eeprom.c 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820
  1. /*
  2. * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
  3. * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
  4. * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
  5. *
  6. * Permission to use, copy, modify, and distribute this software for any
  7. * purpose with or without fee is hereby granted, provided that the above
  8. * copyright notice and this permission notice appear in all copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  11. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  12. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  13. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  14. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  15. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  16. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  17. *
  18. */
  19. /*************************************\
  20. * EEPROM access functions and helpers *
  21. \*************************************/
  22. #include <linux/slab.h>
  23. #include "ath5k.h"
  24. #include "reg.h"
  25. #include "debug.h"
  26. #include "base.h"
  27. /*
  28. * Read from eeprom
  29. */
  30. static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
  31. {
  32. u32 status, timeout;
  33. ATH5K_TRACE(ah->ah_sc);
  34. /*
  35. * Initialize EEPROM access
  36. */
  37. if (ah->ah_version == AR5K_AR5210) {
  38. AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
  39. (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
  40. } else {
  41. ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
  42. AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
  43. AR5K_EEPROM_CMD_READ);
  44. }
  45. for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
  46. status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
  47. if (status & AR5K_EEPROM_STAT_RDDONE) {
  48. if (status & AR5K_EEPROM_STAT_RDERR)
  49. return -EIO;
  50. *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
  51. 0xffff);
  52. return 0;
  53. }
  54. udelay(15);
  55. }
  56. return -ETIMEDOUT;
  57. }
  58. /*
  59. * Translate binary channel representation in EEPROM to frequency
  60. */
  61. static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
  62. unsigned int mode)
  63. {
  64. u16 val;
  65. if (bin == AR5K_EEPROM_CHANNEL_DIS)
  66. return bin;
  67. if (mode == AR5K_EEPROM_MODE_11A) {
  68. if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  69. val = (5 * bin) + 4800;
  70. else
  71. val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
  72. (bin * 10) + 5100;
  73. } else {
  74. if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  75. val = bin + 2300;
  76. else
  77. val = bin + 2400;
  78. }
  79. return val;
  80. }
  81. /*
  82. * Initialize eeprom & capabilities structs
  83. */
  84. static int
  85. ath5k_eeprom_init_header(struct ath5k_hw *ah)
  86. {
  87. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  88. int ret;
  89. u16 val;
  90. u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
  91. /*
  92. * Read values from EEPROM and store them in the capability structure
  93. */
  94. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
  95. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
  96. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
  97. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
  98. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
  99. /* Return if we have an old EEPROM */
  100. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
  101. return 0;
  102. /*
  103. * Validate the checksum of the EEPROM date. There are some
  104. * devices with invalid EEPROMs.
  105. */
  106. AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
  107. if (val) {
  108. eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
  109. AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
  110. AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
  111. eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
  112. /*
  113. * Fail safe check to prevent stupid loops due
  114. * to busted EEPROMs. XXX: This value is likely too
  115. * big still, waiting on a better value.
  116. */
  117. if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
  118. ATH5K_ERR(ah->ah_sc, "Invalid max custom EEPROM size: "
  119. "%d (0x%04x) max expected: %d (0x%04x)\n",
  120. eep_max, eep_max,
  121. 3 * AR5K_EEPROM_INFO_MAX,
  122. 3 * AR5K_EEPROM_INFO_MAX);
  123. return -EIO;
  124. }
  125. }
  126. for (cksum = 0, offset = 0; offset < eep_max; offset++) {
  127. AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
  128. cksum ^= val;
  129. }
  130. if (cksum != AR5K_EEPROM_INFO_CKSUM) {
  131. ATH5K_ERR(ah->ah_sc, "Invalid EEPROM "
  132. "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
  133. cksum, eep_max,
  134. eep_max == AR5K_EEPROM_INFO_MAX ?
  135. "default size" : "custom size");
  136. return -EIO;
  137. }
  138. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
  139. ee_ant_gain);
  140. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
  141. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
  142. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
  143. /* XXX: Don't know which versions include these two */
  144. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
  145. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
  146. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
  147. if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
  148. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
  149. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
  150. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
  151. }
  152. }
  153. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
  154. AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
  155. ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
  156. ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
  157. AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
  158. ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
  159. ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
  160. }
  161. AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
  162. if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
  163. ee->ee_is_hb63 = true;
  164. else
  165. ee->ee_is_hb63 = false;
  166. AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
  167. ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
  168. ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
  169. /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
  170. * and enable serdes programming if needed.
  171. *
  172. * XXX: Serdes values seem to be fixed so
  173. * no need to read them here, we write them
  174. * during ath5k_hw_attach */
  175. AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
  176. ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
  177. true : false;
  178. return 0;
  179. }
  180. /*
  181. * Read antenna infos from eeprom
  182. */
  183. static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
  184. unsigned int mode)
  185. {
  186. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  187. u32 o = *offset;
  188. u16 val;
  189. int ret, i = 0;
  190. AR5K_EEPROM_READ(o++, val);
  191. ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
  192. ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
  193. ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
  194. AR5K_EEPROM_READ(o++, val);
  195. ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
  196. ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
  197. ee->ee_ant_control[mode][i++] = val & 0x3f;
  198. AR5K_EEPROM_READ(o++, val);
  199. ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
  200. ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
  201. ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
