qlge_dbg.c 71 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201
  1. #include <linux/slab.h>
  2. #include "qlge.h"
  3. /* Read a NIC register from the alternate function. */
  4. static u32 ql_read_other_func_reg(struct ql_adapter *qdev,
  5. u32 reg)
  6. {
  7. u32 register_to_read;
  8. u32 reg_val;
  9. unsigned int status = 0;
  10. register_to_read = MPI_NIC_REG_BLOCK
  11. | MPI_NIC_READ
  12. | (qdev->alt_func << MPI_NIC_FUNCTION_SHIFT)
  13. | reg;
  14. status = ql_read_mpi_reg(qdev, register_to_read, &reg_val);
  15. if (status != 0)
  16. return 0xffffffff;
  17. return reg_val;
  18. }
  19. /* Write a NIC register from the alternate function. */
  20. static int ql_write_other_func_reg(struct ql_adapter *qdev,
  21. u32 reg, u32 reg_val)
  22. {
  23. u32 register_to_read;
  24. int status = 0;
  25. register_to_read = MPI_NIC_REG_BLOCK
  26. | MPI_NIC_READ
  27. | (qdev->alt_func << MPI_NIC_FUNCTION_SHIFT)
  28. | reg;
  29. status = ql_write_mpi_reg(qdev, register_to_read, reg_val);
  30. return status;
  31. }
  32. static int ql_wait_other_func_reg_rdy(struct ql_adapter *qdev, u32 reg,
  33. u32 bit, u32 err_bit)
  34. {
  35. u32 temp;
  36. int count = 10;
  37. while (count) {
  38. temp = ql_read_other_func_reg(qdev, reg);
  39. /* check for errors */
  40. if (temp & err_bit)
  41. return -1;
  42. else if (temp & bit)
  43. return 0;
  44. mdelay(10);
  45. count--;
  46. }
  47. return -1;
  48. }
  49. static int ql_read_other_func_serdes_reg(struct ql_adapter *qdev, u32 reg,
  50. u32 *data)
  51. {
  52. int status;
  53. /* wait for reg to come ready */
  54. status = ql_wait_other_func_reg_rdy(qdev, XG_SERDES_ADDR / 4,
  55. XG_SERDES_ADDR_RDY, 0);
  56. if (status)
  57. goto exit;
  58. /* set up for reg read */
  59. ql_write_other_func_reg(qdev, XG_SERDES_ADDR/4, reg | PROC_ADDR_R);
  60. /* wait for reg to come ready */
  61. status = ql_wait_other_func_reg_rdy(qdev, XG_SERDES_ADDR / 4,
  62. XG_SERDES_ADDR_RDY, 0);
  63. if (status)
  64. goto exit;
  65. /* get the data */
  66. *data = ql_read_other_func_reg(qdev, (XG_SERDES_DATA / 4));
  67. exit:
  68. return status;
  69. }
  70. /* Read out the SERDES registers */
  71. static int ql_read_serdes_reg(struct ql_adapter *qdev, u32 reg, u32 * data)
  72. {
  73. int status;
  74. /* wait for reg to come ready */
  75. status = ql_wait_reg_rdy(qdev, XG_SERDES_ADDR, XG_SERDES_ADDR_RDY, 0);
  76. if (status)
  77. goto exit;
  78. /* set up for reg read */
  79. ql_write32(qdev, XG_SERDES_ADDR, reg | PROC_ADDR_R);
  80. /* wait for reg to come ready */
  81. status = ql_wait_reg_rdy(qdev, XG_SERDES_ADDR, XG_SERDES_ADDR_RDY, 0);
  82. if (status)
  83. goto exit;
  84. /* get the data */
  85. *data = ql_read32(qdev, XG_SERDES_DATA);
  86. exit:
  87. return status;
  88. }
  89. static void ql_get_both_serdes(struct ql_adapter *qdev, u32 addr,
  90. u32 *direct_ptr, u32 *indirect_ptr,
  91. unsigned int direct_valid, unsigned int indirect_valid)
  92. {
  93. unsigned int status;
  94. status = 1;
  95. if (direct_valid)
  96. status = ql_read_serdes_reg(qdev, addr, direct_ptr);
  97. /* Dead fill any failures or invalids. */
  98. if (status)
  99. *direct_ptr = 0xDEADBEEF;
  100. status = 1;
  101. if (indirect_valid)
  102. status = ql_read_other_func_serdes_reg(
  103. qdev, addr, indirect_ptr);
  104. /* Dead fill any failures or invalids. */
  105. if (status)
  106. *indirect_ptr = 0xDEADBEEF;
  107. }
  108. static int ql_get_serdes_regs(struct ql_adapter *qdev,
  109. struct ql_mpi_coredump *mpi_coredump)
  110. {
  111. int status;
  112. unsigned int xfi_direct_valid, xfi_indirect_valid, xaui_direct_valid;
  113. unsigned int xaui_indirect_valid, i;
  114. u32 *direct_ptr, temp;
  115. u32 *indirect_ptr;
  116. xfi_direct_valid = xfi_indirect_valid = 0;
  117. xaui_direct_valid = xaui_indirect_valid = 1;
  118. /* The XAUI needs to be read out per port */
  119. if (qdev->func & 1) {
  120. /* We are NIC 2 */
  121. status = ql_read_other_func_serdes_reg(qdev,
  122. XG_SERDES_XAUI_HSS_PCS_START, &temp);
  123. if (status)
  124. temp = XG_SERDES_ADDR_XAUI_PWR_DOWN;
  125. if ((temp & XG_SERDES_ADDR_XAUI_PWR_DOWN) ==
  126. XG_SERDES_ADDR_XAUI_PWR_DOWN)
  127. xaui_indirect_valid = 0;
  128. status = ql_read_serdes_reg(qdev,
  129. XG_SERDES_XAUI_HSS_PCS_START, &temp);
  130. if (status)
  131. temp = XG_SERDES_ADDR_XAUI_PWR_DOWN;
  132. if ((temp & XG_SERDES_ADDR_XAUI_PWR_DOWN) ==
  133. XG_SERDES_ADDR_XAUI_PWR_DOWN)
  134. xaui_direct_valid = 0;
  135. } else {
  136. /* We are NIC 1 */
  137. status = ql_read_other_func_serdes_reg(qdev,
  138. XG_SERDES_XAUI_HSS_PCS_START, &temp);
  139. if (status)
  140. temp = XG_SERDES_ADDR_XAUI_PWR_DOWN;
  141. if ((temp & XG_SERDES_ADDR_XAUI_PWR_DOWN) ==
  142. XG_SERDES_ADDR_XAUI_PWR_DOWN)
  143. xaui_indirect_valid = 0;
  144. status = ql_read_serdes_reg(qdev,
  145. XG_SERDES_XAUI_HSS_PCS_START, &temp);
  146. if (status)
  147. temp = XG_SERDES_ADDR_XAUI_PWR_DOWN;
  148. if ((temp & XG_SERDES_ADDR_XAUI_PWR_DOWN) ==
  149. XG_SERDES_ADDR_XAUI_PWR_DOWN)
  150. xaui_direct_valid = 0;
  151. }
  152. /*
  153. * XFI register is shared so only need to read one
  154. * functions and then check the bits.
  155. */
  156. status = ql_read_serdes_reg(qdev, XG_SERDES_ADDR_STS, &temp);
  157. if (status)
  158. temp = 0;
  159. if ((temp & XG_SERDES_ADDR_XFI1_PWR_UP) ==
  160. XG_SERDES_ADDR_XFI1_PWR_UP) {
  161. /* now see if i'm NIC 1 or NIC 2 */
  162. if (qdev->func & 1)
  163. /* I'm NIC 2, so the indirect (NIC1) xfi is up. */
  164. xfi_indirect_valid = 1;
  165. else
  166. xfi_direct_valid = 1;
  167. }
  168. if ((temp & XG_SERDES_ADDR_XFI2_PWR_UP) ==
  169. XG_SERDES_ADDR_XFI2_PWR_UP) {
  170. /* now see if i'm NIC 1 or NIC 2 */
  171. if (qdev->func & 1)
  172. /* I'm NIC 2, so the indirect (NIC1) xfi is up. */
  173. xfi_direct_valid = 1;
  174. else
  175. xfi_indirect_valid = 1;
  176. }
  177. /* Get XAUI_AN register block. */
  178. if (qdev->func & 1) {
  179. /* Function 2 is direct */
  180. direct_ptr = mpi_coredump->serdes2_xaui_an;
  181. indirect_ptr = mpi_coredump->serdes_xaui_an;
  182. } else {
  183. /* Function 1 is direct */
  184. direct_ptr = mpi_coredump->serdes_xaui_an;
  185. indirect_ptr = mpi_coredump->serdes2_xaui_an;
  186. }
  187. for (i = 0; i <= 0x000000034; i += 4, direct_ptr++, indirect_ptr++)
  188. ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
  189. xaui_direct_valid, xaui_indirect_valid);
  190. /* Get XAUI_HSS_PCS register block. */
  191. if (qdev->func & 1) {
  192. direct_ptr =
  193. mpi_coredump->serdes2_xaui_hss_pcs;
  194. indirect_ptr =
  195. mpi_coredump->serdes_xaui_hss_pcs;
  196. } else {
  197. direct_ptr =
  198. mpi_coredump->serdes_xaui_hss_pcs;
  199. indirect_ptr =
  200. mpi_coredump->serdes2_xaui_hss_pcs;
  201. }
  202. for (i = 0x800; i <= 0x880; i += 4, direct_ptr++, indirect_ptr++)
  203. ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
  204. xaui_direct_valid, xaui_indirect_valid);
  205. /* Get XAUI_XFI_AN register block. */
  206. if (qdev->func & 1) {
  207. direct_ptr = mpi_coredump->serdes2_xfi_an;
  208. indirect_ptr = mpi_coredump->serdes_xfi_an;
  209. } else {
  210. direct_ptr = mpi_coredump->serdes_xfi_an;
  211. indirect_ptr = mpi_coredump->serdes2_xfi_an;
  212. }
  213. for (i = 0x1000; i <= 0x1034; i += 4, direct_ptr++, indirect_ptr++)
  214. ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
  215. xfi_direct_valid, xfi_indirect_valid);
  216. /* Get XAUI_XFI_TRAIN register block. */
  217. if (qdev->func & 1) {
  218. direct_ptr = mpi_coredump->serdes2_xfi_train;
  219. indirect_ptr =
  220. mpi_coredump->serdes_xfi_train;
  221. } else {
  222. direct_ptr = mpi_coredump->serdes_xfi_train;
  223. indirect_ptr =
  224. mpi_coredump->serdes2_xfi_train;
  225. }
  226. for (i = 0x1050; i <= 0x107c; i += 4, direct_ptr++, indirect_ptr++)
  227. ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
  228. xfi_direct_valid, xfi_indirect_valid);
  229. /* Get XAUI_XFI_HSS_PCS register block. */
  230. if (qdev->func & 1) {
  231. direct_ptr =
  232. mpi_coredump->serdes2_xfi_hss_pcs;
  233. indirect_ptr =
  234. mpi_coredump->serdes_xfi_hss_pcs;
  235. } else {
  236. direct_ptr =
  237. mpi_coredump->serdes_xfi_hss_pcs;
  238. indirect_ptr =
  239. mpi_coredump->serdes2_xfi_hss_pcs;
  240. }
  241. for (i = 0x1800; i <= 0x1838; i += 4, direct_ptr++, indirect_ptr++)
  242. ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
  243. xfi_direct_valid, xfi_indirect_valid);
  244. /* Get XAUI_XFI_HSS_TX register block. */
  245. if (qdev->func & 1) {
  246. direct_ptr =
  247. mpi_coredump->serdes2_xfi_hss_tx;
  248. indirect_ptr =
  249. mpi_coredump->serdes_xfi_hss_tx;
  250. } else {
  251. direct_ptr = mpi_coredump->serdes_xfi_hss_tx;
  252. indirect_ptr =
  253. mpi_coredump->serdes2_xfi_hss_tx;
  254. }
  255. for (i = 0x1c00; i <= 0x1c1f; i++, direct_ptr++, indirect_ptr++)
  256. ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
  257. xfi_direct_valid, xfi_indirect_valid);
  258. /* Get XAUI_XFI_HSS_RX register block. */
  259. if (qdev->func & 1) {
  260. direct_ptr =
  261. mpi_coredump->serdes2_xfi_hss_rx;
  262. indirect_ptr =
  263. mpi_coredump->serdes_xfi_hss_rx;
  264. } else {
  265. direct_ptr = mpi_coredump->serdes_xfi_hss_rx;
  266. indirect_ptr =
  267. mpi_coredump->serdes2_xfi_hss_rx;
  268. }
  269. for (i = 0x1c40; i <= 0x1c5f; i++, direct_ptr++, indirect_ptr++)
  270. ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
  271. xfi_direct_valid, xfi_indirect_valid);
  272. /* Get XAUI_XFI_HSS_PLL register block. */
  273. if (qdev->func & 1) {
  274. direct_ptr =
  275. mpi_coredump->serdes2_xfi_hss_pll;
  276. indirect_ptr =
  277. mpi_coredump->serdes_xfi_hss_pll;
  278. } else {
  279. direct_ptr =
  280. mpi_coredump->serdes_xfi_hss_pll;
  281. indirect_ptr =
  282. mpi_coredump->serdes2_xfi_hss_pll;
  283. }
  284. for (i = 0x1e00; i <= 0x1e1f; i++, direct_ptr++, indirect_ptr++)
  285. ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
  286. xfi_direct_valid, xfi_indirect_valid);
  287. return 0;
  288. }
  289. static int ql_read_other_func_xgmac_reg(struct ql_adapter *qdev, u32 reg,
  290. u32 *data)
  291. {
  292. int status = 0;
  293. /* wait for reg to come ready */
  294. status = ql_wait_other_func_reg_rdy(qdev, XGMAC_ADDR / 4,
  295. XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  296. if (status)
  297. goto exit;
  298. /* set up for reg read */
  299. ql_write_other_func_reg(qdev, XGMAC_ADDR / 4, reg | XGMAC_ADDR_R);
  300. /* wait for reg to come ready */
  301. status = ql_wait_other_func_reg_rdy(qdev, XGMAC_ADDR / 4,
  302. XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  303. if (status)
  304. goto exit;
  305. /* get the data */
  306. *data = ql_read_other_func_reg(qdev, XGMAC_DATA / 4);
  307. exit:
  308. return status;
  309. }
  310. /* Read the 400 xgmac control/statistics registers
  311. * skipping unused locations.
