mcp251x.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150
  1. /*
  2. * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
  3. *
  4. * MCP2510 support and bug fixes by Christian Pellegrin
  5. * <chripell@evolware.org>
  6. *
  7. * Copyright 2009 Christian Pellegrin EVOL S.r.l.
  8. *
  9. * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
  10. * Written under contract by:
  11. * Chris Elston, Katalix Systems, Ltd.
  12. *
  13. * Based on Microchip MCP251x CAN controller driver written by
  14. * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
  15. *
  16. * Based on CAN bus driver for the CCAN controller written by
  17. * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
  18. * - Simon Kallweit, intefo AG
  19. * Copyright 2007
  20. *
  21. * This program is free software; you can redistribute it and/or modify
  22. * it under the terms of the version 2 of the GNU General Public License
  23. * as published by the Free Software Foundation
  24. *
  25. * This program is distributed in the hope that it will be useful,
  26. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  27. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  28. * GNU General Public License for more details.
  29. *
  30. * You should have received a copy of the GNU General Public License
  31. * along with this program; if not, write to the Free Software
  32. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  33. *
  34. *
  35. *
  36. * Your platform definition file should specify something like:
  37. *
  38. * static struct mcp251x_platform_data mcp251x_info = {
  39. * .oscillator_frequency = 8000000,
  40. * .board_specific_setup = &mcp251x_setup,
  41. * .model = CAN_MCP251X_MCP2510,
  42. * .power_enable = mcp251x_power_enable,
  43. * .transceiver_enable = NULL,
  44. * };
  45. *
  46. * static struct spi_board_info spi_board_info[] = {
  47. * {
  48. * .modalias = "mcp251x",
  49. * .platform_data = &mcp251x_info,
  50. * .irq = IRQ_EINT13,
  51. * .max_speed_hz = 2*1000*1000,
  52. * .chip_select = 2,
  53. * },
  54. * };
  55. *
  56. * Please see mcp251x.h for a description of the fields in
  57. * struct mcp251x_platform_data.
  58. *
  59. */
  60. #include <linux/can.h>
  61. #include <linux/can/core.h>
  62. #include <linux/can/dev.h>
  63. #include <linux/can/platform/mcp251x.h>
  64. #include <linux/completion.h>
  65. #include <linux/delay.h>
  66. #include <linux/device.h>
  67. #include <linux/dma-mapping.h>
  68. #include <linux/freezer.h>
  69. #include <linux/interrupt.h>
  70. #include <linux/io.h>
  71. #include <linux/kernel.h>
  72. #include <linux/module.h>
  73. #include <linux/netdevice.h>
  74. #include <linux/platform_device.h>
  75. #include <linux/slab.h>
  76. #include <linux/spi/spi.h>
  77. #include <linux/uaccess.h>
  78. /* SPI interface instruction set */
  79. #define INSTRUCTION_WRITE 0x02
  80. #define INSTRUCTION_READ 0x03
  81. #define INSTRUCTION_BIT_MODIFY 0x05
  82. #define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
  83. #define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
  84. #define INSTRUCTION_RESET 0xC0
  85. /* MPC251x registers */
  86. #define CANSTAT 0x0e
  87. #define CANCTRL 0x0f
  88. # define CANCTRL_REQOP_MASK 0xe0
  89. # define CANCTRL_REQOP_CONF 0x80
  90. # define CANCTRL_REQOP_LISTEN_ONLY 0x60
  91. # define CANCTRL_REQOP_LOOPBACK 0x40
  92. # define CANCTRL_REQOP_SLEEP 0x20
  93. # define CANCTRL_REQOP_NORMAL 0x00
  94. # define CANCTRL_OSM 0x08
  95. # define CANCTRL_ABAT 0x10
  96. #define TEC 0x1c
  97. #define REC 0x1d
  98. #define CNF1 0x2a
  99. # define CNF1_SJW_SHIFT 6
  100. #define CNF2 0x29
  101. # define CNF2_BTLMODE 0x80
  102. # define CNF2_SAM 0x40
  103. # define CNF2_PS1_SHIFT 3
  104. #define CNF3 0x28
  105. # define CNF3_SOF 0x08
  106. # define CNF3_WAKFIL 0x04
  107. # define CNF3_PHSEG2_MASK 0x07
  108. #define CANINTE 0x2b
  109. # define CANINTE_MERRE 0x80
  110. # define CANINTE_WAKIE 0x40
  111. # define CANINTE_ERRIE 0x20
  112. # define CANINTE_TX2IE 0x10
  113. # define CANINTE_TX1IE 0x08
  114. # define CANINTE_TX0IE 0x04
  115. # define CANINTE_RX1IE 0x02
  116. # define CANINTE_RX0IE 0x01
  117. #define CANINTF 0x2c
  118. # define CANINTF_MERRF 0x80
  119. # define CANINTF_WAKIF 0x40
  120. # define CANINTF_ERRIF 0x20
  121. # define CANINTF_TX2IF 0x10
