sge.c 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142
  1. /*****************************************************************************
  2. * *
  3. * File: sge.c *
  4. * $Revision: 1.26 $ *
  5. * $Date: 2005/06/21 18:29:48 $ *
  6. * Description: *
  7. * DMA engine. *
  8. * part of the Chelsio 10Gb Ethernet Driver. *
  9. * *
  10. * This program is free software; you can redistribute it and/or modify *
  11. * it under the terms of the GNU General Public License, version 2, as *
  12. * published by the Free Software Foundation. *
  13. * *
  14. * You should have received a copy of the GNU General Public License along *
  15. * with this program; if not, write to the Free Software Foundation, Inc., *
  16. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
  17. * *
  18. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
  19. * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
  20. * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
  21. * *
  22. * http://www.chelsio.com *
  23. * *
  24. * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
  25. * All rights reserved. *
  26. * *
  27. * Maintainers: maintainers@chelsio.com *
  28. * *
  29. * Authors: Dimitrios Michailidis <dm@chelsio.com> *
  30. * Tina Yang <tainay@chelsio.com> *
  31. * Felix Marti <felix@chelsio.com> *
  32. * Scott Bardone <sbardone@chelsio.com> *
  33. * Kurt Ottaway <kottaway@chelsio.com> *
  34. * Frank DiMambro <frank@chelsio.com> *
  35. * *
  36. * History: *
  37. * *
  38. ****************************************************************************/
  39. #include "common.h"
  40. #include <linux/types.h>
  41. #include <linux/errno.h>
  42. #include <linux/pci.h>
  43. #include <linux/ktime.h>
  44. #include <linux/netdevice.h>
  45. #include <linux/etherdevice.h>
  46. #include <linux/if_vlan.h>
  47. #include <linux/skbuff.h>
  48. #include <linux/init.h>
  49. #include <linux/mm.h>
  50. #include <linux/tcp.h>
  51. #include <linux/ip.h>
  52. #include <linux/in.h>
  53. #include <linux/if_arp.h>
  54. #include <linux/slab.h>
  55. #include "cpl5_cmd.h"
  56. #include "sge.h"
  57. #include "regs.h"
  58. #include "espi.h"
  59. /* This belongs in if_ether.h */
  60. #define ETH_P_CPL5 0xf
  61. #define SGE_CMDQ_N 2
  62. #define SGE_FREELQ_N 2
  63. #define SGE_CMDQ0_E_N 1024
  64. #define SGE_CMDQ1_E_N 128
  65. #define SGE_FREEL_SIZE 4096
  66. #define SGE_JUMBO_FREEL_SIZE 512
  67. #define SGE_FREEL_REFILL_THRESH 16
  68. #define SGE_RESPQ_E_N 1024
  69. #define SGE_INTRTIMER_NRES 1000
  70. #define SGE_RX_SM_BUF_SIZE 1536
  71. #define SGE_TX_DESC_MAX_PLEN 16384
  72. #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
  73. /*
  74. * Period of the TX buffer reclaim timer. This timer does not need to run
  75. * frequently as TX buffers are usually reclaimed by new TX packets.
  76. */
  77. #define TX_RECLAIM_PERIOD (HZ / 4)
  78. #define M_CMD_LEN 0x7fffffff
  79. #define V_CMD_LEN(v) (v)
  80. #define G_CMD_LEN(v) ((v) & M_CMD_LEN)
  81. #define V_CMD_GEN1(v) ((v) << 31)
  82. #define V_CMD_GEN2(v) (v)
  83. #define F_CMD_DATAVALID (1 << 1)
  84. #define F_CMD_SOP (1 << 2)
  85. #define V_CMD_EOP(v) ((v) << 3)
  86. /*
  87. * Command queue, receive buffer list, and response queue descriptors.
  88. */
  89. #if defined(__BIG_ENDIAN_BITFIELD)
  90. struct cmdQ_e {
  91. u32 addr_lo;
  92. u32 len_gen;
  93. u32 flags;
  94. u32 addr_hi;
  95. };
  96. struct freelQ_e {
  97. u32 addr_lo;
  98. u32 len_gen;
  99. u32 gen2;
  100. u32 addr_hi;
  101. };
  102. struct respQ_e {
  103. u32 Qsleeping : 4;
  104. u32 Cmdq1CreditReturn : 5;
  105. u32 Cmdq1DmaComplete : 5;
  106. u32 Cmdq0CreditReturn : 5;
  107. u32 Cmdq0DmaComplete : 5;
  108. u32 FreelistQid : 2;
  109. u32 CreditValid : 1;
  110. u32 DataValid : 1;
  111. u32 Offload : 1;
  112. u32 Eop : 1;
  113. u32 Sop : 1;
  114. u32 GenerationBit : 1;
  115. u32 BufferLength;
  116. };
  117. #elif defined(__LITTLE_ENDIAN_BITFIELD)
  118. struct cmdQ_e {
  119. u32 len_gen;
  120. u32 addr_lo;
  121. u32 addr_hi;
  122. u32 flags;
  123. };
  124. struct freelQ_e {
  125. u32 len_gen;
  126. u32 addr_lo;
  127. u32 addr_hi;
  128. u32 gen2;
  129. };
  130. struct respQ_e {
  131. u32 BufferLength;
  132. u32 GenerationBit : 1;
  133. u32 Sop : 1;
  134. u32 Eop : 1;
  135. u32 Offload : 1;
  136. u32 DataValid : 1;
  137. u32 CreditValid : 1;
  138. u32 FreelistQid : 2;
  139. u32 Cmdq0DmaComplete : 5;
  140. u32 Cmdq0CreditReturn : 5;
  141. u32 Cmdq1DmaComplete : 5;
  142. u32 Cmdq1CreditReturn : 5;
  143. u32 Qsleeping : 4;
  144. } ;
  145. #endif
  146. /*
  147. * SW Context Command and Freelist Queue Descriptors
  148. */
  149. struct cmdQ_ce {
  150. struct sk_buff *skb;
  151. DECLARE_PCI_UNMAP_ADDR(dma_addr);
  152. DECLARE_PCI_UNMAP_LEN(dma_len);
  153. };
  154. struct freelQ_ce {
  155. struct sk_buff *skb;
  156. DECLARE_PCI_UNMAP_ADDR(dma_addr);
  157. DECLARE_PCI_UNMAP_LEN(dma_len);
  158. };
  159. /*
  160. * SW command, freelist and response rings
  161. */
  162. struct cmdQ {
  163. unsigned long status; /* HW DMA fetch status */
  164. unsigned int in_use; /* # of in-use command descriptors */
  165. unsigned int size; /* # of descriptors */
  166. unsigned int processed; /* total # of descs HW has processed */
  167. unsigned int cleaned; /* total # of descs SW has reclaimed */
  168. unsigned int stop_thres; /* SW TX queue suspend threshold */
  169. u16 pidx; /* producer index (SW) */
  170. u16 cidx; /* consumer index (HW) */
  171. u8 genbit; /* current generation (=valid) bit */
  172. u8 sop; /* is next entry start of packet? */
  173. struct cmdQ_e *entries; /* HW command descriptor Q */
  174. struct cmdQ_ce *centries; /* SW command context descriptor Q */
  175. dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */
  176. spinlock_t lock; /* Lock to protect cmdQ enqueuing */
  177. };
  178. struct freelQ {
  179. unsigned int credits; /* # of available RX buffers */
  180. unsigned int size; /* free list capacity */
  181. u16 pidx; /* producer index (SW) */
  182. u16 cidx; /* consumer index (HW) */
  183. u16 rx_buffer_size; /* Buffer size on this free list */
  184. u16 dma_offset; /* DMA offset to align IP headers */
  185. u16 recycleq_idx; /* skb recycle q to use */
  186. u8 genbit; /* current generation (=valid) bit */
  187. struct freelQ_e *entries; /* HW freelist descriptor Q */
  188. struct freelQ_ce *centries; /* SW freelist context descriptor Q */
  189. dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */
  190. };
  191. struct respQ {
  192. unsigned int credits; /* credits to be returned to SGE */
  193. unsigned int size; /* # of response Q descriptors */
  194. u16 cidx; /* consumer index (SW) */
  195. u8 genbit; /* current generation(=valid) bit */
  196. struct respQ_e *entries; /* HW response descriptor Q */
  197. dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */
  198. };
  199. /* Bit flags for cmdQ.status */
  200. enum {
  201. CMDQ_STAT_RUNNING = 1, /* fetch engine is running */
  202. CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */
  203. };
  204. /* T204 TX SW scheduler */
  205. /* Per T204 TX port */
  206. struct sched_port {
  207. unsigned int avail; /* available bits - quota */
  208. unsigned int drain_bits_per_1024ns; /* drain rate */
  209. unsigned int speed; /* drain rate, mbps */
  210. unsigned int mtu; /* mtu size */
  211. struct sk_buff_head skbq; /* pending skbs */
  212. };
  213. /* Per T204 device */
  214. struct sched {
  215. ktime_t last_updated; /* last time quotas were computed */
  216. unsigned int max_avail; /* max bits to be sent to any port */
  217. unsigned int port; /* port index (round robin ports) */
  218. unsigned int num; /* num skbs in per port queues */
  219. struct sched_port p[MAX_NPORTS];
  220. struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
  221. };
  222. static void restart_sched(unsigned long);
  223. /*
  224. * Main SGE data structure
  225. *
  226. * Interrupts are handled by a single CPU and it is likely that on a MP system
  227. * the application is migrated to another CPU. In that scenario, we try to
  228. * separate the RX(in irq context) and TX state in order to decrease memory
  229. * contention.