  312. */
  313. static int ql_get_xgmac_regs(struct ql_adapter *qdev, u32 * buf,
  314. unsigned int other_function)
  315. {
  316. int status = 0;
  317. int i;
  318. for (i = PAUSE_SRC_LO; i < XGMAC_REGISTER_END; i += 4, buf++) {
  319. /* We're reading 400 xgmac registers, but we filter out
  320. * serveral locations that are non-responsive to reads.
  321. */
  322. if ((i == 0x00000114) ||
  323. (i == 0x00000118) ||
  324. (i == 0x0000013c) ||
  325. (i == 0x00000140) ||
  326. (i > 0x00000150 && i < 0x000001fc) ||
  327. (i > 0x00000278 && i < 0x000002a0) ||
  328. (i > 0x000002c0 && i < 0x000002cf) ||
  329. (i > 0x000002dc && i < 0x000002f0) ||
  330. (i > 0x000003c8 && i < 0x00000400) ||
  331. (i > 0x00000400 && i < 0x00000410) ||
  332. (i > 0x00000410 && i < 0x00000420) ||
  333. (i > 0x00000420 && i < 0x00000430) ||
  334. (i > 0x00000430 && i < 0x00000440) ||
  335. (i > 0x00000440 && i < 0x00000450) ||
  336. (i > 0x00000450 && i < 0x00000500) ||
  337. (i > 0x0000054c && i < 0x00000568) ||
  338. (i > 0x000005c8 && i < 0x00000600)) {
  339. if (other_function)
  340. status =
  341. ql_read_other_func_xgmac_reg(qdev, i, buf);
  342. else
  343. status = ql_read_xgmac_reg(qdev, i, buf);
  344. if (status)
  345. *buf = 0xdeadbeef;
  346. break;
  347. }
  348. }
  349. return status;
  350. }
  351. static int ql_get_ets_regs(struct ql_adapter *qdev, u32 * buf)
  352. {
  353. int status = 0;
  354. int i;
  355. for (i = 0; i < 8; i++, buf++) {
  356. ql_write32(qdev, NIC_ETS, i << 29 | 0x08000000);
  357. *buf = ql_read32(qdev, NIC_ETS);
  358. }
  359. for (i = 0; i < 2; i++, buf++) {
  360. ql_write32(qdev, CNA_ETS, i << 29 | 0x08000000);
  361. *buf = ql_read32(qdev, CNA_ETS);
  362. }
  363. return status;
  364. }
  365. static void ql_get_intr_states(struct ql_adapter *qdev, u32 * buf)
  366. {
  367. int i;
  368. for (i = 0; i < qdev->rx_ring_count; i++, buf++) {
  369. ql_write32(qdev, INTR_EN,
  370. qdev->intr_context[i].intr_read_mask);
  371. *buf = ql_read32(qdev, INTR_EN);
  372. }
  373. }
  374. static int ql_get_cam_entries(struct ql_adapter *qdev, u32 * buf)
  375. {
  376. int i, status;
  377. u32 value[3];
  378. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  379. if (status)
  380. return status;
  381. for (i = 0; i < 16; i++) {
  382. status = ql_get_mac_addr_reg(qdev,
  383. MAC_ADDR_TYPE_CAM_MAC, i, value);
  384. if (status) {
  385. netif_err(qdev, drv, qdev->ndev,
  386. "Failed read of mac index register.\n");
  387. goto err;
  388. }
  389. *buf++ = value[0]; /* lower MAC address */
  390. *buf++ = value[1]; /* upper MAC address */
  391. *buf++ = value[2]; /* output */
  392. }
  393. for (i = 0; i < 32; i++) {
  394. status = ql_get_mac_addr_reg(qdev,
  395. MAC_ADDR_TYPE_MULTI_MAC, i, value);
  396. if (status) {
  397. netif_err(qdev, drv, qdev->ndev,
  398. "Failed read of mac index register.\n");
  399. goto err;
  400. }
  401. *buf++ = value[0]; /* lower Mcast address */
  402. *buf++ = value[1]; /* upper Mcast address */
  403. }
  404. err:
  405. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  406. return status;
  407. }
  408. static int ql_get_routing_entries(struct ql_adapter *qdev, u32 * buf)
  409. {
  410. int status;
  411. u32 value, i;
  412. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  413. if (status)
  414. return status;
  415. for (i = 0; i < 16; i++) {
  416. status = ql_get_routing_reg(qdev, i, &value);
  417. if (status) {
  418. netif_err(qdev, drv, qdev->ndev,
  419. "Failed read of routing index register.\n");
  420. goto err;
  421. } else {
  422. *buf++ = value;
  423. }
  424. }
  425. err:
  426. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  427. return status;
  428. }
  429. /* Read the MPI Processor shadow registers */
  430. static int ql_get_mpi_shadow_regs(struct ql_adapter *qdev, u32 * buf)
  431. {
  432. u32 i;
  433. int status;
  434. for (i = 0; i < MPI_CORE_SH_REGS_CNT; i++, buf++) {
  435. status = ql_write_mpi_reg(qdev, RISC_124,
  436. (SHADOW_OFFSET | i << SHADOW_REG_SHIFT));
  437. if (status)
  438. goto end;
  439. status = ql_read_mpi_reg(qdev, RISC_127, buf);
  440. if (status)
  441. goto end;
  442. }
  443. end:
  444. return status;
  445. }
  446. /* Read the MPI Processor core registers */
  447. static int ql_get_mpi_regs(struct ql_adapter *qdev, u32 * buf,
  448. u32 offset, u32 count)
  449. {
  450. int i, status = 0;
  451. for (i = 0; i < count; i++, buf++) {
  452. status = ql_read_mpi_reg(qdev, offset + i, buf);
  453. if (status)
  454. return status;
  455. }
  456. return status;
  457. }
  458. /* Read the ASIC probe dump */
  459. static unsigned int *ql_get_probe(struct ql_adapter *qdev, u32 clock,
  460. u32 valid, u32 *buf)
  461. {
  462. u32 module, mux_sel, probe, lo_val, hi_val;
  463. for (module = 0; module < PRB_MX_ADDR_MAX_MODS; module++) {
  464. if (!((valid >> module) & 1))
  465. continue;
  466. for (mux_sel = 0; mux_sel < PRB_MX_ADDR_MAX_MUX; mux_sel++) {
  467. probe = clock
  468. | PRB_MX_ADDR_ARE
  469. | mux_sel
  470. | (module << PRB_MX_ADDR_MOD_SEL_SHIFT);
  471. ql_write32(qdev, PRB_MX_ADDR, probe);
  472. lo_val = ql_read32(qdev, PRB_MX_DATA);
  473. if (mux_sel == 0) {
  474. *buf = probe;
  475. buf++;
  476. }
  477. probe |= PRB_MX_ADDR_UP;
  478. ql_write32(qdev, PRB_MX_ADDR, probe);
  479. hi_val = ql_read32(qdev, PRB_MX_DATA);
  480. *buf = lo_val;
  481. buf++;
  482. *buf = hi_val;
  483. buf++;
  484. }
  485. }
  486. return buf;
  487. }
  488. static int ql_get_probe_dump(struct ql_adapter *qdev, unsigned int *buf)
  489. {
  490. /* First we have to enable the probe mux */
  491. ql_write_mpi_reg(qdev, MPI_TEST_FUNC_PRB_CTL, MPI_TEST_FUNC_PRB_EN);
  492. buf = ql_get_probe(qdev, PRB_MX_ADDR_SYS_CLOCK,
  493. PRB_MX_ADDR_VALID_SYS_MOD, buf);
  494. buf = ql_get_probe(qdev, PRB_MX_ADDR_PCI_CLOCK,
  495. PRB_MX_ADDR_VALID_PCI_MOD, buf);
  496. buf = ql_get_probe(qdev, PRB_MX_ADDR_XGM_CLOCK,
  497. PRB_MX_ADDR_VALID_XGM_MOD, buf);
  498. buf = ql_get_probe(qdev, PRB_MX_ADDR_FC_CLOCK,
  499. PRB_MX_ADDR_VALID_FC_MOD, buf);
  500. return 0;
  501. }
  502. /* Read out the routing index registers */
  503. static int ql_get_routing_index_registers(struct ql_adapter *qdev, u32 *buf)
  504. {
  505. int status;
  506. u32 type, index, index_max;
  507. u32 result_index;
  508. u32 result_data;
  509. u32 val;
  510. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  511. if (status)
  512. return status;
  513. for (type = 0; type < 4; type++) {
  514. if (type < 2)
  515. index_max = 8;
  516. else
  517. index_max = 16;
  518. for (index = 0; index < index_max; index++) {
  519. val = RT_IDX_RS
  520. | (type << RT_IDX_TYPE_SHIFT)
  521. | (index << RT_IDX_IDX_SHIFT);
  522. ql_write32(qdev, RT_IDX, val);
  523. result_index = 0;
  524. while ((result_index & RT_IDX_MR) == 0)
  525. result_index = ql_read32(qdev, RT_IDX);
  526. result_data = ql_read32(qdev, RT_DATA);
  527. *buf = type;
  528. buf++;
  529. *buf = index;
  530. buf++;
  531. *buf = result_index;
  532. buf++;
  533. *buf = result_data;
  534. buf++;
  535. }
  536. }
  537. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  538. return status;
  539. }
  540. /* Read out the MAC protocol registers */
  541. static void ql_get_mac_protocol_registers(struct ql_adapter *qdev, u32 *buf)
  542. {
  543. u32 result_index, result_data;
  544. u32 type;
  545. u32 index;
  546. u32 offset;
  547. u32 val;
  548. u32 initial_val = MAC_ADDR_RS;
  549. u32 max_index;
  550. u32 max_offset;
  551. for (type = 0; type < MAC_ADDR_TYPE_COUNT; type++) {
  552. switch (type) {
  553. case 0: /* CAM */
  554. initial_val |= MAC_ADDR_ADR;
  555. max_index = MAC_ADDR_MAX_CAM_ENTRIES;
  556. max_offset = MAC_ADDR_MAX_CAM_WCOUNT;
  557. break;
  558. case 1: /* Multicast MAC Address */
  559. max_index = MAC_ADDR_MAX_CAM_WCOUNT;
  560. max_offset = MAC_ADDR_MAX_CAM_WCOUNT;
  561. break;
  562. case 2: /* VLAN filter mask */
  563. case 3: /* MC filter mask */
  564. max_index = MAC_ADDR_MAX_CAM_WCOUNT;
  565. max_offset = MAC_ADDR_MAX_CAM_WCOUNT;
  566. break;
  567. case 4: /* FC MAC addresses */
  568. max_index = MAC_ADDR_MAX_FC_MAC_ENTRIES;
  569. max_offset = MAC_ADDR_MAX_FC_MAC_WCOUNT;
  570. break;
  571. case 5: /* Mgmt MAC addresses */
  572. max_index = MAC_ADDR_MAX_MGMT_MAC_ENTRIES;
  573. max_offset = MAC_ADDR_MAX_MGMT_MAC_WCOUNT;
  574. break;
  575. case 6: /* Mgmt VLAN addresses */
  576. max_index = MAC_ADDR_MAX_MGMT_VLAN_ENTRIES;
  577. max_offset = MAC_ADDR_MAX_MGMT_VLAN_WCOUNT;
  578. break;
  579. case 7: /* Mgmt IPv4 address */
  580. max_index = MAC_ADDR_MAX_MGMT_V4_ENTRIES;
  581. max_offset = MAC_ADDR_MAX_MGMT_V4_WCOUNT;
  582. break;
  583. case 8: /* Mgmt IPv6 address */
  584. max_index = MAC_ADDR_MAX_MGMT_V6_ENTRIES;
  585. max_offset = MAC_ADDR_MAX_MGMT_V6_WCOUNT;
  586. break;
  587. case 9: /* Mgmt TCP/UDP Dest port */
  588. max_index = MAC_ADDR_MAX_MGMT_TU_DP_ENTRIES;
  589. max_offset = MAC_ADDR_MAX_MGMT_TU_DP_WCOUNT;
  590. break;
  591. default:
  592. printk(KERN_ERR"Bad type!!! 0x%08x\n", type);
  593. max_index = 0;
  594. max_offset = 0;
  595. break;
  596. }
  597. for (index = 0; index < max_index; index++) {
  598. for (offset = 0; offset < max_offset; offset++) {
  599. val = initial_val
  600. | (type << MAC_ADDR_TYPE_SHIFT)
  601. | (index << MAC_ADDR_IDX_SHIFT)
  602. | (offset);
  603. ql_write32(qdev, MAC_ADDR_IDX, val);
  604. result_index = 0;
  605. while ((result_index & MAC_ADDR_MR) == 0) {
  606. result_index = ql_read32(qdev,
  607. MAC_ADDR_IDX);
  608. }
  609. result_data = ql_read32(qdev, MAC_ADDR_DATA);
  610. *buf = result_index;
  611. buf++;
  612. *buf = result_data;
  613. buf++;
  614. }
  615. }
  616. }
  617. }
  618. static void ql_get_sem_registers(struct ql_adapter *qdev, u32 *buf)
  619. {
  620. u32 func_num, reg, reg_val;
  621. int status;
  622. for (func_num = 0; func_num < MAX_SEMAPHORE_FUNCTIONS ; func_num++) {
  623. reg = MPI_NIC_REG_BLOCK
  624. | (func_num << MPI_NIC_FUNCTION_SHIFT)
  625. | (SEM / 4);
  626. status = ql_read_mpi_reg(qdev, reg, &reg_val);
  627. *buf = reg_val;
  628. /* if the read failed then dead fill the element. */
  629. if (!status)
  630. *buf = 0xdeadbeef;
  631. buf++;
  632. }
  633. }
  634. /* Create a coredump segment header */
  635. static void ql_build_coredump_seg_header(
  636. struct mpi_coredump_segment_header *seg_hdr,
  637. u32 seg_number, u32 seg_size, u8 *desc)
  638. {
  639. memset(seg_hdr, 0, sizeof(struct mpi_coredump_segment_header));
  640. seg_hdr->cookie = MPI_COREDUMP_COOKIE;
  641. seg_hdr->segNum = seg_number;
  642. seg_hdr->segSize = seg_size;
  643. memcpy(seg_hdr->description, desc, (sizeof(seg_hdr->description)) - 1);
  644. }
  645. /*
  646. * This function should be called when a coredump / probedump
  647. * is to be extracted from the HBA. It is assumed there is a
  648. * qdev structure that contains the base address of the register
  649. * space for this function as well as a coredump structure that
  650. * will contain the dump.