  202. AR5K_EEPROM_READ(o++, val);
  203. ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
  204. ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
  205. ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
  206. ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
  207. AR5K_EEPROM_READ(o++, val);
  208. ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
  209. ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
  210. ee->ee_ant_control[mode][i++] = val & 0x3f;
  211. /* Get antenna switch tables */
  212. ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
  213. (ee->ee_ant_control[mode][0] << 4);
  214. ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
  215. ee->ee_ant_control[mode][1] |
  216. (ee->ee_ant_control[mode][2] << 6) |
  217. (ee->ee_ant_control[mode][3] << 12) |
  218. (ee->ee_ant_control[mode][4] << 18) |
  219. (ee->ee_ant_control[mode][5] << 24);
  220. ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
  221. ee->ee_ant_control[mode][6] |
  222. (ee->ee_ant_control[mode][7] << 6) |
  223. (ee->ee_ant_control[mode][8] << 12) |
  224. (ee->ee_ant_control[mode][9] << 18) |
  225. (ee->ee_ant_control[mode][10] << 24);
  226. /* return new offset */
  227. *offset = o;
  228. return 0;
  229. }
  230. /*
  231. * Read supported modes and some mode-specific calibration data
  232. * from eeprom
  233. */
  234. static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
  235. unsigned int mode)
  236. {
  237. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  238. u32 o = *offset;
  239. u16 val;
  240. int ret;
  241. ee->ee_n_piers[mode] = 0;
  242. AR5K_EEPROM_READ(o++, val);
  243. ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
  244. switch(mode) {
  245. case AR5K_EEPROM_MODE_11A:
  246. ee->ee_ob[mode][3] = (val >> 5) & 0x7;
  247. ee->ee_db[mode][3] = (val >> 2) & 0x7;
  248. ee->ee_ob[mode][2] = (val << 1) & 0x7;
  249. AR5K_EEPROM_READ(o++, val);
  250. ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
  251. ee->ee_db[mode][2] = (val >> 12) & 0x7;
  252. ee->ee_ob[mode][1] = (val >> 9) & 0x7;
  253. ee->ee_db[mode][1] = (val >> 6) & 0x7;
  254. ee->ee_ob[mode][0] = (val >> 3) & 0x7;
  255. ee->ee_db[mode][0] = val & 0x7;
  256. break;
  257. case AR5K_EEPROM_MODE_11G:
  258. case AR5K_EEPROM_MODE_11B:
  259. ee->ee_ob[mode][1] = (val >> 4) & 0x7;
  260. ee->ee_db[mode][1] = val & 0x7;
  261. break;
  262. }
  263. AR5K_EEPROM_READ(o++, val);
  264. ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
  265. ee->ee_thr_62[mode] = val & 0xff;
  266. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
  267. ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
  268. AR5K_EEPROM_READ(o++, val);
  269. ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
  270. ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
  271. AR5K_EEPROM_READ(o++, val);
  272. ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
  273. if ((val & 0xff) & 0x80)
  274. ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
  275. else
  276. ee->ee_noise_floor_thr[mode] = val & 0xff;
  277. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
  278. ee->ee_noise_floor_thr[mode] =
  279. mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
  280. AR5K_EEPROM_READ(o++, val);
  281. ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
  282. ee->ee_x_gain[mode] = (val >> 1) & 0xf;
  283. ee->ee_xpd[mode] = val & 0x1;
  284. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
  285. ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
  286. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
  287. AR5K_EEPROM_READ(o++, val);
  288. ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
  289. if (mode == AR5K_EEPROM_MODE_11A)
  290. ee->ee_xr_power[mode] = val & 0x3f;
  291. else {
  292. ee->ee_ob[mode][0] = val & 0x7;
  293. ee->ee_db[mode][0] = (val >> 3) & 0x7;
  294. }
  295. }
  296. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
  297. ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
  298. ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
  299. } else {
  300. ee->ee_i_gain[mode] = (val >> 13) & 0x7;
  301. AR5K_EEPROM_READ(o++, val);
  302. ee->ee_i_gain[mode] |= (val << 3) & 0x38;
  303. if (mode == AR5K_EEPROM_MODE_11G) {
  304. ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
  305. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
  306. ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
  307. }
  308. }
  309. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
  310. mode == AR5K_EEPROM_MODE_11A) {
  311. ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
  312. ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
  313. }
  314. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
  315. goto done;
  316. /* Note: >= v5 have bg freq piers on another location
  317. * so these freq piers are ignored for >= v5 (should be 0xff
  318. * anyway) */
  319. switch(mode) {
  320. case AR5K_EEPROM_MODE_11A:
  321. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
  322. break;
  323. AR5K_EEPROM_READ(o++, val);
  324. ee->ee_margin_tx_rx[mode] = val & 0x3f;
  325. break;
  326. case AR5K_EEPROM_MODE_11B:
  327. AR5K_EEPROM_READ(o++, val);
  328. ee->ee_pwr_cal_b[0].freq =
  329. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  330. if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
  331. ee->ee_n_piers[mode]++;
  332. ee->ee_pwr_cal_b[1].freq =
  333. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  334. if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
  335. ee->ee_n_piers[mode]++;
  336. AR5K_EEPROM_READ(o++, val);
  337. ee->ee_pwr_cal_b[2].freq =
  338. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  339. if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
  340. ee->ee_n_piers[mode]++;
  341. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
  342. ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
  343. break;
  344. case AR5K_EEPROM_MODE_11G:
  345. AR5K_EEPROM_READ(o++, val);
  346. ee->ee_pwr_cal_g[0].freq =
  347. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  348. if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
  349. ee->ee_n_piers[mode]++;
  350. ee->ee_pwr_cal_g[1].freq =
  351. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  352. if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
  353. ee->ee_n_piers[mode]++;
  354. AR5K_EEPROM_READ(o++, val);
  355. ee->ee_turbo_max_power[mode] = val & 0x7f;
  356. ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
  357. AR5K_EEPROM_READ(o++, val);
  358. ee->ee_pwr_cal_g[2].freq =
  359. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  360. if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
  361. ee->ee_n_piers[mode]++;
  362. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
  363. ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
  364. AR5K_EEPROM_READ(o++, val);
  365. ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
  366. ee->ee_q_cal[mode] = val & 0x1f;
  367. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
  368. AR5K_EEPROM_READ(o++, val);
  369. ee->ee_cck_ofdm_gain_delta = val & 0xff;
  370. }
  371. break;
  372. }
  373. /*
  374. * Read turbo mode information on newer EEPROM versions
  375. */
  376. if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
  377. goto done;
  378. switch (mode){
  379. case AR5K_EEPROM_MODE_11A:
  380. ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
  381. ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
  382. AR5K_EEPROM_READ(o++, val);
  383. ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
  384. ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
  385. ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
  386. AR5K_EEPROM_READ(o++, val);
  387. ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