  230. */
  231. struct sge {
  232. struct adapter *adapter; /* adapter backpointer */
  233. struct net_device *netdev; /* netdevice backpointer */
  234. struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */
  235. struct respQ respQ; /* response Q */
  236. unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */
  237. unsigned int rx_pkt_pad; /* RX padding for L2 packets */
  238. unsigned int jumbo_fl; /* jumbo freelist Q index */
  239. unsigned int intrtimer_nres; /* no-resource interrupt timer */
  240. unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */
  241. struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
  242. struct timer_list espibug_timer;
  243. unsigned long espibug_timeout;
  244. struct sk_buff *espibug_skb[MAX_NPORTS];
  245. u32 sge_control; /* shadow value of sge control reg */
  246. struct sge_intr_counts stats;
  247. struct sge_port_stats __percpu *port_stats[MAX_NPORTS];
  248. struct sched *tx_sched;
  249. struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
  250. };
  251. /*
  252. * stop tasklet and free all pending skb's
  253. */
  254. static void tx_sched_stop(struct sge *sge)
  255. {
  256. struct sched *s = sge->tx_sched;
  257. int i;
  258. tasklet_kill(&s->sched_tsk);
  259. for (i = 0; i < MAX_NPORTS; i++)
  260. __skb_queue_purge(&s->p[s->port].skbq);
  261. }
  262. /*
  263. * t1_sched_update_parms() is called when the MTU or link speed changes. It
  264. * re-computes scheduler parameters to scope with the change.
  265. */
  266. unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
  267. unsigned int mtu, unsigned int speed)
  268. {
  269. struct sched *s = sge->tx_sched;
  270. struct sched_port *p = &s->p[port];
  271. unsigned int max_avail_segs;
  272. pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed);
  273. if (speed)
  274. p->speed = speed;
  275. if (mtu)
  276. p->mtu = mtu;
  277. if (speed || mtu) {
  278. unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
  279. do_div(drain, (p->mtu + 50) * 1000);
  280. p->drain_bits_per_1024ns = (unsigned int) drain;
  281. if (p->speed < 1000)
  282. p->drain_bits_per_1024ns =
  283. 90 * p->drain_bits_per_1024ns / 100;
  284. }
  285. if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
  286. p->drain_bits_per_1024ns -= 16;
  287. s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
  288. max_avail_segs = max(1U, 4096 / (p->mtu - 40));
  289. } else {
  290. s->max_avail = 16384;
  291. max_avail_segs = max(1U, 9000 / (p->mtu - 40));
  292. }
  293. pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
  294. "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
  295. p->speed, s->max_avail, max_avail_segs,
  296. p->drain_bits_per_1024ns);
  297. return max_avail_segs * (p->mtu - 40);
  298. }
  299. #if 0
  300. /*
  301. * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
  302. * data that can be pushed per port.
  303. */
  304. void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
  305. {
  306. struct sched *s = sge->tx_sched;
  307. unsigned int i;
  308. s->max_avail = val;
  309. for (i = 0; i < MAX_NPORTS; i++)
  310. t1_sched_update_parms(sge, i, 0, 0);
  311. }
  312. /*
  313. * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
  314. * is draining.
  315. */
  316. void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
  317. unsigned int val)
  318. {
  319. struct sched *s = sge->tx_sched;
  320. struct sched_port *p = &s->p[port];
  321. p->drain_bits_per_1024ns = val * 1024 / 1000;
  322. t1_sched_update_parms(sge, port, 0, 0);
  323. }
  324. #endif /* 0 */
  325. /*
  326. * get_clock() implements a ns clock (see ktime_get)
  327. */
  328. static inline ktime_t get_clock(void)
  329. {
  330. struct timespec ts;
  331. ktime_get_ts(&ts);
  332. return timespec_to_ktime(ts);
  333. }
  334. /*
  335. * tx_sched_init() allocates resources and does basic initialization.
  336. */
  337. static int tx_sched_init(struct sge *sge)
  338. {
  339. struct sched *s;
  340. int i;
  341. s = kzalloc(sizeof (struct sched), GFP_KERNEL);
  342. if (!s)
  343. return -ENOMEM;
  344. pr_debug("tx_sched_init\n");
  345. tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
  346. sge->tx_sched = s;
  347. for (i = 0; i < MAX_NPORTS; i++) {
  348. skb_queue_head_init(&s->p[i].skbq);
  349. t1_sched_update_parms(sge, i, 1500, 1000);
  350. }
  351. return 0;
  352. }
  353. /*
  354. * sched_update_avail() computes the delta since the last time it was called
  355. * and updates the per port quota (number of bits that can be sent to the any
  356. * port).
  357. */
  358. static inline int sched_update_avail(struct sge *sge)
  359. {
  360. struct sched *s = sge->tx_sched;
  361. ktime_t now = get_clock();
  362. unsigned int i;
  363. long long delta_time_ns;
  364. delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
  365. pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
  366. if (delta_time_ns < 15000)
  367. return 0;
  368. for (i = 0; i < MAX_NPORTS; i++) {
  369. struct sched_port *p = &s->p[i];
  370. unsigned int delta_avail;
  371. delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
  372. p->avail = min(p->avail + delta_avail, s->max_avail);
  373. }
  374. s->last_updated = now;
  375. return 1;
  376. }
  377. /*
  378. * sched_skb() is called from two different places. In the tx path, any
  379. * packet generating load on an output port will call sched_skb()
  380. * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
  381. * context (skb == NULL).
  382. * The scheduler only returns a skb (which will then be sent) if the
  383. * length of the skb is <= the current quota of the output port.
  384. */
  385. static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
  386. unsigned int credits)
  387. {
  388. struct sched *s = sge->tx_sched;
  389. struct sk_buff_head *skbq;
  390. unsigned int i, len, update = 1;
  391. pr_debug("sched_skb %p\n", skb);
  392. if (!skb) {
  393. if (!s->num)
  394. return NULL;
  395. } else {
  396. skbq = &s->p[skb->dev->if_port].skbq;
  397. __skb_queue_tail(skbq, skb);
  398. s->num++;
  399. skb = NULL;
  400. }
  401. if (credits < MAX_SKB_FRAGS + 1)
  402. goto out;
  403. again:
  404. for (i = 0; i < MAX_NPORTS; i++) {
  405. s->port = ++s->port & (MAX_NPORTS - 1);
  406. skbq = &s->p[s->port].skbq;
  407. skb = skb_peek(skbq);
  408. if (!skb)
  409. continue;
  410. len = skb->len;
  411. if (len <= s->p[s->port].avail) {
  412. s->p[s->port].avail -= len;
  413. s->num--;
  414. __skb_unlink(skb, skbq);
  415. goto out;
  416. }
  417. skb = NULL;
  418. }
  419. if (update-- && sched_update_avail(sge))
  420. goto again;
  421. out:
  422. /* If there are more pending skbs, we use the hardware to schedule us
  423. * again.
  424. */
  425. if (s->num && !skb) {
  426. struct cmdQ *q = &sge->cmdQ[0];
  427. clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
  428. if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
  429. set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
  430. writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
  431. }
  432. }
  433. pr_debug("sched_skb ret %p\n", skb);
  434. return skb;
  435. }
  436. /*
  437. * PIO to indicate that memory mapped Q contains valid descriptor(s).
  438. */
  439. static inline void doorbell_pio(struct adapter *adapter, u32 val)
  440. {
  441. wmb();
  442. writel(val, adapter->regs + A_SG_DOORBELL);
  443. }
  444. /*
  445. * Frees all RX buffers on the freelist Q. The caller must make sure that
  446. * the SGE is turned off before calling this function.
  447. */
  448. static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
  449. {
  450. unsigned int cidx = q->cidx;
  451. while (q->credits--) {
  452. struct freelQ_ce *ce = &q->centries[cidx];
  453. pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
  454. pci_unmap_len(ce, dma_len),
  455. PCI_DMA_FROMDEVICE);
  456. dev_kfree_skb(ce->skb);
  457. ce->skb = NULL;
  458. if (++cidx == q->size)
  459. cidx = 0;
  460. }
  461. }
  462. /*
  463. * Free RX free list and response queue resources.