  651. */
  652. int ql_core_dump(struct ql_adapter *qdev, struct ql_mpi_coredump *mpi_coredump)
  653. {
  654. int status;
  655. int i;
  656. if (!mpi_coredump) {
  657. netif_err(qdev, drv, qdev->ndev, "No memory available.\n");
  658. return -ENOMEM;
  659. }
  660. /* Try to get the spinlock, but dont worry if
  661. * it isn't available. If the firmware died it
  662. * might be holding the sem.
  663. */
  664. ql_sem_spinlock(qdev, SEM_PROC_REG_MASK);
  665. status = ql_pause_mpi_risc(qdev);
  666. if (status) {
  667. netif_err(qdev, drv, qdev->ndev,
  668. "Failed RISC pause. Status = 0x%.08x\n", status);
  669. goto err;
  670. }
  671. /* Insert the global header */
  672. memset(&(mpi_coredump->mpi_global_header), 0,
  673. sizeof(struct mpi_coredump_global_header));
  674. mpi_coredump->mpi_global_header.cookie = MPI_COREDUMP_COOKIE;
  675. mpi_coredump->mpi_global_header.headerSize =
  676. sizeof(struct mpi_coredump_global_header);
  677. mpi_coredump->mpi_global_header.imageSize =
  678. sizeof(struct ql_mpi_coredump);
  679. memcpy(mpi_coredump->mpi_global_header.idString, "MPI Coredump",
  680. sizeof(mpi_coredump->mpi_global_header.idString));
  681. /* Get generic NIC reg dump */
  682. ql_build_coredump_seg_header(&mpi_coredump->nic_regs_seg_hdr,
  683. NIC1_CONTROL_SEG_NUM,
  684. sizeof(struct mpi_coredump_segment_header) +
  685. sizeof(mpi_coredump->nic_regs), "NIC1 Registers");
  686. ql_build_coredump_seg_header(&mpi_coredump->nic2_regs_seg_hdr,
  687. NIC2_CONTROL_SEG_NUM,
  688. sizeof(struct mpi_coredump_segment_header) +
  689. sizeof(mpi_coredump->nic2_regs), "NIC2 Registers");
  690. /* Get XGMac registers. (Segment 18, Rev C. step 21) */
  691. ql_build_coredump_seg_header(&mpi_coredump->xgmac1_seg_hdr,
  692. NIC1_XGMAC_SEG_NUM,
  693. sizeof(struct mpi_coredump_segment_header) +
  694. sizeof(mpi_coredump->xgmac1), "NIC1 XGMac Registers");
  695. ql_build_coredump_seg_header(&mpi_coredump->xgmac2_seg_hdr,
  696. NIC2_XGMAC_SEG_NUM,
  697. sizeof(struct mpi_coredump_segment_header) +
  698. sizeof(mpi_coredump->xgmac2), "NIC2 XGMac Registers");
  699. if (qdev->func & 1) {
  700. /* Odd means our function is NIC 2 */
  701. for (i = 0; i < NIC_REGS_DUMP_WORD_COUNT; i++)
  702. mpi_coredump->nic2_regs[i] =
  703. ql_read32(qdev, i * sizeof(u32));
  704. for (i = 0; i < NIC_REGS_DUMP_WORD_COUNT; i++)
  705. mpi_coredump->nic_regs[i] =
  706. ql_read_other_func_reg(qdev, (i * sizeof(u32)) / 4);
  707. ql_get_xgmac_regs(qdev, &mpi_coredump->xgmac2[0], 0);
  708. ql_get_xgmac_regs(qdev, &mpi_coredump->xgmac1[0], 1);
  709. } else {
  710. /* Even means our function is NIC 1 */
  711. for (i = 0; i < NIC_REGS_DUMP_WORD_COUNT; i++)
  712. mpi_coredump->nic_regs[i] =
  713. ql_read32(qdev, i * sizeof(u32));
  714. for (i = 0; i < NIC_REGS_DUMP_WORD_COUNT; i++)
  715. mpi_coredump->nic2_regs[i] =
  716. ql_read_other_func_reg(qdev, (i * sizeof(u32)) / 4);
  717. ql_get_xgmac_regs(qdev, &mpi_coredump->xgmac1[0], 0);
  718. ql_get_xgmac_regs(qdev, &mpi_coredump->xgmac2[0], 1);
  719. }
  720. /* Rev C. Step 20a */
  721. ql_build_coredump_seg_header(&mpi_coredump->xaui_an_hdr,
  722. XAUI_AN_SEG_NUM,
  723. sizeof(struct mpi_coredump_segment_header) +
  724. sizeof(mpi_coredump->serdes_xaui_an),
  725. "XAUI AN Registers");
  726. /* Rev C. Step 20b */
  727. ql_build_coredump_seg_header(&mpi_coredump->xaui_hss_pcs_hdr,
  728. XAUI_HSS_PCS_SEG_NUM,
  729. sizeof(struct mpi_coredump_segment_header) +
  730. sizeof(mpi_coredump->serdes_xaui_hss_pcs),
  731. "XAUI HSS PCS Registers");
  732. ql_build_coredump_seg_header(&mpi_coredump->xfi_an_hdr, XFI_AN_SEG_NUM,
  733. sizeof(struct mpi_coredump_segment_header) +
  734. sizeof(mpi_coredump->serdes_xfi_an),
  735. "XFI AN Registers");
  736. ql_build_coredump_seg_header(&mpi_coredump->xfi_train_hdr,
  737. XFI_TRAIN_SEG_NUM,
  738. sizeof(struct mpi_coredump_segment_header) +
  739. sizeof(mpi_coredump->serdes_xfi_train),
  740. "XFI TRAIN Registers");
  741. ql_build_coredump_seg_header(&mpi_coredump->xfi_hss_pcs_hdr,
  742. XFI_HSS_PCS_SEG_NUM,
  743. sizeof(struct mpi_coredump_segment_header) +
  744. sizeof(mpi_coredump->serdes_xfi_hss_pcs),
  745. "XFI HSS PCS Registers");
  746. ql_build_coredump_seg_header(&mpi_coredump->xfi_hss_tx_hdr,
  747. XFI_HSS_TX_SEG_NUM,
  748. sizeof(struct mpi_coredump_segment_header) +
  749. sizeof(mpi_coredump->serdes_xfi_hss_tx),
  750. "XFI HSS TX Registers");
  751. ql_build_coredump_seg_header(&mpi_coredump->xfi_hss_rx_hdr,
  752. XFI_HSS_RX_SEG_NUM,
  753. sizeof(struct mpi_coredump_segment_header) +
  754. sizeof(mpi_coredump->serdes_xfi_hss_rx),
  755. "XFI HSS RX Registers");
  756. ql_build_coredump_seg_header(&mpi_coredump->xfi_hss_pll_hdr,
  757. XFI_HSS_PLL_SEG_NUM,
  758. sizeof(struct mpi_coredump_segment_header) +
  759. sizeof(mpi_coredump->serdes_xfi_hss_pll),
  760. "XFI HSS PLL Registers");
  761. ql_build_coredump_seg_header(&mpi_coredump->xaui2_an_hdr,
  762. XAUI2_AN_SEG_NUM,
  763. sizeof(struct mpi_coredump_segment_header) +
  764. sizeof(mpi_coredump->serdes2_xaui_an),
  765. "XAUI2 AN Registers");
  766. ql_build_coredump_seg_header(&mpi_coredump->xaui2_hss_pcs_hdr,
  767. XAUI2_HSS_PCS_SEG_NUM,
  768. sizeof(struct mpi_coredump_segment_header) +
  769. sizeof(mpi_coredump->serdes2_xaui_hss_pcs),
  770. "XAUI2 HSS PCS Registers");
  771. ql_build_coredump_seg_header(&mpi_coredump->xfi2_an_hdr,
  772. XFI2_AN_SEG_NUM,
  773. sizeof(struct mpi_coredump_segment_header) +
  774. sizeof(mpi_coredump->serdes2_xfi_an),
  775. "XFI2 AN Registers");
  776. ql_build_coredump_seg_header(&mpi_coredump->xfi2_train_hdr,
  777. XFI2_TRAIN_SEG_NUM,
  778. sizeof(struct mpi_coredump_segment_header) +
  779. sizeof(mpi_coredump->serdes2_xfi_train),
  780. "XFI2 TRAIN Registers");
  781. ql_build_coredump_seg_header(&mpi_coredump->xfi2_hss_pcs_hdr,
  782. XFI2_HSS_PCS_SEG_NUM,
  783. sizeof(struct mpi_coredump_segment_header) +
  784. sizeof(mpi_coredump->serdes2_xfi_hss_pcs),
  785. "XFI2 HSS PCS Registers");
  786. ql_build_coredump_seg_header(&mpi_coredump->xfi2_hss_tx_hdr,
  787. XFI2_HSS_TX_SEG_NUM,
  788. sizeof(struct mpi_coredump_segment_header) +
  789. sizeof(mpi_coredump->serdes2_xfi_hss_tx),
  790. "XFI2 HSS TX Registers");
  791. ql_build_coredump_seg_header(&mpi_coredump->xfi2_hss_rx_hdr,
  792. XFI2_HSS_RX_SEG_NUM,
  793. sizeof(struct mpi_coredump_segment_header) +
  794. sizeof(mpi_coredump->serdes2_xfi_hss_rx),
  795. "XFI2 HSS RX Registers");
  796. ql_build_coredump_seg_header(&mpi_coredump->xfi2_hss_pll_hdr,
  797. XFI2_HSS_PLL_SEG_NUM,
  798. sizeof(struct mpi_coredump_segment_header) +
  799. sizeof(mpi_coredump->serdes2_xfi_hss_pll),
  800. "XFI2 HSS PLL Registers");
  801. status = ql_get_serdes_regs(qdev, mpi_coredump);
  802. if (status) {
  803. netif_err(qdev, drv, qdev->ndev,
  804. "Failed Dump of Serdes Registers. Status = 0x%.08x\n",
  805. status);
  806. goto err;
  807. }
  808. ql_build_coredump_seg_header(&mpi_coredump->core_regs_seg_hdr,
  809. CORE_SEG_NUM,
  810. sizeof(mpi_coredump->core_regs_seg_hdr) +
  811. sizeof(mpi_coredump->mpi_core_regs) +
  812. sizeof(mpi_coredump->mpi_core_sh_regs),
  813. "Core Registers");
  814. /* Get the MPI Core Registers */
  815. status = ql_get_mpi_regs(qdev, &mpi_coredump->mpi_core_regs[0],
  816. MPI_CORE_REGS_ADDR, MPI_CORE_REGS_CNT);
  817. if (status)
  818. goto err;
  819. /* Get the 16 MPI shadow registers */
  820. status = ql_get_mpi_shadow_regs(qdev,
  821. &mpi_coredump->mpi_core_sh_regs[0]);
  822. if (status)
  823. goto err;
  824. /* Get the Test Logic Registers */
  825. ql_build_coredump_seg_header(&mpi_coredump->test_logic_regs_seg_hdr,
  826. TEST_LOGIC_SEG_NUM,
  827. sizeof(struct mpi_coredump_segment_header)
  828. + sizeof(mpi_coredump->test_logic_regs),
  829. "Test Logic Regs");
  830. status = ql_get_mpi_regs(qdev, &mpi_coredump->test_logic_regs[0],
  831. TEST_REGS_ADDR, TEST_REGS_CNT);
  832. if (status)
  833. goto err;
  834. /* Get the RMII Registers */
  835. ql_build_coredump_seg_header(&mpi_coredump->rmii_regs_seg_hdr,
  836. RMII_SEG_NUM,
  837. sizeof(struct mpi_coredump_segment_header)
  838. + sizeof(mpi_coredump->rmii_regs),
  839. "RMII Registers");
  840. status = ql_get_mpi_regs(qdev, &mpi_coredump->rmii_regs[0],
  841. RMII_REGS_ADDR, RMII_REGS_CNT);
  842. if (status)
  843. goto err;
  844. /* Get the FCMAC1 Registers */
  845. ql_build_coredump_seg_header(&mpi_coredump->fcmac1_regs_seg_hdr,
  846. FCMAC1_SEG_NUM,
  847. sizeof(struct mpi_coredump_segment_header)
  848. + sizeof(mpi_coredump->fcmac1_regs),
  849. "FCMAC1 Registers");
  850. status = ql_get_mpi_regs(qdev, &mpi_coredump->fcmac1_regs[0],
  851. FCMAC1_REGS_ADDR, FCMAC_REGS_CNT);
  852. if (status)
  853. goto err;
  854. /* Get the FCMAC2 Registers */
  855. ql_build_coredump_seg_header(&mpi_coredump->fcmac2_regs_seg_hdr,
  856. FCMAC2_SEG_NUM,
  857. sizeof(struct mpi_coredump_segment_header)
  858. + sizeof(mpi_coredump->fcmac2_regs),
  859. "FCMAC2 Registers");
  860. status = ql_get_mpi_regs(qdev, &mpi_coredump->fcmac2_regs[0],
  861. FCMAC2_REGS_ADDR, FCMAC_REGS_CNT);
  862. if (status)
  863. goto err;
  864. /* Get the FC1 MBX Registers */
  865. ql_build_coredump_seg_header(&mpi_coredump->fc1_mbx_regs_seg_hdr,
  866. FC1_MBOX_SEG_NUM,
  867. sizeof(struct mpi_coredump_segment_header)
  868. + sizeof(mpi_coredump->fc1_mbx_regs),
  869. "FC1 MBox Regs");
  870. status = ql_get_mpi_regs(qdev, &mpi_coredump->fc1_mbx_regs[0],
  871. FC1_MBX_REGS_ADDR, FC_MBX_REGS_CNT);
  872. if (status)
  873. goto err;
  874. /* Get the IDE Registers */
  875. ql_build_coredump_seg_header(&mpi_coredump->ide_regs_seg_hdr,
  876. IDE_SEG_NUM,
  877. sizeof(struct mpi_coredump_segment_header)
  878. + sizeof(mpi_coredump->ide_regs),
  879. "IDE Registers");
  880. status = ql_get_mpi_regs(qdev, &mpi_coredump->ide_regs[0],
  881. IDE_REGS_ADDR, IDE_REGS_CNT);
  882. if (status)
  883. goto err;
  884. /* Get the NIC1 MBX Registers */
