greth.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635
  1. /*
  2. * Aeroflex Gaisler GRETH 10/100/1G Ethernet MAC.
  3. *
  4. * 2005-2009 (c) Aeroflex Gaisler AB
  5. *
  6. * This driver supports GRETH 10/100 and GRETH 10/100/1G Ethernet MACs
  7. * available in the GRLIB VHDL IP core library.
  8. *
  9. * Full documentation of both cores can be found here:
  10. * http://www.gaisler.com/products/grlib/grip.pdf
  11. *
  12. * The Gigabit version supports scatter/gather DMA, any alignment of
  13. * buffers and checksum offloading.
  14. *
  15. * This program is free software; you can redistribute it and/or modify it
  16. * under the terms of the GNU General Public License as published by the
  17. * Free Software Foundation; either version 2 of the License, or (at your
  18. * option) any later version.
  19. *
  20. * Contributors: Kristoffer Glembo
  21. * Daniel Hellstrom
  22. * Marko Isomaki
  23. */
  24. #include <linux/module.h>
  25. #include <linux/uaccess.h>
  26. #include <linux/init.h>
  27. #include <linux/netdevice.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/ethtool.h>
  30. #include <linux/skbuff.h>
  31. #include <linux/io.h>
  32. #include <linux/crc32.h>
  33. #include <linux/mii.h>
  34. #include <linux/of_device.h>
  35. #include <linux/of_platform.h>
  36. #include <linux/slab.h>
  37. #include <asm/cacheflush.h>
  38. #include <asm/byteorder.h>
  39. #ifdef CONFIG_SPARC
  40. #include <asm/idprom.h>
  41. #endif
  42. #include "greth.h"
  43. #define GRETH_DEF_MSG_ENABLE \
  44. (NETIF_MSG_DRV | \
  45. NETIF_MSG_PROBE | \
  46. NETIF_MSG_LINK | \
  47. NETIF_MSG_IFDOWN | \
  48. NETIF_MSG_IFUP | \
  49. NETIF_MSG_RX_ERR | \
  50. NETIF_MSG_TX_ERR)
  51. static int greth_debug = -1; /* -1 == use GRETH_DEF_MSG_ENABLE as value */
  52. module_param(greth_debug, int, 0);
  53. MODULE_PARM_DESC(greth_debug, "GRETH bitmapped debugging message enable value");
  54. /* Accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
  55. static int macaddr[6];
  56. module_param_array(macaddr, int, NULL, 0);
  57. MODULE_PARM_DESC(macaddr, "GRETH Ethernet MAC address");
  58. static int greth_edcl = 1;
  59. module_param(greth_edcl, int, 0);
  60. MODULE_PARM_DESC(greth_edcl, "GRETH EDCL usage indicator. Set to 1 if EDCL is used.");
  61. static int greth_open(struct net_device *dev);
  62. static netdev_tx_t greth_start_xmit(struct sk_buff *skb,
  63. struct net_device *dev);
  64. static netdev_tx_t greth_start_xmit_gbit(struct sk_buff *skb,
  65. struct net_device *dev);
  66. static int greth_rx(struct net_device *dev, int limit);
  67. static int greth_rx_gbit(struct net_device *dev, int limit);
  68. static void greth_clean_tx(struct net_device *dev);
  69. static void greth_clean_tx_gbit(struct net_device *dev);
  70. static irqreturn_t greth_interrupt(int irq, void *dev_id);
  71. static int greth_close(struct net_device *dev);
  72. static int greth_set_mac_add(struct net_device *dev, void *p);
  73. static void greth_set_multicast_list(struct net_device *dev);
  74. #define GRETH_REGLOAD(a) (be32_to_cpu(__raw_readl(&(a))))
  75. #define GRETH_REGSAVE(a, v) (__raw_writel(cpu_to_be32(v), &(a)))
  76. #define GRETH_REGORIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) | (v))))
  77. #define GRETH_REGANDIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) & (v))))
  78. #define NEXT_TX(N) (((N) + 1) & GRETH_TXBD_NUM_MASK)
  79. #define SKIP_TX(N, C) (((N) + C) & GRETH_TXBD_NUM_MASK)
  80. #define NEXT_RX(N) (((N) + 1) & GRETH_RXBD_NUM_MASK)
  81. static void greth_print_rx_packet(void *addr, int len)
  82. {
  83. print_hex_dump(KERN_DEBUG, "RX: ", DUMP_PREFIX_OFFSET, 16, 1,
  84. addr, len, true);
  85. }
  86. static void greth_print_tx_packet(struct sk_buff *skb)
  87. {
  88. int i;
  89. int length;
  90. if (skb_shinfo(skb)->nr_frags == 0)
  91. length = skb->len;
  92. else
  93. length = skb_headlen(skb);
  94. print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
  95. skb->data, length, true);
  96. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  97. print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
  98. phys_to_virt(page_to_phys(skb_shinfo(skb)->frags[i].page)) +
  99. skb_shinfo(skb)->frags[i].page_offset,
  100. length, true);
  101. }
  102. }
  103. static inline void greth_enable_tx(struct greth_private *greth)
  104. {
  105. wmb();
  106. GRETH_REGORIN(greth->regs->control, GRETH_TXEN);
  107. }
  108. static inline void greth_disable_tx(struct greth_private *greth)
  109. {
  110. GRETH_REGANDIN(greth->regs->control, ~GRETH_TXEN);
  111. }
  112. static inline void greth_enable_rx(struct greth_private *greth)
  113. {
  114. wmb();
  115. GRETH_REGORIN(greth->regs->control, GRETH_RXEN);
  116. }
  117. static inline void greth_disable_rx(struct greth_private *greth)
  118. {
  119. GRETH_REGANDIN(greth->regs->control, ~GRETH_RXEN);
  120. }
  121. static inline void greth_enable_irqs(struct greth_private *greth)
  122. {
  123. GRETH_REGORIN(greth->regs->control, GRETH_RXI | GRETH_TXI);
  124. }
  125. static inline void greth_disable_irqs(struct greth_private *greth)
  126. {
  127. GRETH_REGANDIN(greth->regs->control, ~(GRETH_RXI|GRETH_TXI));
  128. }
  129. static inline void greth_write_bd(u32 *bd, u32 val)
  130. {
  131. __raw_writel(cpu_to_be32(val), bd);
  132. }
  133. static inline u32 greth_read_bd(u32 *bd)
  134. {
  135. return be32_to_cpu(__raw_readl(bd));
  136. }
  137. static void greth_clean_rings(struct greth_private *greth)
  138. {
  139. int i;
  140. struct greth_bd *rx_bdp = greth->rx_bd_base;
  141. struct greth_bd *tx_bdp = greth->tx_bd_base;
  142. if (greth->gbit_mac) {
  143. /* Free and unmap RX buffers */
  144. for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
  145. if (greth->rx_skbuff[i] != NULL) {
  146. dev_kfree_skb(greth->rx_skbuff[i]);
  147. dma_unmap_single(greth->dev,
  148. greth_read_bd(&rx_bdp->addr),
  149. MAX_FRAME_SIZE+NET_IP_ALIGN,