  464. */
  465. static void free_rx_resources(struct sge *sge)
  466. {
  467. struct pci_dev *pdev = sge->adapter->pdev;
  468. unsigned int size, i;
  469. if (sge->respQ.entries) {
  470. size = sizeof(struct respQ_e) * sge->respQ.size;
  471. pci_free_consistent(pdev, size, sge->respQ.entries,
  472. sge->respQ.dma_addr);
  473. }
  474. for (i = 0; i < SGE_FREELQ_N; i++) {
  475. struct freelQ *q = &sge->freelQ[i];
  476. if (q->centries) {
  477. free_freelQ_buffers(pdev, q);
  478. kfree(q->centries);
  479. }
  480. if (q->entries) {
  481. size = sizeof(struct freelQ_e) * q->size;
  482. pci_free_consistent(pdev, size, q->entries,
  483. q->dma_addr);
  484. }
  485. }
  486. }
  487. /*
  488. * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
  489. * response queue.
  490. */
  491. static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
  492. {
  493. struct pci_dev *pdev = sge->adapter->pdev;
  494. unsigned int size, i;
  495. for (i = 0; i < SGE_FREELQ_N; i++) {
  496. struct freelQ *q = &sge->freelQ[i];
  497. q->genbit = 1;
  498. q->size = p->freelQ_size[i];
  499. q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
  500. size = sizeof(struct freelQ_e) * q->size;
  501. q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
  502. if (!q->entries)
  503. goto err_no_mem;
  504. size = sizeof(struct freelQ_ce) * q->size;
  505. q->centries = kzalloc(size, GFP_KERNEL);
  506. if (!q->centries)
  507. goto err_no_mem;
  508. }
  509. /*
  510. * Calculate the buffer sizes for the two free lists. FL0 accommodates
  511. * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
  512. * including all the sk_buff overhead.
  513. *
  514. * Note: For T2 FL0 and FL1 are reversed.
  515. */
  516. sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
  517. sizeof(struct cpl_rx_data) +
  518. sge->freelQ[!sge->jumbo_fl].dma_offset;
  519. size = (16 * 1024) -
  520. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  521. sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
  522. /*
  523. * Setup which skb recycle Q should be used when recycling buffers from
  524. * each free list.
  525. */
  526. sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
  527. sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
  528. sge->respQ.genbit = 1;
  529. sge->respQ.size = SGE_RESPQ_E_N;
  530. sge->respQ.credits = 0;
  531. size = sizeof(struct respQ_e) * sge->respQ.size;
  532. sge->respQ.entries =
  533. pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
  534. if (!sge->respQ.entries)
  535. goto err_no_mem;
  536. return 0;
  537. err_no_mem:
  538. free_rx_resources(sge);
  539. return -ENOMEM;
  540. }
  541. /*
  542. * Reclaims n TX descriptors and frees the buffers associated with them.
  543. */
  544. static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
  545. {
  546. struct cmdQ_ce *ce;
  547. struct pci_dev *pdev = sge->adapter->pdev;
  548. unsigned int cidx = q->cidx;
  549. q->in_use -= n;
  550. ce = &q->centries[cidx];
  551. while (n--) {
  552. if (likely(pci_unmap_len(ce, dma_len))) {
  553. pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
  554. pci_unmap_len(ce, dma_len),
  555. PCI_DMA_TODEVICE);
  556. if (q->sop)
  557. q->sop = 0;
  558. }
  559. if (ce->skb) {
  560. dev_kfree_skb_any(ce->skb);
  561. q->sop = 1;
  562. }
  563. ce++;
  564. if (++cidx == q->size) {
  565. cidx = 0;
  566. ce = q->centries;
  567. }
  568. }
  569. q->cidx = cidx;
  570. }
  571. /*
  572. * Free TX resources.
  573. *
  574. * Assumes that SGE is stopped and all interrupts are disabled.
  575. */
  576. static void free_tx_resources(struct sge *sge)
  577. {
  578. struct pci_dev *pdev = sge->adapter->pdev;
  579. unsigned int size, i;
  580. for (i = 0; i < SGE_CMDQ_N; i++) {
  581. struct cmdQ *q = &sge->cmdQ[i];
  582. if (q->centries) {
  583. if (q->in_use)
  584. free_cmdQ_buffers(sge, q, q->in_use);
  585. kfree(q->centries);
  586. }
  587. if (q->entries) {
  588. size = sizeof(struct cmdQ_e) * q->size;
  589. pci_free_consistent(pdev, size, q->entries,
  590. q->dma_addr);
  591. }
  592. }
  593. }
  594. /*
  595. * Allocates basic TX resources, consisting of memory mapped command Qs.
  596. */
  597. static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
  598. {
  599. struct pci_dev *pdev = sge->adapter->pdev;
  600. unsigned int size, i;
  601. for (i = 0; i < SGE_CMDQ_N; i++) {
  602. struct cmdQ *q = &sge->cmdQ[i];
  603. q->genbit = 1;
  604. q->sop = 1;
  605. q->size = p->cmdQ_size[i];
  606. q->in_use = 0;
  607. q->status = 0;
  608. q->processed = q->cleaned = 0;
  609. q->stop_thres = 0;
  610. spin_lock_init(&q->lock);
  611. size = sizeof(struct cmdQ_e) * q->size;
  612. q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
  613. if (!q->entries)
  614. goto err_no_mem;
  615. size = sizeof(struct cmdQ_ce) * q->size;
  616. q->centries = kzalloc(size, GFP_KERNEL);
  617. if (!q->centries)
  618. goto err_no_mem;
  619. }
  620. /*
  621. * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
  622. * only. For queue 0 set the stop threshold so we can handle one more
  623. * packet from each port, plus reserve an additional 24 entries for
  624. * Ethernet packets only. Queue 1 never suspends nor do we reserve
  625. * space for Ethernet packets.
  626. */
  627. sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
  628. (MAX_SKB_FRAGS + 1);
  629. return 0;
  630. err_no_mem:
  631. free_tx_resources(sge);
  632. return -ENOMEM;
  633. }
  634. static inline void setup_ring_params(struct adapter *adapter, u64 addr,
  635. u32 size, int base_reg_lo,
  636. int base_reg_hi, int size_reg)
  637. {
  638. writel((u32)addr, adapter->regs + base_reg_lo);
  639. writel(addr >> 32, adapter->regs + base_reg_hi);
  640. writel(size, adapter->regs + size_reg);
  641. }
  642. /*
  643. * Enable/disable VLAN acceleration.
  644. */
  645. void t1_set_vlan_accel(struct adapter *adapter, int on_off)
  646. {
  647. struct sge *sge = adapter->sge;
  648. sge->sge_control &= ~F_VLAN_XTRACT;
  649. if (on_off)
  650. sge->sge_control |= F_VLAN_XTRACT;
  651. if (adapter->open_device_map) {
  652. writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
  653. readl(adapter->regs + A_SG_CONTROL); /* flush */
  654. }
  655. }
  656. /*
  657. * Programs the various SGE registers. However, the engine is not yet enabled,
  658. * but sge->sge_control is setup and ready to go.
  659. */
  660. static void configure_sge(struct sge *sge, struct sge_params *p)
  661. {
  662. struct adapter *ap = sge->adapter;
  663. writel(0, ap->regs + A_SG_CONTROL);
  664. setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
  665. A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
  666. setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
  667. A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
  668. setup_ring_params(ap, sge->freelQ[0].dma_addr,
  669. sge->freelQ[0].size, A_SG_FL0BASELWR,
  670. A_SG_FL0BASEUPR, A_SG_FL0SIZE);
  671. setup_ring_params(ap, sge->freelQ[1].dma_addr,
  672. sge->freelQ[1].size, A_SG_FL1BASELWR,
  673. A_SG_FL1BASEUPR, A_SG_FL1SIZE);
  674. /* The threshold comparison uses <. */
  675. writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
  676. setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
  677. A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
  678. writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
  679. sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
  680. F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
  681. V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
  682. V_RX_PKT_OFFSET(sge->rx_pkt_pad);
  683. #if defined(__BIG_ENDIAN_BITFIELD)
  684. sge->sge_control |= F_ENABLE_BIG_ENDIAN;
  685. #endif
  686. /* Initialize no-resource timer */
  687. sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
  688. t1_sge_set_coalesce_params(sge, p);
  689. }
  690. /*
  691. * Return the payload capacity of the jumbo free-list buffers.
  692. */
  693. static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
  694. {
  695. return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
  696. sge->freelQ[sge->jumbo_fl].dma_offset -
  697. sizeof(struct cpl_rx_data);
  698. }
  699. /*
  700. * Frees all SGE related resources and the sge structure itself
  701. */
  702. void t1_sge_destroy(struct sge *sge)
  703. {
  704. int i;
  705. for_each_port(sge->adapter, i)
  706. free_percpu(sge->port_stats[i]);
  707. kfree(sge->tx_sched);
  708. free_tx_resources(sge);
  709. free_rx_resources(sge);
  710. kfree(sge);
  711. }
  712. /*
  713. * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
  714. * context Q) until the Q is full or alloc_skb fails.