  885. ql_build_coredump_seg_header(&mpi_coredump->nic1_mbx_regs_seg_hdr,
  886. NIC1_MBOX_SEG_NUM,
  887. sizeof(struct mpi_coredump_segment_header)
  888. + sizeof(mpi_coredump->nic1_mbx_regs),
  889. "NIC1 MBox Regs");
  890. status = ql_get_mpi_regs(qdev, &mpi_coredump->nic1_mbx_regs[0],
  891. NIC1_MBX_REGS_ADDR, NIC_MBX_REGS_CNT);
  892. if (status)
  893. goto err;
  894. /* Get the SMBus Registers */
  895. ql_build_coredump_seg_header(&mpi_coredump->smbus_regs_seg_hdr,
  896. SMBUS_SEG_NUM,
  897. sizeof(struct mpi_coredump_segment_header)
  898. + sizeof(mpi_coredump->smbus_regs),
  899. "SMBus Registers");
  900. status = ql_get_mpi_regs(qdev, &mpi_coredump->smbus_regs[0],
  901. SMBUS_REGS_ADDR, SMBUS_REGS_CNT);
  902. if (status)
  903. goto err;
  904. /* Get the FC2 MBX Registers */
  905. ql_build_coredump_seg_header(&mpi_coredump->fc2_mbx_regs_seg_hdr,
  906. FC2_MBOX_SEG_NUM,
  907. sizeof(struct mpi_coredump_segment_header)
  908. + sizeof(mpi_coredump->fc2_mbx_regs),
  909. "FC2 MBox Regs");
  910. status = ql_get_mpi_regs(qdev, &mpi_coredump->fc2_mbx_regs[0],
  911. FC2_MBX_REGS_ADDR, FC_MBX_REGS_CNT);
  912. if (status)
  913. goto err;
  914. /* Get the NIC2 MBX Registers */
  915. ql_build_coredump_seg_header(&mpi_coredump->nic2_mbx_regs_seg_hdr,
  916. NIC2_MBOX_SEG_NUM,
  917. sizeof(struct mpi_coredump_segment_header)
  918. + sizeof(mpi_coredump->nic2_mbx_regs),
  919. "NIC2 MBox Regs");
  920. status = ql_get_mpi_regs(qdev, &mpi_coredump->nic2_mbx_regs[0],
  921. NIC2_MBX_REGS_ADDR, NIC_MBX_REGS_CNT);
  922. if (status)
  923. goto err;
  924. /* Get the I2C Registers */
  925. ql_build_coredump_seg_header(&mpi_coredump->i2c_regs_seg_hdr,
  926. I2C_SEG_NUM,
  927. sizeof(struct mpi_coredump_segment_header)
  928. + sizeof(mpi_coredump->i2c_regs),
  929. "I2C Registers");
  930. status = ql_get_mpi_regs(qdev, &mpi_coredump->i2c_regs[0],
  931. I2C_REGS_ADDR, I2C_REGS_CNT);
  932. if (status)
  933. goto err;
  934. /* Get the MEMC Registers */
  935. ql_build_coredump_seg_header(&mpi_coredump->memc_regs_seg_hdr,
  936. MEMC_SEG_NUM,
  937. sizeof(struct mpi_coredump_segment_header)
  938. + sizeof(mpi_coredump->memc_regs),
  939. "MEMC Registers");
  940. status = ql_get_mpi_regs(qdev, &mpi_coredump->memc_regs[0],
  941. MEMC_REGS_ADDR, MEMC_REGS_CNT);
  942. if (status)
  943. goto err;
  944. /* Get the PBus Registers */
  945. ql_build_coredump_seg_header(&mpi_coredump->pbus_regs_seg_hdr,
  946. PBUS_SEG_NUM,
  947. sizeof(struct mpi_coredump_segment_header)
  948. + sizeof(mpi_coredump->pbus_regs),
  949. "PBUS Registers");
  950. status = ql_get_mpi_regs(qdev, &mpi_coredump->pbus_regs[0],
  951. PBUS_REGS_ADDR, PBUS_REGS_CNT);
  952. if (status)
  953. goto err;
  954. /* Get the MDE Registers */
  955. ql_build_coredump_seg_header(&mpi_coredump->mde_regs_seg_hdr,
  956. MDE_SEG_NUM,
  957. sizeof(struct mpi_coredump_segment_header)
  958. + sizeof(mpi_coredump->mde_regs),
  959. "MDE Registers");
  960. status = ql_get_mpi_regs(qdev, &mpi_coredump->mde_regs[0],
  961. MDE_REGS_ADDR, MDE_REGS_CNT);
  962. if (status)
  963. goto err;
  964. ql_build_coredump_seg_header(&mpi_coredump->misc_nic_seg_hdr,
  965. MISC_NIC_INFO_SEG_NUM,
  966. sizeof(struct mpi_coredump_segment_header)
  967. + sizeof(mpi_coredump->misc_nic_info),
  968. "MISC NIC INFO");
  969. mpi_coredump->misc_nic_info.rx_ring_count = qdev->rx_ring_count;
  970. mpi_coredump->misc_nic_info.tx_ring_count = qdev->tx_ring_count;
  971. mpi_coredump->misc_nic_info.intr_count = qdev->intr_count;
  972. mpi_coredump->misc_nic_info.function = qdev->func;
  973. /* Segment 31 */
  974. /* Get indexed register values. */
  975. ql_build_coredump_seg_header(&mpi_coredump->intr_states_seg_hdr,
  976. INTR_STATES_SEG_NUM,
  977. sizeof(struct mpi_coredump_segment_header)
  978. + sizeof(mpi_coredump->intr_states),
  979. "INTR States");
  980. ql_get_intr_states(qdev, &mpi_coredump->intr_states[0]);
  981. ql_build_coredump_seg_header(&mpi_coredump->cam_entries_seg_hdr,
  982. CAM_ENTRIES_SEG_NUM,
  983. sizeof(struct mpi_coredump_segment_header)
  984. + sizeof(mpi_coredump->cam_entries),
  985. "CAM Entries");
  986. status = ql_get_cam_entries(qdev, &mpi_coredump->cam_entries[0]);
  987. if (status)
  988. goto err;
  989. ql_build_coredump_seg_header(&mpi_coredump->nic_routing_words_seg_hdr,
  990. ROUTING_WORDS_SEG_NUM,
  991. sizeof(struct mpi_coredump_segment_header)
  992. + sizeof(mpi_coredump->nic_routing_words),
  993. "Routing Words");
  994. status = ql_get_routing_entries(qdev,
  995. &mpi_coredump->nic_routing_words[0]);
  996. if (status)
  997. goto err;
  998. /* Segment 34 (Rev C. step 23) */
  999. ql_build_coredump_seg_header(&mpi_coredump->ets_seg_hdr,
  1000. ETS_SEG_NUM,
  1001. sizeof(struct mpi_coredump_segment_header)
  1002. + sizeof(mpi_coredump->ets),
  1003. "ETS Registers");
  1004. status = ql_get_ets_regs(qdev, &mpi_coredump->ets[0]);
  1005. if (status)
  1006. goto err;
  1007. ql_build_coredump_seg_header(&mpi_coredump->probe_dump_seg_hdr,
  1008. PROBE_DUMP_SEG_NUM,
  1009. sizeof(struct mpi_coredump_segment_header)
  1010. + sizeof(mpi_coredump->probe_dump),
  1011. "Probe Dump");
  1012. ql_get_probe_dump(qdev, &mpi_coredump->probe_dump[0]);
  1013. ql_build_coredump_seg_header(&mpi_coredump->routing_reg_seg_hdr,
  1014. ROUTING_INDEX_SEG_NUM,
  1015. sizeof(struct mpi_coredump_segment_header)
  1016. + sizeof(mpi_coredump->routing_regs),
  1017. "Routing Regs");
  1018. status = ql_get_routing_index_registers(qdev,
  1019. &mpi_coredump->routing_regs[0]);
  1020. if (status)
  1021. goto err;
  1022. ql_build_coredump_seg_header(&mpi_coredump->mac_prot_reg_seg_hdr,
  1023. MAC_PROTOCOL_SEG_NUM,
  1024. sizeof(struct mpi_coredump_segment_header)
  1025. + sizeof(mpi_coredump->mac_prot_regs),
  1026. "MAC Prot Regs");
  1027. ql_get_mac_protocol_registers(qdev, &mpi_coredump->mac_prot_regs[0]);
  1028. /* Get the semaphore registers for all 5 functions */
  1029. ql_build_coredump_seg_header(&mpi_coredump->sem_regs_seg_hdr,
  1030. SEM_REGS_SEG_NUM,
  1031. sizeof(struct mpi_coredump_segment_header) +
  1032. sizeof(mpi_coredump->sem_regs), "Sem Registers");
  1033. ql_get_sem_registers(qdev, &mpi_coredump->sem_regs[0]);
  1034. /* Prevent the mpi restarting while we dump the memory.*/
  1035. ql_write_mpi_reg(qdev, MPI_TEST_FUNC_RST_STS, MPI_TEST_FUNC_RST_FRC);
  1036. /* clear the pause */
  1037. status = ql_unpause_mpi_risc(qdev);
  1038. if (status) {
  1039. netif_err(qdev, drv, qdev->ndev,
  1040. "Failed RISC unpause. Status = 0x%.08x\n", status);
  1041. goto err;
  1042. }
  1043. /* Reset the RISC so we can dump RAM */
  1044. status = ql_hard_reset_mpi_risc(qdev);
  1045. if (status) {
  1046. netif_err(qdev, drv, qdev->ndev,
  1047. "Failed RISC reset. Status = 0x%.08x\n", status);
  1048. goto err;
  1049. }
  1050. ql_build_coredump_seg_header(&mpi_coredump->code_ram_seg_hdr,
  1051. WCS_RAM_SEG_NUM,
  1052. sizeof(struct mpi_coredump_segment_header)
  1053. + sizeof(mpi_coredump->code_ram),
  1054. "WCS RAM");
  1055. status = ql_dump_risc_ram_area(qdev, &mpi_coredump->code_ram[0],
  1056. CODE_RAM_ADDR, CODE_RAM_CNT);
  1057. if (status) {
  1058. netif_err(qdev, drv, qdev->ndev,
  1059. "Failed Dump of CODE RAM. Status = 0x%.08x\n",
  1060. status);
  1061. goto err;
  1062. }
  1063. /* Insert the segment header */
  1064. ql_build_coredump_seg_header(&mpi_coredump->memc_ram_seg_hdr,
  1065. MEMC_RAM_SEG_NUM,
  1066. sizeof(struct mpi_coredump_segment_header)
  1067. + sizeof(mpi_coredump->memc_ram),
  1068. "MEMC RAM");
  1069. status = ql_dump_risc_ram_area(qdev, &mpi_coredump->memc_ram[0],
  1070. MEMC_RAM_ADDR, MEMC_RAM_CNT);
  1071. if (status) {
  1072. netif_err(qdev, drv, qdev->ndev,
  1073. "Failed Dump of MEMC RAM. Status = 0x%.08x\n",
  1074. status);
  1075. goto err;
  1076. }
  1077. err:
  1078. ql_sem_unlock(qdev, SEM_PROC_REG_MASK); /* does flush too */
  1079. return status;
  1080. }
  1081. static void ql_get_core_dump(struct ql_adapter *qdev)
  1082. {
  1083. if (!ql_own_firmware(qdev)) {
  1084. netif_err(qdev, drv, qdev->ndev, "Don't own firmware!\n");
  1085. return;
  1086. }
  1087. if (!netif_running(qdev->ndev)) {
  1088. netif_err(qdev, ifup, qdev->ndev,
  1089. "Force Coredump can only be done from interface that is up.\n");
  1090. return;
  1091. }
  1092. if (ql_mb_sys_err(qdev)) {
  1093. netif_err(qdev, ifup, qdev->ndev,
  1094. "Fail force coredump with ql_mb_sys_err().\n");
  1095. return;
  1096. }
  1097. }
  1098. void ql_gen_reg_dump(struct ql_adapter *qdev,
  1099. struct ql_reg_dump *mpi_coredump)
  1100. {
  1101. int i, status;
  1102. memset(&(mpi_coredump->mpi_global_header), 0,
  1103. sizeof(struct mpi_coredump_global_header));
  1104. mpi_coredump->mpi_global_header.cookie = MPI_COREDUMP_COOKIE;
  1105. mpi_coredump->mpi_global_header.headerSize =
  1106. sizeof(struct mpi_coredump_global_header);
  1107. mpi_coredump->mpi_global_header.imageSize =
  1108. sizeof(struct ql_reg_dump);
  1109. memcpy(mpi_coredump->mpi_global_header.idString, "MPI Coredump",
  1110. sizeof(mpi_coredump->mpi_global_header.idString));
  1111. /* segment 16 */
  1112. ql_build_coredump_seg_header(&mpi_coredump->misc_nic_seg_hdr,
  1113. MISC_NIC_INFO_SEG_NUM,
  1114. sizeof(struct mpi_coredump_segment_header)
  1115. + sizeof(mpi_coredump->misc_nic_info),
  1116. "MISC NIC INFO");
  1117. mpi_coredump->misc_nic_info.rx_ring_count = qdev->rx_ring_count;
  1118. mpi_coredump->misc_nic_info.tx_ring_count = qdev->tx_ring_count;
  1119. mpi_coredump->misc_nic_info.intr_count = qdev->intr_count;
  1120. mpi_coredump->misc_nic_info.function = qdev->func;
  1121. /* Segment 16, Rev C. Step 18 */
  1122. ql_build_coredump_seg_header(&mpi_coredump->nic_regs_seg_hdr,
  1123. NIC1_CONTROL_SEG_NUM,
  1124. sizeof(struct mpi_coredump_segment_header)
  1125. + sizeof(mpi_coredump->nic_regs),
  1126. "NIC Registers");
  1127. /* Get generic reg dump */
