bnx2.c 206 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2010 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12. #include <linux/module.h>
  13. #include <linux/moduleparam.h>
  14. #include <linux/kernel.h>
  15. #include <linux/timer.h>
  16. #include <linux/errno.h>
  17. #include <linux/ioport.h>
  18. #include <linux/slab.h>
  19. #include <linux/vmalloc.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/pci.h>
  22. #include <linux/init.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/skbuff.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/bitops.h>
  28. #include <asm/io.h>
  29. #include <asm/irq.h>
  30. #include <linux/delay.h>
  31. #include <asm/byteorder.h>
  32. #include <asm/page.h>
  33. #include <linux/time.h>
  34. #include <linux/ethtool.h>
  35. #include <linux/mii.h>
  36. #include <linux/if_vlan.h>
  37. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  38. #define BCM_VLAN 1
  39. #endif
  40. #include <net/ip.h>
  41. #include <net/tcp.h>
  42. #include <net/checksum.h>
  43. #include <linux/workqueue.h>
  44. #include <linux/crc32.h>
  45. #include <linux/prefetch.h>
  46. #include <linux/cache.h>
  47. #include <linux/firmware.h>
  48. #include <linux/log2.h>
  49. #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
  50. #define BCM_CNIC 1
  51. #include "cnic_if.h"
  52. #endif
  53. #include "bnx2.h"
  54. #include "bnx2_fw.h"
  55. #define DRV_MODULE_NAME "bnx2"
  56. #define DRV_MODULE_VERSION "2.0.9"
  57. #define DRV_MODULE_RELDATE "April 27, 2010"
  58. #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-5.0.0.j6.fw"
  59. #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-5.0.0.j3.fw"
  60. #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-5.0.0.j9.fw"
  61. #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-5.0.0.j10.fw"
  62. #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-5.0.0.j10.fw"
  63. #define RUN_AT(x) (jiffies + (x))
  64. /* Time in jiffies before concluding the transmitter is hung. */
  65. #define TX_TIMEOUT (5*HZ)
  66. static char version[] __devinitdata =
  67. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  68. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  69. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
  70. MODULE_LICENSE("GPL");
  71. MODULE_VERSION(DRV_MODULE_VERSION);
  72. MODULE_FIRMWARE(FW_MIPS_FILE_06);
  73. MODULE_FIRMWARE(FW_RV2P_FILE_06);
  74. MODULE_FIRMWARE(FW_MIPS_FILE_09);
  75. MODULE_FIRMWARE(FW_RV2P_FILE_09);
  76. MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
  77. static int disable_msi = 0;
  78. module_param(disable_msi, int, 0);
  79. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  80. typedef enum {
  81. BCM5706 = 0,
  82. NC370T,
  83. NC370I,
  84. BCM5706S,
  85. NC370F,
  86. BCM5708,
  87. BCM5708S,
  88. BCM5709,
  89. BCM5709S,
  90. BCM5716,
  91. BCM5716S,
  92. } board_t;
  93. /* indexed by board_t, above */
  94. static struct {
  95. char *name;
  96. } board_info[] __devinitdata = {
  97. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  98. { "HP NC370T Multifunction Gigabit Server Adapter" },
  99. { "HP NC370i Multifunction Gigabit Server Adapter" },
  100. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  101. { "HP NC370F Multifunction Gigabit Server Adapter" },
  102. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  103. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  104. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  105. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  106. { "Broadcom NetXtreme II BCM5716 1000Base-T" },
  107. { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
  108. };
  109. static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
  110. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  111. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  112. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  113. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  114. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  115. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  116. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  117. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  118. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  119. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  120. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  121. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  122. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  123. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  124. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  125. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  126. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  127. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  128. { PCI_VENDOR_ID_BROADCOM, 0x163b,
  129. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
  130. { PCI_VENDOR_ID_BROADCOM, 0x163c,
  131. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
  132. { 0, }
  133. };
  134. static const struct flash_spec flash_table[] =
  135. {
  136. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  137. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  138. /* Slow EEPROM */
  139. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  140. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  141. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  142. "EEPROM - slow"},
  143. /* Expansion entry 0001 */
  144. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  145. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  146. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  147. "Entry 0001"},
  148. /* Saifun SA25F010 (non-buffered flash) */
  149. /* strap, cfg1, & write1 need updates */
  150. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  151. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  152. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  153. "Non-buffered flash (128kB)"},
  154. /* Saifun SA25F020 (non-buffered flash) */
  155. /* strap, cfg1, & write1 need updates */
  156. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  157. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  158. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  159. "Non-buffered flash (256kB)"},
  160. /* Expansion entry 0100 */
  161. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  162. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  163. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  164. "Entry 0100"},