  715. *
  716. * It is possible that the generation bits already match, indicating that the
  717. * buffer is already valid and nothing needs to be done. This happens when we
  718. * copied a received buffer into a new sk_buff during the interrupt processing.
  719. *
  720. * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
  721. * we specify a RX_OFFSET in order to make sure that the IP header is 4B
  722. * aligned.
  723. */
  724. static void refill_free_list(struct sge *sge, struct freelQ *q)
  725. {
  726. struct pci_dev *pdev = sge->adapter->pdev;
  727. struct freelQ_ce *ce = &q->centries[q->pidx];
  728. struct freelQ_e *e = &q->entries[q->pidx];
  729. unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
  730. while (q->credits < q->size) {
  731. struct sk_buff *skb;
  732. dma_addr_t mapping;
  733. skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC);
  734. if (!skb)
  735. break;
  736. skb_reserve(skb, q->dma_offset);
  737. mapping = pci_map_single(pdev, skb->data, dma_len,
  738. PCI_DMA_FROMDEVICE);
  739. skb_reserve(skb, sge->rx_pkt_pad);
  740. ce->skb = skb;
  741. pci_unmap_addr_set(ce, dma_addr, mapping);
  742. pci_unmap_len_set(ce, dma_len, dma_len);
  743. e->addr_lo = (u32)mapping;
  744. e->addr_hi = (u64)mapping >> 32;
  745. e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
  746. wmb();
  747. e->gen2 = V_CMD_GEN2(q->genbit);
  748. e++;
  749. ce++;
  750. if (++q->pidx == q->size) {
  751. q->pidx = 0;
  752. q->genbit ^= 1;
  753. ce = q->centries;
  754. e = q->entries;
  755. }
  756. q->credits++;
  757. }
  758. }
  759. /*
  760. * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
  761. * of both rings, we go into 'few interrupt mode' in order to give the system
  762. * time to free up resources.
  763. */
  764. static void freelQs_empty(struct sge *sge)
  765. {
  766. struct adapter *adapter = sge->adapter;
  767. u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
  768. u32 irqholdoff_reg;
  769. refill_free_list(sge, &sge->freelQ[0]);
  770. refill_free_list(sge, &sge->freelQ[1]);
  771. if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
  772. sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
  773. irq_reg |= F_FL_EXHAUSTED;
  774. irqholdoff_reg = sge->fixed_intrtimer;
  775. } else {
  776. /* Clear the F_FL_EXHAUSTED interrupts for now */
  777. irq_reg &= ~F_FL_EXHAUSTED;
  778. irqholdoff_reg = sge->intrtimer_nres;
  779. }
  780. writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
  781. writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
  782. /* We reenable the Qs to force a freelist GTS interrupt later */
  783. doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
  784. }
  785. #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
  786. #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
  787. #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
  788. F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
  789. /*
  790. * Disable SGE Interrupts
  791. */
  792. void t1_sge_intr_disable(struct sge *sge)
  793. {
  794. u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
  795. writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
  796. writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
  797. }
  798. /*
  799. * Enable SGE interrupts.
  800. */
  801. void t1_sge_intr_enable(struct sge *sge)
  802. {
  803. u32 en = SGE_INT_ENABLE;
  804. u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
  805. if (sge->adapter->flags & TSO_CAPABLE)
  806. en &= ~F_PACKET_TOO_BIG;
  807. writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
  808. writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
  809. }
  810. /*
  811. * Clear SGE interrupts.
  812. */
  813. void t1_sge_intr_clear(struct sge *sge)
  814. {
  815. writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
  816. writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
  817. }
  818. /*
  819. * SGE 'Error' interrupt handler
  820. */
  821. int t1_sge_intr_error_handler(struct sge *sge)
  822. {
  823. struct adapter *adapter = sge->adapter;
  824. u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
  825. if (adapter->flags & TSO_CAPABLE)
  826. cause &= ~F_PACKET_TOO_BIG;
  827. if (cause & F_RESPQ_EXHAUSTED)
  828. sge->stats.respQ_empty++;
  829. if (cause & F_RESPQ_OVERFLOW) {
  830. sge->stats.respQ_overflow++;
  831. pr_alert("%s: SGE response queue overflow\n",
  832. adapter->name);
  833. }
  834. if (cause & F_FL_EXHAUSTED) {
  835. sge->stats.freelistQ_empty++;
  836. freelQs_empty(sge);
  837. }
  838. if (cause & F_PACKET_TOO_BIG) {
  839. sge->stats.pkt_too_big++;
  840. pr_alert("%s: SGE max packet size exceeded\n",
  841. adapter->name);
  842. }
  843. if (cause & F_PACKET_MISMATCH) {
  844. sge->stats.pkt_mismatch++;
  845. pr_alert("%s: SGE packet mismatch\n", adapter->name);
  846. }
  847. if (cause & SGE_INT_FATAL)
  848. t1_fatal_err(adapter);
  849. writel(cause, adapter->regs + A_SG_INT_CAUSE);
  850. return 0;
  851. }
  852. const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
  853. {
  854. return &sge->stats;
  855. }
  856. void t1_sge_get_port_stats(const struct sge *sge, int port,
  857. struct sge_port_stats *ss)
  858. {
  859. int cpu;
  860. memset(ss, 0, sizeof(*ss));
  861. for_each_possible_cpu(cpu) {
  862. struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
  863. ss->rx_cso_good += st->rx_cso_good;
  864. ss->tx_cso += st->tx_cso;
  865. ss->tx_tso += st->tx_tso;
  866. ss->tx_need_hdrroom += st->tx_need_hdrroom;
  867. ss->vlan_xtract += st->vlan_xtract;
  868. ss->vlan_insert += st->vlan_insert;
  869. }
  870. }
  871. /**
  872. * recycle_fl_buf - recycle a free list buffer
  873. * @fl: the free list
  874. * @idx: index of buffer to recycle
  875. *
  876. * Recycles the specified buffer on the given free list by adding it at
  877. * the next available slot on the list.
  878. */
  879. static void recycle_fl_buf(struct freelQ *fl, int idx)
  880. {
  881. struct freelQ_e *from = &fl->entries[idx];
  882. struct freelQ_e *to = &fl->entries[fl->pidx];
  883. fl->centries[fl->pidx] = fl->centries[idx];
  884. to->addr_lo = from->addr_lo;
  885. to->addr_hi = from->addr_hi;
  886. to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
  887. wmb();
  888. to->gen2 = V_CMD_GEN2(fl->genbit);
  889. fl->credits++;
  890. if (++fl->pidx == fl->size) {
  891. fl->pidx = 0;
  892. fl->genbit ^= 1;
  893. }
  894. }
  895. static int copybreak __read_mostly = 256;
  896. module_param(copybreak, int, 0);
  897. MODULE_PARM_DESC(copybreak, "Receive copy threshold");
  898. /**
  899. * get_packet - return the next ingress packet buffer
  900. * @pdev: the PCI device that received the packet
  901. * @fl: the SGE free list holding the packet
  902. * @len: the actual packet length, excluding any SGE padding
  903. *
  904. * Get the next packet from a free list and complete setup of the
  905. * sk_buff. If the packet is small we make a copy and recycle the
  906. * original buffer, otherwise we use the original buffer itself. If a
  907. * positive drop threshold is supplied packets are dropped and their
  908. * buffers recycled if (a) the number of remaining buffers is under the
  909. * threshold and the packet is too big to copy, or (b) the packet should
  910. * be copied but there is no memory for the copy.
  911. */
  912. static inline struct sk_buff *get_packet(struct pci_dev *pdev,
  913. struct freelQ *fl, unsigned int len)
  914. {
  915. struct sk_buff *skb;
  916. const struct freelQ_ce *ce = &fl->centries[fl->cidx];
  917. if (len < copybreak) {
  918. skb = alloc_skb(len + 2, GFP_ATOMIC);
  919. if (!skb)
  920. goto use_orig_buf;
  921. skb_reserve(skb, 2); /* align IP header */
  922. skb_put(skb, len);
  923. pci_dma_sync_single_for_cpu(pdev,
  924. pci_unmap_addr(ce, dma_addr),
  925. pci_unmap_len(ce, dma_len),
  926. PCI_DMA_FROMDEVICE);
  927. skb_copy_from_linear_data(ce->skb, skb->data, len);
  928. pci_dma_sync_single_for_device(pdev,
  929. pci_unmap_addr(ce, dma_addr),
  930. pci_unmap_len(ce, dma_len),
  931. PCI_DMA_FROMDEVICE);
  932. recycle_fl_buf(fl, fl->cidx);
  933. return skb;
  934. }
  935. use_orig_buf:
  936. if (fl->credits < 2) {
  937. recycle_fl_buf(fl, fl->cidx);
  938. return NULL;
  939. }
  940. pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
  941. pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
  942. skb = ce->skb;
  943. prefetch(skb->data);
  944. skb_put(skb, len);
  945. return skb;
  946. }
  947. /**
  948. * unexpected_offload - handle an unexpected offload packet
  949. * @adapter: the adapter
  950. * @fl: the free list that received the packet
  951. *
  952. * Called when we receive an unexpected offload packet (e.g., the TOE
  953. * function is disabled or the card is a NIC). Prints a message and
  954. * recycles the buffer.