  1128. for (i = 0; i < 64; i++)
  1129. mpi_coredump->nic_regs[i] = ql_read32(qdev, i * sizeof(u32));
  1130. /* Segment 31 */
  1131. /* Get indexed register values. */
  1132. ql_build_coredump_seg_header(&mpi_coredump->intr_states_seg_hdr,
  1133. INTR_STATES_SEG_NUM,
  1134. sizeof(struct mpi_coredump_segment_header)
  1135. + sizeof(mpi_coredump->intr_states),
  1136. "INTR States");
  1137. ql_get_intr_states(qdev, &mpi_coredump->intr_states[0]);
  1138. ql_build_coredump_seg_header(&mpi_coredump->cam_entries_seg_hdr,
  1139. CAM_ENTRIES_SEG_NUM,
  1140. sizeof(struct mpi_coredump_segment_header)
  1141. + sizeof(mpi_coredump->cam_entries),
  1142. "CAM Entries");
  1143. status = ql_get_cam_entries(qdev, &mpi_coredump->cam_entries[0]);
  1144. if (status)
  1145. return;
  1146. ql_build_coredump_seg_header(&mpi_coredump->nic_routing_words_seg_hdr,
  1147. ROUTING_WORDS_SEG_NUM,
  1148. sizeof(struct mpi_coredump_segment_header)
  1149. + sizeof(mpi_coredump->nic_routing_words),
  1150. "Routing Words");
  1151. status = ql_get_routing_entries(qdev,
  1152. &mpi_coredump->nic_routing_words[0]);
  1153. if (status)
  1154. return;
  1155. /* Segment 34 (Rev C. step 23) */
  1156. ql_build_coredump_seg_header(&mpi_coredump->ets_seg_hdr,
  1157. ETS_SEG_NUM,
  1158. sizeof(struct mpi_coredump_segment_header)
  1159. + sizeof(mpi_coredump->ets),
  1160. "ETS Registers");
  1161. status = ql_get_ets_regs(qdev, &mpi_coredump->ets[0]);
  1162. if (status)
  1163. return;
  1164. if (test_bit(QL_FRC_COREDUMP, &qdev->flags))
  1165. ql_get_core_dump(qdev);
  1166. }
  1167. /* Coredump to messages log file using separate worker thread */
  1168. void ql_mpi_core_to_log(struct work_struct *work)
  1169. {
  1170. struct ql_adapter *qdev =
  1171. container_of(work, struct ql_adapter, mpi_core_to_log.work);
  1172. u32 *tmp, count;
  1173. int i;
  1174. count = sizeof(struct ql_mpi_coredump) / sizeof(u32);
  1175. tmp = (u32 *)qdev->mpi_coredump;
  1176. netif_printk(qdev, drv, KERN_DEBUG, qdev->ndev,
  1177. "Core is dumping to log file!\n");
  1178. for (i = 0; i < count; i += 8) {
  1179. printk(KERN_ERR "%.08x: %.08x %.08x %.08x %.08x %.08x "
  1180. "%.08x %.08x %.08x \n", i,
  1181. tmp[i + 0],
  1182. tmp[i + 1],
  1183. tmp[i + 2],
  1184. tmp[i + 3],
  1185. tmp[i + 4],
  1186. tmp[i + 5],
  1187. tmp[i + 6],
  1188. tmp[i + 7]);
  1189. msleep(5);
  1190. }
  1191. }
  1192. #ifdef QL_REG_DUMP
  1193. static void ql_dump_intr_states(struct ql_adapter *qdev)
  1194. {
  1195. int i;
  1196. u32 value;
  1197. for (i = 0; i < qdev->intr_count; i++) {
  1198. ql_write32(qdev, INTR_EN, qdev->intr_context[i].intr_read_mask);
  1199. value = ql_read32(qdev, INTR_EN);
  1200. printk(KERN_ERR PFX
  1201. "%s: Interrupt %d is %s.\n",
  1202. qdev->ndev->name, i,
  1203. (value & INTR_EN_EN ? "enabled" : "disabled"));
  1204. }
  1205. }
  1206. void ql_dump_xgmac_control_regs(struct ql_adapter *qdev)
  1207. {
  1208. u32 data;
  1209. if (ql_sem_spinlock(qdev, qdev->xg_sem_mask)) {
  1210. printk(KERN_ERR "%s: Couldn't get xgmac sem.\n", __func__);
  1211. return;
  1212. }
  1213. ql_read_xgmac_reg(qdev, PAUSE_SRC_LO, &data);
  1214. printk(KERN_ERR PFX "%s: PAUSE_SRC_LO = 0x%.08x.\n", qdev->ndev->name,
  1215. data);
  1216. ql_read_xgmac_reg(qdev, PAUSE_SRC_HI, &data);
  1217. printk(KERN_ERR PFX "%s: PAUSE_SRC_HI = 0x%.08x.\n", qdev->ndev->name,
  1218. data);
  1219. ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  1220. printk(KERN_ERR PFX "%s: GLOBAL_CFG = 0x%.08x.\n", qdev->ndev->name,
  1221. data);
  1222. ql_read_xgmac_reg(qdev, TX_CFG, &data);
  1223. printk(KERN_ERR PFX "%s: TX_CFG = 0x%.08x.\n", qdev->ndev->name, data);
  1224. ql_read_xgmac_reg(qdev, RX_CFG, &data);
  1225. printk(KERN_ERR PFX "%s: RX_CFG = 0x%.08x.\n", qdev->ndev->name, data);
  1226. ql_read_xgmac_reg(qdev, FLOW_CTL, &data);
  1227. printk(KERN_ERR PFX "%s: FLOW_CTL = 0x%.08x.\n", qdev->ndev->name,
  1228. data);
  1229. ql_read_xgmac_reg(qdev, PAUSE_OPCODE, &data);
  1230. printk(KERN_ERR PFX "%s: PAUSE_OPCODE = 0x%.08x.\n", qdev->ndev->name,
  1231. data);
  1232. ql_read_xgmac_reg(qdev, PAUSE_TIMER, &data);
  1233. printk(KERN_ERR PFX "%s: PAUSE_TIMER = 0x%.08x.\n", qdev->ndev->name,
  1234. data);
  1235. ql_read_xgmac_reg(qdev, PAUSE_FRM_DEST_LO, &data);
  1236. printk(KERN_ERR PFX "%s: PAUSE_FRM_DEST_LO = 0x%.08x.\n",
  1237. qdev->ndev->name, data);
  1238. ql_read_xgmac_reg(qdev, PAUSE_FRM_DEST_HI, &data);
  1239. printk(KERN_ERR PFX "%s: PAUSE_FRM_DEST_HI = 0x%.08x.\n",
  1240. qdev->ndev->name, data);
  1241. ql_read_xgmac_reg(qdev, MAC_TX_PARAMS, &data);
  1242. printk(KERN_ERR PFX "%s: MAC_TX_PARAMS = 0x%.08x.\n", qdev->ndev->name,
  1243. data);
  1244. ql_read_xgmac_reg(qdev, MAC_RX_PARAMS, &data);
  1245. printk(KERN_ERR PFX "%s: MAC_RX_PARAMS = 0x%.08x.\n", qdev->ndev->name,
  1246. data);
  1247. ql_read_xgmac_reg(qdev, MAC_SYS_INT, &data);
  1248. printk(KERN_ERR PFX "%s: MAC_SYS_INT = 0x%.08x.\n", qdev->ndev->name,
  1249. data);
  1250. ql_read_xgmac_reg(qdev, MAC_SYS_INT_MASK, &data);
  1251. printk(KERN_ERR PFX "%s: MAC_SYS_INT_MASK = 0x%.08x.\n",
  1252. qdev->ndev->name, data);
  1253. ql_read_xgmac_reg(qdev, MAC_MGMT_INT, &data);
  1254. printk(KERN_ERR PFX "%s: MAC_MGMT_INT = 0x%.08x.\n", qdev->ndev->name,
  1255. data);
  1256. ql_read_xgmac_reg(qdev, MAC_MGMT_IN_MASK, &data);
  1257. printk(KERN_ERR PFX "%s: MAC_MGMT_IN_MASK = 0x%.08x.\n",
  1258. qdev->ndev->name, data);
  1259. ql_read_xgmac_reg(qdev, EXT_ARB_MODE, &data);
  1260. printk(KERN_ERR PFX "%s: EXT_ARB_MODE = 0x%.08x.\n", qdev->ndev->name,
  1261. data);
  1262. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  1263. }
  1264. static void ql_dump_ets_regs(struct ql_adapter *qdev)
  1265. {
  1266. }
  1267. static void ql_dump_cam_entries(struct ql_adapter *qdev)
  1268. {
  1269. int i;
  1270. u32 value[3];
  1271. i = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1272. if (i)
  1273. return;
  1274. for (i = 0; i < 4; i++) {
  1275. if (ql_get_mac_addr_reg(qdev, MAC_ADDR_TYPE_CAM_MAC, i, value)) {
  1276. printk(KERN_ERR PFX
  1277. "%s: Failed read of mac index register.\n",
  1278. __func__);
  1279. return;
  1280. } else {
  1281. if (value[0])
  1282. printk(KERN_ERR PFX
  1283. "%s: CAM index %d CAM Lookup Lower = 0x%.08x:%.08x, Output = 0x%.08x.\n",
  1284. qdev->ndev->name, i, value[1], value[0],
  1285. value[2]);
  1286. }
  1287. }
  1288. for (i = 0; i < 32; i++) {
  1289. if (ql_get_mac_addr_reg
  1290. (qdev, MAC_ADDR_TYPE_MULTI_MAC, i, value)) {
  1291. printk(KERN_ERR PFX
  1292. "%s: Failed read of mac index register.\n",
  1293. __func__);
  1294. return;
  1295. } else {
  1296. if (value[0])
  1297. printk(KERN_ERR PFX
  1298. "%s: MCAST index %d CAM Lookup Lower = 0x%.08x:%.08x.\n",
  1299. qdev->ndev->name, i, value[1], value[0]);
  1300. }
  1301. }
  1302. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1303. }
  1304. void ql_dump_routing_entries(struct ql_adapter *qdev)
  1305. {
  1306. int i;
  1307. u32 value;
  1308. i = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  1309. if (i)
  1310. return;
  1311. for (i = 0; i < 16; i++) {
  1312. value = 0;
  1313. if (ql_get_routing_reg(qdev, i, &value)) {
  1314. printk(KERN_ERR PFX
  1315. "%s: Failed read of routing index register.\n",
  1316. __func__);
  1317. return;
  1318. } else {
  1319. if (value)
  1320. printk(KERN_ERR PFX
  1321. "%s: Routing Mask %d = 0x%.08x.\n",
  1322. qdev->ndev->name, i, value);
  1323. }
  1324. }
  1325. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  1326. }
  1327. void ql_dump_regs(struct ql_adapter *qdev)
  1328. {
  1329. printk(KERN_ERR PFX "reg dump for function #%d.\n", qdev->func);
  1330. printk(KERN_ERR PFX "SYS = 0x%x.\n",
  1331. ql_read32(qdev, SYS));
  1332. printk(KERN_ERR PFX "RST_FO = 0x%x.\n",
  1333. ql_read32(qdev, RST_FO));
  1334. printk(KERN_ERR PFX "FSC = 0x%x.\n",
  1335. ql_read32(qdev, FSC));
  1336. printk(KERN_ERR PFX "CSR = 0x%x.\n",
  1337. ql_read32(qdev, CSR));
  1338. printk(KERN_ERR PFX "ICB_RID = 0x%x.\n",
  1339. ql_read32(qdev, ICB_RID));
  1340. printk(KERN_ERR PFX "ICB_L = 0x%x.\n",
  1341. ql_read32(qdev, ICB_L));
  1342. printk(KERN_ERR PFX "ICB_H = 0x%x.\n",
  1343. ql_read32(qdev, ICB_H));
  1344. printk(KERN_ERR PFX "CFG = 0x%x.\n",
  1345. ql_read32(qdev, CFG));
  1346. printk(KERN_ERR PFX "BIOS_ADDR = 0x%x.\n",
  1347. ql_read32(qdev, BIOS_ADDR));
  1348. printk(KERN_ERR PFX "STS = 0x%x.\n",
  1349. ql_read32(qdev, STS));
  1350. printk(KERN_ERR PFX "INTR_EN = 0x%x.\n",
  1351. ql_read32(qdev, INTR_EN));
  1352. printk(KERN_ERR PFX "INTR_MASK = 0x%x.\n",
  1353. ql_read32(qdev, INTR_MASK));
  1354. printk(KERN_ERR PFX "ISR1 = 0x%x.\n",
  1355. ql_read32(qdev, ISR1));
  1356. printk(KERN_ERR PFX "ISR2 = 0x%x.\n",
  1357. ql_read32(qdev, ISR2));
  1358. printk(KERN_ERR PFX "ISR3 = 0x%x.\n",
  1359. ql_read32(qdev, ISR3));
  1360. printk(KERN_ERR PFX "ISR4 = 0x%x.\n",
  1361. ql_read32(qdev, ISR4));
  1362. printk(KERN_ERR PFX "REV_ID = 0x%x.\n",
  1363. ql_read32(qdev, REV_ID));
  1364. printk(KERN_ERR PFX "FRC_ECC_ERR = 0x%x.\n",
  1365. ql_read32(qdev, FRC_ECC_ERR));
  1366. printk(KERN_ERR PFX "ERR_STS = 0x%x.\n",
  1367. ql_read32(qdev, ERR_STS));
  1368. printk(KERN_ERR PFX "RAM_DBG_ADDR = 0x%x.\n",
  1369. ql_read32(qdev, RAM_DBG_ADDR));
  1370. printk(KERN_ERR PFX "RAM_DBG_DATA = 0x%x.\n",
  1371. ql_read32(qdev, RAM_DBG_DATA));
  1372. printk(KERN_ERR PFX "ECC_ERR_CNT = 0x%x.\n",
  1373. ql_read32(qdev, ECC_ERR_CNT));
  1374. printk(KERN_ERR PFX "SEM = 0x%x.\n",
  1375. ql_read32(qdev, SEM));
  1376. printk(KERN_ERR PFX "GPIO_1 = 0x%x.\n",
  1377. ql_read32(qdev, GPIO_1));
  1378. printk(KERN_ERR PFX "GPIO_2 = 0x%x.\n",
  1379. ql_read32(qdev, GPIO_2));
  1380. printk(KERN_ERR PFX "GPIO_3 = 0x%x.\n",
  1381. ql_read32(qdev, GPIO_3));
  1382. printk(KERN_ERR PFX "XGMAC_ADDR = 0x%x.\n",
  1383. ql_read32(qdev, XGMAC_ADDR));