  122. # define CANINTF_TX1IF 0x08
  123. # define CANINTF_TX0IF 0x04
  124. # define CANINTF_RX1IF 0x02
  125. # define CANINTF_RX0IF 0x01
  126. #define EFLG 0x2d
  127. # define EFLG_EWARN 0x01
  128. # define EFLG_RXWAR 0x02
  129. # define EFLG_TXWAR 0x04
  130. # define EFLG_RXEP 0x08
  131. # define EFLG_TXEP 0x10
  132. # define EFLG_TXBO 0x20
  133. # define EFLG_RX0OVR 0x40
  134. # define EFLG_RX1OVR 0x80
  135. #define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
  136. # define TXBCTRL_ABTF 0x40
  137. # define TXBCTRL_MLOA 0x20
  138. # define TXBCTRL_TXERR 0x10
  139. # define TXBCTRL_TXREQ 0x08
  140. #define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
  141. # define SIDH_SHIFT 3
  142. #define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
  143. # define SIDL_SID_MASK 7
  144. # define SIDL_SID_SHIFT 5
  145. # define SIDL_EXIDE_SHIFT 3
  146. # define SIDL_EID_SHIFT 16
  147. # define SIDL_EID_MASK 3
  148. #define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF)
  149. #define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF)
  150. #define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF)
  151. # define DLC_RTR_SHIFT 6
  152. #define TXBCTRL_OFF 0
  153. #define TXBSIDH_OFF 1
  154. #define TXBSIDL_OFF 2
  155. #define TXBEID8_OFF 3
  156. #define TXBEID0_OFF 4
  157. #define TXBDLC_OFF 5
  158. #define TXBDAT_OFF 6
  159. #define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
  160. # define RXBCTRL_BUKT 0x04
  161. # define RXBCTRL_RXM0 0x20
  162. # define RXBCTRL_RXM1 0x40
  163. #define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
  164. # define RXBSIDH_SHIFT 3
  165. #define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
  166. # define RXBSIDL_IDE 0x08
  167. # define RXBSIDL_EID 3
  168. # define RXBSIDL_SHIFT 5
  169. #define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF)
  170. #define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF)
  171. #define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF)
  172. # define RXBDLC_LEN_MASK 0x0f
  173. # define RXBDLC_RTR 0x40
  174. #define RXBCTRL_OFF 0
  175. #define RXBSIDH_OFF 1
  176. #define RXBSIDL_OFF 2
  177. #define RXBEID8_OFF 3
  178. #define RXBEID0_OFF 4
  179. #define RXBDLC_OFF 5
  180. #define RXBDAT_OFF 6
  181. #define RXFSIDH(n) ((n) * 4)
  182. #define RXFSIDL(n) ((n) * 4 + 1)
  183. #define RXFEID8(n) ((n) * 4 + 2)
  184. #define RXFEID0(n) ((n) * 4 + 3)
  185. #define RXMSIDH(n) ((n) * 4 + 0x20)
  186. #define RXMSIDL(n) ((n) * 4 + 0x21)
  187. #define RXMEID8(n) ((n) * 4 + 0x22)
  188. #define RXMEID0(n) ((n) * 4 + 0x23)
  189. #define GET_BYTE(val, byte) \
  190. (((val) >> ((byte) * 8)) & 0xff)
  191. #define SET_BYTE(val, byte) \
  192. (((val) & 0xff) << ((byte) * 8))
  193. /*
  194. * Buffer size required for the largest SPI transfer (i.e., reading a
  195. * frame)
  196. */
  197. #define CAN_FRAME_MAX_DATA_LEN 8
  198. #define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN)
  199. #define CAN_FRAME_MAX_BITS 128
  200. #define TX_ECHO_SKB_MAX 1
  201. #define DEVICE_NAME "mcp251x"
  202. static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
  203. module_param(mcp251x_enable_dma, int, S_IRUGO);
  204. MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
  205. static struct can_bittiming_const mcp251x_bittiming_const = {
  206. .name = DEVICE_NAME,
  207. .tseg1_min = 3,
  208. .tseg1_max = 16,
  209. .tseg2_min = 2,
  210. .tseg2_max = 8,
  211. .sjw_max = 4,
  212. .brp_min = 1,
  213. .brp_max = 64,
  214. .brp_inc = 1,
  215. };
  216. struct mcp251x_priv {
  217. struct can_priv can;
  218. struct net_device *net;
  219. struct spi_device *spi;
  220. struct mutex mcp_lock; /* SPI device lock */
  221. u8 *spi_tx_buf;
  222. u8 *spi_rx_buf;
  223. dma_addr_t spi_tx_dma;
  224. dma_addr_t spi_rx_dma;
  225. struct sk_buff *tx_skb;
  226. int tx_len;
  227. struct workqueue_struct *wq;
  228. struct work_struct tx_work;
  229. struct work_struct restart_work;
  230. int force_quit;
  231. int after_suspend;
  232. #define AFTER_SUSPEND_UP 1
  233. #define AFTER_SUSPEND_DOWN 2
  234. #define AFTER_SUSPEND_POWER 4
  235. #define AFTER_SUSPEND_RESTART 8
  236. int restart_tx;
  237. };
  238. static void mcp251x_clean(struct net_device *net)
  239. {
  240. struct mcp251x_priv *priv = netdev_priv(net);