  955. */
  956. static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
  957. {
  958. struct freelQ_ce *ce = &fl->centries[fl->cidx];
  959. struct sk_buff *skb = ce->skb;
  960. pci_dma_sync_single_for_cpu(adapter->pdev, pci_unmap_addr(ce, dma_addr),
  961. pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
  962. pr_err("%s: unexpected offload packet, cmd %u\n",
  963. adapter->name, *skb->data);
  964. recycle_fl_buf(fl, fl->cidx);
  965. }
  966. /*
  967. * T1/T2 SGE limits the maximum DMA size per TX descriptor to
  968. * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
  969. * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
  970. * Note that the *_large_page_tx_descs stuff will be optimized out when
  971. * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
  972. *
  973. * compute_large_page_descs() computes how many additional descriptors are
  974. * required to break down the stack's request.
  975. */
  976. static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
  977. {
  978. unsigned int count = 0;
  979. if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
  980. unsigned int nfrags = skb_shinfo(skb)->nr_frags;
  981. unsigned int i, len = skb->len - skb->data_len;
  982. while (len > SGE_TX_DESC_MAX_PLEN) {
  983. count++;
  984. len -= SGE_TX_DESC_MAX_PLEN;
  985. }
  986. for (i = 0; nfrags--; i++) {
  987. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  988. len = frag->size;
  989. while (len > SGE_TX_DESC_MAX_PLEN) {
  990. count++;
  991. len -= SGE_TX_DESC_MAX_PLEN;
  992. }
  993. }
  994. }
  995. return count;
  996. }
  997. /*
  998. * Write a cmdQ entry.
  999. *
  1000. * Since this function writes the 'flags' field, it must not be used to
  1001. * write the first cmdQ entry.
  1002. */
  1003. static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
  1004. unsigned int len, unsigned int gen,
  1005. unsigned int eop)
  1006. {
  1007. BUG_ON(len > SGE_TX_DESC_MAX_PLEN);
  1008. e->addr_lo = (u32)mapping;
  1009. e->addr_hi = (u64)mapping >> 32;
  1010. e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
  1011. e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
  1012. }
  1013. /*
  1014. * See comment for previous function.
  1015. *
  1016. * write_tx_descs_large_page() writes additional SGE tx descriptors if
  1017. * *desc_len exceeds HW's capability.
  1018. */
  1019. static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
  1020. struct cmdQ_e **e,
  1021. struct cmdQ_ce **ce,
  1022. unsigned int *gen,
  1023. dma_addr_t *desc_mapping,
  1024. unsigned int *desc_len,
  1025. unsigned int nfrags,
  1026. struct cmdQ *q)
  1027. {
  1028. if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
  1029. struct cmdQ_e *e1 = *e;
  1030. struct cmdQ_ce *ce1 = *ce;
  1031. while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
  1032. *desc_len -= SGE_TX_DESC_MAX_PLEN;
  1033. write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
  1034. *gen, nfrags == 0 && *desc_len == 0);
  1035. ce1->skb = NULL;
  1036. pci_unmap_len_set(ce1, dma_len, 0);
  1037. *desc_mapping += SGE_TX_DESC_MAX_PLEN;
  1038. if (*desc_len) {
  1039. ce1++;
  1040. e1++;
  1041. if (++pidx == q->size) {
  1042. pidx = 0;
  1043. *gen ^= 1;
  1044. ce1 = q->centries;
  1045. e1 = q->entries;
  1046. }
  1047. }
  1048. }
  1049. *e = e1;
  1050. *ce = ce1;
  1051. }
  1052. return pidx;
  1053. }
  1054. /*
  1055. * Write the command descriptors to transmit the given skb starting at
  1056. * descriptor pidx with the given generation.
  1057. */
  1058. static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
  1059. unsigned int pidx, unsigned int gen,
  1060. struct cmdQ *q)
  1061. {
  1062. dma_addr_t mapping, desc_mapping;
  1063. struct cmdQ_e *e, *e1;
  1064. struct cmdQ_ce *ce;
  1065. unsigned int i, flags, first_desc_len, desc_len,
  1066. nfrags = skb_shinfo(skb)->nr_frags;
  1067. e = e1 = &q->entries[pidx];
  1068. ce = &q->centries[pidx];
  1069. mapping = pci_map_single(adapter->pdev, skb->data,
  1070. skb->len - skb->data_len, PCI_DMA_TODEVICE);
  1071. desc_mapping = mapping;
  1072. desc_len = skb->len - skb->data_len;
  1073. flags = F_CMD_DATAVALID | F_CMD_SOP |
  1074. V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
  1075. V_CMD_GEN2(gen);
  1076. first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
  1077. desc_len : SGE_TX_DESC_MAX_PLEN;
  1078. e->addr_lo = (u32)desc_mapping;
  1079. e->addr_hi = (u64)desc_mapping >> 32;
  1080. e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
  1081. ce->skb = NULL;
  1082. pci_unmap_len_set(ce, dma_len, 0);
  1083. if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
  1084. desc_len > SGE_TX_DESC_MAX_PLEN) {
  1085. desc_mapping += first_desc_len;
  1086. desc_len -= first_desc_len;
  1087. e1++;
  1088. ce++;
  1089. if (++pidx == q->size) {
  1090. pidx = 0;
  1091. gen ^= 1;
  1092. e1 = q->entries;
  1093. ce = q->centries;
  1094. }
  1095. pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
  1096. &desc_mapping, &desc_len,
  1097. nfrags, q);
  1098. if (likely(desc_len))
  1099. write_tx_desc(e1, desc_mapping, desc_len, gen,
  1100. nfrags == 0);
  1101. }
  1102. ce->skb = NULL;
  1103. pci_unmap_addr_set(ce, dma_addr, mapping);
  1104. pci_unmap_len_set(ce, dma_len, skb->len - skb->data_len);
  1105. for (i = 0; nfrags--; i++) {
  1106. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1107. e1++;
  1108. ce++;
  1109. if (++pidx == q->size) {
  1110. pidx = 0;
  1111. gen ^= 1;
  1112. e1 = q->entries;
  1113. ce = q->centries;
  1114. }
  1115. mapping = pci_map_page(adapter->pdev, frag->page,
  1116. frag->page_offset, frag->size,
  1117. PCI_DMA_TODEVICE);
  1118. desc_mapping = mapping;
  1119. desc_len = frag->size;
  1120. pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
  1121. &desc_mapping, &desc_len,
  1122. nfrags, q);
  1123. if (likely(desc_len))
  1124. write_tx_desc(e1, desc_mapping, desc_len, gen,
  1125. nfrags == 0);
  1126. ce->skb = NULL;
  1127. pci_unmap_addr_set(ce, dma_addr, mapping);
  1128. pci_unmap_len_set(ce, dma_len, frag->size);
  1129. }
  1130. ce->skb = skb;
  1131. wmb();
  1132. e->flags = flags;
  1133. }
  1134. /*
  1135. * Clean up completed Tx buffers.
  1136. */
  1137. static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
  1138. {
  1139. unsigned int reclaim = q->processed - q->cleaned;
  1140. if (reclaim) {
  1141. pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
  1142. q->processed, q->cleaned);
  1143. free_cmdQ_buffers(sge, q, reclaim);
  1144. q->cleaned += reclaim;
  1145. }
  1146. }
  1147. /*
  1148. * Called from tasklet. Checks the scheduler for any
  1149. * pending skbs that can be sent.
  1150. */
  1151. static void restart_sched(unsigned long arg)
  1152. {
  1153. struct sge *sge = (struct sge *) arg;
  1154. struct adapter *adapter = sge->adapter;
  1155. struct cmdQ *q = &sge->cmdQ[0];
  1156. struct sk_buff *skb;
  1157. unsigned int credits, queued_skb = 0;
  1158. spin_lock(&q->lock);
  1159. reclaim_completed_tx(sge, q);
  1160. credits = q->size - q->in_use;
  1161. pr_debug("restart_sched credits=%d\n", credits);
  1162. while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
  1163. unsigned int genbit, pidx, count;
  1164. count = 1 + skb_shinfo(skb)->nr_frags;
  1165. count += compute_large_page_tx_descs(skb);
  1166. q->in_use += count;
  1167. genbit = q->genbit;
  1168. pidx = q->pidx;
  1169. q->pidx += count;
  1170. if (q->pidx >= q->size) {
  1171. q->pidx -= q->size;
  1172. q->genbit ^= 1;
  1173. }
  1174. write_tx_descs(adapter, skb, pidx, genbit, q);
  1175. credits = q->size - q->in_use;
  1176. queued_skb = 1;
  1177. }
  1178. if (queued_skb) {
  1179. clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
  1180. if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
  1181. set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
  1182. writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
  1183. }
  1184. }
  1185. spin_unlock(&q->lock);
  1186. }
  1187. /**
  1188. * sge_rx - process an ingress ethernet packet
  1189. * @sge: the sge structure
  1190. * @fl: the free list that contains the packet buffer
  1191. * @len: the packet length
  1192. *
  1193. * Process an ingress ethernet pakcet and deliver it to the stack.