  388. ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
  389. if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
  390. ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
  391. break;
  392. case AR5K_EEPROM_MODE_11G:
  393. ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
  394. ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
  395. AR5K_EEPROM_READ(o++, val);
  396. ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
  397. ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
  398. ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
  399. AR5K_EEPROM_READ(o++, val);
  400. ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
  401. ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
  402. break;
  403. }
  404. done:
  405. /* return new offset */
  406. *offset = o;
  407. return 0;
  408. }
  409. /* Read mode-specific data (except power calibration data) */
  410. static int
  411. ath5k_eeprom_init_modes(struct ath5k_hw *ah)
  412. {
  413. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  414. u32 mode_offset[3];
  415. unsigned int mode;
  416. u32 offset;
  417. int ret;
  418. /*
  419. * Get values for all modes
  420. */
  421. mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
  422. mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
  423. mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
  424. ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
  425. AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
  426. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
  427. offset = mode_offset[mode];
  428. ret = ath5k_eeprom_read_ants(ah, &offset, mode);
  429. if (ret)
  430. return ret;
  431. ret = ath5k_eeprom_read_modes(ah, &offset, mode);
  432. if (ret)
  433. return ret;
  434. }
  435. /* override for older eeprom versions for better performance */
  436. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
  437. ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
  438. ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
  439. ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
  440. }
  441. return 0;
  442. }
  443. /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
  444. * frequency mask) */
  445. static inline int
  446. ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
  447. struct ath5k_chan_pcal_info *pc, unsigned int mode)
  448. {
  449. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  450. int o = *offset;
  451. int i = 0;
  452. u8 freq1, freq2;
  453. int ret;
  454. u16 val;
  455. ee->ee_n_piers[mode] = 0;
  456. while(i < max) {
  457. AR5K_EEPROM_READ(o++, val);
  458. freq1 = val & 0xff;
  459. if (!freq1)
  460. break;
  461. pc[i++].freq = ath5k_eeprom_bin2freq(ee,
  462. freq1, mode);
  463. ee->ee_n_piers[mode]++;
  464. freq2 = (val >> 8) & 0xff;
  465. if (!freq2)
  466. break;
  467. pc[i++].freq = ath5k_eeprom_bin2freq(ee,
  468. freq2, mode);
  469. ee->ee_n_piers[mode]++;
  470. }
  471. /* return new offset */
  472. *offset = o;
  473. return 0;
  474. }
  475. /* Read frequency piers for 802.11a */
  476. static int
  477. ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
  478. {
  479. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  480. struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
  481. int i, ret;
  482. u16 val;
  483. u8 mask;
  484. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
  485. ath5k_eeprom_read_freq_list(ah, &offset,
  486. AR5K_EEPROM_N_5GHZ_CHAN, pcal,
  487. AR5K_EEPROM_MODE_11A);
  488. } else {
  489. mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
  490. AR5K_EEPROM_READ(offset++, val);
  491. pcal[0].freq = (val >> 9) & mask;
  492. pcal[1].freq = (val >> 2) & mask;
  493. pcal[2].freq = (val << 5) & mask;
  494. AR5K_EEPROM_READ(offset++, val);
  495. pcal[2].freq |= (val >> 11) & 0x1f;
  496. pcal[3].freq = (val >> 4) & mask;
  497. pcal[4].freq = (val << 3) & mask;
  498. AR5K_EEPROM_READ(offset++, val);
  499. pcal[4].freq |= (val >> 13) & 0x7;
  500. pcal[5].freq = (val >> 6) & mask;
  501. pcal[6].freq = (val << 1) & mask;
  502. AR5K_EEPROM_READ(offset++, val);
  503. pcal[6].freq |= (val >> 15) & 0x1;
  504. pcal[7].freq = (val >> 8) & mask;
  505. pcal[8].freq = (val >> 1) & mask;
  506. pcal[9].freq = (val << 6) & mask;
  507. AR5K_EEPROM_READ(offset++, val);
  508. pcal[9].freq |= (val >> 10) & 0x3f;
  509. /* Fixed number of piers */
  510. ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
  511. for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
  512. pcal[i].freq = ath5k_eeprom_bin2freq(ee,
  513. pcal[i].freq, AR5K_EEPROM_MODE_11A);
  514. }
  515. }
  516. return 0;
  517. }
  518. /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
  519. static inline int
  520. ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
  521. {
  522. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  523. struct ath5k_chan_pcal_info *pcal;
  524. switch(mode) {
  525. case AR5K_EEPROM_MODE_11B:
  526. pcal = ee->ee_pwr_cal_b;
  527. break;
  528. case AR5K_EEPROM_MODE_11G:
  529. pcal = ee->ee_pwr_cal_g;
  530. break;
  531. default:
  532. return -EINVAL;
  533. }
  534. ath5k_eeprom_read_freq_list(ah, &offset,
  535. AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
  536. mode);
  537. return 0;
  538. }
  539. /*
  540. * Read power calibration for RF5111 chips
  541. *
  542. * For RF5111 we have an XPD -eXternal Power Detector- curve
  543. * for each calibrated channel. Each curve has 0,5dB Power steps
  544. * on x axis and PCDAC steps (offsets) on y axis and looks like an
  545. * exponential function. To recreate the curve we read 11 points
  546. * here and interpolate later.
  547. */
  548. /* Used to match PCDAC steps with power values on RF5111 chips
  549. * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
  550. * steps that match with the power values we read from eeprom. On
  551. * older eeprom versions (< 3.2) these steps are equaly spaced at
  552. * 10% of the pcdac curve -until the curve reaches it's maximum-
  553. * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
  554. * these 11 steps are spaced in a different way. This function returns
  555. * the pcdac steps based on eeprom version and curve min/max so that we
  556. * can have pcdac/pwr points.
  557. */
  558. static inline void
  559. ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
  560. {
  561. static const u16 intercepts3[] =
  562. { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
  563. static const u16 intercepts3_2[] =
  564. { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
  565. const u16 *ip;
  566. int i;
  567. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
  568. ip = intercepts3_2;
  569. else
  570. ip = intercepts3;
  571. for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
  572. vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
  573. }
  574. /* Convert RF5111 specific data to generic raw data
  575. * used by interpolation code */
  576. static int
  577. ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
  578. struct ath5k_chan_pcal_info *chinfo)
  579. {
  580. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  581. struct ath5k_chan_pcal_info_rf5111 *pcinfo;
  582. struct ath5k_pdgain_info *pd;
  583. u8 pier, point, idx;
  584. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  585. /* Fill raw data for each calibration pier */
  586. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  587. pcinfo = &chinfo[pier].rf5111_info;
  588. /* Allocate pd_curves for this cal pier */
  589. chinfo[pier].pd_curves =
  590. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  591. sizeof(struct ath5k_pdgain_info),
  592. GFP_KERNEL);
  593. if (!chinfo[pier].pd_curves)
  594. return -ENOMEM;
  595. /* Only one curve for RF5111
  596. * find out which one and place
  597. * in in pd_curves.