  1384. printk(KERN_ERR PFX "XGMAC_DATA = 0x%x.\n",
  1385. ql_read32(qdev, XGMAC_DATA));
  1386. printk(KERN_ERR PFX "NIC_ETS = 0x%x.\n",
  1387. ql_read32(qdev, NIC_ETS));
  1388. printk(KERN_ERR PFX "CNA_ETS = 0x%x.\n",
  1389. ql_read32(qdev, CNA_ETS));
  1390. printk(KERN_ERR PFX "FLASH_ADDR = 0x%x.\n",
  1391. ql_read32(qdev, FLASH_ADDR));
  1392. printk(KERN_ERR PFX "FLASH_DATA = 0x%x.\n",
  1393. ql_read32(qdev, FLASH_DATA));
  1394. printk(KERN_ERR PFX "CQ_STOP = 0x%x.\n",
  1395. ql_read32(qdev, CQ_STOP));
  1396. printk(KERN_ERR PFX "PAGE_TBL_RID = 0x%x.\n",
  1397. ql_read32(qdev, PAGE_TBL_RID));
  1398. printk(KERN_ERR PFX "WQ_PAGE_TBL_LO = 0x%x.\n",
  1399. ql_read32(qdev, WQ_PAGE_TBL_LO));
  1400. printk(KERN_ERR PFX "WQ_PAGE_TBL_HI = 0x%x.\n",
  1401. ql_read32(qdev, WQ_PAGE_TBL_HI));
  1402. printk(KERN_ERR PFX "CQ_PAGE_TBL_LO = 0x%x.\n",
  1403. ql_read32(qdev, CQ_PAGE_TBL_LO));
  1404. printk(KERN_ERR PFX "CQ_PAGE_TBL_HI = 0x%x.\n",
  1405. ql_read32(qdev, CQ_PAGE_TBL_HI));
  1406. printk(KERN_ERR PFX "COS_DFLT_CQ1 = 0x%x.\n",
  1407. ql_read32(qdev, COS_DFLT_CQ1));
  1408. printk(KERN_ERR PFX "COS_DFLT_CQ2 = 0x%x.\n",
  1409. ql_read32(qdev, COS_DFLT_CQ2));
  1410. printk(KERN_ERR PFX "SPLT_HDR = 0x%x.\n",
  1411. ql_read32(qdev, SPLT_HDR));
  1412. printk(KERN_ERR PFX "FC_PAUSE_THRES = 0x%x.\n",
  1413. ql_read32(qdev, FC_PAUSE_THRES));
  1414. printk(KERN_ERR PFX "NIC_PAUSE_THRES = 0x%x.\n",
  1415. ql_read32(qdev, NIC_PAUSE_THRES));
  1416. printk(KERN_ERR PFX "FC_ETHERTYPE = 0x%x.\n",
  1417. ql_read32(qdev, FC_ETHERTYPE));
  1418. printk(KERN_ERR PFX "FC_RCV_CFG = 0x%x.\n",
  1419. ql_read32(qdev, FC_RCV_CFG));
  1420. printk(KERN_ERR PFX "NIC_RCV_CFG = 0x%x.\n",
  1421. ql_read32(qdev, NIC_RCV_CFG));
  1422. printk(KERN_ERR PFX "FC_COS_TAGS = 0x%x.\n",
  1423. ql_read32(qdev, FC_COS_TAGS));
  1424. printk(KERN_ERR PFX "NIC_COS_TAGS = 0x%x.\n",
  1425. ql_read32(qdev, NIC_COS_TAGS));
  1426. printk(KERN_ERR PFX "MGMT_RCV_CFG = 0x%x.\n",
  1427. ql_read32(qdev, MGMT_RCV_CFG));
  1428. printk(KERN_ERR PFX "XG_SERDES_ADDR = 0x%x.\n",
  1429. ql_read32(qdev, XG_SERDES_ADDR));
  1430. printk(KERN_ERR PFX "XG_SERDES_DATA = 0x%x.\n",
  1431. ql_read32(qdev, XG_SERDES_DATA));
  1432. printk(KERN_ERR PFX "PRB_MX_ADDR = 0x%x.\n",
  1433. ql_read32(qdev, PRB_MX_ADDR));
  1434. printk(KERN_ERR PFX "PRB_MX_DATA = 0x%x.\n",
  1435. ql_read32(qdev, PRB_MX_DATA));
  1436. ql_dump_intr_states(qdev);
  1437. ql_dump_xgmac_control_regs(qdev);
  1438. ql_dump_ets_regs(qdev);
  1439. ql_dump_cam_entries(qdev);
  1440. ql_dump_routing_entries(qdev);
  1441. }
  1442. #endif
  1443. #ifdef QL_STAT_DUMP
  1444. void ql_dump_stat(struct ql_adapter *qdev)
  1445. {
  1446. printk(KERN_ERR "%s: Enter.\n", __func__);
  1447. printk(KERN_ERR "tx_pkts = %ld\n",
  1448. (unsigned long)qdev->nic_stats.tx_pkts);
  1449. printk(KERN_ERR "tx_bytes = %ld\n",
  1450. (unsigned long)qdev->nic_stats.tx_bytes);
  1451. printk(KERN_ERR "tx_mcast_pkts = %ld.\n",
  1452. (unsigned long)qdev->nic_stats.tx_mcast_pkts);
  1453. printk(KERN_ERR "tx_bcast_pkts = %ld.\n",
  1454. (unsigned long)qdev->nic_stats.tx_bcast_pkts);
  1455. printk(KERN_ERR "tx_ucast_pkts = %ld.\n",
  1456. (unsigned long)qdev->nic_stats.tx_ucast_pkts);
  1457. printk(KERN_ERR "tx_ctl_pkts = %ld.\n",
  1458. (unsigned long)qdev->nic_stats.tx_ctl_pkts);
  1459. printk(KERN_ERR "tx_pause_pkts = %ld.\n",
  1460. (unsigned long)qdev->nic_stats.tx_pause_pkts);
  1461. printk(KERN_ERR "tx_64_pkt = %ld.\n",
  1462. (unsigned long)qdev->nic_stats.tx_64_pkt);
  1463. printk(KERN_ERR "tx_65_to_127_pkt = %ld.\n",
  1464. (unsigned long)qdev->nic_stats.tx_65_to_127_pkt);
  1465. printk(KERN_ERR "tx_128_to_255_pkt = %ld.\n",
  1466. (unsigned long)qdev->nic_stats.tx_128_to_255_pkt);
  1467. printk(KERN_ERR "tx_256_511_pkt = %ld.\n",
  1468. (unsigned long)qdev->nic_stats.tx_256_511_pkt);
  1469. printk(KERN_ERR "tx_512_to_1023_pkt = %ld.\n",
  1470. (unsigned long)qdev->nic_stats.tx_512_to_1023_pkt);
  1471. printk(KERN_ERR "tx_1024_to_1518_pkt = %ld.\n",
  1472. (unsigned long)qdev->nic_stats.tx_1024_to_1518_pkt);
  1473. printk(KERN_ERR "tx_1519_to_max_pkt = %ld.\n",
  1474. (unsigned long)qdev->nic_stats.tx_1519_to_max_pkt);
  1475. printk(KERN_ERR "tx_undersize_pkt = %ld.\n",
  1476. (unsigned long)qdev->nic_stats.tx_undersize_pkt);
  1477. printk(KERN_ERR "tx_oversize_pkt = %ld.\n",
  1478. (unsigned long)qdev->nic_stats.tx_oversize_pkt);
  1479. printk(KERN_ERR "rx_bytes = %ld.\n",
  1480. (unsigned long)qdev->nic_stats.rx_bytes);
  1481. printk(KERN_ERR "rx_bytes_ok = %ld.\n",
  1482. (unsigned long)qdev->nic_stats.rx_bytes_ok);
  1483. printk(KERN_ERR "rx_pkts = %ld.\n",
  1484. (unsigned long)qdev->nic_stats.rx_pkts);
  1485. printk(KERN_ERR "rx_pkts_ok = %ld.\n",
  1486. (unsigned long)qdev->nic_stats.rx_pkts_ok);
  1487. printk(KERN_ERR "rx_bcast_pkts = %ld.\n",
  1488. (unsigned long)qdev->nic_stats.rx_bcast_pkts);
  1489. printk(KERN_ERR "rx_mcast_pkts = %ld.\n",
  1490. (unsigned long)qdev->nic_stats.rx_mcast_pkts);
  1491. printk(KERN_ERR "rx_ucast_pkts = %ld.\n",
  1492. (unsigned long)qdev->nic_stats.rx_ucast_pkts);
  1493. printk(KERN_ERR "rx_undersize_pkts = %ld.\n",
  1494. (unsigned long)qdev->nic_stats.rx_undersize_pkts);
  1495. printk(KERN_ERR "rx_oversize_pkts = %ld.\n",
  1496. (unsigned long)qdev->nic_stats.rx_oversize_pkts);
  1497. printk(KERN_ERR "rx_jabber_pkts = %ld.\n",
  1498. (unsigned long)qdev->nic_stats.rx_jabber_pkts);
  1499. printk(KERN_ERR "rx_undersize_fcerr_pkts = %ld.\n",
  1500. (unsigned long)qdev->nic_stats.rx_undersize_fcerr_pkts);
  1501. printk(KERN_ERR "rx_drop_events = %ld.\n",
  1502. (unsigned long)qdev->nic_stats.rx_drop_events);
  1503. printk(KERN_ERR "rx_fcerr_pkts = %ld.\n",
  1504. (unsigned long)qdev->nic_stats.rx_fcerr_pkts);
  1505. printk(KERN_ERR "rx_align_err = %ld.\n",
  1506. (unsigned long)qdev->nic_stats.rx_align_err);
  1507. printk(KERN_ERR "rx_symbol_err = %ld.\n",
  1508. (unsigned long)qdev->nic_stats.rx_symbol_err);
  1509. printk(KERN_ERR "rx_mac_err = %ld.\n",
  1510. (unsigned long)qdev->nic_stats.rx_mac_err);
  1511. printk(KERN_ERR "rx_ctl_pkts = %ld.\n",
  1512. (unsigned long)qdev->nic_stats.rx_ctl_pkts);
  1513. printk(KERN_ERR "rx_pause_pkts = %ld.\n",
  1514. (unsigned long)qdev->nic_stats.rx_pause_pkts);
  1515. printk(KERN_ERR "rx_64_pkts = %ld.\n",
  1516. (unsigned long)qdev->nic_stats.rx_64_pkts);
  1517. printk(KERN_ERR "rx_65_to_127_pkts = %ld.\n",
  1518. (unsigned long)qdev->nic_stats.rx_65_to_127_pkts);
  1519. printk(KERN_ERR "rx_128_255_pkts = %ld.\n",
  1520. (unsigned long)qdev->nic_stats.rx_128_255_pkts);
  1521. printk(KERN_ERR "rx_256_511_pkts = %ld.\n",
  1522. (unsigned long)qdev->nic_stats.rx_256_511_pkts);
  1523. printk(KERN_ERR "rx_512_to_1023_pkts = %ld.\n",
  1524. (unsigned long)qdev->nic_stats.rx_512_to_1023_pkts);
  1525. printk(KERN_ERR "rx_1024_to_1518_pkts = %ld.\n",
  1526. (unsigned long)qdev->nic_stats.rx_1024_to_1518_pkts);
  1527. printk(KERN_ERR "rx_1519_to_max_pkts = %ld.\n",
  1528. (unsigned long)qdev->nic_stats.rx_1519_to_max_pkts);
  1529. printk(KERN_ERR "rx_len_err_pkts = %ld.\n",
  1530. (unsigned long)qdev->nic_stats.rx_len_err_pkts);
  1531. };
  1532. #endif
  1533. #ifdef QL_DEV_DUMP
  1534. void ql_dump_qdev(struct ql_adapter *qdev)
  1535. {
  1536. int i;
  1537. printk(KERN_ERR PFX "qdev->flags = %lx.\n",
  1538. qdev->flags);
  1539. printk(KERN_ERR PFX "qdev->vlgrp = %p.\n",
  1540. qdev->vlgrp);
  1541. printk(KERN_ERR PFX "qdev->pdev = %p.\n",
  1542. qdev->pdev);
  1543. printk(KERN_ERR PFX "qdev->ndev = %p.\n",
  1544. qdev->ndev);
  1545. printk(KERN_ERR PFX "qdev->chip_rev_id = %d.\n",
  1546. qdev->chip_rev_id);
  1547. printk(KERN_ERR PFX "qdev->reg_base = %p.\n",
  1548. qdev->reg_base);
  1549. printk(KERN_ERR PFX "qdev->doorbell_area = %p.\n",
  1550. qdev->doorbell_area);
  1551. printk(KERN_ERR PFX "qdev->doorbell_area_size = %d.\n",
  1552. qdev->doorbell_area_size);
  1553. printk(KERN_ERR PFX "msg_enable = %x.\n",
  1554. qdev->msg_enable);
  1555. printk(KERN_ERR PFX "qdev->rx_ring_shadow_reg_area = %p.\n",
  1556. qdev->rx_ring_shadow_reg_area);
  1557. printk(KERN_ERR PFX "qdev->rx_ring_shadow_reg_dma = %llx.\n",
  1558. (unsigned long long) qdev->rx_ring_shadow_reg_dma);
  1559. printk(KERN_ERR PFX "qdev->tx_ring_shadow_reg_area = %p.\n",
  1560. qdev->tx_ring_shadow_reg_area);
  1561. printk(KERN_ERR PFX "qdev->tx_ring_shadow_reg_dma = %llx.\n",
  1562. (unsigned long long) qdev->tx_ring_shadow_reg_dma);
  1563. printk(KERN_ERR PFX "qdev->intr_count = %d.\n",
  1564. qdev->intr_count);
  1565. if (qdev->msi_x_entry)
  1566. for (i = 0; i < qdev->intr_count; i++) {
  1567. printk(KERN_ERR PFX
  1568. "msi_x_entry.[%d]vector = %d.\n", i,
  1569. qdev->msi_x_entry[i].vector);
  1570. printk(KERN_ERR PFX
  1571. "msi_x_entry.[%d]entry = %d.\n", i,
  1572. qdev->msi_x_entry[i].entry);
  1573. }
  1574. for (i = 0; i < qdev->intr_count; i++) {
  1575. printk(KERN_ERR PFX
  1576. "intr_context[%d].qdev = %p.\n", i,
  1577. qdev->intr_context[i].qdev);
  1578. printk(KERN_ERR PFX
  1579. "intr_context[%d].intr = %d.\n", i,
  1580. qdev->intr_context[i].intr);
  1581. printk(KERN_ERR PFX
  1582. "intr_context[%d].hooked = %d.\n", i,
  1583. qdev->intr_context[i].hooked);
  1584. printk(KERN_ERR PFX
  1585. "intr_context[%d].intr_en_mask = 0x%08x.\n", i,
  1586. qdev->intr_context[i].intr_en_mask);
  1587. printk(KERN_ERR PFX
  1588. "intr_context[%d].intr_dis_mask = 0x%08x.\n", i,
  1589. qdev->intr_context[i].intr_dis_mask);
  1590. printk(KERN_ERR PFX
  1591. "intr_context[%d].intr_read_mask = 0x%08x.\n", i,
  1592. qdev->intr_context[i].intr_read_mask);
  1593. }
  1594. printk(KERN_ERR PFX "qdev->tx_ring_count = %d.\n", qdev->tx_ring_count);
  1595. printk(KERN_ERR PFX "qdev->rx_ring_count = %d.\n", qdev->rx_ring_count);
  1596. printk(KERN_ERR PFX "qdev->ring_mem_size = %d.\n", qdev->ring_mem_size);
  1597. printk(KERN_ERR PFX "qdev->ring_mem = %p.\n", qdev->ring_mem);
