, false);
  480. ath9k_hw_get_legacy_target_powers(ah, chan,
  481. pEepData->calTargetPower2G,
  482. AR5416_NUM_2G_20_TARGET_POWERS,
  483. &targetPowerOfdm, 4, false);
  484. ath9k_hw_get_target_powers(ah, chan,
  485. pEepData->calTargetPower2GHT20,
  486. AR5416_NUM_2G_20_TARGET_POWERS,
  487. &targetPowerHt20, 8, false);
  488. if (IS_CHAN_HT40(chan)) {
  489. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  490. ath9k_hw_get_target_powers(ah, chan,
  491. pEepData->calTargetPower2GHT40,
  492. AR5416_NUM_2G_40_TARGET_POWERS,
  493. &targetPowerHt40, 8, true);
  494. ath9k_hw_get_legacy_target_powers(ah, chan,
  495. pEepData->calTargetPowerCck,
  496. AR5416_NUM_2G_CCK_TARGET_POWERS,
  497. &targetPowerCckExt, 4, true);
  498. ath9k_hw_get_legacy_target_powers(ah, chan,
  499. pEepData->calTargetPower2G,
  500. AR5416_NUM_2G_20_TARGET_POWERS,
  501. &targetPowerOfdmExt, 4, true);
  502. }
  503. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  504. bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
  505. (pCtlMode[ctlMode] == CTL_2GHT40);
  506. if (isHt40CtlMode)
  507. freq = centers.synth_center;
  508. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  509. freq = centers.ext_center;
  510. else
  511. freq = centers.ctl_center;
  512. if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
  513. ah->eep_ops->get_eeprom_rev(ah) <= 2)
  514. twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  515. for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
  516. pEepData->ctlIndex[i]; i++) {
  517. if (CMP_TEST_GRP) {
  518. rep = &(pEepData->ctlData[i]);
  519. twiceMinEdgePower = ath9k_hw_get_max_edge_power(
  520. freq,
  521. rep->ctlEdges[
  522. ar5416_get_ntxchains(ah->txchainmask) - 1],
  523. IS_CHAN_2GHZ(chan),
  524. AR5416_EEP4K_NUM_BAND_EDGES);
  525. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
  526. twiceMaxEdgePower =
  527. min(twiceMaxEdgePower,
  528. twiceMinEdgePower);
  529. } else {
  530. twiceMaxEdgePower = twiceMinEdgePower;
  531. break;
  532. }
  533. }
  534. }
  535. minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
  536. switch (pCtlMode[ctlMode]) {
  537. case CTL_11B:
  538. for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
  539. targetPowerCck.tPow2x[i] =
  540. min((u16)targetPowerCck.tPow2x[i],
  541. minCtlPower);
  542. }
  543. break;
  544. case CTL_11G:
  545. for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
  546. targetPowerOfdm.tPow2x[i] =
  547. min((u16)targetPowerOfdm.tPow2x[i],
  548. minCtlPower);
  549. }
  550. break;
  551. case CTL_2GHT20:
  552. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
  553. targetPowerHt20.tPow2x[i] =
  554. min((u16)targetPowerHt20.tPow2x[i],
  555. minCtlPower);
  556. }
  557. break;
  558. case CTL_11B_EXT:
  559. targetPowerCckExt.tPow2x[0] =
  560. min((u16)targetPowerCckExt.tPow2x[0],
  561. minCtlPower);
  562. break;
  563. case CTL_11G_EXT:
  564. targetPowerOfdmExt.tPow2x[0] =
  565. min((u16)targetPowerOfdmExt.tPow2x[0],
  566. minCtlPower);
  567. break;
  568. case CTL_2GHT40:
  569. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  570. targetPowerHt40.tPow2x[i] =
  571. min((u16)targetPowerHt40.tPow2x[i],
  572. minCtlPower);
  573. }
  574. break;
  575. default:
  576. break;
  577. }
  578. }
  579. ratesArray[rate6mb] =
  580. ratesArray[rate9mb] =
  581. ratesArray[rate12mb] =
  582. ratesArray[rate18mb] =
  583. ratesArray[rate24mb] =
  584. targetPowerOfdm.tPow2x[0];
  585. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  586. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  587. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  588. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  589. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  590. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  591. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  592. ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
  593. ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
  594. ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
  595. if (IS_CHAN_HT40(chan)) {
  596. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  597. ratesArray[rateHt40_0 + i] =
  598. targetPowerHt40.tPow2x[i];
  599. }
  600. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  601. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  602. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  603. ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
  604. }
  605. #undef CMP_TEST_GRP
  606. }
  607. static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
  608. struct ath9k_channel *chan,
  609. u16 cfgCtl,
  610. u8 twiceAntennaReduction,
  611. u8 twiceMaxRegulatoryPower,
  612. u8 powerLimit)
  613. {
  614. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  615. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  616. struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
  617. int16_t ratesArray[Ar5416RateSize];
  618. int16_t txPowerIndexOffset = 0;
  619. u8 ht40PowerIncForPdadc = 2;
  620. int i;
  621. memset(ratesArray, 0, sizeof(ratesArray));
  622. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  623. AR5416_EEP_MINOR_VER_2) {
  624. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  625. }
  626. ath9k_hw_set_4k_power_per_rate_table(ah, chan,
  627. &ratesArray[0], cfgCtl,
  628. twiceAntennaReduction,
  629. twiceMaxRegulatoryPower,
  630. powerLimit);
  631. ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset);
  632. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  633. ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
  634. if (ratesArray[i] > AR5416_MAX_RATE_POWER)
  635. ratesArray[i] = AR5416_MAX_RATE_POWER;
  636. }
  637. /* Update regulatory */
  638. i = rate6mb;
  639. if (IS_CHAN_HT40(chan))
  640. i = rateHt40_0;
  641. else if (IS_CHAN_HT20(chan))
  642. i = rateHt20_0;
  643. regulatory->max_power_level = ratesArray[i];
  644. if (AR_SREV_9280_10_OR_LATER(ah)) {
  645. for (i = 0; i < Ar5416RateSize; i++)
  646. ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
  647. }
  648. /* OFDM power per rate */