  150. DMA_FROM_DEVICE);
  151. }
  152. }
  153. /* TX buffers */
  154. while (greth->tx_free < GRETH_TXBD_NUM) {
  155. struct sk_buff *skb = greth->tx_skbuff[greth->tx_last];
  156. int nr_frags = skb_shinfo(skb)->nr_frags;
  157. tx_bdp = greth->tx_bd_base + greth->tx_last;
  158. greth->tx_last = NEXT_TX(greth->tx_last);
  159. dma_unmap_single(greth->dev,
  160. greth_read_bd(&tx_bdp->addr),
  161. skb_headlen(skb),
  162. DMA_TO_DEVICE);
  163. for (i = 0; i < nr_frags; i++) {
  164. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  165. tx_bdp = greth->tx_bd_base + greth->tx_last;
  166. dma_unmap_page(greth->dev,
  167. greth_read_bd(&tx_bdp->addr),
  168. frag->size,
  169. DMA_TO_DEVICE);
  170. greth->tx_last = NEXT_TX(greth->tx_last);
  171. }
  172. greth->tx_free += nr_frags+1;
  173. dev_kfree_skb(skb);
  174. }
  175. } else { /* 10/100 Mbps MAC */
  176. for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
  177. kfree(greth->rx_bufs[i]);
  178. dma_unmap_single(greth->dev,
  179. greth_read_bd(&rx_bdp->addr),
  180. MAX_FRAME_SIZE,
  181. DMA_FROM_DEVICE);
  182. }
  183. for (i = 0; i < GRETH_TXBD_NUM; i++, tx_bdp++) {
  184. kfree(greth->tx_bufs[i]);
  185. dma_unmap_single(greth->dev,
  186. greth_read_bd(&tx_bdp->addr),
  187. MAX_FRAME_SIZE,
  188. DMA_TO_DEVICE);
  189. }
  190. }
  191. }
  192. static int greth_init_rings(struct greth_private *greth)
  193. {
  194. struct sk_buff *skb;
  195. struct greth_bd *rx_bd, *tx_bd;
  196. u32 dma_addr;
  197. int i;
  198. rx_bd = greth->rx_bd_base;
  199. tx_bd = greth->tx_bd_base;
  200. /* Initialize descriptor rings and buffers */
  201. if (greth->gbit_mac) {
  202. for (i = 0; i < GRETH_RXBD_NUM; i++) {
  203. skb = netdev_alloc_skb(greth->netdev, MAX_FRAME_SIZE+NET_IP_ALIGN);
  204. if (skb == NULL) {
  205. if (netif_msg_ifup(greth))
  206. dev_err(greth->dev, "Error allocating DMA ring.\n");
  207. goto cleanup;
  208. }
  209. skb_reserve(skb, NET_IP_ALIGN);
  210. dma_addr = dma_map_single(greth->dev,
  211. skb->data,
  212. MAX_FRAME_SIZE+NET_IP_ALIGN,
  213. DMA_FROM_DEVICE);
  214. if (dma_mapping_error(greth->dev, dma_addr)) {
  215. if (netif_msg_ifup(greth))
  216. dev_err(greth->dev, "Could not create initial DMA mapping\n");
  217. goto cleanup;
  218. }
  219. greth->rx_skbuff[i] = skb;
  220. greth_write_bd(&rx_bd[i].addr, dma_addr);
  221. greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
  222. }
  223. } else {
  224. /* 10/100 MAC uses a fixed set of buffers and copy to/from SKBs */
  225. for (i = 0; i < GRETH_RXBD_NUM; i++) {
  226. greth->rx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
  227. if (greth->rx_bufs[i] == NULL) {
  228. if (netif_msg_ifup(greth))
  229. dev_err(greth->dev, "Error allocating DMA ring.\n");
  230. goto cleanup;
  231. }
  232. dma_addr = dma_map_single(greth->dev,
  233. greth->rx_bufs[i],
  234. MAX_FRAME_SIZE,
  235. DMA_FROM_DEVICE);
  236. if (dma_mapping_error(greth->dev, dma_addr)) {
  237. if (netif_msg_ifup(greth))
  238. dev_err(greth->dev, "Could not create initial DMA mapping\n");
  239. goto cleanup;
  240. }
  241. greth_write_bd(&rx_bd[i].addr, dma_addr);
  242. greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
  243. }
  244. for (i = 0; i < GRETH_TXBD_NUM; i++) {
  245. greth->tx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
  246. if (greth->tx_bufs[i] == NULL) {
  247. if (netif_msg_ifup(greth))
  248. dev_err(greth->dev, "Error allocating DMA ring.\n");
  249. goto cleanup;
  250. }
  251. dma_addr = dma_map_single(greth->dev,
  252. greth->tx_bufs[i],
  253. MAX_FRAME_SIZE,
  254. DMA_TO_DEVICE);
  255. if (dma_mapping_error(greth->dev, dma_addr)) {
  256. if (netif_msg_ifup(greth))
  257. dev_err(greth->dev, "Could not create initial DMA mapping\n");
  258. goto cleanup;
  259. }
  260. greth_write_bd(&tx_bd[i].addr, dma_addr);
  261. greth_write_bd(&tx_bd[i].stat, 0);
  262. }
  263. }
  264. greth_write_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat,
  265. greth_read_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat) | GRETH_BD_WR);
  266. /* Initialize pointers. */
  267. greth->rx_cur = 0;
  268. greth->tx_next = 0;
  269. greth->tx_last = 0;
  270. greth->tx_free = GRETH_TXBD_NUM;
  271. /* Initialize descriptor base address */
  272. GRETH_REGSAVE(greth->regs->tx_desc_p, greth->tx_bd_base_phys);
  273. GRETH_REGSAVE(greth->regs->rx_desc_p, greth->rx_bd_base_phys);
  274. return 0;
  275. cleanup:
  276. greth_clean_rings(greth);
  277. return -ENOMEM;
  278. }
  279. static int greth_open(struct net_device *dev)
  280. {
  281. struct greth_private *greth = netdev_priv(dev);
  282. int err;
  283. err = greth_init_rings(greth);
  284. if (err) {
  285. if (netif_msg_ifup(greth))
  286. dev_err(&dev->dev, "Could not allocate memory for DMA rings\n");
  287. return err;
  288. }
  289. err = request_irq(greth->irq, greth_interrupt, 0, "eth", (void *) dev);
  290. if (err) {
  291. if (netif_msg_ifup(greth))
  292. dev_err(&dev->dev, "Could not allocate interrupt %d\n", dev->irq);
  293. greth_clean_rings(greth);
  294. return err;
  295. }
  296. if (netif_msg_ifup(greth))
  297. dev_dbg(&dev->dev, " starting queue\n");
  298. netif_start_queue(dev);
  299. napi_enable(&greth->napi);
  300. greth_enable_irqs(greth);
  301. greth_enable_tx(greth);
  302. greth_enable_rx(greth);
  303. return 0;
  304. }
  305. static int greth_close(struct net_device *dev)
  306. {
  307. struct greth_private *greth = netdev_priv(dev);
  308. napi_disable(&greth->napi);
  309. greth_disable_tx(greth);
  310. netif_stop_queue(dev);
  311. free_irq(greth->irq, (void *) dev);
  312. greth_clean_rings(greth);
  313. return 0;
  314. }
  315. static netdev_tx_t
  316. greth_start_xmit(struct sk_buff *skb, struct net_device *dev)
  317. {
  318. struct greth_private *greth = netdev_priv(dev);
  319. struct greth_bd *bdp;
  320. int err = NETDEV_TX_OK;
  321. u32 status, dma_addr;