  241. if (priv->tx_skb || priv->tx_len)
  242. net->stats.tx_errors++;
  243. if (priv->tx_skb)
  244. dev_kfree_skb(priv->tx_skb);
  245. if (priv->tx_len)
  246. can_free_echo_skb(priv->net, 0);
  247. priv->tx_skb = NULL;
  248. priv->tx_len = 0;
  249. }
  250. /*
  251. * Note about handling of error return of mcp251x_spi_trans: accessing
  252. * registers via SPI is not really different conceptually than using
  253. * normal I/O assembler instructions, although it's much more
  254. * complicated from a practical POV. So it's not advisable to always
  255. * check the return value of this function. Imagine that every
  256. * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
  257. * error();", it would be a great mess (well there are some situation
  258. * when exception handling C++ like could be useful after all). So we
  259. * just check that transfers are OK at the beginning of our
  260. * conversation with the chip and to avoid doing really nasty things
  261. * (like injecting bogus packets in the network stack).
  262. */
  263. static int mcp251x_spi_trans(struct spi_device *spi, int len)
  264. {
  265. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  266. struct spi_transfer t = {
  267. .tx_buf = priv->spi_tx_buf,
  268. .rx_buf = priv->spi_rx_buf,
  269. .len = len,
  270. .cs_change = 0,
  271. };
  272. struct spi_message m;
  273. int ret;
  274. spi_message_init(&m);
  275. if (mcp251x_enable_dma) {
  276. t.tx_dma = priv->spi_tx_dma;
  277. t.rx_dma = priv->spi_rx_dma;
  278. m.is_dma_mapped = 1;
  279. }
  280. spi_message_add_tail(&t, &m);
  281. ret = spi_sync(spi, &m);
  282. if (ret)
  283. dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
  284. return ret;
  285. }
  286. static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
  287. {
  288. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  289. u8 val = 0;
  290. priv->spi_tx_buf[0] = INSTRUCTION_READ;
  291. priv->spi_tx_buf[1] = reg;
  292. mcp251x_spi_trans(spi, 3);
  293. val = priv->spi_rx_buf[2];
  294. return val;
  295. }
  296. static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
  297. {
  298. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  299. priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
  300. priv->spi_tx_buf[1] = reg;
  301. priv->spi_tx_buf[2] = val;
  302. mcp251x_spi_trans(spi, 3);
  303. }
  304. static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
  305. u8 mask, uint8_t val)
  306. {
  307. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  308. priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
  309. priv->spi_tx_buf[1] = reg;
  310. priv->spi_tx_buf[2] = mask;
  311. priv->spi_tx_buf[3] = val;
  312. mcp251x_spi_trans(spi, 4);
  313. }
  314. static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
  315. int len, int tx_buf_idx)
  316. {
  317. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  318. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  319. if (pdata->model == CAN_MCP251X_MCP2510) {
  320. int i;
  321. for (i = 1; i < TXBDAT_OFF + len; i++)
  322. mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
  323. buf[i]);
  324. } else {
  325. memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
  326. mcp251x_spi_trans(spi, TXBDAT_OFF + len);
  327. }
  328. }
  329. static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
  330. int tx_buf_idx)
  331. {
  332. u32 sid, eid, exide, rtr;
  333. u8 buf[SPI_TRANSFER_BUF_LEN];
  334. exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
  335. if (exide)
  336. sid = (frame->can_id & CAN_EFF_MASK) >> 18;
  337. else
  338. sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
  339. eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
  340. rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
  341. buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
  342. buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
  343. buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
  344. (exide << SIDL_EXIDE_SHIFT) |
  345. ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
  346. buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
  347. buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
  348. buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
  349. memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