  649. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  650. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  651. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  652. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  653. | ATH9K_POW_SM(ratesArray[rate6mb], 0));
  654. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  655. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  656. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  657. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  658. | ATH9K_POW_SM(ratesArray[rate24mb], 0));
  659. /* CCK power per rate */
  660. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  661. ATH9K_POW_SM(ratesArray[rate2s], 24)
  662. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  663. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  664. | ATH9K_POW_SM(ratesArray[rate1l], 0));
  665. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  666. ATH9K_POW_SM(ratesArray[rate11s], 24)
  667. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  668. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  669. | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
  670. /* HT20 power per rate */
  671. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  672. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  673. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  674. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  675. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
  676. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  677. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  678. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  679. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  680. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
  681. /* HT40 power per rate */
  682. if (IS_CHAN_HT40(chan)) {
  683. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  684. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  685. ht40PowerIncForPdadc, 24)
  686. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  687. ht40PowerIncForPdadc, 16)
  688. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  689. ht40PowerIncForPdadc, 8)
  690. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  691. ht40PowerIncForPdadc, 0));
  692. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  693. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  694. ht40PowerIncForPdadc, 24)
  695. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  696. ht40PowerIncForPdadc, 16)
  697. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  698. ht40PowerIncForPdadc, 8)
  699. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  700. ht40PowerIncForPdadc, 0));
  701. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  702. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  703. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  704. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  705. | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
  706. }
  707. }
  708. static void ath9k_hw_4k_set_addac(struct ath_hw *ah,
  709. struct ath9k_channel *chan)
  710. {
  711. struct modal_eep_4k_header *pModal;
  712. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  713. u8 biaslevel;
  714. if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
  715. return;
  716. if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
  717. return;
  718. pModal = &eep->modalHeader;
  719. if (pModal->xpaBiasLvl != 0xff) {
  720. biaslevel = pModal->xpaBiasLvl;
  721. INI_RA(&ah->iniAddac, 7, 1) =
  722. (INI_RA(&ah->iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
  723. }
  724. }
  725. static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
  726. struct modal_eep_4k_header *pModal,
  727. struct ar5416_eeprom_4k *eep,
  728. u8 txRxAttenLocal)
  729. {
  730. REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
  731. pModal->antCtrlChain[0]);
  732. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
  733. (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
  734. ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  735. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  736. SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  737. SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  738. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  739. AR5416_EEP_MINOR_VER_3) {
  740. txRxAttenLocal = pModal->txRxAttenCh[0];
  741. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  742. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
  743. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  744. AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
  745. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  746. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  747. pModal->xatten2Margin[0]);
  748. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  749. AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
  750. /* Set the block 1 value to block 0 value */
  751. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  752. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
  753. pModal->bswMargin[0]);
  754. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  755. AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
  756. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  757. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  758. pModal->xatten2Margin[0]);
  759. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  760. AR_PHY_GAIN_2GHZ_XATTEN2_DB,
  761. pModal->xatten2Db[0]);
  762. }
  763. REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
  764. AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
  765. REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
  766. AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
  767. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
  768. AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
  769. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
  770. AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
  771. if (AR_SREV_9285_11(ah))
  772. REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14));
  773. }
  774. /*
  775. * Read EEPROM header info and program the device for correct operation
  776. * given the channel value.