  322. bdp = greth->tx_bd_base + greth->tx_next;
  323. if (unlikely(greth->tx_free <= 0)) {
  324. netif_stop_queue(dev);
  325. return NETDEV_TX_BUSY;
  326. }
  327. if (netif_msg_pktdata(greth))
  328. greth_print_tx_packet(skb);
  329. if (unlikely(skb->len > MAX_FRAME_SIZE)) {
  330. dev->stats.tx_errors++;
  331. goto out;
  332. }
  333. dma_addr = greth_read_bd(&bdp->addr);
  334. memcpy((unsigned char *) phys_to_virt(dma_addr), skb->data, skb->len);
  335. dma_sync_single_for_device(greth->dev, dma_addr, skb->len, DMA_TO_DEVICE);
  336. status = GRETH_BD_EN | (skb->len & GRETH_BD_LEN);
  337. /* Wrap around descriptor ring */
  338. if (greth->tx_next == GRETH_TXBD_NUM_MASK) {
  339. status |= GRETH_BD_WR;
  340. }
  341. greth->tx_next = NEXT_TX(greth->tx_next);
  342. greth->tx_free--;
  343. /* No more descriptors */
  344. if (unlikely(greth->tx_free == 0)) {
  345. /* Free transmitted descriptors */
  346. greth_clean_tx(dev);
  347. /* If nothing was cleaned, stop queue & wait for irq */
  348. if (unlikely(greth->tx_free == 0)) {
  349. status |= GRETH_BD_IE;
  350. netif_stop_queue(dev);
  351. }
  352. }
  353. /* Write descriptor control word and enable transmission */
  354. greth_write_bd(&bdp->stat, status);
  355. greth_enable_tx(greth);
  356. out:
  357. dev_kfree_skb(skb);
  358. return err;
  359. }
  360. static netdev_tx_t
  361. greth_start_xmit_gbit(struct sk_buff *skb, struct net_device *dev)
  362. {
  363. struct greth_private *greth = netdev_priv(dev);
  364. struct greth_bd *bdp;
  365. u32 status = 0, dma_addr;
  366. int curr_tx, nr_frags, i, err = NETDEV_TX_OK;
  367. nr_frags = skb_shinfo(skb)->nr_frags;
  368. if (greth->tx_free < nr_frags + 1) {
  369. netif_stop_queue(dev);
  370. err = NETDEV_TX_BUSY;
  371. goto out;
  372. }
  373. if (netif_msg_pktdata(greth))
  374. greth_print_tx_packet(skb);
  375. if (unlikely(skb->len > MAX_FRAME_SIZE)) {
  376. dev->stats.tx_errors++;
  377. goto out;
  378. }
  379. /* Save skb pointer. */
  380. greth->tx_skbuff[greth->tx_next] = skb;
  381. /* Linear buf */
  382. if (nr_frags != 0)
  383. status = GRETH_TXBD_MORE;
  384. status |= GRETH_TXBD_CSALL;
  385. status |= skb_headlen(skb) & GRETH_BD_LEN;
  386. if (greth->tx_next == GRETH_TXBD_NUM_MASK)
  387. status |= GRETH_BD_WR;
  388. bdp = greth->tx_bd_base + greth->tx_next;
  389. greth_write_bd(&bdp->stat, status);
  390. dma_addr = dma_map_single(greth->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
  391. if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
  392. goto map_error;
  393. greth_write_bd(&bdp->addr, dma_addr);
  394. curr_tx = NEXT_TX(greth->tx_next);
  395. /* Frags */
  396. for (i = 0; i < nr_frags; i++) {
  397. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  398. greth->tx_skbuff[curr_tx] = NULL;
  399. bdp = greth->tx_bd_base + curr_tx;
  400. status = GRETH_TXBD_CSALL;
  401. status |= frag->size & GRETH_BD_LEN;
  402. /* Wrap around descriptor ring */
  403. if (curr_tx == GRETH_TXBD_NUM_MASK)
  404. status |= GRETH_BD_WR;
  405. /* More fragments left */
  406. if (i < nr_frags - 1)
  407. status |= GRETH_TXBD_MORE;
  408. /* ... last fragment, check if out of descriptors */
  409. else if (greth->tx_free - nr_frags - 1 < (MAX_SKB_FRAGS + 1)) {
  410. /* Enable interrupts and stop queue */
  411. status |= GRETH_BD_IE;
  412. netif_stop_queue(dev);
  413. }
  414. greth_write_bd(&bdp->stat, status);
  415. dma_addr = dma_map_page(greth->dev,
  416. frag->page,
  417. frag->page_offset,
  418. frag->size,
  419. DMA_TO_DEVICE);
  420. if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
  421. goto frag_map_error;
  422. greth_write_bd(&bdp->addr, dma_addr);
  423. curr_tx = NEXT_TX(curr_tx);
  424. }
  425. wmb();
  426. /* Enable the descriptors that we configured ... */
  427. for (i = 0; i < nr_frags + 1; i++) {
  428. bdp = greth->tx_bd_base + greth->tx_next;
  429. greth_write_bd(&bdp->stat, greth_read_bd(&bdp->stat) | GRETH_BD_EN);
  430. greth->tx_next = NEXT_TX(greth->tx_next);
  431. greth->tx_free--;
  432. }
  433. greth_enable_tx(greth);
  434. return NETDEV_TX_OK;
  435. frag_map_error:
  436. /* Unmap SKB mappings that succeeded */
  437. for (i = 0; greth->tx_next + i != curr_tx; i++) {
  438. bdp = greth->tx_bd_base + greth->tx_next + i;
  439. dma_unmap_single(greth->dev,
  440. greth_read_bd(&bdp->addr),
  441. greth_read_bd(&bdp->stat) & GRETH_BD_LEN,
  442. DMA_TO_DEVICE);
  443. }
  444. map_error:
  445. if (net_ratelimit())
  446. dev_warn(greth->dev, "Could not create TX DMA mapping\n");
  447. dev_kfree_skb(skb);
  448. out:
  449. return err;
  450. }
  451. static irqreturn_t greth_interrupt(int irq, void *dev_id)
  452. {
  453. struct net_device *dev = dev_id;
  454. struct greth_private *greth;
  455. u32 status;
  456. irqreturn_t retval = IRQ_NONE;
  457. greth = netdev_priv(dev);
  458. spin_lock(&greth->devlock);
  459. /* Get the interrupt events that caused us to be here. */
  460. status = GRETH_REGLOAD(greth->regs->status);
  461. /* Handle rx and tx interrupts through poll */
  462. if (status & (GRETH_INT_RX | GRETH_INT_TX)) {
  463. /* Clear interrupt status */
  464. GRETH_REGORIN(greth->regs->status,
  465. status & (GRETH_INT_RX | GRETH_INT_TX));
  466. retval = IRQ_HANDLED;
  467. /* Disable interrupts and schedule poll() */
  468. greth_disable_irqs(greth);
  469. napi_schedule(&greth->napi);
  470. }
  471. mmiowb();
  472. spin_unlock(&greth->devlock);
  473. return retval;
  474. }
  475. static void greth_clean_tx(struct net_device *dev)
  476. {
  477. struct greth_private *greth;
  478. struct greth_bd *bdp;
  479. u32 stat;
  480. greth = netdev_priv(dev);
  481. while (1) {
  482. bdp = greth->tx_bd_base + greth->tx_last;
  483. stat = greth_read_bd(&bdp->stat);
  484. if (unlikely(stat & GRETH_BD_EN))
  485. break;
  486. if (greth->tx_free == GRETH_TXBD_NUM)
  487. break;
  488. /* Check status for errors */