  350. mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
  351. mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx), TXBCTRL_TXREQ);
  352. }
  353. static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
  354. int buf_idx)
  355. {
  356. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  357. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  358. if (pdata->model == CAN_MCP251X_MCP2510) {
  359. int i, len;
  360. for (i = 1; i < RXBDAT_OFF; i++)
  361. buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
  362. len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
  363. for (; i < (RXBDAT_OFF + len); i++)
  364. buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
  365. } else {
  366. priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
  367. mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
  368. memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
  369. }
  370. }
  371. static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
  372. {
  373. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  374. struct sk_buff *skb;
  375. struct can_frame *frame;
  376. u8 buf[SPI_TRANSFER_BUF_LEN];
  377. skb = alloc_can_skb(priv->net, &frame);
  378. if (!skb) {
  379. dev_err(&spi->dev, "cannot allocate RX skb\n");
  380. priv->net->stats.rx_dropped++;
  381. return;
  382. }
  383. mcp251x_hw_rx_frame(spi, buf, buf_idx);
  384. if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
  385. /* Extended ID format */
  386. frame->can_id = CAN_EFF_FLAG;
  387. frame->can_id |=
  388. /* Extended ID part */
  389. SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
  390. SET_BYTE(buf[RXBEID8_OFF], 1) |
  391. SET_BYTE(buf[RXBEID0_OFF], 0) |
  392. /* Standard ID part */
  393. (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
  394. (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
  395. /* Remote transmission request */
  396. if (buf[RXBDLC_OFF] & RXBDLC_RTR)
  397. frame->can_id |= CAN_RTR_FLAG;
  398. } else {
  399. /* Standard ID format */
  400. frame->can_id =
  401. (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
  402. (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
  403. }
  404. /* Data length */
  405. frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
  406. memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
  407. priv->net->stats.rx_packets++;
  408. priv->net->stats.rx_bytes += frame->can_dlc;
  409. netif_rx(skb);
  410. }
  411. static void mcp251x_hw_sleep(struct spi_device *spi)
  412. {
  413. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
  414. }
  415. static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
  416. struct net_device *net)
  417. {
  418. struct mcp251x_priv *priv = netdev_priv(net);
  419. struct spi_device *spi = priv->spi;
  420. if (priv->tx_skb || priv->tx_len) {
  421. dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
  422. return NETDEV_TX_BUSY;
  423. }
  424. if (can_dropped_invalid_skb(net, skb))
  425. return NETDEV_TX_OK;
  426. netif_stop_queue(net);
  427. priv->tx_skb = skb;
  428. net->trans_start = jiffies;
  429. queue_work(priv->wq, &priv->tx_work);
  430. return NETDEV_TX_OK;
  431. }
  432. static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
  433. {
  434. struct mcp251x_priv *priv = netdev_priv(net);
  435. switch (mode) {
  436. case CAN_MODE_START:
  437. mcp251x_clean(net);
  438. /* We have to delay work since SPI I/O may sleep */
  439. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  440. priv->restart_tx = 1;
  441. if (priv->can.restart_ms == 0)
  442. priv->after_suspend = AFTER_SUSPEND_RESTART;
  443. queue_work(priv->wq, &priv->restart_work);
  444. break;
  445. default:
  446. return -EOPNOTSUPP;
  447. }
  448. return 0;
  449. }
  450. static int mcp251x_set_normal_mode(struct spi_device *spi)
  451. {
  452. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  453. unsigned long timeout;
  454. /* Enable interrupts */
  455. mcp251x_write_reg(spi, CANINTE,
  456. CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
  457. CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
  458. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
  459. /* Put device into loopback mode */
  460. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
  461. } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