  1194. */
  1195. static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
  1196. {
  1197. struct sk_buff *skb;
  1198. const struct cpl_rx_pkt *p;
  1199. struct adapter *adapter = sge->adapter;
  1200. struct sge_port_stats *st;
  1201. skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad);
  1202. if (unlikely(!skb)) {
  1203. sge->stats.rx_drops++;
  1204. return;
  1205. }
  1206. p = (const struct cpl_rx_pkt *) skb->data;
  1207. if (p->iff >= adapter->params.nports) {
  1208. kfree_skb(skb);
  1209. return;
  1210. }
  1211. __skb_pull(skb, sizeof(*p));
  1212. st = this_cpu_ptr(sge->port_stats[p->iff]);
  1213. skb->protocol = eth_type_trans(skb, adapter->port[p->iff].dev);
  1214. if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff &&
  1215. skb->protocol == htons(ETH_P_IP) &&
  1216. (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
  1217. ++st->rx_cso_good;
  1218. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1219. } else
  1220. skb->ip_summed = CHECKSUM_NONE;
  1221. if (unlikely(adapter->vlan_grp && p->vlan_valid)) {
  1222. st->vlan_xtract++;
  1223. vlan_hwaccel_receive_skb(skb, adapter->vlan_grp,
  1224. ntohs(p->vlan));
  1225. } else
  1226. netif_receive_skb(skb);
  1227. }
  1228. /*
  1229. * Returns true if a command queue has enough available descriptors that
  1230. * we can resume Tx operation after temporarily disabling its packet queue.
  1231. */
  1232. static inline int enough_free_Tx_descs(const struct cmdQ *q)
  1233. {
  1234. unsigned int r = q->processed - q->cleaned;
  1235. return q->in_use - r < (q->size >> 1);
  1236. }
  1237. /*
  1238. * Called when sufficient space has become available in the SGE command queues
  1239. * after the Tx packet schedulers have been suspended to restart the Tx path.
  1240. */
  1241. static void restart_tx_queues(struct sge *sge)
  1242. {
  1243. struct adapter *adap = sge->adapter;
  1244. int i;
  1245. if (!enough_free_Tx_descs(&sge->cmdQ[0]))
  1246. return;
  1247. for_each_port(adap, i) {
  1248. struct net_device *nd = adap->port[i].dev;
  1249. if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
  1250. netif_running(nd)) {
  1251. sge->stats.cmdQ_restarted[2]++;
  1252. netif_wake_queue(nd);
  1253. }
  1254. }
  1255. }
  1256. /*
  1257. * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
  1258. * information.
  1259. */
  1260. static unsigned int update_tx_info(struct adapter *adapter,
  1261. unsigned int flags,
  1262. unsigned int pr0)
  1263. {
  1264. struct sge *sge = adapter->sge;
  1265. struct cmdQ *cmdq = &sge->cmdQ[0];
  1266. cmdq->processed += pr0;
  1267. if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
  1268. freelQs_empty(sge);
  1269. flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
  1270. }
  1271. if (flags & F_CMDQ0_ENABLE) {
  1272. clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
  1273. if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
  1274. !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
  1275. set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
  1276. writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
  1277. }
  1278. if (sge->tx_sched)
  1279. tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
  1280. flags &= ~F_CMDQ0_ENABLE;
  1281. }
  1282. if (unlikely(sge->stopped_tx_queues != 0))
  1283. restart_tx_queues(sge);
  1284. return flags;
  1285. }
  1286. /*
  1287. * Process SGE responses, up to the supplied budget. Returns the number of
  1288. * responses processed. A negative budget is effectively unlimited.
  1289. */
  1290. static int process_responses(struct adapter *adapter, int budget)
  1291. {
  1292. struct sge *sge = adapter->sge;
  1293. struct respQ *q = &sge->respQ;
  1294. struct respQ_e *e = &q->entries[q->cidx];
  1295. int done = 0;
  1296. unsigned int flags = 0;
  1297. unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
  1298. while (done < budget && e->GenerationBit == q->genbit) {
  1299. flags |= e->Qsleeping;
  1300. cmdq_processed[0] += e->Cmdq0CreditReturn;
  1301. cmdq_processed[1] += e->Cmdq1CreditReturn;
  1302. /* We batch updates to the TX side to avoid cacheline
  1303. * ping-pong of TX state information on MP where the sender
  1304. * might run on a different CPU than this function...
  1305. */
  1306. if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
  1307. flags = update_tx_info(adapter, flags, cmdq_processed[0]);
  1308. cmdq_processed[0] = 0;
  1309. }
  1310. if (unlikely(cmdq_processed[1] > 16)) {
  1311. sge->cmdQ[1].processed += cmdq_processed[1];
  1312. cmdq_processed[1] = 0;
  1313. }
  1314. if (likely(e->DataValid)) {
  1315. struct freelQ *fl = &sge->freelQ[e->FreelistQid];
  1316. BUG_ON(!e->Sop || !e->Eop);
  1317. if (unlikely(e->Offload))
  1318. unexpected_offload(adapter, fl);
  1319. else
  1320. sge_rx(sge, fl, e->BufferLength);
  1321. ++done;
  1322. /*
  1323. * Note: this depends on each packet consuming a
  1324. * single free-list buffer; cf. the BUG above.
  1325. */
  1326. if (++fl->cidx == fl->size)
  1327. fl->cidx = 0;
  1328. prefetch(fl->centries[fl->cidx].skb);
  1329. if (unlikely(--fl->credits <
  1330. fl->size - SGE_FREEL_REFILL_THRESH))
  1331. refill_free_list(sge, fl);
  1332. } else
  1333. sge->stats.pure_rsps++;
  1334. e++;
  1335. if (unlikely(++q->cidx == q->size)) {
  1336. q->cidx = 0;
  1337. q->genbit ^= 1;
  1338. e = q->entries;
  1339. }
  1340. prefetch(e);
  1341. if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
  1342. writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
  1343. q->credits = 0;
  1344. }
  1345. }
  1346. flags = update_tx_info(adapter, flags, cmdq_processed[0]);
  1347. sge->cmdQ[1].processed += cmdq_processed[1];
  1348. return done;
  1349. }
  1350. static inline int responses_pending(const struct adapter *adapter)
  1351. {
  1352. const struct respQ *Q = &adapter->sge->respQ;
  1353. const struct respQ_e *e = &Q->entries[Q->cidx];
  1354. return (e->GenerationBit == Q->genbit);
  1355. }
  1356. /*
  1357. * A simpler version of process_responses() that handles only pure (i.e.,
  1358. * non data-carrying) responses. Such respones are too light-weight to justify
  1359. * calling a softirq when using NAPI, so we handle them specially in hard
  1360. * interrupt context. The function is called with a pointer to a response,
  1361. * which the caller must ensure is a valid pure response. Returns 1 if it
  1362. * encounters a valid data-carrying response, 0 otherwise.
  1363. */
  1364. static int process_pure_responses(struct adapter *adapter)
  1365. {
  1366. struct sge *sge = adapter->sge;
  1367. struct respQ *q = &sge->respQ;
  1368. struct respQ_e *e = &q->entries[q->cidx];
  1369. const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
  1370. unsigned int flags = 0;
  1371. unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
  1372. prefetch(fl->centries[fl->cidx].skb);
  1373. if (e->DataValid)
  1374. return 1;
  1375. do {
  1376. flags |= e->Qsleeping;
  1377. cmdq_processed[0] += e->Cmdq0CreditReturn;
  1378. cmdq_processed[1] += e->Cmdq1CreditReturn;
  1379. e++;
  1380. if (unlikely(++q->cidx == q->size)) {
  1381. q->cidx = 0;
  1382. q->genbit ^= 1;
  1383. e = q->entries;
  1384. }
  1385. prefetch(e);
  1386. if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
  1387. writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
  1388. q->credits = 0;
  1389. }
  1390. sge->stats.pure_rsps++;
  1391. } while (e->GenerationBit == q->genbit && !e->DataValid);
  1392. flags = update_tx_info(adapter, flags, cmdq_processed[0]);
  1393. sge->cmdQ[1].processed += cmdq_processed[1];
  1394. return e->GenerationBit == q->genbit;
  1395. }
  1396. /*
  1397. * Handler for new data events when using NAPI. This does not need any locking
  1398. * or protection from interrupts as data interrupts are off at this point and
  1399. * other adapter interrupts do not interfere.