  1598. printk(KERN_ERR PFX "qdev->intr_count = %d.\n", qdev->intr_count);
  1599. printk(KERN_ERR PFX "qdev->tx_ring = %p.\n",
  1600. qdev->tx_ring);
  1601. printk(KERN_ERR PFX "qdev->rss_ring_count = %d.\n",
  1602. qdev->rss_ring_count);
  1603. printk(KERN_ERR PFX "qdev->rx_ring = %p.\n", qdev->rx_ring);
  1604. printk(KERN_ERR PFX "qdev->default_rx_queue = %d.\n",
  1605. qdev->default_rx_queue);
  1606. printk(KERN_ERR PFX "qdev->xg_sem_mask = 0x%08x.\n",
  1607. qdev->xg_sem_mask);
  1608. printk(KERN_ERR PFX "qdev->port_link_up = 0x%08x.\n",
  1609. qdev->port_link_up);
  1610. printk(KERN_ERR PFX "qdev->port_init = 0x%08x.\n",
  1611. qdev->port_init);
  1612. }
  1613. #endif
  1614. #ifdef QL_CB_DUMP
  1615. void ql_dump_wqicb(struct wqicb *wqicb)
  1616. {
  1617. printk(KERN_ERR PFX "Dumping wqicb stuff...\n");
  1618. printk(KERN_ERR PFX "wqicb->len = 0x%x.\n", le16_to_cpu(wqicb->len));
  1619. printk(KERN_ERR PFX "wqicb->flags = %x.\n", le16_to_cpu(wqicb->flags));
  1620. printk(KERN_ERR PFX "wqicb->cq_id_rss = %d.\n",
  1621. le16_to_cpu(wqicb->cq_id_rss));
  1622. printk(KERN_ERR PFX "wqicb->rid = 0x%x.\n", le16_to_cpu(wqicb->rid));
  1623. printk(KERN_ERR PFX "wqicb->wq_addr = 0x%llx.\n",
  1624. (unsigned long long) le64_to_cpu(wqicb->addr));
  1625. printk(KERN_ERR PFX "wqicb->wq_cnsmr_idx_addr = 0x%llx.\n",
  1626. (unsigned long long) le64_to_cpu(wqicb->cnsmr_idx_addr));
  1627. }
  1628. void ql_dump_tx_ring(struct tx_ring *tx_ring)
  1629. {
  1630. if (tx_ring == NULL)
  1631. return;
  1632. printk(KERN_ERR PFX
  1633. "===================== Dumping tx_ring %d ===============.\n",
  1634. tx_ring->wq_id);
  1635. printk(KERN_ERR PFX "tx_ring->base = %p.\n", tx_ring->wq_base);
  1636. printk(KERN_ERR PFX "tx_ring->base_dma = 0x%llx.\n",
  1637. (unsigned long long) tx_ring->wq_base_dma);
  1638. printk(KERN_ERR PFX
  1639. "tx_ring->cnsmr_idx_sh_reg, addr = 0x%p, value = %d.\n",
  1640. tx_ring->cnsmr_idx_sh_reg,
  1641. tx_ring->cnsmr_idx_sh_reg
  1642. ? ql_read_sh_reg(tx_ring->cnsmr_idx_sh_reg) : 0);
  1643. printk(KERN_ERR PFX "tx_ring->size = %d.\n", tx_ring->wq_size);
  1644. printk(KERN_ERR PFX "tx_ring->len = %d.\n", tx_ring->wq_len);
  1645. printk(KERN_ERR PFX "tx_ring->prod_idx_db_reg = %p.\n",
  1646. tx_ring->prod_idx_db_reg);
  1647. printk(KERN_ERR PFX "tx_ring->valid_db_reg = %p.\n",
  1648. tx_ring->valid_db_reg);
  1649. printk(KERN_ERR PFX "tx_ring->prod_idx = %d.\n", tx_ring->prod_idx);
  1650. printk(KERN_ERR PFX "tx_ring->cq_id = %d.\n", tx_ring->cq_id);
  1651. printk(KERN_ERR PFX "tx_ring->wq_id = %d.\n", tx_ring->wq_id);
  1652. printk(KERN_ERR PFX "tx_ring->q = %p.\n", tx_ring->q);
  1653. printk(KERN_ERR PFX "tx_ring->tx_count = %d.\n",
  1654. atomic_read(&tx_ring->tx_count));
  1655. }
  1656. void ql_dump_ricb(struct ricb *ricb)
  1657. {
  1658. int i;
  1659. printk(KERN_ERR PFX
  1660. "===================== Dumping ricb ===============.\n");
  1661. printk(KERN_ERR PFX "Dumping ricb stuff...\n");
  1662. printk(KERN_ERR PFX "ricb->base_cq = %d.\n", ricb->base_cq & 0x1f);
  1663. printk(KERN_ERR PFX "ricb->flags = %s%s%s%s%s%s%s%s%s.\n",
  1664. ricb->base_cq & RSS_L4K ? "RSS_L4K " : "",
  1665. ricb->flags & RSS_L6K ? "RSS_L6K " : "",
  1666. ricb->flags & RSS_LI ? "RSS_LI " : "",
  1667. ricb->flags & RSS_LB ? "RSS_LB " : "",
  1668. ricb->flags & RSS_LM ? "RSS_LM " : "",
  1669. ricb->flags & RSS_RI4 ? "RSS_RI4 " : "",
  1670. ricb->flags & RSS_RT4 ? "RSS_RT4 " : "",
  1671. ricb->flags & RSS_RI6 ? "RSS_RI6 " : "",
  1672. ricb->flags & RSS_RT6 ? "RSS_RT6 " : "");
  1673. printk(KERN_ERR PFX "ricb->mask = 0x%.04x.\n", le16_to_cpu(ricb->mask));
  1674. for (i = 0; i < 16; i++)
  1675. printk(KERN_ERR PFX "ricb->hash_cq_id[%d] = 0x%.08x.\n", i,
  1676. le32_to_cpu(ricb->hash_cq_id[i]));
  1677. for (i = 0; i < 10; i++)
  1678. printk(KERN_ERR PFX "ricb->ipv6_hash_key[%d] = 0x%.08x.\n", i,
  1679. le32_to_cpu(ricb->ipv6_hash_key[i]));
  1680. for (i = 0; i < 4; i++)
  1681. printk(KERN_ERR PFX "ricb->ipv4_hash_key[%d] = 0x%.08x.\n", i,
  1682. le32_to_cpu(ricb->ipv4_hash_key[i]));
  1683. }
  1684. void ql_dump_cqicb(struct cqicb *cqicb)
  1685. {
  1686. printk(KERN_ERR PFX "Dumping cqicb stuff...\n");
  1687. printk(KERN_ERR PFX "cqicb->msix_vect = %d.\n", cqicb->msix_vect);
  1688. printk(KERN_ERR PFX "cqicb->flags = %x.\n", cqicb->flags);
  1689. printk(KERN_ERR PFX "cqicb->len = %d.\n", le16_to_cpu(cqicb->len));
  1690. printk(KERN_ERR PFX "cqicb->addr = 0x%llx.\n",
  1691. (unsigned long long) le64_to_cpu(cqicb->addr));
  1692. printk(KERN_ERR PFX "cqicb->prod_idx_addr = 0x%llx.\n",
  1693. (unsigned long long) le64_to_cpu(cqicb->prod_idx_addr));
  1694. printk(KERN_ERR PFX "cqicb->pkt_delay = 0x%.04x.\n",
  1695. le16_to_cpu(cqicb->pkt_delay));
  1696. printk(KERN_ERR PFX "cqicb->irq_delay = 0x%.04x.\n",
  1697. le16_to_cpu(cqicb->irq_delay));
  1698. printk(KERN_ERR PFX "cqicb->lbq_addr = 0x%llx.\n",
  1699. (unsigned long long) le64_to_cpu(cqicb->lbq_addr));
  1700. printk(KERN_ERR PFX "cqicb->lbq_buf_size = 0x%.04x.\n",
  1701. le16_to_cpu(cqicb->lbq_buf_size));
  1702. printk(KERN_ERR PFX "cqicb->lbq_len = 0x%.04x.\n",
  1703. le16_to_cpu(cqicb->lbq_len));
  1704. printk(KERN_ERR PFX "cqicb->sbq_addr = 0x%llx.\n",
  1705. (unsigned long long) le64_to_cpu(cqicb->sbq_addr));
  1706. printk(KERN_ERR PFX "cqicb->sbq_buf_size = 0x%.04x.\n",
  1707. le16_to_cpu(cqicb->sbq_buf_size));
  1708. printk(KERN_ERR PFX "cqicb->sbq_len = 0x%.04x.\n",
  1709. le16_to_cpu(cqicb->sbq_len));
  1710. }
  1711. void ql_dump_rx_ring(struct rx_ring *rx_ring)
  1712. {
  1713. if (rx_ring == NULL)
  1714. return;
  1715. printk(KERN_ERR PFX
  1716. "===================== Dumping rx_ring %d ===============.\n",
  1717. rx_ring->cq_id);
  1718. printk(KERN_ERR PFX "Dumping rx_ring %d, type = %s%s%s.\n",
  1719. rx_ring->cq_id, rx_ring->type == DEFAULT_Q ? "DEFAULT" : "",
  1720. rx_ring->type == TX_Q ? "OUTBOUND COMPLETIONS" : "",
  1721. rx_ring->type == RX_Q ? "INBOUND_COMPLETIONS" : "");
  1722. printk(KERN_ERR PFX "rx_ring->cqicb = %p.\n", &rx_ring->cqicb);
  1723. printk(KERN_ERR PFX "rx_ring->cq_base = %p.\n", rx_ring->cq_base);
  1724. printk(KERN_ERR PFX "rx_ring->cq_base_dma = %llx.\n",
  1725. (unsigned long long) rx_ring->cq_base_dma);
  1726. printk(KERN_ERR PFX "rx_ring->cq_size = %d.\n", rx_ring->cq_size);
  1727. printk(KERN_ERR PFX "rx_ring->cq_len = %d.\n", rx_ring->cq_len);
  1728. printk(KERN_ERR PFX
  1729. "rx_ring->prod_idx_sh_reg, addr = 0x%p, value = %d.\n",
  1730. rx_ring->prod_idx_sh_reg,
  1731. rx_ring->prod_idx_sh_reg
  1732. ? ql_read_sh_reg(rx_ring->prod_idx_sh_reg) : 0);
  1733. printk(KERN_ERR PFX "rx_ring->prod_idx_sh_reg_dma = %llx.\n",
  1734. (unsigned long long) rx_ring->prod_idx_sh_reg_dma);
  1735. printk(KERN_ERR PFX "rx_ring->cnsmr_idx_db_reg = %p.\n",
  1736. rx_ring->cnsmr_idx_db_reg);
  1737. printk(KERN_ERR PFX "rx_ring->cnsmr_idx = %d.\n", rx_ring->cnsmr_idx);
  1738. printk(KERN_ERR PFX "rx_ring->curr_entry = %p.\n", rx_ring->curr_entry);
  1739. printk(KERN_ERR PFX "rx_ring->valid_db_reg = %p.\n",
  1740. rx_ring->valid_db_reg);
  1741. printk(KERN_ERR PFX "rx_ring->lbq_base = %p.\n", rx_ring->lbq_base);
  1742. printk(KERN_ERR PFX "rx_ring->lbq_base_dma = %llx.\n",
  1743. (unsigned long long) rx_ring->lbq_base_dma);
  1744. printk(KERN_ERR PFX "rx_ring->lbq_base_indirect = %p.\n",
  1745. rx_ring->lbq_base_indirect);
  1746. printk(KERN_ERR PFX "rx_ring->lbq_base_indirect_dma = %llx.\n",
  1747. (unsigned long long) rx_ring->lbq_base_indirect_dma);
  1748. printk(KERN_ERR PFX "rx_ring->lbq = %p.\n", rx_ring->lbq);
  1749. printk(KERN_ERR PFX "rx_ring->lbq_len = %d.\n", rx_ring->lbq_len);
  1750. printk(KERN_ERR PFX "rx_ring->lbq_size = %d.\n", rx_ring->lbq_size);
  1751. printk(KERN_ERR PFX "rx_ring->lbq_prod_idx_db_reg = %p.\n",
  1752. rx_ring->lbq_prod_idx_db_reg);
  1753. printk(KERN_ERR PFX "rx_ring->lbq_prod_idx = %d.\n",
  1754. rx_ring->lbq_prod_idx);
  1755. printk(KERN_ERR PFX "rx_ring->lbq_curr_idx = %d.\n",
  1756. rx_ring->lbq_curr_idx);
  1757. printk(KERN_ERR PFX "rx_ring->lbq_clean_idx = %d.\n",
  1758. rx_ring->lbq_clean_idx);
  1759. printk(KERN_ERR PFX "rx_ring->lbq_free_cnt = %d.\n",
  1760. rx_ring->lbq_free_cnt);
  1761. printk(KERN_ERR PFX "rx_ring->lbq_buf_size = %d.\n",
  1762. rx_ring->lbq_buf_size);
  1763. printk(KERN_ERR PFX "rx_ring->sbq_base = %p.\n", rx_ring->sbq_base);
  1764. printk(KERN_ERR PFX "rx_ring->sbq_base_dma = %llx.\n",
  1765. (unsigned long long) rx_ring->sbq_base_dma);
  1766. printk(KERN_ERR PFX "rx_ring->sbq_base_indirect = %p.\n",
  1767. rx_ring->sbq_base_indirect);
  1768. printk(KERN_ERR PFX "rx_ring->sbq_base_indirect_dma = %llx.\n",
  1769. (unsigned long long) rx_ring->sbq_base_indirect_dma);
  1770. printk(KERN_ERR PFX "rx_ring->sbq = %p.\n", rx_ring->sbq);
  1771. printk(KERN_ERR PFX "rx_ring->sbq_len = %d.\n", rx_ring->sbq_len);
  1772. printk(KERN_ERR PFX "rx_ring->sbq_size = %d.\n", rx_ring->sbq_size);
  1773. printk(KERN_ERR PFX "rx_ring->sbq_prod_idx_db_reg addr = %p.\n",
  1774. rx_ring->sbq_prod_idx_db_reg);
  1775. printk(KERN_ERR PFX "rx_ring->sbq_prod_idx = %d.\n",
  1776. rx_ring->sbq_prod_idx);
  1777. printk(KERN_ERR PFX "rx_ring->sbq_curr_idx = %d.\n",
  1778. rx_ring->sbq_curr_idx);
  1779. printk(KERN_ERR PFX "rx_ring->sbq_clean_idx = %d.\n",
  1780. rx_ring->sbq_clean_idx);
  1781. printk(KERN_ERR PFX "rx_ring->sbq_free_cnt = %d.\n",
  1782. rx_ring->sbq_free_cnt);
  1783. printk(KERN_ERR PFX "rx_ring->sbq_buf_size = %d.\n",
  1784. rx_ring->sbq_buf_size);
  1785. printk(KERN_ERR PFX "rx_ring->cq_id = %d.\n", rx_ring->cq_id);
  1786. printk(KERN_ERR PFX "rx_ring->irq = %d.\n", rx_ring->irq);
  1787. printk(KERN_ERR PFX "rx_ring->cpu = %d.\n", rx_ring->cpu);
  1788. printk(KERN_ERR PFX "rx_ring->qdev = %p.\n", rx_ring->qdev);
  1789. }
  1790. void ql_dump_hw_cb(struct ql_adapter *qdev, int size, u32 bit, u16 q_id)