  598. * Note: ee_x_gain is reversed here */
  599. for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
  600. if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
  601. pdgain_idx[0] = idx;
  602. break;
  603. }
  604. }
  605. ee->ee_pd_gains[mode] = 1;
  606. pd = &chinfo[pier].pd_curves[idx];
  607. pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
  608. /* Allocate pd points for this curve */
  609. pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
  610. sizeof(u8), GFP_KERNEL);
  611. if (!pd->pd_step)
  612. return -ENOMEM;
  613. pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
  614. sizeof(s16), GFP_KERNEL);
  615. if (!pd->pd_pwr)
  616. return -ENOMEM;
  617. /* Fill raw dataset
  618. * (convert power to 0.25dB units
  619. * for RF5112 combatibility) */
  620. for (point = 0; point < pd->pd_points; point++) {
  621. /* Absolute values */
  622. pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
  623. /* Already sorted */
  624. pd->pd_step[point] = pcinfo->pcdac[point];
  625. }
  626. /* Set min/max pwr */
  627. chinfo[pier].min_pwr = pd->pd_pwr[0];
  628. chinfo[pier].max_pwr = pd->pd_pwr[10];
  629. }
  630. return 0;
  631. }
  632. /* Parse EEPROM data */
  633. static int
  634. ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
  635. {
  636. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  637. struct ath5k_chan_pcal_info *pcal;
  638. int offset, ret;
  639. int i;
  640. u16 val;
  641. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  642. switch(mode) {
  643. case AR5K_EEPROM_MODE_11A:
  644. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  645. return 0;
  646. ret = ath5k_eeprom_init_11a_pcal_freq(ah,
  647. offset + AR5K_EEPROM_GROUP1_OFFSET);
  648. if (ret < 0)
  649. return ret;
  650. offset += AR5K_EEPROM_GROUP2_OFFSET;
  651. pcal = ee->ee_pwr_cal_a;
  652. break;
  653. case AR5K_EEPROM_MODE_11B:
  654. if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
  655. !AR5K_EEPROM_HDR_11G(ee->ee_header))
  656. return 0;
  657. pcal = ee->ee_pwr_cal_b;
  658. offset += AR5K_EEPROM_GROUP3_OFFSET;
  659. /* fixed piers */
  660. pcal[0].freq = 2412;
  661. pcal[1].freq = 2447;
  662. pcal[2].freq = 2484;
  663. ee->ee_n_piers[mode] = 3;
  664. break;
  665. case AR5K_EEPROM_MODE_11G:
  666. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  667. return 0;
  668. pcal = ee->ee_pwr_cal_g;
  669. offset += AR5K_EEPROM_GROUP4_OFFSET;
  670. /* fixed piers */
  671. pcal[0].freq = 2312;
  672. pcal[1].freq = 2412;
  673. pcal[2].freq = 2484;
  674. ee->ee_n_piers[mode] = 3;
  675. break;
  676. default:
  677. return -EINVAL;
  678. }
  679. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  680. struct ath5k_chan_pcal_info_rf5111 *cdata =
  681. &pcal[i].rf5111_info;
  682. AR5K_EEPROM_READ(offset++, val);
  683. cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
  684. cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
  685. cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
  686. AR5K_EEPROM_READ(offset++, val);
  687. cdata->pwr[0] |= ((val >> 14) & 0x3);
  688. cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
  689. cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
  690. cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
  691. AR5K_EEPROM_READ(offset++, val);
  692. cdata->pwr[3] |= ((val >> 12) & 0xf);
  693. cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
  694. cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
  695. AR5K_EEPROM_READ(offset++, val);
  696. cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
  697. cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
  698. cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
  699. AR5K_EEPROM_READ(offset++, val);
  700. cdata->pwr[8] |= ((val >> 14) & 0x3);
  701. cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
  702. cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
  703. ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
  704. cdata->pcdac_max, cdata->pcdac);
  705. }
  706. return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
  707. }
  708. /*
  709. * Read power calibration for RF5112 chips
  710. *
  711. * For RF5112 we have 4 XPD -eXternal Power Detector- curves
  712. * for each calibrated channel on 0, -6, -12 and -18dbm but we only
  713. * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
  714. * power steps on x axis and PCDAC steps on y axis and looks like a
  715. * linear function. To recreate the curve and pass the power values
  716. * on hw, we read 4 points for xpd 0 (lower gain -> max power)
  717. * and 3 points for xpd 3 (higher gain -> lower power) here and
  718. * interpolate later.
  719. *
  720. * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
  721. */
  722. /* Convert RF5112 specific data to generic raw data
  723. * used by interpolation code */
  724. static int
  725. ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
  726. struct ath5k_chan_pcal_info *chinfo)
  727. {
  728. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  729. struct ath5k_chan_pcal_info_rf5112 *pcinfo;
  730. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  731. unsigned int pier, pdg, point;
  732. /* Fill raw data for each calibration pier */
  733. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  734. pcinfo = &chinfo[pier].rf5112_info;
  735. /* Allocate pd_curves for this cal pier */
  736. chinfo[pier].pd_curves =
  737. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  738. sizeof(struct ath5k_pdgain_info),
  739. GFP_KERNEL);
  740. if (!chinfo[pier].pd_curves)
  741. return -ENOMEM;
  742. /* Fill pd_curves */
  743. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  744. u8 idx = pdgain_idx[pdg];
  745. struct ath5k_pdgain_info *pd =
  746. &chinfo[pier].pd_curves[idx];
  747. /* Lowest gain curve (max power) */
  748. if (pdg == 0) {
  749. /* One more point for better accuracy */
  750. pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
  751. /* Allocate pd points for this curve */
  752. pd->pd_step = kcalloc(pd->pd_points,
  753. sizeof(u8), GFP_KERNEL);
  754. if (!pd->pd_step)
  755. return -ENOMEM;
  756. pd->pd_pwr = kcalloc(pd->pd_points,
  757. sizeof(s16), GFP_KERNEL);
  758. if (!pd->pd_pwr)
  759. return -ENOMEM;
  760. /* Fill raw dataset
  761. * (all power levels are in 0.25dB units) */
  762. pd->pd_step[0] = pcinfo->pcdac_x0[0];
  763. pd->pd_pwr[0] = pcinfo->pwr_x0[0];
  764. for (point = 1; point < pd->pd_points;
  765. point++) {
  766. /* Absolute values */
  767. pd->pd_pwr[point] =
  768. pcinfo->pwr_x0[point];
  769. /* Deltas */
  770. pd->pd_step[point] =
  771. pd->pd_step[point - 1] +
  772. pcinfo->pcdac_x0[point];
  773. }
  774. /* Set min power for this frequency */
  775. chinfo[pier].min_pwr = pd->pd_pwr[0];
  776. /* Highest gain curve (min power) */
  777. } else if (pdg == 1) {
  778. pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
  779. /* Allocate pd points for this curve */
  780. pd->pd_step = kcalloc(pd->pd_points,
  781. sizeof(u8), GFP_KERNEL);
  782. if (!pd->pd_step)
  783. return -ENOMEM;
  784. pd->pd_pwr = kcalloc(pd->pd_points,
  785. sizeof(s16), GFP_KERNEL);
  786. if (!pd->pd_pwr)
  787. return -ENOMEM;
  788. /* Fill raw dataset
  789. * (all power levels are in 0.25dB units) */
  790. for (point = 0; point < pd->pd_points;
  791. point++) {
  792. /* Absolute values */
  793. pd->pd_pwr[point] =
  794. pcinfo->pwr_x3[point];
  795. /* Fixed points */
  796. pd->pd_step[point] =
  797. pcinfo->pcdac_x3[point];
  798. }
  799. /* Since we have a higher gain curve
  800. * override min power */
  801. chinfo[pier].min_pwr = pd->pd_pwr[0];
  802. }
  803. }
  804. }
  805. return 0;
  806. }
  807. /* Parse EEPROM data */
  808. static int
  809. ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
  810. {
  811. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  812. struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
  813. struct ath5k_chan_pcal_info *gen_chan_info;
  814. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  815. u32 offset;
  816. u8 i, c;
  817. u16 val;
  818. int ret;
  819. u8 pd_gains = 0;
  820. /* Count how many curves we have and
  821. * identify them (which one of the 4
  822. * available curves we have on each count).