  462. /* Put device into listen-only mode */
  463. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
  464. } else {
  465. /* Put device into normal mode */
  466. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
  467. /* Wait for the device to enter normal mode */
  468. timeout = jiffies + HZ;
  469. while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
  470. schedule();
  471. if (time_after(jiffies, timeout)) {
  472. dev_err(&spi->dev, "MCP251x didn't"
  473. " enter in normal mode\n");
  474. return -EBUSY;
  475. }
  476. }
  477. }
  478. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  479. return 0;
  480. }
  481. static int mcp251x_do_set_bittiming(struct net_device *net)
  482. {
  483. struct mcp251x_priv *priv = netdev_priv(net);
  484. struct can_bittiming *bt = &priv->can.bittiming;
  485. struct spi_device *spi = priv->spi;
  486. mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
  487. (bt->brp - 1));
  488. mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
  489. (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
  490. CNF2_SAM : 0) |
  491. ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
  492. (bt->prop_seg - 1));
  493. mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
  494. (bt->phase_seg2 - 1));
  495. dev_info(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
  496. mcp251x_read_reg(spi, CNF1),
  497. mcp251x_read_reg(spi, CNF2),
  498. mcp251x_read_reg(spi, CNF3));
  499. return 0;
  500. }
  501. static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
  502. struct spi_device *spi)
  503. {
  504. mcp251x_do_set_bittiming(net);
  505. mcp251x_write_reg(spi, RXBCTRL(0),
  506. RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
  507. mcp251x_write_reg(spi, RXBCTRL(1),
  508. RXBCTRL_RXM0 | RXBCTRL_RXM1);
  509. return 0;
  510. }
  511. static int mcp251x_hw_reset(struct spi_device *spi)
  512. {
  513. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  514. int ret;
  515. unsigned long timeout;
  516. priv->spi_tx_buf[0] = INSTRUCTION_RESET;
  517. ret = spi_write(spi, priv->spi_tx_buf, 1);
  518. if (ret) {
  519. dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
  520. return -EIO;
  521. }
  522. /* Wait for reset to finish */
  523. timeout = jiffies + HZ;
  524. mdelay(10);
  525. while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK)
  526. != CANCTRL_REQOP_CONF) {
  527. schedule();
  528. if (time_after(jiffies, timeout)) {
  529. dev_err(&spi->dev, "MCP251x didn't"
  530. " enter in conf mode after reset\n");
  531. return -EBUSY;
  532. }
  533. }
  534. return 0;
  535. }
  536. static int mcp251x_hw_probe(struct spi_device *spi)
  537. {
  538. int st1, st2;
  539. mcp251x_hw_reset(spi);
  540. /*
  541. * Please note that these are "magic values" based on after
  542. * reset defaults taken from data sheet which allows us to see
  543. * if we really have a chip on the bus (we avoid common all
  544. * zeroes or all ones situations)
  545. */
  546. st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
  547. st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;
  548. dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);
  549. /* Check for power up default values */
  550. return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
  551. }
  552. static void mcp251x_open_clean(struct net_device *net)
  553. {
  554. struct mcp251x_priv *priv = netdev_priv(net);
  555. struct spi_device *spi = priv->spi;
  556. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  557. free_irq(spi->irq, priv);
  558. mcp251x_hw_sleep(spi);
  559. if (pdata->transceiver_enable)
  560. pdata->transceiver_enable(0);
  561. close_candev(net);
  562. }
  563. static int mcp251x_stop(struct net_device *net)
  564. {
  565. struct mcp251x_priv *priv = netdev_priv(net);
  566. struct spi_device *spi = priv->spi;
  567. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  568. close_candev(net);
  569. priv->force_quit = 1;
  570. free_irq(spi->irq, priv);
  571. destroy_workqueue(priv->wq);
  572. priv->wq = NULL;
  573. mutex_lock(&priv->mcp_lock);
  574. /* Disable and clear pending interrupts */
  575. mcp251x_write_reg(spi, CANINTE, 0x00);
  576. mcp251x_write_reg(spi, CANINTF, 0x00);
  577. mcp251x_write_reg(spi, TXBCTRL(0), 0);
  578. mcp251x_clean(net);
  579. mcp251x_hw_sleep(spi);