  1791. {
  1792. void *ptr;
  1793. printk(KERN_ERR PFX "%s: Enter.\n", __func__);
  1794. ptr = kmalloc(size, GFP_ATOMIC);
  1795. if (ptr == NULL) {
  1796. printk(KERN_ERR PFX "%s: Couldn't allocate a buffer.\n",
  1797. __func__);
  1798. return;
  1799. }
  1800. if (ql_write_cfg(qdev, ptr, size, bit, q_id)) {
  1801. printk(KERN_ERR "%s: Failed to upload control block!\n",
  1802. __func__);
  1803. goto fail_it;
  1804. }
  1805. switch (bit) {
  1806. case CFG_DRQ:
  1807. ql_dump_wqicb((struct wqicb *)ptr);
  1808. break;
  1809. case CFG_DCQ:
  1810. ql_dump_cqicb((struct cqicb *)ptr);
  1811. break;
  1812. case CFG_DR:
  1813. ql_dump_ricb((struct ricb *)ptr);
  1814. break;
  1815. default:
  1816. printk(KERN_ERR PFX "%s: Invalid bit value = %x.\n",
  1817. __func__, bit);
  1818. break;
  1819. }
  1820. fail_it:
  1821. kfree(ptr);
  1822. }
  1823. #endif
  1824. #ifdef QL_OB_DUMP
  1825. void ql_dump_tx_desc(struct tx_buf_desc *tbd)
  1826. {
  1827. printk(KERN_ERR PFX "tbd->addr = 0x%llx\n",
  1828. le64_to_cpu((u64) tbd->addr));
  1829. printk(KERN_ERR PFX "tbd->len = %d\n",
  1830. le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
  1831. printk(KERN_ERR PFX "tbd->flags = %s %s\n",
  1832. tbd->len & TX_DESC_C ? "C" : ".",
  1833. tbd->len & TX_DESC_E ? "E" : ".");
  1834. tbd++;
  1835. printk(KERN_ERR PFX "tbd->addr = 0x%llx\n",
  1836. le64_to_cpu((u64) tbd->addr));
  1837. printk(KERN_ERR PFX "tbd->len = %d\n",
  1838. le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
  1839. printk(KERN_ERR PFX "tbd->flags = %s %s\n",
  1840. tbd->len & TX_DESC_C ? "C" : ".",
  1841. tbd->len & TX_DESC_E ? "E" : ".");
  1842. tbd++;
  1843. printk(KERN_ERR PFX "tbd->addr = 0x%llx\n",
  1844. le64_to_cpu((u64) tbd->addr));
  1845. printk(KERN_ERR PFX "tbd->len = %d\n",
  1846. le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
  1847. printk(KERN_ERR PFX "tbd->flags = %s %s\n",
  1848. tbd->len & TX_DESC_C ? "C" : ".",
  1849. tbd->len & TX_DESC_E ? "E" : ".");
  1850. }
  1851. void ql_dump_ob_mac_iocb(struct ob_mac_iocb_req *ob_mac_iocb)
  1852. {
  1853. struct ob_mac_tso_iocb_req *ob_mac_tso_iocb =
  1854. (struct ob_mac_tso_iocb_req *)ob_mac_iocb;
  1855. struct tx_buf_desc *tbd;
  1856. u16 frame_len;
  1857. printk(KERN_ERR PFX "%s\n", __func__);
  1858. printk(KERN_ERR PFX "opcode = %s\n",
  1859. (ob_mac_iocb->opcode == OPCODE_OB_MAC_IOCB) ? "MAC" : "TSO");
  1860. printk(KERN_ERR PFX "flags1 = %s %s %s %s %s\n",
  1861. ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_OI ? "OI" : "",
  1862. ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_I ? "I" : "",
  1863. ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_D ? "D" : "",
  1864. ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_IP4 ? "IP4" : "",
  1865. ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_IP6 ? "IP6" : "");
  1866. printk(KERN_ERR PFX "flags2 = %s %s %s\n",
  1867. ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_LSO ? "LSO" : "",
  1868. ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_UC ? "UC" : "",
  1869. ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_TC ? "TC" : "");
  1870. printk(KERN_ERR PFX "flags3 = %s %s %s \n",
  1871. ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_IC ? "IC" : "",
  1872. ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_DFP ? "DFP" : "",
  1873. ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_V ? "V" : "");
  1874. printk(KERN_ERR PFX "tid = %x\n", ob_mac_iocb->tid);
  1875. printk(KERN_ERR PFX "txq_idx = %d\n", ob_mac_iocb->txq_idx);
  1876. printk(KERN_ERR PFX "vlan_tci = %x\n", ob_mac_tso_iocb->vlan_tci);
  1877. if (ob_mac_iocb->opcode == OPCODE_OB_MAC_TSO_IOCB) {
  1878. printk(KERN_ERR PFX "frame_len = %d\n",
  1879. le32_to_cpu(ob_mac_tso_iocb->frame_len));
  1880. printk(KERN_ERR PFX "mss = %d\n",
  1881. le16_to_cpu(ob_mac_tso_iocb->mss));
  1882. printk(KERN_ERR PFX "prot_hdr_len = %d\n",
  1883. le16_to_cpu(ob_mac_tso_iocb->total_hdrs_len));
  1884. printk(KERN_ERR PFX "hdr_offset = 0x%.04x\n",
  1885. le16_to_cpu(ob_mac_tso_iocb->net_trans_offset));
  1886. frame_len = le32_to_cpu(ob_mac_tso_iocb->frame_len);
  1887. } else {
  1888. printk(KERN_ERR PFX "frame_len = %d\n",
  1889. le16_to_cpu(ob_mac_iocb->frame_len));
  1890. frame_len = le16_to_cpu(ob_mac_iocb->frame_len);
  1891. }
  1892. tbd = &ob_mac_iocb->tbd[0];
  1893. ql_dump_tx_desc(tbd);
  1894. }
  1895. void ql_dump_ob_mac_rsp(struct ob_mac_iocb_rsp *ob_mac_rsp)
  1896. {
  1897. printk(KERN_ERR PFX "%s\n", __func__);
  1898. printk(KERN_ERR PFX "opcode = %d\n", ob_mac_rsp->opcode);
  1899. printk(KERN_ERR PFX "flags = %s %s %s %s %s %s %s\n",
  1900. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_OI ? "OI" : ".",
  1901. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_I ? "I" : ".",
  1902. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_E ? "E" : ".",
  1903. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_S ? "S" : ".",
  1904. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_L ? "L" : ".",
  1905. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_P ? "P" : ".",
  1906. ob_mac_rsp->flags2 & OB_MAC_IOCB_RSP_B ? "B" : ".");
  1907. printk(KERN_ERR PFX "tid = %x\n", ob_mac_rsp->tid);
  1908. }
  1909. #endif
  1910. #ifdef QL_IB_DUMP
  1911. void ql_dump_ib_mac_rsp(struct ib_mac_iocb_rsp *ib_mac_rsp)
  1912. {
  1913. printk(KERN_ERR PFX "%s\n", __func__);
  1914. printk(KERN_ERR PFX "opcode = 0x%x\n", ib_mac_rsp->opcode);
  1915. printk(KERN_ERR PFX "flags1 = %s%s%s%s%s%s\n",
  1916. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_OI ? "OI " : "",
  1917. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_I ? "I " : "",
  1918. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_TE ? "TE " : "",
  1919. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU ? "NU " : "",
  1920. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_IE ? "IE " : "",
  1921. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_B ? "B " : "");
  1922. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK)
  1923. printk(KERN_ERR PFX "%s%s%s Multicast.\n",
  1924. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1925. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1926. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1927. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1928. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1929. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1930. printk(KERN_ERR PFX "flags2 = %s%s%s%s%s\n",
  1931. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) ? "P " : "",
  1932. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ? "V " : "",
  1933. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) ? "U " : "",
  1934. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ? "T " : "",
  1935. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_FO) ? "FO " : "");
  1936. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK)
  1937. printk(KERN_ERR PFX "%s%s%s%s%s error.\n",
  1938. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
  1939. IB_MAC_IOCB_RSP_ERR_OVERSIZE ? "oversize" : "",
  1940. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
  1941. IB_MAC_IOCB_RSP_ERR_UNDERSIZE ? "undersize" : "",
  1942. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
  1943. IB_MAC_IOCB_RSP_ERR_PREAMBLE ? "preamble" : "",
  1944. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
  1945. IB_MAC_IOCB_RSP_ERR_FRAME_LEN ? "frame length" : "",
  1946. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
  1947. IB_MAC_IOCB_RSP_ERR_CRC ? "CRC" : "");
  1948. printk(KERN_ERR PFX "flags3 = %s%s.\n",
  1949. ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS ? "DS " : "",
  1950. ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL ? "DL " : "");
  1951. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK)
  1952. printk(KERN_ERR PFX "RSS flags = %s%s%s%s.\n",
  1953. ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
  1954. IB_MAC_IOCB_RSP_M_IPV4) ? "IPv4 RSS" : "",
  1955. ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
  1956. IB_MAC_IOCB_RSP_M_IPV6) ? "IPv6 RSS " : "",
  1957. ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
  1958. IB_MAC_IOCB_RSP_M_TCP_V4) ? "TCP/IPv4 RSS" : "",
  1959. ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
  1960. IB_MAC_IOCB_RSP_M_TCP_V6) ? "TCP/IPv6 RSS" : "");
  1961. printk(KERN_ERR PFX "data_len = %d\n",
  1962. le32_to_cpu(ib_mac_rsp->data_len));
  1963. printk(KERN_ERR PFX "data_addr = 0x%llx\n",
  1964. (unsigned long long) le64_to_cpu(ib_mac_rsp->data_addr));
  1965. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK)
  1966. printk(KERN_ERR PFX "rss = %x\n",
  1967. le32_to_cpu(ib_mac_rsp->rss));
  1968. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)
  1969. printk(KERN_ERR PFX "vlan_id = %x\n",
  1970. le16_to_cpu(ib_mac_rsp->vlan_id));
  1971. printk(KERN_ERR PFX "flags4 = %s%s%s.\n",
  1972. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV ? "HV " : "",
  1973. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS ? "HS " : "",
  1974. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HL ? "HL " : "");
  1975. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
  1976. printk(KERN_ERR PFX "hdr length = %d.\n",
  1977. le32_to_cpu(ib_mac_rsp->hdr_len));
  1978. printk(KERN_ERR PFX "hdr addr = 0x%llx.\n",
  1979. (unsigned long long) le64_to_cpu(ib_mac_rsp->hdr_addr));
  1980. }
  1981. }
  1982. #endif
  1983. #ifdef QL_ALL_DUMP
  1984. void ql_dump_all(struct ql_adapter *qdev)
  1985. {
  1986. int i;
  1987. QL_DUMP_REGS(qdev);
  1988. QL_DUMP_QDEV(qdev);
  1989. for (i = 0; i < qdev->tx_ring_count; i++) {
  1990. QL_DUMP_TX_RING(&qdev->tx_ring[i]);
  1991. QL_DUMP_WQICB((struct wqicb *)&qdev->tx_ring[i]);
  1992. }
  1993. for (i = 0; i < qdev->rx_ring_count; i++) {
  1994. QL_DUMP_RX_RING(&qdev->rx_ring[i]);
  1995. QL_DUMP_CQICB((struct cqicb *)&qdev->rx_ring[i]);
  1996. }
  1997. }
  1998. #endif