  823. * Curves are stored from lower (x0) to
  824. * higher (x3) gain */
  825. for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
  826. /* ee_x_gain[mode] is x gain mask */
  827. if ((ee->ee_x_gain[mode] >> i) & 0x1)
  828. pdgain_idx[pd_gains++] = i;
  829. }
  830. ee->ee_pd_gains[mode] = pd_gains;
  831. if (pd_gains == 0 || pd_gains > 2)
  832. return -EINVAL;
  833. switch (mode) {
  834. case AR5K_EEPROM_MODE_11A:
  835. /*
  836. * Read 5GHz EEPROM channels
  837. */
  838. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  839. ath5k_eeprom_init_11a_pcal_freq(ah, offset);
  840. offset += AR5K_EEPROM_GROUP2_OFFSET;
  841. gen_chan_info = ee->ee_pwr_cal_a;
  842. break;
  843. case AR5K_EEPROM_MODE_11B:
  844. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  845. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  846. offset += AR5K_EEPROM_GROUP3_OFFSET;
  847. /* NB: frequency piers parsed during mode init */
  848. gen_chan_info = ee->ee_pwr_cal_b;
  849. break;
  850. case AR5K_EEPROM_MODE_11G:
  851. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  852. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  853. offset += AR5K_EEPROM_GROUP4_OFFSET;
  854. else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
  855. offset += AR5K_EEPROM_GROUP2_OFFSET;
  856. /* NB: frequency piers parsed during mode init */
  857. gen_chan_info = ee->ee_pwr_cal_g;
  858. break;
  859. default:
  860. return -EINVAL;
  861. }
  862. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  863. chan_pcal_info = &gen_chan_info[i].rf5112_info;
  864. /* Power values in quarter dB
  865. * for the lower xpd gain curve
  866. * (0 dBm -> higher output power) */
  867. for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
  868. AR5K_EEPROM_READ(offset++, val);
  869. chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
  870. chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
  871. }
  872. /* PCDAC steps
  873. * corresponding to the above power
  874. * measurements */
  875. AR5K_EEPROM_READ(offset++, val);
  876. chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
  877. chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
  878. chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
  879. /* Power values in quarter dB
  880. * for the higher xpd gain curve
  881. * (18 dBm -> lower output power) */
  882. AR5K_EEPROM_READ(offset++, val);
  883. chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
  884. chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
  885. AR5K_EEPROM_READ(offset++, val);
  886. chan_pcal_info->pwr_x3[2] = (val & 0xff);
  887. /* PCDAC steps
  888. * corresponding to the above power
  889. * measurements (fixed) */
  890. chan_pcal_info->pcdac_x3[0] = 20;
  891. chan_pcal_info->pcdac_x3[1] = 35;
  892. chan_pcal_info->pcdac_x3[2] = 63;
  893. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
  894. chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
  895. /* Last xpd0 power level is also channel maximum */
  896. gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
  897. } else {
  898. chan_pcal_info->pcdac_x0[0] = 1;
  899. gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
  900. }
  901. }
  902. return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
  903. }
  904. /*
  905. * Read power calibration for RF2413 chips
  906. *
  907. * For RF2413 we have a Power to PDDAC table (Power Detector)
  908. * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
  909. * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
  910. * axis and looks like an exponential function like the RF5111 curve.
  911. *
  912. * To recreate the curves we read here the points and interpolate
  913. * later. Note that in most cases only 2 (higher and lower) curves are
  914. * used (like RF5112) but vendors have the oportunity to include all
  915. * 4 curves on eeprom. The final curve (higher power) has an extra
  916. * point for better accuracy like RF5112.
  917. */
  918. /* For RF2413 power calibration data doesn't start on a fixed location and
  919. * if a mode is not supported, it's section is missing -not zeroed-.
  920. * So we need to calculate the starting offset for each section by using
  921. * these two functions */
  922. /* Return the size of each section based on the mode and the number of pd
  923. * gains available (maximum 4). */
  924. static inline unsigned int
  925. ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
  926. {
  927. static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
  928. unsigned int sz;
  929. sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
  930. sz *= ee->ee_n_piers[mode];
  931. return sz;
  932. }
  933. /* Return the starting offset for a section based on the modes supported
  934. * and each section's size. */
  935. static unsigned int
  936. ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
  937. {
  938. u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
  939. switch(mode) {
  940. case AR5K_EEPROM_MODE_11G:
  941. if (AR5K_EEPROM_HDR_11B(ee->ee_header))
  942. offset += ath5k_pdgains_size_2413(ee,
  943. AR5K_EEPROM_MODE_11B) +
  944. AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  945. /* fall through */
  946. case AR5K_EEPROM_MODE_11B:
  947. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  948. offset += ath5k_pdgains_size_2413(ee,
  949. AR5K_EEPROM_MODE_11A) +
  950. AR5K_EEPROM_N_5GHZ_CHAN / 2;
  951. /* fall through */
  952. case AR5K_EEPROM_MODE_11A:
  953. break;
  954. default:
  955. break;
  956. }
  957. return offset;
  958. }
  959. /* Convert RF2413 specific data to generic raw data
  960. * used by interpolation code */
  961. static int
  962. ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
  963. struct ath5k_chan_pcal_info *chinfo)
  964. {
  965. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  966. struct ath5k_chan_pcal_info_rf2413 *pcinfo;
  967. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  968. unsigned int pier, pdg, point;
  969. /* Fill raw data for each calibration pier */
  970. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  971. pcinfo = &chinfo[pier].rf2413_info;
  972. /* Allocate pd_curves for this cal pier */
  973. chinfo[pier].pd_curves =
  974. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  975. sizeof(struct ath5k_pdgain_info),
  976. GFP_KERNEL);
  977. if (!chinfo[pier].pd_curves)
  978. return -ENOMEM;
  979. /* Fill pd_curves */
  980. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  981. u8 idx = pdgain_idx[pdg];
  982. struct ath5k_pdgain_info *pd =
  983. &chinfo[pier].pd_curves[idx];
  984. /* One more point for the highest power
  985. * curve (lowest gain) */
  986. if (pdg == ee->ee_pd_gains[mode] - 1)
  987. pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
  988. else
  989. pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
  990. /* Allocate pd points for this curve */
  991. pd->pd_step = kcalloc(pd->pd_points,
  992. sizeof(u8), GFP_KERNEL);
  993. if (!pd->pd_step)
  994. return -ENOMEM;
  995. pd->pd_pwr = kcalloc(pd->pd_points,
  996. sizeof(s16), GFP_KERNEL);
  997. if (!pd->pd_pwr)
  998. return -ENOMEM;
  999. /* Fill raw dataset
  1000. * convert all pwr levels to
  1001. * quarter dB for RF5112 combatibility */
  1002. pd->pd_step[0] = pcinfo->pddac_i[pdg];
  1003. pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
  1004. for (point = 1; point < pd->pd_points; point++) {
  1005. pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
  1006. 2 * pcinfo->pwr[pdg][point - 1];
  1007. pd->pd_step[point] = pd->pd_step[point - 1] +
  1008. pcinfo->pddac[pdg][point - 1];
  1009. }
  1010. /* Highest gain curve -> min power */
  1011. if (pdg == 0)
  1012. chinfo[pier].min_pwr = pd->pd_pwr[0];
  1013. /* Lowest gain curve -> max power */
  1014. if (pdg == ee->ee_pd_gains[mode] - 1)
  1015. chinfo[pier].max_pwr =
  1016. pd->pd_pwr[pd->pd_points - 1];
  1017. }
  1018. }
  1019. return 0;
  1020. }
  1021. /* Parse EEPROM data */
  1022. static int
  1023. ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
  1024. {
  1025. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1026. struct ath5k_chan_pcal_info_rf2413 *pcinfo;
  1027. struct ath5k_chan_pcal_info *chinfo;
  1028. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  1029. u32 offset;
  1030. int idx, i, ret;
  1031. u16 val;
  1032. u8 pd_gains = 0;
  1033. /* Count how many curves we have and
  1034. * identify them (which one of the 4
  1035. * available curves we have on each count).