  777. */
  778. static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
  779. struct ath9k_channel *chan)
  780. {
  781. struct modal_eep_4k_header *pModal;
  782. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  783. u8 txRxAttenLocal;
  784. u8 ob[5], db1[5], db2[5];
  785. u8 ant_div_control1, ant_div_control2;
  786. u32 regVal;
  787. pModal = &eep->modalHeader;
  788. txRxAttenLocal = 23;
  789. REG_WRITE(ah, AR_PHY_SWITCH_COM,
  790. ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
  791. /* Single chain for 4K EEPROM*/
  792. ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
  793. /* Initialize Ant Diversity settings from EEPROM */
  794. if (pModal->version >= 3) {
  795. ant_div_control1 = pModal->antdiv_ctl1;
  796. ant_div_control2 = pModal->antdiv_ctl2;
  797. regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
  798. regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
  799. regVal |= SM(ant_div_control1,
  800. AR_PHY_9285_ANT_DIV_CTL);
  801. regVal |= SM(ant_div_control2,
  802. AR_PHY_9285_ANT_DIV_ALT_LNACONF);
  803. regVal |= SM((ant_div_control2 >> 2),
  804. AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
  805. regVal |= SM((ant_div_control1 >> 1),
  806. AR_PHY_9285_ANT_DIV_ALT_GAINTB);
  807. regVal |= SM((ant_div_control1 >> 2),
  808. AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
  809. REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
  810. regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
  811. regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
  812. regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
  813. regVal |= SM((ant_div_control1 >> 3),
  814. AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
  815. REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
  816. regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
  817. }
  818. if (pModal->version >= 2) {
  819. ob[0] = pModal->ob_0;
  820. ob[1] = pModal->ob_1;
  821. ob[2] = pModal->ob_2;
  822. ob[3] = pModal->ob_3;
  823. ob[4] = pModal->ob_4;
  824. db1[0] = pModal->db1_0;
  825. db1[1] = pModal->db1_1;
  826. db1[2] = pModal->db1_2;
  827. db1[3] = pModal->db1_3;
  828. db1[4] = pModal->db1_4;
  829. db2[0] = pModal->db2_0;
  830. db2[1] = pModal->db2_1;
  831. db2[2] = pModal->db2_2;
  832. db2[3] = pModal->db2_3;
  833. db2[4] = pModal->db2_4;
  834. } else if (pModal->version == 1) {
  835. ob[0] = pModal->ob_0;
  836. ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
  837. db1[0] = pModal->db1_0;
  838. db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
  839. db2[0] = pModal->db2_0;
  840. db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
  841. } else {
  842. int i;
  843. for (i = 0; i < 5; i++) {
  844. ob[i] = pModal->ob_0;
  845. db1[i] = pModal->db1_0;
  846. db2[i] = pModal->db1_0;
  847. }
  848. }
  849. if (AR_SREV_9271(ah)) {
  850. ath9k_hw_analog_shift_rmw(ah,
  851. AR9285_AN_RF2G3,
  852. AR9271_AN_RF2G3_OB_cck,
  853. AR9271_AN_RF2G3_OB_cck_S,
  854. ob[0]);