  580. if (pdata->transceiver_enable)
  581. pdata->transceiver_enable(0);
  582. priv->can.state = CAN_STATE_STOPPED;
  583. mutex_unlock(&priv->mcp_lock);
  584. return 0;
  585. }
  586. static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
  587. {
  588. struct sk_buff *skb;
  589. struct can_frame *frame;
  590. skb = alloc_can_err_skb(net, &frame);
  591. if (skb) {
  592. frame->can_id = can_id;
  593. frame->data[1] = data1;
  594. netif_rx(skb);
  595. } else {
  596. dev_err(&net->dev,
  597. "cannot allocate error skb\n");
  598. }
  599. }
  600. static void mcp251x_tx_work_handler(struct work_struct *ws)
  601. {
  602. struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
  603. tx_work);
  604. struct spi_device *spi = priv->spi;
  605. struct net_device *net = priv->net;
  606. struct can_frame *frame;
  607. mutex_lock(&priv->mcp_lock);
  608. if (priv->tx_skb) {
  609. if (priv->can.state == CAN_STATE_BUS_OFF) {
  610. mcp251x_clean(net);
  611. } else {
  612. frame = (struct can_frame *)priv->tx_skb->data;
  613. if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
  614. frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
  615. mcp251x_hw_tx(spi, frame, 0);
  616. priv->tx_len = 1 + frame->can_dlc;
  617. can_put_echo_skb(priv->tx_skb, net, 0);
  618. priv->tx_skb = NULL;
  619. }
  620. }
  621. mutex_unlock(&priv->mcp_lock);
  622. }
  623. static void mcp251x_restart_work_handler(struct work_struct *ws)
  624. {
  625. struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
  626. restart_work);
  627. struct spi_device *spi = priv->spi;
  628. struct net_device *net = priv->net;
  629. mutex_lock(&priv->mcp_lock);
  630. if (priv->after_suspend) {
  631. mdelay(10);
  632. mcp251x_hw_reset(spi);
  633. mcp251x_setup(net, priv, spi);
  634. if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
  635. mcp251x_set_normal_mode(spi);
  636. } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
  637. netif_device_attach(net);
  638. mcp251x_clean(net);
  639. mcp251x_set_normal_mode(spi);
  640. netif_wake_queue(net);
  641. } else {
  642. mcp251x_hw_sleep(spi);
  643. }
  644. priv->after_suspend = 0;
  645. priv->force_quit = 0;
  646. }
  647. if (priv->restart_tx) {
  648. priv->restart_tx = 0;
  649. mcp251x_write_reg(spi, TXBCTRL(0), 0);
  650. mcp251x_clean(net);
  651. netif_wake_queue(net);
  652. mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
  653. }
  654. mutex_unlock(&priv->mcp_lock);
  655. }
  656. static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
  657. {
  658. struct mcp251x_priv *priv = dev_id;
  659. struct spi_device *spi = priv->spi;
  660. struct net_device *net = priv->net;
  661. mutex_lock(&priv->mcp_lock);
  662. while (!priv->force_quit) {
  663. enum can_state new_state;
  664. u8 intf = mcp251x_read_reg(spi, CANINTF);
  665. u8 eflag;
  666. int can_id = 0, data1 = 0;
  667. if (intf & CANINTF_RX0IF) {
  668. mcp251x_hw_rx(spi, 0);
  669. /* Free one buffer ASAP */
  670. mcp251x_write_bits(spi, CANINTF, intf & CANINTF_RX0IF,
  671. 0x00);
  672. }
  673. if (intf & CANINTF_RX1IF)
  674. mcp251x_hw_rx(spi, 1);
  675. mcp251x_write_bits(spi, CANINTF, intf, 0x00);
  676. eflag = mcp251x_read_reg(spi, EFLG);
  677. mcp251x_write_reg(spi, EFLG, 0x00);
  678. /* Update can state */
  679. if (eflag & EFLG_TXBO) {
  680. new_state = CAN_STATE_BUS_OFF;
  681. can_id |= CAN_ERR_BUSOFF;
  682. } else if (eflag & EFLG_TXEP) {
  683. new_state = CAN_STATE_ERROR_PASSIVE;
  684. can_id |= CAN_ERR_CRTL;
  685. data1 |= CAN_ERR_CRTL_TX_PASSIVE;
  686. } else if (eflag & EFLG_RXEP) {
  687. new_state = CAN_STATE_ERROR_PASSIVE;
  688. can_id |= CAN_ERR_CRTL;
  689. data1 |= CAN_ERR_CRTL_RX_PASSIVE;
  690. } else if (eflag & EFLG_TXWAR) {
  691. new_state = CAN_STATE_ERROR_WARNING;
  692. can_id |= CAN_ERR_CRTL;
  693. data1 |= CAN_ERR_CRTL_TX_WARNING;
  694. } else if (eflag & EFLG_RXWAR) {
  695. new_state = CAN_STATE_ERROR_WARNING;
  696. can_id |= CAN_ERR_CRTL;
  697. data1 |= CAN_ERR_CRTL_RX_WARNING;
  698. } else {
  699. new_state = CAN_STATE_ERROR_ACTIVE;
  700. }
  701. /* Update can state statistics */
  702. switch (priv->can.state) {
  703. case CAN_STATE_ERROR_ACTIVE:
  704. if (new_state >= CAN_STATE_ERROR_WARNING &&
  705. new_state <= CAN_STATE_BUS_OFF)
  706. priv->can.can_stats.error_warning++;