  165. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  166. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  167. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  168. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  169. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  170. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  171. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  172. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  173. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  174. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  175. /* Saifun SA25F005 (non-buffered flash) */
  176. /* strap, cfg1, & write1 need updates */
  177. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  178. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  179. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  180. "Non-buffered flash (64kB)"},
  181. /* Fast EEPROM */
  182. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  183. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  184. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  185. "EEPROM - fast"},
  186. /* Expansion entry 1001 */
  187. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  188. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  189. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  190. "Entry 1001"},
  191. /* Expansion entry 1010 */
  192. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  193. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  194. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  195. "Entry 1010"},
  196. /* ATMEL AT45DB011B (buffered flash) */
  197. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  198. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  199. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  200. "Buffered flash (128kB)"},
  201. /* Expansion entry 1100 */
  202. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  203. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  204. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  205. "Entry 1100"},
  206. /* Expansion entry 1101 */
  207. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  208. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  209. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  210. "Entry 1101"},
  211. /* Ateml Expansion entry 1110 */
  212. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  213. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  214. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  215. "Entry 1110 (Atmel)"},
  216. /* ATMEL AT45DB021B (buffered flash) */
  217. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  218. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  219. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  220. "Buffered flash (256kB)"},
  221. };
  222. static const struct flash_spec flash_5709 = {
  223. .flags = BNX2_NV_BUFFERED,
  224. .page_bits = BCM5709_FLASH_PAGE_BITS,
  225. .page_size = BCM5709_FLASH_PAGE_SIZE,
  226. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  227. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  228. .name = "5709 Buffered flash (256kB)",
  229. };
  230. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  231. static void bnx2_init_napi(struct bnx2 *bp);
  232. static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
  233. {
  234. u32 diff;
  235. smp_mb();
  236. /* The ring uses 256 indices for 255 entries, one of them
  237. * needs to be skipped.
  238. */
  239. diff = txr->tx_prod - txr->tx_cons;
  240. if (unlikely(diff >= TX_DESC_CNT)) {
  241. diff &= 0xffff;
  242. if (diff == TX_DESC_CNT)
  243. diff = MAX_TX_DESC_CNT;
  244. }
  245. return (bp->tx_ring_size - diff);
  246. }
  247. static u32
  248. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  249. {
  250. u32 val;
  251. spin_lock_bh(&bp->indirect_lock);
  252. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  253. val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
  254. spin_unlock_bh(&bp->indirect_lock);
  255. return val;
  256. }
  257. static void
  258. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  259. {
  260. spin_lock_bh(&bp->indirect_lock);
  261. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  262. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  263. spin_unlock_bh(&bp->indirect_lock);
  264. }
  265. static void
  266. bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
  267. {
  268. bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
  269. }
  270. static u32
  271. bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
  272. {
  273. return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
  274. }
  275. static void
  276. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  277. {
  278. offset += cid_addr;
  279. spin_lock_bh(&bp->indirect_lock);
  280. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  281. int i;
  282. REG_WR(bp, BNX2_CTX_CTX_DATA, val);
  283. REG_WR(bp, BNX2_CTX_CTX_CTRL,
  284. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  285. for (i = 0; i < 5; i++) {
  286. val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
  287. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  288. break;
  289. udelay(5);
  290. }
  291. } else {
  292. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  293. REG_WR(bp, BNX2_CTX_DATA, val);
  294. }
  295. spin_unlock_bh(&bp->indirect_lock);
  296. }
  297. #ifdef BCM_CNIC
  298. static int
  299. bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
  300. {
  301. struct bnx2 *bp = netdev_priv(dev);
  302. struct drv_ctl_io *io = &info->data.io;
  303. switch (info->cmd) {
  304. case DRV_CTL_IO_WR_CMD:
  305. bnx2_reg_wr_ind(bp, io->offset, io->data);
  306. break;
  307. case DRV_CTL_IO_RD_CMD:
  308. io->data = bnx2_reg_rd_ind(bp, io->offset);
  309. break;
  310. case DRV_CTL_CTX_WR_CMD:
  311. bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
  312. break;
  313. default:
  314. return -EINVAL;
  315. }
  316. return 0;
  317. }
  318. static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
  319. {
  320. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  321. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  322. int sb_id;
  323. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  324. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  325. bnapi->cnic_present = 0;