  855. ath9k_hw_analog_shift_rmw(ah,
  856. AR9285_AN_RF2G3,
  857. AR9271_AN_RF2G3_OB_psk,
  858. AR9271_AN_RF2G3_OB_psk_S,
  859. ob[1]);
  860. ath9k_hw_analog_shift_rmw(ah,
  861. AR9285_AN_RF2G3,
  862. AR9271_AN_RF2G3_OB_qam,
  863. AR9271_AN_RF2G3_OB_qam_S,
  864. ob[2]);
  865. ath9k_hw_analog_shift_rmw(ah,
  866. AR9285_AN_RF2G3,
  867. AR9271_AN_RF2G3_DB_1,
  868. AR9271_AN_RF2G3_DB_1_S,
  869. db1[0]);
  870. ath9k_hw_analog_shift_rmw(ah,
  871. AR9285_AN_RF2G4,
  872. AR9271_AN_RF2G4_DB_2,
  873. AR9271_AN_RF2G4_DB_2_S,
  874. db2[0]);
  875. } else {
  876. ath9k_hw_analog_shift_rmw(ah,
  877. AR9285_AN_RF2G3,
  878. AR9285_AN_RF2G3_OB_0,
  879. AR9285_AN_RF2G3_OB_0_S,
  880. ob[0]);
  881. ath9k_hw_analog_shift_rmw(ah,
  882. AR9285_AN_RF2G3,
  883. AR9285_AN_RF2G3_OB_1,
  884. AR9285_AN_RF2G3_OB_1_S,
  885. ob[1]);
  886. ath9k_hw_analog_shift_rmw(ah,
  887. AR9285_AN_RF2G3,
  888. AR9285_AN_RF2G3_OB_2,
  889. AR9285_AN_RF2G3_OB_2_S,
  890. ob[2]);
  891. ath9k_hw_analog_shift_rmw(ah,
  892. AR9285_AN_RF2G3,
  893. AR9285_AN_RF2G3_OB_3,
  894. AR9285_AN_RF2G3_OB_3_S,
  895. ob[3]);
  896. ath9k_hw_analog_shift_rmw(ah,
  897. AR9285_AN_RF2G3,
  898. AR9285_AN_RF2G3_OB_4,
  899. AR9285_AN_RF2G3_OB_4_S,
  900. ob[4]);
  901. ath9k_hw_analog_shift_rmw(ah,
  902. AR9285_AN_RF2G3,
  903. AR9285_AN_RF2G3_DB1_0,
  904. AR9285_AN_RF2G3_DB1_0_S,
  905. db1[0]);
  906. ath9k_hw_analog_shift_rmw(ah,
  907. AR9285_AN_RF2G3,
  908. AR9285_AN_RF2G3_DB1_1,
  909. AR9285_AN_RF2G3_DB1_1_S,
  910. db1[1]);
  911. ath9k_hw_analog_shift_rmw(ah,
  912. AR9285_AN_RF2G3,
  913. AR9285_AN_RF2G3_DB1_2,
  914. AR9285_AN_RF2G3_DB1_2_S,
  915. db1[2]);
  916. ath9k_hw_analog_shift_rmw(ah,
  917. AR9285_AN_RF2G4,
  918. AR9285_AN_RF2G4_DB1_3,
  919. AR9285_AN_RF2G4_DB1_3_S,
  920. db1[3]);
  921. ath9k_hw_analog_shift_rmw(ah,
  922. AR9285_AN_RF2G4,
  923. AR9285_AN_RF2G4_DB1_4,
  924. AR9285_AN_RF2G4_DB1_4_S, db1[4]);
  925. ath9k_hw_analog_shift_rmw(ah,
  926. AR9285_AN_RF2G4,
  927. AR9285_AN_RF2G4_DB2_0,
  928. AR9285_AN_RF2G4_DB2_0_S,
  929. db2[0]);
  930. ath9k_hw_analog_shift_rmw(ah,
  931. AR9285_AN_RF2G4,
  932. AR9285_AN_RF2G4_DB2_1,
  933. AR9285_AN_RF2G4_DB2_1_S,
  934. db2[1]);
  935. ath9k_hw_analog_shift_rmw(ah,
  936. AR9285_AN_RF2G4,
  937. AR9285_AN_RF2G4_DB2_2,
  938. AR9285_AN_RF2G4_DB2_2_S,
  939. db2[2]);
  940. ath9k_hw_analog_shift_rmw(ah,
  941. AR9285_AN_RF2G4,
  942. AR9285_AN_RF2G4_DB2_3,
  943. AR9285_AN_RF2G4_DB2_3_S,
  944. db2[3]);
  945. ath9k_hw_analog_shift_rmw(ah,
  946. AR9285_AN_RF2G4,
  947. AR9285_AN_RF2G4_DB2_4,
  948. AR9285_AN_RF2G4_DB2_4_S,
  949. db2[4]);
  950. }
  951. if (AR_SREV_9285_11(ah))
  952. REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT);
  953. REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
  954. pModal->switchSettling);
  955. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
  956. pModal->adcDesiredSize);
  957. REG_WRITE(ah, AR_PHY_RF_CTL4,
  958. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
  959. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