  1400. */
  1401. int t1_poll(struct napi_struct *napi, int budget)
  1402. {
  1403. struct adapter *adapter = container_of(napi, struct adapter, napi);
  1404. int work_done = process_responses(adapter, budget);
  1405. if (likely(work_done < budget)) {
  1406. napi_complete(napi);
  1407. writel(adapter->sge->respQ.cidx,
  1408. adapter->regs + A_SG_SLEEPING);
  1409. }
  1410. return work_done;
  1411. }
  1412. irqreturn_t t1_interrupt(int irq, void *data)
  1413. {
  1414. struct adapter *adapter = data;
  1415. struct sge *sge = adapter->sge;
  1416. int handled;
  1417. if (likely(responses_pending(adapter))) {
  1418. writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
  1419. if (napi_schedule_prep(&adapter->napi)) {
  1420. if (process_pure_responses(adapter))
  1421. __napi_schedule(&adapter->napi);
  1422. else {
  1423. /* no data, no NAPI needed */
  1424. writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
  1425. /* undo schedule_prep */
  1426. napi_enable(&adapter->napi);
  1427. }
  1428. }
  1429. return IRQ_HANDLED;
  1430. }
  1431. spin_lock(&adapter->async_lock);
  1432. handled = t1_slow_intr_handler(adapter);
  1433. spin_unlock(&adapter->async_lock);
  1434. if (!handled)
  1435. sge->stats.unhandled_irqs++;
  1436. return IRQ_RETVAL(handled != 0);
  1437. }
  1438. /*
  1439. * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
  1440. *
  1441. * The code figures out how many entries the sk_buff will require in the
  1442. * cmdQ and updates the cmdQ data structure with the state once the enqueue
  1443. * has complete. Then, it doesn't access the global structure anymore, but
  1444. * uses the corresponding fields on the stack. In conjuction with a spinlock
  1445. * around that code, we can make the function reentrant without holding the
  1446. * lock when we actually enqueue (which might be expensive, especially on
  1447. * architectures with IO MMUs).
  1448. *
  1449. * This runs with softirqs disabled.
  1450. */
  1451. static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
  1452. unsigned int qid, struct net_device *dev)
  1453. {
  1454. struct sge *sge = adapter->sge;
  1455. struct cmdQ *q = &sge->cmdQ[qid];
  1456. unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
  1457. if (!spin_trylock(&q->lock))
  1458. return NETDEV_TX_LOCKED;
  1459. reclaim_completed_tx(sge, q);
  1460. pidx = q->pidx;
  1461. credits = q->size - q->in_use;
  1462. count = 1 + skb_shinfo(skb)->nr_frags;
  1463. count += compute_large_page_tx_descs(skb);
  1464. /* Ethernet packet */
  1465. if (unlikely(credits < count)) {
  1466. if (!netif_queue_stopped(dev)) {
  1467. netif_stop_queue(dev);
  1468. set_bit(dev->if_port, &sge->stopped_tx_queues);
  1469. sge->stats.cmdQ_full[2]++;
  1470. pr_err("%s: Tx ring full while queue awake!\n",
  1471. adapter->name);
  1472. }
  1473. spin_unlock(&q->lock);
  1474. return NETDEV_TX_BUSY;
  1475. }
  1476. if (unlikely(credits - count < q->stop_thres)) {
  1477. netif_stop_queue(dev);
  1478. set_bit(dev->if_port, &sge->stopped_tx_queues);
  1479. sge->stats.cmdQ_full[2]++;
  1480. }
  1481. /* T204 cmdQ0 skbs that are destined for a certain port have to go
  1482. * through the scheduler.
  1483. */
  1484. if (sge->tx_sched && !qid && skb->dev) {
  1485. use_sched:
  1486. use_sched_skb = 1;
  1487. /* Note that the scheduler might return a different skb than
  1488. * the one passed in.
  1489. */
  1490. skb = sched_skb(sge, skb, credits);
  1491. if (!skb) {
  1492. spin_unlock(&q->lock);
  1493. return NETDEV_TX_OK;
  1494. }
  1495. pidx = q->pidx;
  1496. count = 1 + skb_shinfo(skb)->nr_frags;
  1497. count += compute_large_page_tx_descs(skb);
  1498. }
  1499. q->in_use += count;
  1500. genbit = q->genbit;
  1501. pidx = q->pidx;
  1502. q->pidx += count;
  1503. if (q->pidx >= q->size) {
  1504. q->pidx -= q->size;
  1505. q->genbit ^= 1;
  1506. }
  1507. spin_unlock(&q->lock);
  1508. write_tx_descs(adapter, skb, pidx, genbit, q);
  1509. /*
  1510. * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
  1511. * the doorbell if the Q is asleep. There is a natural race, where
  1512. * the hardware is going to sleep just after we checked, however,
  1513. * then the interrupt handler will detect the outstanding TX packet
  1514. * and ring the doorbell for us.
  1515. */
  1516. if (qid)
  1517. doorbell_pio(adapter, F_CMDQ1_ENABLE);
  1518. else {
  1519. clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
  1520. if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
  1521. set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
  1522. writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
  1523. }
  1524. }
  1525. if (use_sched_skb) {
  1526. if (spin_trylock(&q->lock)) {
  1527. credits = q->size - q->in_use;
  1528. skb = NULL;
  1529. goto use_sched;
  1530. }
  1531. }
  1532. return NETDEV_TX_OK;
  1533. }
  1534. #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
  1535. /*
  1536. * eth_hdr_len - return the length of an Ethernet header
  1537. * @data: pointer to the start of the Ethernet header
  1538. *
  1539. * Returns the length of an Ethernet header, including optional VLAN tag.
  1540. */
  1541. static inline int eth_hdr_len(const void *data)
  1542. {
  1543. const struct ethhdr *e = data;
  1544. return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
  1545. }
  1546. /*
  1547. * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
  1548. */
  1549. netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1550. {
  1551. struct adapter *adapter = dev->ml_priv;
  1552. struct sge *sge = adapter->sge;
  1553. struct sge_port_stats *st = this_cpu_ptr(sge->port_stats[dev->if_port]);
  1554. struct cpl_tx_pkt *cpl;
  1555. struct sk_buff *orig_skb = skb;
  1556. int ret;
  1557. if (skb->protocol == htons(ETH_P_CPL5))
  1558. goto send;
  1559. /*
  1560. * We are using a non-standard hard_header_len.
  1561. * Allocate more header room in the rare cases it is not big enough.
  1562. */
  1563. if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
  1564. skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
  1565. ++st->tx_need_hdrroom;
  1566. dev_kfree_skb_any(orig_skb);
  1567. if (!skb)
  1568. return NETDEV_TX_OK;
  1569. }
  1570. if (skb_shinfo(skb)->gso_size) {
  1571. int eth_type;
  1572. struct cpl_tx_pkt_lso *hdr;
  1573. ++st->tx_tso;
  1574. eth_type = skb_network_offset(skb) == ETH_HLEN ?
  1575. CPL_ETH_II : CPL_ETH_II_VLAN;
  1576. hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
  1577. hdr->opcode = CPL_TX_PKT_LSO;
  1578. hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
  1579. hdr->ip_hdr_words = ip_hdr(skb)->ihl;
  1580. hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
  1581. hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
  1582. skb_shinfo(skb)->gso_size));
  1583. hdr->len = htonl(skb->len - sizeof(*hdr));
  1584. cpl = (struct cpl_tx_pkt *)hdr;
  1585. } else {
  1586. /*
  1587. * Packets shorter than ETH_HLEN can break the MAC, drop them
  1588. * early. Also, we may get oversized packets because some
  1589. * parts of the kernel don't handle our unusual hard_header_len
  1590. * right, drop those too.
  1591. */
  1592. if (unlikely(skb->len < ETH_HLEN ||
  1593. skb->len > dev->mtu + eth_hdr_len(skb->data))) {
  1594. pr_debug("%s: packet size %d hdr %d mtu%d\n", dev->name,
  1595. skb->len, eth_hdr_len(skb->data), dev->mtu);
  1596. dev_kfree_skb_any(skb);
  1597. return NETDEV_TX_OK;
  1598. }
  1599. if (!(adapter->flags & UDP_CSUM_CAPABLE) &&
  1600. skb->ip_summed == CHECKSUM_PARTIAL &&
  1601. ip_hdr(skb)->protocol == IPPROTO_UDP) {
  1602. if (unlikely(skb_checksum_help(skb))) {
  1603. pr_debug("%s: unable to do udp checksum\n", dev->name);
  1604. dev_kfree_skb_any(skb);
  1605. return NETDEV_TX_OK;
  1606. }
  1607. }
  1608. /* Hmmm, assuming to catch the gratious arp... and we'll use
  1609. * it to flush out stuck espi packets...
  1610. */
  1611. if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
  1612. if (skb->protocol == htons(ETH_P_ARP) &&
  1613. arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
  1614. adapter->sge->espibug_skb[dev->if_port] = skb;
  1615. /* We want to re-use this skb later. We
  1616. * simply bump the reference count and it
  1617. * will not be freed...