  489. if (unlikely(stat & GRETH_TXBD_STATUS)) {
  490. dev->stats.tx_errors++;
  491. if (stat & GRETH_TXBD_ERR_AL)
  492. dev->stats.tx_aborted_errors++;
  493. if (stat & GRETH_TXBD_ERR_UE)
  494. dev->stats.tx_fifo_errors++;
  495. }
  496. dev->stats.tx_packets++;
  497. greth->tx_last = NEXT_TX(greth->tx_last);
  498. greth->tx_free++;
  499. }
  500. if (greth->tx_free > 0) {
  501. netif_wake_queue(dev);
  502. }
  503. }
  504. static inline void greth_update_tx_stats(struct net_device *dev, u32 stat)
  505. {
  506. /* Check status for errors */
  507. if (unlikely(stat & GRETH_TXBD_STATUS)) {
  508. dev->stats.tx_errors++;
  509. if (stat & GRETH_TXBD_ERR_AL)
  510. dev->stats.tx_aborted_errors++;
  511. if (stat & GRETH_TXBD_ERR_UE)
  512. dev->stats.tx_fifo_errors++;
  513. if (stat & GRETH_TXBD_ERR_LC)
  514. dev->stats.tx_aborted_errors++;
  515. }
  516. dev->stats.tx_packets++;
  517. }
  518. static void greth_clean_tx_gbit(struct net_device *dev)
  519. {
  520. struct greth_private *greth;
  521. struct greth_bd *bdp, *bdp_last_frag;
  522. struct sk_buff *skb;
  523. u32 stat;
  524. int nr_frags, i;
  525. greth = netdev_priv(dev);
  526. while (greth->tx_free < GRETH_TXBD_NUM) {
  527. skb = greth->tx_skbuff[greth->tx_last];
  528. nr_frags = skb_shinfo(skb)->nr_frags;
  529. /* We only clean fully completed SKBs */
  530. bdp_last_frag = greth->tx_bd_base + SKIP_TX(greth->tx_last, nr_frags);
  531. stat = bdp_last_frag->stat;
  532. if (stat & GRETH_BD_EN)
  533. break;
  534. greth->tx_skbuff[greth->tx_last] = NULL;
  535. greth_update_tx_stats(dev, stat);
  536. bdp = greth->tx_bd_base + greth->tx_last;
  537. greth->tx_last = NEXT_TX(greth->tx_last);
  538. dma_unmap_single(greth->dev,
  539. greth_read_bd(&bdp->addr),
  540. skb_headlen(skb),
  541. DMA_TO_DEVICE);
  542. for (i = 0; i < nr_frags; i++) {
  543. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  544. bdp = greth->tx_bd_base + greth->tx_last;
  545. dma_unmap_page(greth->dev,
  546. greth_read_bd(&bdp->addr),
  547. frag->size,
  548. DMA_TO_DEVICE);
  549. greth->tx_last = NEXT_TX(greth->tx_last);
  550. }
  551. greth->tx_free += nr_frags+1;
  552. dev_kfree_skb(skb);
  553. }
  554. if (greth->tx_free > (MAX_SKB_FRAGS + 1)) {
  555. netif_wake_queue(dev);
  556. }
  557. }
  558. static int greth_pending_packets(struct greth_private *greth)
  559. {
  560. struct greth_bd *bdp;
  561. u32 status;
  562. bdp = greth->rx_bd_base + greth->rx_cur;
  563. status = greth_read_bd(&bdp->stat);
  564. if (status & GRETH_BD_EN)
  565. return 0;
  566. else
  567. return 1;
  568. }
  569. static int greth_rx(struct net_device *dev, int limit)
  570. {
  571. struct greth_private *greth;
  572. struct greth_bd *bdp;
  573. struct sk_buff *skb;
  574. int pkt_len;
  575. int bad, count;
  576. u32 status, dma_addr;
  577. greth = netdev_priv(dev);
  578. for (count = 0; count < limit; ++count) {
  579. bdp = greth->rx_bd_base + greth->rx_cur;
  580. status = greth_read_bd(&bdp->stat);
  581. dma_addr = greth_read_bd(&bdp->addr);
  582. bad = 0;
  583. if (unlikely(status & GRETH_BD_EN)) {
  584. break;
  585. }
  586. /* Check status for errors. */
  587. if (unlikely(status & GRETH_RXBD_STATUS)) {
  588. if (status & GRETH_RXBD_ERR_FT) {
  589. dev->stats.rx_length_errors++;
  590. bad = 1;
  591. }
  592. if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE)) {
  593. dev->stats.rx_frame_errors++;
  594. bad = 1;
  595. }
  596. if (status & GRETH_RXBD_ERR_CRC) {
  597. dev->stats.rx_crc_errors++;
  598. bad = 1;
  599. }
  600. }
  601. if (unlikely(bad)) {
  602. dev->stats.rx_errors++;
  603. } else {
  604. pkt_len = status & GRETH_BD_LEN;
  605. skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN);
  606. if (unlikely(skb == NULL)) {
  607. if (net_ratelimit())
  608. dev_warn(&dev->dev, "low on memory - " "packet dropped\n");
  609. dev->stats.rx_dropped++;
  610. } else {
  611. skb_reserve(skb, NET_IP_ALIGN);
  612. skb->dev = dev;
  613. dma_sync_single_for_cpu(greth->dev,
  614. dma_addr,
  615. pkt_len,
  616. DMA_FROM_DEVICE);
  617. if (netif_msg_pktdata(greth))
  618. greth_print_rx_packet(phys_to_virt(dma_addr), pkt_len);
  619. memcpy(skb_put(skb, pkt_len), phys_to_virt(dma_addr), pkt_len);
  620. skb->protocol = eth_type_trans(skb, dev);
  621. dev->stats.rx_packets++;
  622. netif_receive_skb(skb);
  623. }
  624. }
  625. status = GRETH_BD_EN | GRETH_BD_IE;
  626. if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
  627. status |= GRETH_BD_WR;
  628. }
  629. wmb();
  630. greth_write_bd(&bdp->stat, status);
  631. dma_sync_single_for_device(greth->dev, dma_addr, MAX_FRAME_SIZE, DMA_FROM_DEVICE);
  632. greth_enable_rx(greth);
  633. greth->rx_cur = NEXT_RX(greth->rx_cur);
  634. }
  635. return count;
  636. }
  637. static inline int hw_checksummed(u32 status)
  638. {
  639. if (status & GRETH_RXBD_IP_FRAG)
  640. return 0;
  641. if (status & GRETH_RXBD_IP && status & GRETH_RXBD_IP_CSERR)
  642. return 0;
  643. if (status & GRETH_RXBD_UDP && status & GRETH_RXBD_UDP_CSERR)
  644. return 0;
  645. if (status & GRETH_RXBD_TCP && status & GRETH_RXBD_TCP_CSERR)
  646. return 0;
  647. return 1;
  648. }
  649. static int greth_rx_gbit(struct net_device *dev, int limit)
  650. {
  651. struct greth_private *greth;
  652. struct greth_bd *bdp;
  653. struct sk_buff *skb, *newskb;
  654. int pkt_len;
  655. int bad, count = 0;
  656. u32 status, dma_addr;
  657. greth = netdev_priv(dev);
  658. for (count = 0; count < limit; ++count) {
  659. bdp = greth->rx_bd_base + greth->rx_cur;
  660. skb = greth->rx_skbuff[greth->rx_cur];
  661. status = greth_read_bd(&bdp->stat);
  662. bad = 0;
  663. if (status & GRETH_BD_EN)
  664. break;
  665. /* Check status for errors. */
  666. if (unlikely(status & GRETH_RXBD_STATUS)) {
  667. if (status & GRETH_RXBD_ERR_FT) {
  668. dev->stats.rx_length_errors++;
  669. bad = 1;
  670. } else if (status &