  707. case CAN_STATE_ERROR_WARNING: /* fallthrough */
  708. if (new_state >= CAN_STATE_ERROR_PASSIVE &&
  709. new_state <= CAN_STATE_BUS_OFF)
  710. priv->can.can_stats.error_passive++;
  711. break;
  712. default:
  713. break;
  714. }
  715. priv->can.state = new_state;
  716. if (intf & CANINTF_ERRIF) {
  717. /* Handle overflow counters */
  718. if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
  719. if (eflag & EFLG_RX0OVR)
  720. net->stats.rx_over_errors++;
  721. if (eflag & EFLG_RX1OVR)
  722. net->stats.rx_over_errors++;
  723. can_id |= CAN_ERR_CRTL;
  724. data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
  725. }
  726. mcp251x_error_skb(net, can_id, data1);
  727. }
  728. if (priv->can.state == CAN_STATE_BUS_OFF) {
  729. if (priv->can.restart_ms == 0) {
  730. priv->force_quit = 1;
  731. can_bus_off(net);
  732. mcp251x_hw_sleep(spi);
  733. break;
  734. }
  735. }
  736. if (intf == 0)
  737. break;
  738. if (intf & (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)) {
  739. net->stats.tx_packets++;
  740. net->stats.tx_bytes += priv->tx_len - 1;
  741. if (priv->tx_len) {
  742. can_get_echo_skb(net, 0);
  743. priv->tx_len = 0;
  744. }
  745. netif_wake_queue(net);
  746. }
  747. }
  748. mutex_unlock(&priv->mcp_lock);
  749. return IRQ_HANDLED;
  750. }
  751. static int mcp251x_open(struct net_device *net)
  752. {
  753. struct mcp251x_priv *priv = netdev_priv(net);
  754. struct spi_device *spi = priv->spi;
  755. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  756. int ret;
  757. ret = open_candev(net);
  758. if (ret) {
  759. dev_err(&spi->dev, "unable to set initial baudrate!\n");
  760. return ret;
  761. }
  762. mutex_lock(&priv->mcp_lock);
  763. if (pdata->transceiver_enable)
  764. pdata->transceiver_enable(1);
  765. priv->force_quit = 0;
  766. priv->tx_skb = NULL;
  767. priv->tx_len = 0;
  768. ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
  769. IRQF_TRIGGER_FALLING, DEVICE_NAME, priv);
  770. if (ret) {
  771. dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
  772. if (pdata->transceiver_enable)
  773. pdata->transceiver_enable(0);
  774. close_candev(net);
  775. goto open_unlock;
  776. }
  777. priv->wq = create_freezeable_workqueue("mcp251x_wq");
  778. INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
  779. INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
  780. ret = mcp251x_hw_reset(spi);
  781. if (ret) {
  782. mcp251x_open_clean(net);
  783. goto open_unlock;
  784. }
  785. ret = mcp251x_setup(net, priv, spi);
  786. if (ret) {
  787. mcp251x_open_clean(net);
  788. goto open_unlock;
  789. }
  790. ret = mcp251x_set_normal_mode(spi);
  791. if (ret) {
  792. mcp251x_open_clean(net);
  793. goto open_unlock;
  794. }
  795. netif_wake_queue(net);
  796. open_unlock:
  797. mutex_unlock(&priv->mcp_lock);
  798. return ret;
  799. }
  800. static const struct net_device_ops mcp251x_netdev_ops = {
  801. .ndo_open = mcp251x_open,
  802. .ndo_stop = mcp251x_stop,
  803. .ndo_start_xmit = mcp251x_hard_start_xmit,
  804. };
  805. static int __devinit mcp251x_can_probe(struct spi_device *spi)
  806. {
  807. struct net_device *net;
  808. struct mcp251x_priv *priv;
  809. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  810. int ret = -ENODEV;
  811. if (!pdata)
  812. /* Platform data is required for osc freq */
  813. goto error_out;
  814. /* Allocate can/net device */
  815. net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
  816. if (!net) {
  817. ret = -ENOMEM;
  818. goto error_alloc;
  819. }
  820. net->netdev_ops = &mcp251x_netdev_ops;
  821. net->flags |= IFF_ECHO;
  822. priv = netdev_priv(net);
  823. priv->can.bittiming_const = &mcp251x_bittiming_const;
  824. priv->can.do_set_mode = mcp251x_do_set_mode;
  825. priv->can.clock.freq = pdata->oscillator_frequency / 2;
  826. priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
  827. CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
  828. priv->net = net;
  829. dev_set_drvdata(&spi->dev, priv);
  830. priv->spi = spi;
  831. mutex_init(&priv->mcp_lock);
  832. /* If requested, allocate DMA buffers */
  833. if (mcp251x_enable_dma) {
  834. spi->dev.coherent_dma_mask = ~0;
  835. /*
  836. * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
  837. * that much and share it between Tx and Rx DMA buffers.