  1036. * Curves are stored from higher to
  1037. * lower gain so we go backwards */
  1038. for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
  1039. /* ee_x_gain[mode] is x gain mask */
  1040. if ((ee->ee_x_gain[mode] >> idx) & 0x1)
  1041. pdgain_idx[pd_gains++] = idx;
  1042. }
  1043. ee->ee_pd_gains[mode] = pd_gains;
  1044. if (pd_gains == 0)
  1045. return -EINVAL;
  1046. offset = ath5k_cal_data_offset_2413(ee, mode);
  1047. switch (mode) {
  1048. case AR5K_EEPROM_MODE_11A:
  1049. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  1050. return 0;
  1051. ath5k_eeprom_init_11a_pcal_freq(ah, offset);
  1052. offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
  1053. chinfo = ee->ee_pwr_cal_a;
  1054. break;
  1055. case AR5K_EEPROM_MODE_11B:
  1056. if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
  1057. return 0;
  1058. ath5k_eeprom_init_11bg_2413(ah, mode, offset);
  1059. offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  1060. chinfo = ee->ee_pwr_cal_b;
  1061. break;
  1062. case AR5K_EEPROM_MODE_11G:
  1063. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  1064. return 0;
  1065. ath5k_eeprom_init_11bg_2413(ah, mode, offset);
  1066. offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  1067. chinfo = ee->ee_pwr_cal_g;
  1068. break;
  1069. default:
  1070. return -EINVAL;
  1071. }
  1072. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  1073. pcinfo = &chinfo[i].rf2413_info;
  1074. /*
  1075. * Read pwr_i, pddac_i and the first
  1076. * 2 pd points (pwr, pddac)
  1077. */
  1078. AR5K_EEPROM_READ(offset++, val);
  1079. pcinfo->pwr_i[0] = val & 0x1f;
  1080. pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
  1081. pcinfo->pwr[0][0] = (val >> 12) & 0xf;
  1082. AR5K_EEPROM_READ(offset++, val);
  1083. pcinfo->pddac[0][0] = val & 0x3f;
  1084. pcinfo->pwr[0][1] = (val >> 6) & 0xf;
  1085. pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
  1086. AR5K_EEPROM_READ(offset++, val);
  1087. pcinfo->pwr[0][2] = val & 0xf;
  1088. pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
  1089. pcinfo->pwr[0][3] = 0;
  1090. pcinfo->pddac[0][3] = 0;
  1091. if (pd_gains > 1) {
  1092. /*
  1093. * Pd gain 0 is not the last pd gain
  1094. * so it only has 2 pd points.
  1095. * Continue wih pd gain 1.
  1096. */
  1097. pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
  1098. pcinfo->pddac_i[1] = (val >> 15) & 0x1;
  1099. AR5K_EEPROM_READ(offset++, val);
  1100. pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
  1101. pcinfo->pwr[1][0] = (val >> 6) & 0xf;
  1102. pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
  1103. AR5K_EEPROM_READ(offset++, val);
  1104. pcinfo->pwr[1][1] = val & 0xf;
  1105. pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
  1106. pcinfo->pwr[1][2] = (val >> 10) & 0xf;
  1107. pcinfo->pddac[1][2] = (val >> 14) & 0x3;
  1108. AR5K_EEPROM_READ(offset++, val);
  1109. pcinfo->pddac[1][2] |= (val & 0xF) << 2;
  1110. pcinfo->pwr[1][3] = 0;
  1111. pcinfo->pddac[1][3] = 0;
  1112. } else if (pd_gains == 1) {
  1113. /*
  1114. * Pd gain 0 is the last one so
  1115. * read the extra point.
  1116. */
  1117. pcinfo->pwr[0][3] = (val >> 10) & 0xf;
  1118. pcinfo->pddac[0][3] = (val >> 14) & 0x3;
  1119. AR5K_EEPROM_READ(offset++, val);
  1120. pcinfo->pddac[0][3] |= (val & 0xF) << 2;
  1121. }
  1122. /*
  1123. * Proceed with the other pd_gains
  1124. * as above.