  671. (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE | GRETH_RXBD_ERR_LE)) {
  672. dev->stats.rx_frame_errors++;
  673. bad = 1;
  674. } else if (status & GRETH_RXBD_ERR_CRC) {
  675. dev->stats.rx_crc_errors++;
  676. bad = 1;
  677. }
  678. }
  679. /* Allocate new skb to replace current */
  680. newskb = netdev_alloc_skb(dev, MAX_FRAME_SIZE + NET_IP_ALIGN);
  681. if (!bad && newskb) {
  682. skb_reserve(newskb, NET_IP_ALIGN);
  683. dma_addr = dma_map_single(greth->dev,
  684. newskb->data,
  685. MAX_FRAME_SIZE + NET_IP_ALIGN,
  686. DMA_FROM_DEVICE);
  687. if (!dma_mapping_error(greth->dev, dma_addr)) {
  688. /* Process the incoming frame. */
  689. pkt_len = status & GRETH_BD_LEN;
  690. dma_unmap_single(greth->dev,
  691. greth_read_bd(&bdp->addr),
  692. MAX_FRAME_SIZE + NET_IP_ALIGN,
  693. DMA_FROM_DEVICE);
  694. if (netif_msg_pktdata(greth))
  695. greth_print_rx_packet(phys_to_virt(greth_read_bd(&bdp->addr)), pkt_len);
  696. skb_put(skb, pkt_len);
  697. if (greth->flags & GRETH_FLAG_RX_CSUM && hw_checksummed(status))
  698. skb->ip_summed = CHECKSUM_UNNECESSARY;
  699. else
  700. skb->ip_summed = CHECKSUM_NONE;
  701. skb->dev = dev;
  702. skb->protocol = eth_type_trans(skb, dev);
  703. dev->stats.rx_packets++;
  704. netif_receive_skb(skb);
  705. greth->rx_skbuff[greth->rx_cur] = newskb;
  706. greth_write_bd(&bdp->addr, dma_addr);
  707. } else {
  708. if (net_ratelimit())
  709. dev_warn(greth->dev, "Could not create DMA mapping, dropping packet\n");
  710. dev_kfree_skb(newskb);
  711. dev->stats.rx_dropped++;
  712. }
  713. } else {
  714. if (net_ratelimit())
  715. dev_warn(greth->dev, "Could not allocate SKB, dropping packet\n");
  716. dev->stats.rx_dropped++;
  717. }
  718. status = GRETH_BD_EN | GRETH_BD_IE;
  719. if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
  720. status |= GRETH_BD_WR;
  721. }
  722. wmb();
  723. greth_write_bd(&bdp->stat, status);
  724. greth_enable_rx(greth);
  725. greth->rx_cur = NEXT_RX(greth->rx_cur);
  726. }
  727. return count;
  728. }
  729. static int greth_poll(struct napi_struct *napi, int budget)
  730. {
  731. struct greth_private *greth;
  732. int work_done = 0;
  733. greth = container_of(napi, struct greth_private, napi);
  734. if (greth->gbit_mac) {
  735. greth_clean_tx_gbit(greth->netdev);
  736. } else {
  737. greth_clean_tx(greth->netdev);
  738. }
  739. restart_poll:
  740. if (greth->gbit_mac) {
  741. work_done += greth_rx_gbit(greth->netdev, budget - work_done);
  742. } else {
  743. work_done += greth_rx(greth->netdev, budget - work_done);
  744. }
  745. if (work_done < budget) {
  746. napi_complete(napi);
  747. if (greth_pending_packets(greth)) {
  748. napi_reschedule(napi);
  749. goto restart_poll;
  750. }
  751. }
  752. greth_enable_irqs(greth);
  753. return work_done;
  754. }
  755. static int greth_set_mac_add(struct net_device *dev, void *p)
  756. {
  757. struct sockaddr *addr = p;
  758. struct greth_private *greth;
  759. struct greth_regs *regs;
  760. greth = netdev_priv(dev);
  761. regs = (struct greth_regs *) greth->regs;
  762. if (!is_valid_ether_addr(addr->sa_data))
  763. return -EINVAL;
  764. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  765. GRETH_REGSAVE(regs->esa_msb, addr->sa_data[0] << 8 | addr->sa_data[1]);
  766. GRETH_REGSAVE(regs->esa_lsb,
  767. addr->sa_data[2] << 24 | addr->
  768. sa_data[3] << 16 | addr->sa_data[4] << 8 | addr->sa_data[5]);
  769. return 0;
  770. }
  771. static u32 greth_hash_get_index(__u8 *addr)
  772. {
  773. return (ether_crc(6, addr)) & 0x3F;
  774. }
  775. static void greth_set_hash_filter(struct net_device *dev)
  776. {
  777. struct dev_mc_list *curr;
  778. struct greth_private *greth = netdev_priv(dev);
  779. struct greth_regs *regs = (struct greth_regs *) greth->regs;
  780. u32 mc_filter[2];
  781. unsigned int bitnr;
  782. mc_filter[0] = mc_filter[1] = 0;
  783. netdev_for_each_mc_addr(curr, dev) {
  784. bitnr = greth_hash_get_index(curr->dmi_addr);
  785. mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
  786. }
  787. GRETH_REGSAVE(regs->hash_msb, mc_filter[1]);
  788. GRETH_REGSAVE(regs->hash_lsb, mc_filter[0]);
  789. }
  790. static void greth_set_multicast_list(struct net_device *dev)
  791. {
  792. int cfg;
  793. struct greth_private *greth = netdev_priv(dev);
  794. struct greth_regs *regs = (struct greth_regs *) greth->regs;
  795. cfg = GRETH_REGLOAD(regs->control);
  796. if (dev->flags & IFF_PROMISC)
  797. cfg |= GRETH_CTRL_PR;
  798. else
  799. cfg &= ~GRETH_CTRL_PR;
  800. if (greth->multicast) {
  801. if (dev->flags & IFF_ALLMULTI) {
  802. GRETH_REGSAVE(regs->hash_msb, -1);
  803. GRETH_REGSAVE(regs->hash_lsb, -1);
  804. cfg |= GRETH_CTRL_MCEN;
  805. GRETH_REGSAVE(regs->control, cfg);
  806. return;
  807. }
  808. if (netdev_mc_empty(dev)) {
  809. cfg &= ~GRETH_CTRL_MCEN;
  810. GRETH_REGSAVE(regs->control, cfg);
  811. return;
  812. }
  813. /* Setup multicast filter */
  814. greth_set_hash_filter(dev);
  815. cfg |= GRETH_CTRL_MCEN;
  816. }
  817. GRETH_REGSAVE(regs->control, cfg);
  818. }
  819. static u32 greth_get_msglevel(struct net_device *dev)
  820. {
  821. struct greth_private *greth = netdev_priv(dev);
  822. return greth->msg_enable;
  823. }
  824. static void greth_set_msglevel(struct net_device *dev, u32 value)
  825. {
  826. struct greth_private *greth = netdev_priv(dev);
  827. greth->msg_enable = value;
  828. }
  829. static int greth_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  830. {
  831. struct greth_private *greth = netdev_priv(dev);
  832. struct phy_device *phy = greth->phy;
  833. if (!phy)
  834. return -ENODEV;
  835. return phy_ethtool_gset(phy, cmd);
  836. }
  837. static int greth_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  838. {
  839. struct greth_private *greth = netdev_priv(dev);
  840. struct phy_device *phy = greth->phy;
  841. if (!phy)
  842. return -ENODEV;