  1618. */
  1619. skb = skb_get(skb);
  1620. }
  1621. }
  1622. cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
  1623. cpl->opcode = CPL_TX_PKT;
  1624. cpl->ip_csum_dis = 1; /* SW calculates IP csum */
  1625. cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
  1626. /* the length field isn't used so don't bother setting it */
  1627. st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
  1628. }
  1629. cpl->iff = dev->if_port;
  1630. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  1631. if (adapter->vlan_grp && vlan_tx_tag_present(skb)) {
  1632. cpl->vlan_valid = 1;
  1633. cpl->vlan = htons(vlan_tx_tag_get(skb));
  1634. st->vlan_insert++;
  1635. } else
  1636. #endif
  1637. cpl->vlan_valid = 0;
  1638. send:
  1639. ret = t1_sge_tx(skb, adapter, 0, dev);
  1640. /* If transmit busy, and we reallocated skb's due to headroom limit,
  1641. * then silently discard to avoid leak.
  1642. */
  1643. if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
  1644. dev_kfree_skb_any(skb);
  1645. ret = NETDEV_TX_OK;
  1646. }
  1647. return ret;
  1648. }
  1649. /*
  1650. * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
  1651. */
  1652. static void sge_tx_reclaim_cb(unsigned long data)
  1653. {
  1654. int i;
  1655. struct sge *sge = (struct sge *)data;
  1656. for (i = 0; i < SGE_CMDQ_N; ++i) {
  1657. struct cmdQ *q = &sge->cmdQ[i];
  1658. if (!spin_trylock(&q->lock))
  1659. continue;
  1660. reclaim_completed_tx(sge, q);
  1661. if (i == 0 && q->in_use) { /* flush pending credits */
  1662. writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
  1663. }
  1664. spin_unlock(&q->lock);
  1665. }
  1666. mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
  1667. }
  1668. /*
  1669. * Propagate changes of the SGE coalescing parameters to the HW.
  1670. */
  1671. int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
  1672. {
  1673. sge->fixed_intrtimer = p->rx_coalesce_usecs *
  1674. core_ticks_per_usec(sge->adapter);
  1675. writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
  1676. return 0;
  1677. }
  1678. /*
  1679. * Allocates both RX and TX resources and configures the SGE. However,
  1680. * the hardware is not enabled yet.
  1681. */
  1682. int t1_sge_configure(struct sge *sge, struct sge_params *p)
  1683. {
  1684. if (alloc_rx_resources(sge, p))
  1685. return -ENOMEM;
  1686. if (alloc_tx_resources(sge, p)) {
  1687. free_rx_resources(sge);
  1688. return -ENOMEM;
  1689. }
  1690. configure_sge(sge, p);
  1691. /*
  1692. * Now that we have sized the free lists calculate the payload
  1693. * capacity of the large buffers. Other parts of the driver use
  1694. * this to set the max offload coalescing size so that RX packets
  1695. * do not overflow our large buffers.
  1696. */
  1697. p->large_buf_capacity = jumbo_payload_capacity(sge);
  1698. return 0;
  1699. }
  1700. /*
  1701. * Disables the DMA engine.
  1702. */
  1703. void t1_sge_stop(struct sge *sge)
  1704. {
  1705. int i;
  1706. writel(0, sge->adapter->regs + A_SG_CONTROL);
  1707. readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
  1708. if (is_T2(sge->adapter))
  1709. del_timer_sync(&sge->espibug_timer);
  1710. del_timer_sync(&sge->tx_reclaim_timer);
  1711. if (sge->tx_sched)
  1712. tx_sched_stop(sge);
  1713. for (i = 0; i < MAX_NPORTS; i++)
  1714. kfree_skb(sge->espibug_skb[i]);
  1715. }
  1716. /*
  1717. * Enables the DMA engine.
  1718. */
  1719. void t1_sge_start(struct sge *sge)
  1720. {
  1721. refill_free_list(sge, &sge->freelQ[0]);
  1722. refill_free_list(sge, &sge->freelQ[1]);
  1723. writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
  1724. doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
  1725. readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
  1726. mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
  1727. if (is_T2(sge->adapter))
  1728. mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
  1729. }
  1730. /*
  1731. * Callback for the T2 ESPI 'stuck packet feature' workaorund
  1732. */
  1733. static void espibug_workaround_t204(unsigned long data)
  1734. {
  1735. struct adapter *adapter = (struct adapter *)data;
  1736. struct sge *sge = adapter->sge;
  1737. unsigned int nports = adapter->params.nports;
  1738. u32 seop[MAX_NPORTS];
  1739. if (adapter->open_device_map & PORT_MASK) {
  1740. int i;
  1741. if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
  1742. return;
  1743. for (i = 0; i < nports; i++) {
  1744. struct sk_buff *skb = sge->espibug_skb[i];
  1745. if (!netif_running(adapter->port[i].dev) ||
  1746. netif_queue_stopped(adapter->port[i].dev) ||
  1747. !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
  1748. continue;
  1749. if (!skb->cb[0]) {
  1750. u8 ch_mac_addr[ETH_ALEN] = {
  1751. 0x0, 0x7, 0x43, 0x0, 0x0, 0x0
  1752. };
  1753. skb_copy_to_linear_data_offset(skb,
  1754. sizeof(struct cpl_tx_pkt),
  1755. ch_mac_addr,
  1756. ETH_ALEN);
  1757. skb_copy_to_linear_data_offset(skb,
  1758. skb->len - 10,
  1759. ch_mac_addr,
  1760. ETH_ALEN);
  1761. skb->cb[0] = 0xff;
  1762. }
  1763. /* bump the reference count to avoid freeing of
  1764. * the skb once the DMA has completed.
  1765. */
  1766. skb = skb_get(skb);
  1767. t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
  1768. }
  1769. }
  1770. mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
  1771. }
  1772. static void espibug_workaround(unsigned long data)
  1773. {
  1774. struct adapter *adapter = (struct adapter *)data;
  1775. struct sge *sge = adapter->sge;
  1776. if (netif_running(adapter->port[0].dev)) {
  1777. struct sk_buff *skb = sge->espibug_skb[0];
  1778. u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
  1779. if ((seop & 0xfff0fff) == 0xfff && skb) {
  1780. if (!skb->cb[0]) {
  1781. u8 ch_mac_addr[ETH_ALEN] =
  1782. {0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
  1783. skb_copy_to_linear_data_offset(skb,
  1784. sizeof(struct cpl_tx_pkt),
  1785. ch_mac_addr,
  1786. ETH_ALEN);
  1787. skb_copy_to_linear_data_offset(skb,
  1788. skb->len - 10,
  1789. ch_mac_addr,
  1790. ETH_ALEN);
  1791. skb->cb[0] = 0xff;
  1792. }
  1793. /* bump the reference count to avoid freeing of the
  1794. * skb once the DMA has completed.
  1795. */
  1796. skb = skb_get(skb);
  1797. t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
  1798. }
  1799. }
  1800. mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
  1801. }
  1802. /*
  1803. * Creates a t1_sge structure and returns suggested resource parameters.
  1804. */
  1805. struct sge * __devinit t1_sge_create(struct adapter *adapter,
  1806. struct sge_params *p)
  1807. {
  1808. struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
  1809. int i;
  1810. if (!sge)
  1811. return NULL;
  1812. sge->adapter = adapter;
  1813. sge->netdev = adapter->port[0].dev;
  1814. sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
  1815. sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
  1816. for_each_port(adapter, i) {
  1817. sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
  1818. if (!sge->port_stats[i])
  1819. goto nomem_port;
  1820. }
  1821. init_timer(&sge->tx_reclaim_timer);
  1822. sge->tx_reclaim_timer.data = (unsigned long)sge;
  1823. sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
  1824. if (is_T2(sge->adapter)) {
  1825. init_timer(&sge->espibug_timer);
  1826. if (adapter->params.nports > 1) {
  1827. tx_sched_init(sge);
  1828. sge->espibug_timer.function = espibug_workaround_t204;
  1829. } else
  1830. sge->espibug_timer.function = espibug_workaround;
  1831. sge->espibug_timer.data = (unsigned long)sge->adapter;
  1832. sge->espibug_timeout = 1;
  1833. /* for T204, every 10ms */
  1834. if (adapter->params.nports > 1)
  1835. sge->espibug_timeout = HZ/100;
  1836. }
  1837. p->cmdQ_size[0] = SGE_CMDQ0_E_N;
  1838. p->cmdQ_size[1] = SGE_CMDQ1_E_N;
  1839. p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
  1840. p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
  1841. if (sge->tx_sched) {
  1842. if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
  1843. p->rx_coalesce_usecs = 15;
  1844. else
  1845. p->rx_coalesce_usecs = 50;
  1846. } else
  1847. p->rx_coalesce_usecs = 50;
  1848. p->coalesce_enable = 0;
  1849. p->sample_interval_usecs = 0;
  1850. return sge;
  1851. nomem_port:
  1852. while (i >= 0) {
  1853. free_percpu(sge->port_stats[i]);
  1854. --i;
  1855. }
  1856. kfree(sge);
  1857. return NULL;
  1858. }