  960. SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
  961. SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  962. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
  963. pModal->txEndToRxOn);
  964. if (AR_SREV_9271_10(ah))
  965. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
  966. pModal->txEndToRxOn);
  967. REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
  968. pModal->thresh62);
  969. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
  970. pModal->thresh62);
  971. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  972. AR5416_EEP_MINOR_VER_2) {
  973. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
  974. pModal->txFrameToDataStart);
  975. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
  976. pModal->txFrameToPaOn);
  977. }
  978. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  979. AR5416_EEP_MINOR_VER_3) {
  980. if (IS_CHAN_HT40(chan))
  981. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  982. AR_PHY_SETTLING_SWITCH,
  983. pModal->swSettleHt40);
  984. }
  985. }
  986. static u16 ath9k_hw_4k_get_eeprom_antenna_cfg(struct ath_hw *ah,
  987. struct ath9k_channel *chan)
  988. {
  989. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  990. struct modal_eep_4k_header *pModal = &eep->modalHeader;
  991. return pModal->antCtrlCommon & 0xFFFF;
  992. }
  993. static u8 ath9k_hw_4k_get_num_ant_config(struct ath_hw *ah,
  994. enum ieee80211_band freq_band)
  995. {
  996. return 1;
  997. }
  998. static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
  999. {
  1000. #define EEP_MAP4K_SPURCHAN \
  1001. (ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
  1002. struct ath_common *common = ath9k_hw_common(ah);
  1003. u16 spur_val = AR_NO_SPUR;
  1004. ath_print(common, ATH_DBG_ANI,
  1005. "Getting spur idx %d is2Ghz. %d val %x\n",
  1006. i, is2GHz, ah->config.spurchans[i][is2GHz]);
  1007. switch (ah->config.spurmode) {
  1008. case SPUR_DISABLE:
  1009. break;
  1010. case SPUR_ENABLE_IOCTL:
  1011. spur_val = ah->config.spurchans[i][is2GHz];
  1012. ath_print(common, ATH_DBG_ANI,
  1013. "Getting spur val from new loc. %d\n", spur_val);
  1014. break;
  1015. case SPUR_ENABLE_EEPROM:
  1016. spur_val = EEP_MAP4K_SPURCHAN;
  1017. break;
  1018. }
  1019. return spur_val;
  1020. #undef EEP_MAP4K_SPURCHAN
  1021. }
  1022. const struct eeprom_ops eep_4k_ops = {
  1023. .check_eeprom = ath9k_hw_4k_check_eeprom,
  1024. .get_eeprom = ath9k_hw_4k_get_eeprom,
  1025. .fill_eeprom = ath9k_hw_4k_fill_eeprom,
  1026. .get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver,
  1027. .get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev,
  1028. .get_num_ant_config = ath9k_hw_4k_get_num_ant_config,
  1029. .get_eeprom_antenna_cfg = ath9k_hw_4k_get_eeprom_antenna_cfg,
  1030. .set_board_values = ath9k_hw_4k_set_board_values,
  1031. .set_addac = ath9k_hw_4k_set_addac,
  1032. .set_txpower = ath9k_hw_4k_set_txpower,
  1033. .get_spur_channel = ath9k_hw_4k_get_spur_channel
  1034. };