  838. */
  839. priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
  840. PAGE_SIZE,
  841. &priv->spi_tx_dma,
  842. GFP_DMA);
  843. if (priv->spi_tx_buf) {
  844. priv->spi_rx_buf = (u8 *)(priv->spi_tx_buf +
  845. (PAGE_SIZE / 2));
  846. priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
  847. (PAGE_SIZE / 2));
  848. } else {
  849. /* Fall back to non-DMA */
  850. mcp251x_enable_dma = 0;
  851. }
  852. }
  853. /* Allocate non-DMA buffers */
  854. if (!mcp251x_enable_dma) {
  855. priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
  856. if (!priv->spi_tx_buf) {
  857. ret = -ENOMEM;
  858. goto error_tx_buf;
  859. }
  860. priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
  861. if (!priv->spi_rx_buf) {
  862. ret = -ENOMEM;
  863. goto error_rx_buf;
  864. }
  865. }
  866. if (pdata->power_enable)
  867. pdata->power_enable(1);
  868. /* Call out to platform specific setup */
  869. if (pdata->board_specific_setup)
  870. pdata->board_specific_setup(spi);
  871. SET_NETDEV_DEV(net, &spi->dev);
  872. /* Configure the SPI bus */
  873. spi->mode = SPI_MODE_0;
  874. spi->bits_per_word = 8;
  875. spi_setup(spi);
  876. /* Here is OK to not lock the MCP, no one knows about it yet */
  877. if (!mcp251x_hw_probe(spi)) {
  878. dev_info(&spi->dev, "Probe failed\n");
  879. goto error_probe;
  880. }
  881. mcp251x_hw_sleep(spi);
  882. if (pdata->transceiver_enable)
  883. pdata->transceiver_enable(0);
  884. ret = register_candev(net);
  885. if (!ret) {
  886. dev_info(&spi->dev, "probed\n");
  887. return ret;
  888. }
  889. error_probe:
  890. if (!mcp251x_enable_dma)
  891. kfree(priv->spi_rx_buf);
  892. error_rx_buf:
  893. if (!mcp251x_enable_dma)
  894. kfree(priv->spi_tx_buf);
  895. error_tx_buf:
  896. free_candev(net);
  897. if (mcp251x_enable_dma)
  898. dma_free_coherent(&spi->dev, PAGE_SIZE,
  899. priv->spi_tx_buf, priv->spi_tx_dma);
  900. error_alloc:
  901. if (pdata->power_enable)
  902. pdata->power_enable(0);
  903. dev_err(&spi->dev, "probe failed\n");
  904. error_out:
  905. return ret;
  906. }
  907. static int __devexit mcp251x_can_remove(struct spi_device *spi)
  908. {
  909. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  910. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  911. struct net_device *net = priv->net;
  912. unregister_candev(net);
  913. free_candev(net);
  914. if (mcp251x_enable_dma) {
  915. dma_free_coherent(&spi->dev, PAGE_SIZE,
  916. priv->spi_tx_buf, priv->spi_tx_dma);
  917. } else {
  918. kfree(priv->spi_tx_buf);
  919. kfree(priv->spi_rx_buf);
  920. }
  921. if (pdata->power_enable)
  922. pdata->power_enable(0);
  923. return 0;
  924. }
  925. #ifdef CONFIG_PM
  926. static int mcp251x_can_suspend(struct spi_device *spi, pm_message_t state)
  927. {
  928. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  929. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  930. struct net_device *net = priv->net;
  931. priv->force_quit = 1;
  932. disable_irq(spi->irq);
  933. /*
  934. * Note: at this point neither IST nor workqueues are running.
  935. * open/stop cannot be called anyway so locking is not needed
  936. */
  937. if (netif_running(net)) {
  938. netif_device_detach(net);
  939. mcp251x_hw_sleep(spi);
  940. if (pdata->transceiver_enable)
  941. pdata->transceiver_enable(0);
  942. priv->after_suspend = AFTER_SUSPEND_UP;
  943. } else {
  944. priv->after_suspend = AFTER_SUSPEND_DOWN;
  945. }
  946. if (pdata->power_enable) {
  947. pdata->power_enable(0);
  948. priv->after_suspend |= AFTER_SUSPEND_POWER;
  949. }
  950. return 0;
  951. }
  952. static int mcp251x_can_resume(struct spi_device *spi)
  953. {
  954. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  955. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  956. if (priv->after_suspend & AFTER_SUSPEND_POWER) {
  957. pdata->power_enable(1);
  958. queue_work(priv->wq, &priv->restart_work);
  959. } else {
  960. if (priv->after_suspend & AFTER_SUSPEND_UP) {
  961. if (pdata->transceiver_enable)
  962. pdata->transceiver_enable(1);
  963. queue_work(priv->wq, &priv->restart_work);
  964. } else {
  965. priv->after_suspend = 0;
  966. }
  967. }
  968. priv->force_quit = 0;
  969. enable_irq(spi->irq);
  970. return 0;
  971. }
  972. #else
  973. #define mcp251x_can_suspend NULL
  974. #define mcp251x_can_resume NULL
  975. #endif
  976. static struct spi_driver mcp251x_can_driver = {
  977. .driver = {
  978. .name = DEVICE_NAME,
  979. .bus = &spi_bus_type,
  980. .owner = THIS_MODULE,
  981. },
  982. .probe = mcp251x_can_probe,
  983. .remove = __devexit_p(mcp251x_can_remove),
  984. .suspend = mcp251x_can_suspend,
  985. .resume = mcp251x_can_resume,
  986. };
  987. static int __init mcp251x_can_init(void)
  988. {
  989. return spi_register_driver(&mcp251x_can_driver);
  990. }
  991. static void __exit mcp251x_can_exit(void)
  992. {
  993. spi_unregister_driver(&mcp251x_can_driver);
  994. }
  995. module_init(mcp251x_can_init);
  996. module_exit(mcp251x_can_exit);
  997. MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
  998. "Christian Pellegrin <chripell@evolware.org>");
  999. MODULE_DESCRIPTION("Microchip 251x CAN driver");
  1000. MODULE_LICENSE("GPL v2");