  843. return phy_ethtool_sset(phy, cmd);
  844. }
  845. static int greth_get_regs_len(struct net_device *dev)
  846. {
  847. return sizeof(struct greth_regs);
  848. }
  849. static void greth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  850. {
  851. struct greth_private *greth = netdev_priv(dev);
  852. strncpy(info->driver, dev_driver_string(greth->dev), 32);
  853. strncpy(info->version, "revision: 1.0", 32);
  854. strncpy(info->bus_info, greth->dev->bus->name, 32);
  855. strncpy(info->fw_version, "N/A", 32);
  856. info->eedump_len = 0;
  857. info->regdump_len = sizeof(struct greth_regs);
  858. }
  859. static void greth_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p)
  860. {
  861. int i;
  862. struct greth_private *greth = netdev_priv(dev);
  863. u32 __iomem *greth_regs = (u32 __iomem *) greth->regs;
  864. u32 *buff = p;
  865. for (i = 0; i < sizeof(struct greth_regs) / sizeof(u32); i++)
  866. buff[i] = greth_read_bd(&greth_regs[i]);
  867. }
  868. static u32 greth_get_rx_csum(struct net_device *dev)
  869. {
  870. struct greth_private *greth = netdev_priv(dev);
  871. return (greth->flags & GRETH_FLAG_RX_CSUM) != 0;
  872. }
  873. static int greth_set_rx_csum(struct net_device *dev, u32 data)
  874. {
  875. struct greth_private *greth = netdev_priv(dev);
  876. spin_lock_bh(&greth->devlock);
  877. if (data)
  878. greth->flags |= GRETH_FLAG_RX_CSUM;
  879. else
  880. greth->flags &= ~GRETH_FLAG_RX_CSUM;
  881. spin_unlock_bh(&greth->devlock);
  882. return 0;
  883. }
  884. static u32 greth_get_tx_csum(struct net_device *dev)
  885. {
  886. return (dev->features & NETIF_F_IP_CSUM) != 0;
  887. }
  888. static int greth_set_tx_csum(struct net_device *dev, u32 data)
  889. {
  890. netif_tx_lock_bh(dev);
  891. ethtool_op_set_tx_csum(dev, data);
  892. netif_tx_unlock_bh(dev);
  893. return 0;
  894. }
  895. static const struct ethtool_ops greth_ethtool_ops = {
  896. .get_msglevel = greth_get_msglevel,
  897. .set_msglevel = greth_set_msglevel,
  898. .get_settings = greth_get_settings,
  899. .set_settings = greth_set_settings,
  900. .get_drvinfo = greth_get_drvinfo,
  901. .get_regs_len = greth_get_regs_len,
  902. .get_regs = greth_get_regs,
  903. .get_rx_csum = greth_get_rx_csum,
  904. .set_rx_csum = greth_set_rx_csum,
  905. .get_tx_csum = greth_get_tx_csum,
  906. .set_tx_csum = greth_set_tx_csum,
  907. .get_link = ethtool_op_get_link,
  908. };
  909. static struct net_device_ops greth_netdev_ops = {
  910. .ndo_open = greth_open,
  911. .ndo_stop = greth_close,
  912. .ndo_start_xmit = greth_start_xmit,
  913. .ndo_set_mac_address = greth_set_mac_add,
  914. .ndo_validate_addr = eth_validate_addr,
  915. };
  916. static inline int wait_for_mdio(struct greth_private *greth)
  917. {
  918. unsigned long timeout = jiffies + 4*HZ/100;
  919. while (GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_BUSY) {
  920. if (time_after(jiffies, timeout))
  921. return 0;
  922. }
  923. return 1;
  924. }
  925. static int greth_mdio_read(struct mii_bus *bus, int phy, int reg)
  926. {
  927. struct greth_private *greth = bus->priv;
  928. int data;
  929. if (!wait_for_mdio(greth))
  930. return -EBUSY;
  931. GRETH_REGSAVE(greth->regs->mdio, ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 2);
  932. if (!wait_for_mdio(greth))
  933. return -EBUSY;
  934. if (!(GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_NVALID)) {
  935. data = (GRETH_REGLOAD(greth->regs->mdio) >> 16) & 0xFFFF;
  936. return data;
  937. } else {
  938. return -1;
  939. }
  940. }
  941. static int greth_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
  942. {
  943. struct greth_private *greth = bus->priv;
  944. if (!wait_for_mdio(greth))
  945. return -EBUSY;
  946. GRETH_REGSAVE(greth->regs->mdio,
  947. ((val & 0xFFFF) << 16) | ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 1);
  948. if (!wait_for_mdio(greth))
  949. return -EBUSY;
  950. return 0;
  951. }
  952. static int greth_mdio_reset(struct mii_bus *bus)
  953. {
  954. return 0;
  955. }
  956. static void greth_link_change(struct net_device *dev)
  957. {
  958. struct greth_private *greth = netdev_priv(dev);
  959. struct phy_device *phydev = greth->phy;
  960. unsigned long flags;
  961. int status_change = 0;
  962. spin_lock_irqsave(&greth->devlock, flags);
  963. if (phydev->link) {
  964. if ((greth->speed != phydev->speed) || (greth->duplex != phydev->duplex)) {
  965. GRETH_REGANDIN(greth->regs->control,
  966. ~(GRETH_CTRL_FD | GRETH_CTRL_SP | GRETH_CTRL_GB));
  967. if (phydev->duplex)
  968. GRETH_REGORIN(greth->regs->control, GRETH_CTRL_FD);
  969. if (phydev->speed == SPEED_100) {
  970. GRETH_REGORIN(greth->regs->control, GRETH_CTRL_SP);
  971. }
  972. else if (phydev->speed == SPEED_1000)
  973. GRETH_REGORIN(greth->regs->control, GRETH_CTRL_GB);
  974. greth->speed = phydev->speed;
  975. greth->duplex = phydev->duplex;
  976. status_change = 1;
  977. }
  978. }
  979. if (phydev->link != greth->link) {
  980. if (!phydev->link) {
  981. greth->speed = 0;
  982. greth->duplex = -1;
  983. }
  984. greth->link = phydev->link;
  985. status_change = 1;
  986. }
  987. spin_unlock_irqrestore(&greth->devlock, flags);
  988. if (status_change) {
  989. if (phydev->link)
  990. pr_debug("%s: link up (%d/%s)\n",
  991. dev->name, phydev->speed,
  992. DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
  993. else
  994. pr_debug("%s: link down\n", dev->name);
  995. }
  996. }
  997. static int greth_mdio_probe(struct net_device *dev)
  998. {
  999. struct greth_private *greth = netdev_priv(dev);
  1000. struct phy_device *phy = NULL;
  1001. int ret;
  1002. /* Find the first PHY */
  1003. phy = phy_find_first(greth->mdio);
  1004. if (!phy) {
  1005. if (netif_msg_probe(greth))
  1006. dev_err(&dev->dev, "no PHY found\n");
  1007. return -ENXIO;
  1008. }
  1009. ret = phy_connect_direct(dev, phy, &greth_link_change,
  1010. 0, greth->gbit_mac ?