  1125. */
  1126. if (pd_gains > 2) {
  1127. pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
  1128. pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
  1129. AR5K_EEPROM_READ(offset++, val);
  1130. pcinfo->pwr[2][0] = (val >> 0) & 0xf;
  1131. pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
  1132. pcinfo->pwr[2][1] = (val >> 10) & 0xf;
  1133. pcinfo->pddac[2][1] = (val >> 14) & 0x3;
  1134. AR5K_EEPROM_READ(offset++, val);
  1135. pcinfo->pddac[2][1] |= (val & 0xF) << 2;
  1136. pcinfo->pwr[2][2] = (val >> 4) & 0xf;
  1137. pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
  1138. pcinfo->pwr[2][3] = 0;
  1139. pcinfo->pddac[2][3] = 0;
  1140. } else if (pd_gains == 2) {
  1141. pcinfo->pwr[1][3] = (val >> 4) & 0xf;
  1142. pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
  1143. }
  1144. if (pd_gains > 3) {
  1145. pcinfo->pwr_i[3] = (val >> 14) & 0x3;
  1146. AR5K_EEPROM_READ(offset++, val);
  1147. pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
  1148. pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
  1149. pcinfo->pwr[3][0] = (val >> 10) & 0xf;
  1150. pcinfo->pddac[3][0] = (val >> 14) & 0x3;
  1151. AR5K_EEPROM_READ(offset++, val);
  1152. pcinfo->pddac[3][0] |= (val & 0xF) << 2;
  1153. pcinfo->pwr[3][1] = (val >> 4) & 0xf;
  1154. pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
  1155. pcinfo->pwr[3][2] = (val >> 14) & 0x3;
  1156. AR5K_EEPROM_READ(offset++, val);
  1157. pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
  1158. pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
  1159. pcinfo->pwr[3][3] = (val >> 8) & 0xf;
  1160. pcinfo->pddac[3][3] = (val >> 12) & 0xF;
  1161. AR5K_EEPROM_READ(offset++, val);
  1162. pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
  1163. } else if (pd_gains == 3) {
  1164. pcinfo->pwr[2][3] = (val >> 14) & 0x3;
  1165. AR5K_EEPROM_READ(offset++, val);
  1166. pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
  1167. pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
  1168. }
  1169. }
  1170. return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
  1171. }
  1172. /*
  1173. * Read per rate target power (this is the maximum tx power
  1174. * supported by the card). This info is used when setting
  1175. * tx power, no matter the channel.
  1176. *
  1177. * This also works for v5 EEPROMs.
  1178. */
  1179. static int
  1180. ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
  1181. {
  1182. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1183. struct ath5k_rate_pcal_info *rate_pcal_info;
  1184. u8 *rate_target_pwr_num;
  1185. u32 offset;
  1186. u16 val;
  1187. int ret, i;
  1188. offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
  1189. rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
  1190. switch (mode) {
  1191. case AR5K_EEPROM_MODE_11A:
  1192. offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
  1193. rate_pcal_info = ee->ee_rate_tpwr_a;
  1194. ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
  1195. break;
  1196. case AR5K_EEPROM_MODE_11B:
  1197. offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
  1198. rate_pcal_info = ee->ee_rate_tpwr_b;
  1199. ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
  1200. break;
  1201. case AR5K_EEPROM_MODE_11G:
  1202. offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
  1203. rate_pcal_info = ee->ee_rate_tpwr_g;
  1204. ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
  1205. break;
  1206. default:
  1207. return -EINVAL;
  1208. }
  1209. /* Different freq mask for older eeproms (<= v3.2) */
  1210. if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
  1211. for (i = 0; i < (*rate_target_pwr_num); i++) {
  1212. AR5K_EEPROM_READ(offset++, val);
  1213. rate_pcal_info[i].freq =
  1214. ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
  1215. rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
  1216. rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
  1217. AR5K_EEPROM_READ(offset++, val);
  1218. if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
  1219. val == 0) {
  1220. (*rate_target_pwr_num) = i;
  1221. break;
  1222. }
  1223. rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
  1224. rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
  1225. rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
  1226. }
  1227. } else {
  1228. for (i = 0; i < (*rate_target_pwr_num); i++) {
  1229. AR5K_EEPROM_READ(offset++, val);
  1230. rate_pcal_info[i].freq =
  1231. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  1232. rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
  1233. rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
  1234. AR5K_EEPROM_READ(offset++, val);
  1235. if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
  1236. val == 0) {
  1237. (*rate_target_pwr_num) = i;
  1238. break;
  1239. }
  1240. rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
  1241. rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
  1242. rate_pcal_info[i].target_power_54 = (val & 0x3f);
  1243. }
  1244. }
  1245. return 0;
  1246. }
  1247. /*
  1248. * Read per channel calibration info from EEPROM
  1249. *
  1250. * This info is used to calibrate the baseband power table. Imagine
  1251. * that for each channel there is a power curve that's hw specific
  1252. * (depends on amplifier etc) and we try to "correct" this curve using
  1253. * offsets we pass on to phy chip (baseband -> before amplifier) so that
  1254. * it can use accurate power values when setting tx power (takes amplifier's
  1255. * performance on each channel into account).
  1256. *
  1257. * EEPROM provides us with the offsets for some pre-calibrated channels
  1258. * and we have to interpolate to create the full table for these channels and
  1259. * also the table for any channel.
  1260. */
  1261. static int
  1262. ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
  1263. {
  1264. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1265. int (*read_pcal)(struct ath5k_hw *hw, int mode);
  1266. int mode;
  1267. int err;
  1268. if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
  1269. (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
  1270. read_pcal = ath5k_eeprom_read_pcal_info_5112;
  1271. else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
  1272. (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
  1273. read_pcal = ath5k_eeprom_read_pcal_info_2413;
  1274. else
  1275. read_pcal = ath5k_eeprom_read_pcal_info_5111;
  1276. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
  1277. mode++) {
  1278. err = read_pcal(ah, mode);
  1279. if (err)
  1280. return err;
  1281. err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
  1282. if (err < 0)
  1283. return err;
  1284. }
  1285. return 0;
  1286. }
  1287. static int
  1288. ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
  1289. {
  1290. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1291. struct ath5k_chan_pcal_info *chinfo;
  1292. u8 pier, pdg;
  1293. switch (mode) {
  1294. case AR5K_EEPROM_MODE_11A:
  1295. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  1296. return 0;
  1297. chinfo = ee->ee_pwr_cal_a;
  1298. break;
  1299. case AR5K_EEPROM_MODE_11B:
  1300. if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
  1301. return 0;
  1302. chinfo = ee->ee_pwr_cal_b;
  1303. break;
  1304. case AR5K_EEPROM_MODE_11G:
  1305. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  1306. return 0;
  1307. chinfo = ee->ee_pwr_cal_g;
  1308. break;
  1309. default:
  1310. return -EINVAL;
  1311. }
  1312. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  1313. if (!chinfo[pier].pd_curves)
  1314. continue;
  1315. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  1316. struct ath5k_pdgain_info *pd =
  1317. &chinfo[pier].pd_curves[pdg];
  1318. if (pd != NULL) {
  1319. kfree(pd->pd_step);
  1320. kfree(pd->pd_pwr);
  1321. }
  1322. }
  1323. kfree(chinfo[pier].pd_curves);
  1324. }
  1325. return 0;
  1326. }
  1327. void
  1328. ath5k_eeprom_detach(struct ath5k_hw *ah)
  1329. {
  1330. u8 mode;
  1331. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
  1332. ath5k_eeprom_free_pcal_info(ah, mode);
  1333. }
  1334. /* Read conformance test limits used for regulatory control */
  1335. static int
  1336. ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
  1337. {
  1338. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1339. struct ath5k_edge_power *rep;
  1340. unsigned int fmask, pmask;
  1341. unsigned int ctl_mode;
  1342. int ret, i, j;
  1343. u32 offset;
  1344. u16 val;
  1345. pmask = AR5K_EEPROM_POWER_M;
  1346. fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
  1347. offset = AR5K_EEPROM_CTL(ee->ee_version);
  1348. ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
  1349. for (i = 0; i < ee->ee_ctls; i += 2) {
  1350. AR5K_EEPROM_READ(offset++, val);
  1351. ee->ee_ctl[i] = (val >> 8) & 0xff;
  1352. ee->ee_ctl[i + 1] = val & 0xff;
  1353. }
  1354. offset = AR5K_EEPROM_GROUP8_OFFSET;
  1355. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
  1356. offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
  1357. AR5K_EEPROM_GROUP5_OFFSET;
  1358. else
  1359. offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
  1360. rep = ee->ee_ctl_pwr;
  1361. for(i = 0; i < ee->ee_ctls; i++) {
  1362. switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
  1363. case AR5K_CTL_11A:
  1364. case AR5K_CTL_TURBO:
  1365. ctl_mode = AR5K_EEPROM_MODE_11A;
  1366. break;
  1367. default:
  1368. ctl_mode = AR5K_EEPROM_MODE_11G;
  1369. break;
  1370. }
  1371. if (ee->ee_ctl[i] == 0) {
  1372. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
  1373. offset += 8;
  1374. else
  1375. offset += 7;
  1376. rep += AR5K_EEPROM_N_EDGES;
  1377. continue;
  1378. }
  1379. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
  1380. for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
  1381. AR5K_EEPROM_READ(offset++, val);
  1382. rep[j].freq = (val >> 8) & fmask;
  1383. rep[j + 1].freq = val & fmask;
  1384. }
  1385. for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
  1386. AR5K_EEPROM_READ(offset++, val);
  1387. rep[j].edge = (val >> 8) & pmask;
  1388. rep[j].flag = (val >> 14) & 1;
  1389. rep[j + 1].edge = val & pmask;
  1390. rep[j + 1].flag = (val >> 6) & 1;
  1391. }
  1392. } else {
  1393. AR5K_EEPROM_READ(offset++, val);
  1394. rep[0].freq = (val >> 9) & fmask;
  1395. rep[1].freq = (val >> 2) & fmask;
  1396. rep[2].freq = (val << 5) & fmask;
  1397. AR5K_EEPROM_READ(offset++, val);
  1398. rep[2].freq |= (val >> 11) & 0x1f;
  1399. rep[3].freq = (val >> 4) & fmask;
  1400. rep[4].freq = (val << 3) & fmask;
  1401. AR5K_EEPROM_READ(offset++, val);
  1402. rep[4].freq |= (val >> 13) & 0x7;
  1403. rep[5].freq = (val >> 6) & fmask;
  1404. rep[6].freq = (val << 1) & fmask;
  1405. AR5K_EEPROM_READ(offset++, val);
  1406. rep[6].freq |= (val >> 15) & 0x1;
  1407. rep[7].freq = (val >> 8) & fmask;
  1408. rep[0].edge = (val >> 2) & pmask;
  1409. rep[1].edge = (val << 4) & pmask;
  1410. AR5K_EEPROM_READ(offset++, val);
  1411. rep[1].edge |= (val >> 12) & 0xf;
  1412. rep[2].edge = (val >> 6) & pmask;
  1413. rep[3].edge = val & pmask;
  1414. AR5K_EEPROM_READ(offset++, val);
  1415. rep[4].edge = (val >> 10) & pmask;
  1416. rep[5].edge = (val >> 4) & pmask;
  1417. rep[6].edge = (val << 2) & pmask;
  1418. AR5K_EEPROM_READ(offset++, val);
  1419. rep[6].edge |= (val >> 14) & 0x3;
  1420. rep[7].edge = (val >> 8) & pmask;
  1421. }
  1422. for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
  1423. rep[j].freq = ath5k_eeprom_bin2freq(ee,
  1424. rep[j].freq, ctl_mode);
  1425. }
  1426. rep += AR5K_EEPROM_N_EDGES;
  1427. }
  1428. return 0;
  1429. }
  1430. static int
  1431. ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
  1432. {
  1433. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1434. u32 offset;
  1435. u16 val;
  1436. int ret = 0, i;
  1437. offset = AR5K_EEPROM_CTL(ee->ee_version) +
  1438. AR5K_EEPROM_N_CTLS(ee->ee_version);
  1439. if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
  1440. /* No spur info for 5GHz */
  1441. ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
  1442. /* 2 channels for 2GHz (2464/2420) */
  1443. ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
  1444. ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
  1445. ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
  1446. } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
  1447. for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
  1448. AR5K_EEPROM_READ(offset, val);
  1449. ee->ee_spur_chans[i][0] = val;
  1450. AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
  1451. val);
  1452. ee->ee_spur_chans[i][1] = val;
  1453. offset++;
  1454. }
  1455. }
  1456. return ret;
  1457. }
  1458. /*
  1459. * Initialize eeprom data structure
  1460. */
  1461. int
  1462. ath5k_eeprom_init(struct ath5k_hw *ah)
  1463. {
  1464. int err;
  1465. err = ath5k_eeprom_init_header(ah);
  1466. if (err < 0)
  1467. return err;
  1468. err = ath5k_eeprom_init_modes(ah);
  1469. if (err < 0)
  1470. return err;
  1471. err = ath5k_eeprom_read_pcal_info(ah);
  1472. if (err < 0)
  1473. return err;
  1474. err = ath5k_eeprom_read_ctl_info(ah);
  1475. if (err < 0)
  1476. return err;
  1477. err = ath5k_eeprom_read_spur_chans(ah);
  1478. if (err < 0)
  1479. return err;
  1480. return 0;
  1481. }
  1482. /*
  1483. * Read the MAC address from eeprom
  1484. */
  1485. int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
  1486. {
  1487. u8 mac_d[ETH_ALEN] = {};
  1488. u32 total, offset;
  1489. u16 data;
  1490. int octet, ret;
  1491. ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
  1492. if (ret)
  1493. return ret;
  1494. for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
  1495. ret = ath5k_hw_eeprom_read(ah, offset, &data);
  1496. if (ret)
  1497. return ret;
  1498. total += data;
  1499. mac_d[octet + 1] = data & 0xff;
  1500. mac_d[octet] = data >> 8;
  1501. octet += 2;
  1502. }
  1503. if (!total || total == 3 * 0xffff)
  1504. return -EINVAL;
  1505. memcpy(mac, mac_d, ETH_ALEN);
  1506. return 0;
  1507. }