  1011. PHY_INTERFACE_MODE_GMII :
  1012. PHY_INTERFACE_MODE_MII);
  1013. if (ret) {
  1014. if (netif_msg_ifup(greth))
  1015. dev_err(&dev->dev, "could not attach to PHY\n");
  1016. return ret;
  1017. }
  1018. if (greth->gbit_mac)
  1019. phy->supported &= PHY_GBIT_FEATURES;
  1020. else
  1021. phy->supported &= PHY_BASIC_FEATURES;
  1022. phy->advertising = phy->supported;
  1023. greth->link = 0;
  1024. greth->speed = 0;
  1025. greth->duplex = -1;
  1026. greth->phy = phy;
  1027. return 0;
  1028. }
  1029. static inline int phy_aneg_done(struct phy_device *phydev)
  1030. {
  1031. int retval;
  1032. retval = phy_read(phydev, MII_BMSR);
  1033. return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
  1034. }
  1035. static int greth_mdio_init(struct greth_private *greth)
  1036. {
  1037. int ret, phy;
  1038. unsigned long timeout;
  1039. greth->mdio = mdiobus_alloc();
  1040. if (!greth->mdio) {
  1041. return -ENOMEM;
  1042. }
  1043. greth->mdio->name = "greth-mdio";
  1044. snprintf(greth->mdio->id, MII_BUS_ID_SIZE, "%s-%d", greth->mdio->name, greth->irq);
  1045. greth->mdio->read = greth_mdio_read;
  1046. greth->mdio->write = greth_mdio_write;
  1047. greth->mdio->reset = greth_mdio_reset;
  1048. greth->mdio->priv = greth;
  1049. greth->mdio->irq = greth->mdio_irqs;
  1050. for (phy = 0; phy < PHY_MAX_ADDR; phy++)
  1051. greth->mdio->irq[phy] = PHY_POLL;
  1052. ret = mdiobus_register(greth->mdio);
  1053. if (ret) {
  1054. goto error;
  1055. }
  1056. ret = greth_mdio_probe(greth->netdev);
  1057. if (ret) {
  1058. if (netif_msg_probe(greth))
  1059. dev_err(&greth->netdev->dev, "failed to probe MDIO bus\n");
  1060. goto unreg_mdio;
  1061. }
  1062. phy_start(greth->phy);
  1063. /* If Ethernet debug link is used make autoneg happen right away */
  1064. if (greth->edcl && greth_edcl == 1) {
  1065. phy_start_aneg(greth->phy);
  1066. timeout = jiffies + 6*HZ;
  1067. while (!phy_aneg_done(greth->phy) && time_before(jiffies, timeout)) {
  1068. }
  1069. genphy_read_status(greth->phy);
  1070. greth_link_change(greth->netdev);
  1071. }
  1072. return 0;
  1073. unreg_mdio:
  1074. mdiobus_unregister(greth->mdio);
  1075. error:
  1076. mdiobus_free(greth->mdio);
  1077. return ret;
  1078. }
  1079. /* Initialize the GRETH MAC */
  1080. static int __devinit greth_of_probe(struct of_device *ofdev, const struct of_device_id *match)
  1081. {
  1082. struct net_device *dev;
  1083. struct greth_private *greth;
  1084. struct greth_regs *regs;
  1085. int i;
  1086. int err;
  1087. int tmp;
  1088. unsigned long timeout;
  1089. dev = alloc_etherdev(sizeof(struct greth_private));
  1090. if (dev == NULL)
  1091. return -ENOMEM;
  1092. greth = netdev_priv(dev);
  1093. greth->netdev = dev;
  1094. greth->dev = &ofdev->dev;
  1095. if (greth_debug > 0)
  1096. greth->msg_enable = greth_debug;
  1097. else
  1098. greth->msg_enable = GRETH_DEF_MSG_ENABLE;
  1099. spin_lock_init(&greth->devlock);
  1100. greth->regs = of_ioremap(&ofdev->resource[0], 0,
  1101. resource_size(&ofdev->resource[0]),
  1102. "grlib-greth regs");
  1103. if (greth->regs == NULL) {
  1104. if (netif_msg_probe(greth))
  1105. dev_err(greth->dev, "ioremap failure.\n");
  1106. err = -EIO;
  1107. goto error1;
  1108. }
  1109. regs = (struct greth_regs *) greth->regs;
  1110. greth->irq = ofdev->irqs[0];
  1111. dev_set_drvdata(greth->dev, dev);
  1112. SET_NETDEV_DEV(dev, greth->dev);
  1113. if (netif_msg_probe(greth))
  1114. dev_dbg(greth->dev, "reseting controller.\n");
  1115. /* Reset the controller. */
  1116. GRETH_REGSAVE(regs->control, GRETH_RESET);
  1117. /* Wait for MAC to reset itself */
  1118. timeout = jiffies + HZ/100;
  1119. while (GRETH_REGLOAD(regs->control) & GRETH_RESET) {
  1120. if (time_after(jiffies, timeout)) {
  1121. err = -EIO;
  1122. if (netif_msg_probe(greth))
  1123. dev_err(greth->dev, "timeout when waiting for reset.\n");
  1124. goto error2;
  1125. }
  1126. }
  1127. /* Get default PHY address */
  1128. greth->phyaddr = (GRETH_REGLOAD(regs->mdio) >> 11) & 0x1F;
  1129. /* Check if we have GBIT capable MAC */
  1130. tmp = GRETH_REGLOAD(regs->control);
  1131. greth->gbit_mac = (tmp >> 27) & 1;
  1132. /* Check for multicast capability */
  1133. greth->multicast = (tmp >> 25) & 1;
  1134. greth->edcl = (tmp >> 31) & 1;
  1135. /* If we have EDCL we disable the EDCL speed-duplex FSM so
  1136. * it doesn't interfere with the software */
  1137. if (greth->edcl != 0)
  1138. GRETH_REGORIN(regs->control, GRETH_CTRL_DISDUPLEX);
  1139. /* Check if MAC can handle MDIO interrupts */
  1140. greth->mdio_int_en = (tmp >> 26) & 1;
  1141. err = greth_mdio_init(greth);
  1142. if (err) {
  1143. if (netif_msg_probe(greth))
  1144. dev_err(greth->dev, "failed to register MDIO bus\n");
  1145. goto error2;
  1146. }
  1147. /* Allocate TX descriptor ring in coherent memory */
  1148. greth->tx_bd_base = (struct greth_bd *) dma_alloc_coherent(greth->dev,
  1149. 1024,
  1150. &greth->tx_bd_base_phys,
  1151. GFP_KERNEL);
  1152. if (!greth->tx_bd_base) {
  1153. if (netif_msg_probe(greth))
  1154. dev_err(&dev->dev, "could not allocate descriptor memory.\n");
  1155. err = -ENOMEM;
  1156. goto error3;
  1157. }
  1158. memset(greth->tx_bd_base, 0, 1024);
  1159. /* Allocate RX descriptor ring in coherent memory */
  1160. greth->rx_bd_base = (struct greth_bd *) dma_alloc_coherent(greth->dev,
  1161. 1024,
  1162. &greth->rx_bd_base_phys,
  1163. GFP_KERNEL);
  1164. if (!greth->rx_bd_base) {
  1165. if (netif_msg_probe(greth))
  1166. dev_err(greth->dev, "could not allocate descriptor memory.\n");
  1167. err = -ENOMEM;
  1168. goto error4;
  1169. }
  1170. memset(greth->rx_bd_base, 0, 1024);
  1171. /* Get MAC address from: module param, OF property or ID prom */
  1172. for (i = 0; i < 6; i++) {
  1173. if (macaddr[i] != 0)
  1174. break;
  1175. }
  1176. if (i == 6) {
  1177. const unsigned char *addr;
  1178. int len;
  1179. addr = of_get_property(ofdev->node, "local-mac-address", &len);
  1180. if (addr != NULL && len == 6) {
  1181. for (i = 0; i < 6; i++)
  1182. macaddr[i] = (unsigned int) addr[i];
  1183. } else {
  1184. #ifdef CONFIG_SPARC
  1185. for (i = 0; i < 6; i++)
  1186. macaddr[i] = (unsigned int) idprom->id_ethaddr[i];
  1187. #endif
  1188. }
  1189. }
  1190. for (i = 0; i < 6; i++)
  1191. dev->dev_addr[i] = macaddr[i];
  1192. macaddr[5]++;
  1193. if (!is_valid_ether_addr(&dev->dev_addr[0])) {
  1194. if (netif_msg_probe(greth))
  1195. dev_err(greth->dev, "no valid ethernet address, aborting.\n");
  1196. err = -EINVAL;
  1197. goto error5;
  1198. }
  1199. GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]);
  1200. GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 |
  1201. dev->dev_addr[4] << 8 | dev->dev_addr[5]);
  1202. /* Clear all pending interrupts except PHY irq */
  1203. GRETH_REGSAVE(regs->status, 0xFF);
  1204. if (greth->gbit_mac) {
  1205. dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_HIGHDMA;
  1206. greth_netdev_ops.ndo_start_xmit = greth_start_xmit_gbit;
  1207. greth->flags = GRETH_FLAG_RX_CSUM;
  1208. }
  1209. if (greth->multicast) {
  1210. greth_netdev_ops.ndo_set_multicast_list = greth_set_multicast_list;
  1211. dev->flags |= IFF_MULTICAST;
  1212. } else {
  1213. dev->flags &= ~IFF_MULTICAST;
  1214. }
  1215. dev->netdev_ops = &greth_netdev_ops;
  1216. dev->ethtool_ops = &greth_ethtool_ops;
  1217. if (register_netdev(dev)) {
  1218. if (netif_msg_probe(greth))
  1219. dev_err(greth->dev, "netdevice registration failed.\n");
  1220. err = -ENOMEM;
  1221. goto error5;
  1222. }
  1223. /* setup NAPI */
  1224. memset(&greth->napi, 0, sizeof(greth->napi));
  1225. netif_napi_add(dev, &greth->napi, greth_poll, 64);
  1226. return 0;
  1227. error5:
  1228. dma_free_coherent(greth->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
  1229. error4:
  1230. dma_free_coherent(greth->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
  1231. error3:
  1232. mdiobus_unregister(greth->mdio);
  1233. error2:
  1234. of_iounmap(&ofdev->resource[0], greth->regs, resource_size(&ofdev->resource[0]));
  1235. error1:
  1236. free_netdev(dev);
  1237. return err;
  1238. }
  1239. static int __devexit greth_of_remove(struct of_device *of_dev)
  1240. {
  1241. struct net_device *ndev = dev_get_drvdata(&of_dev->dev);
  1242. struct greth_private *greth = netdev_priv(ndev);
  1243. /* Free descriptor areas */
  1244. dma_free_coherent(&of_dev->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
  1245. dma_free_coherent(&of_dev->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
  1246. dev_set_drvdata(&of_dev->dev, NULL);
  1247. if (greth->phy)
  1248. phy_stop(greth->phy);
  1249. mdiobus_unregister(greth->mdio);
  1250. unregister_netdev(ndev);
  1251. free_netdev(ndev);
  1252. of_iounmap(&of_dev->resource[0], greth->regs, resource_size(&of_dev->resource[0]));
  1253. return 0;
  1254. }
  1255. static struct of_device_id greth_of_match[] = {
  1256. {
  1257. .name = "GAISLER_ETHMAC",
  1258. },
  1259. {},
  1260. };
  1261. MODULE_DEVICE_TABLE(of, greth_of_match);
  1262. static struct of_platform_driver greth_of_driver = {
  1263. .name = "grlib-greth",
  1264. .match_table = greth_of_match,
  1265. .probe = greth_of_probe,
  1266. .remove = __devexit_p(greth_of_remove),
  1267. .driver = {
  1268. .owner = THIS_MODULE,
  1269. .name = "grlib-greth",
  1270. },
  1271. };
  1272. static int __init greth_init(void)
  1273. {
  1274. return of_register_platform_driver(&greth_of_driver);
  1275. }
  1276. static void __exit greth_cleanup(void)
  1277. {
  1278. of_unregister_platform_driver(&greth_of_driver);
  1279. }
  1280. module_init(greth_init);
  1281. module_exit(greth_cleanup);
  1282. MODULE_AUTHOR("Aeroflex Gaisler AB.");
  1283. MODULE_DESCRIPTION("Aeroflex Gaisler Ethernet MAC driver");
  1284. MODULE_LICENSE("GPL");