  326. sb_id = bp->irq_nvecs;
  327. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  328. } else {
  329. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  330. bnapi->cnic_tag = bnapi->last_status_idx;
  331. bnapi->cnic_present = 1;
  332. sb_id = 0;
  333. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  334. }
  335. cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
  336. cp->irq_arr[0].status_blk = (void *)
  337. ((unsigned long) bnapi->status_blk.msi +
  338. (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
  339. cp->irq_arr[0].status_blk_num = sb_id;
  340. cp->num_irq = 1;
  341. }
  342. static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  343. void *data)
  344. {
  345. struct bnx2 *bp = netdev_priv(dev);
  346. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  347. if (ops == NULL)
  348. return -EINVAL;
  349. if (cp->drv_state & CNIC_DRV_STATE_REGD)
  350. return -EBUSY;
  351. bp->cnic_data = data;
  352. rcu_assign_pointer(bp->cnic_ops, ops);
  353. cp->num_irq = 0;
  354. cp->drv_state = CNIC_DRV_STATE_REGD;
  355. bnx2_setup_cnic_irq_info(bp);
  356. return 0;
  357. }
  358. static int bnx2_unregister_cnic(struct net_device *dev)
  359. {
  360. struct bnx2 *bp = netdev_priv(dev);
  361. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  362. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  363. mutex_lock(&bp->cnic_lock);
  364. cp->drv_state = 0;
  365. bnapi->cnic_present = 0;
  366. rcu_assign_pointer(bp->cnic_ops, NULL);
  367. mutex_unlock(&bp->cnic_lock);
  368. synchronize_rcu();
  369. return 0;
  370. }
  371. struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
  372. {
  373. struct bnx2 *bp = netdev_priv(dev);
  374. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  375. cp->drv_owner = THIS_MODULE;
  376. cp->chip_id = bp->chip_id;
  377. cp->pdev = bp->pdev;
  378. cp->io_base = bp->regview;
  379. cp->drv_ctl = bnx2_drv_ctl;
  380. cp->drv_register_cnic = bnx2_register_cnic;
  381. cp->drv_unregister_cnic = bnx2_unregister_cnic;
  382. return cp;
  383. }
  384. EXPORT_SYMBOL(bnx2_cnic_probe);
  385. static void
  386. bnx2_cnic_stop(struct bnx2 *bp)
  387. {
  388. struct cnic_ops *c_ops;
  389. struct cnic_ctl_info info;
  390. mutex_lock(&bp->cnic_lock);
  391. c_ops = bp->cnic_ops;
  392. if (c_ops) {
  393. info.cmd = CNIC_CTL_STOP_CMD;
  394. c_ops->cnic_ctl(bp->cnic_data, &info);
  395. }
  396. mutex_unlock(&bp->cnic_lock);
  397. }
  398. static void
  399. bnx2_cnic_start(struct bnx2 *bp)
  400. {
  401. struct cnic_ops *c_ops;
  402. struct cnic_ctl_info info;
  403. mutex_lock(&bp->cnic_lock);
  404. c_ops = bp->cnic_ops;
  405. if (c_ops) {
  406. if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
  407. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  408. bnapi->cnic_tag = bnapi->last_status_idx;
  409. }
  410. info.cmd = CNIC_CTL_START_CMD;
  411. c_ops->cnic_ctl(bp->cnic_data, &info);
  412. }
  413. mutex_unlock(&bp->cnic_lock);
  414. }
  415. #else
  416. static void
  417. bnx2_cnic_stop(struct bnx2 *bp)
  418. {
  419. }
  420. static void
  421. bnx2_cnic_start(struct bnx2 *bp)
  422. {
  423. }
  424. #endif
  425. static int
  426. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  427. {
  428. u32 val1;
  429. int i, ret;
  430. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  431. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  432. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  433. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  434. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  435. udelay(40);
  436. }
  437. val1 = (bp->phy_addr << 21) | (reg << 16) |
  438. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  439. BNX2_EMAC_MDIO_COMM_START_BUSY;
  440. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  441. for (i = 0; i < 50; i++) {
  442. udelay(10);
  443. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  444. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  445. udelay(5);
  446. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  447. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  448. break;
  449. }
  450. }
  451. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  452. *val = 0x0;
  453. ret = -EBUSY;
  454. }
  455. else {
  456. *val = val1;
  457. ret = 0;
  458. }
  459. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  460. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  461. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  462. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  463. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  464. udelay(40);
  465. }
  466. return ret;
  467. }
  468. static int
  469. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  470. {
  471. u32 val1;
  472. int i, ret;
  473. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  474. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  475. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  476. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  477. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  478. udelay(40);
  479. }
  480. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  481. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  482. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  483. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  484. for (i = 0; i < 50; i++) {
  485. udelay(10);
  486. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  487. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  488. udelay(5);
  489. break;
  490. }
  491. }
  492. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  493. ret = -EBUSY;
  494. else
  495. ret = 0;
  496. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  497. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  498. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  499. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  500. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  501. udelay(40);
  502. }
  503. return ret;
  504. }
  505. static void
  506. bnx2_disable_int(struct bnx2 *bp)
  507. {
  508. int i;
  509. struct bnx2_napi *bnapi;
  510. for (i = 0; i < bp->irq_nvecs; i++) {
  511. bnapi = &bp->bnx2_napi[i];
  512. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  513. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  514. }
  515. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  516. }
  517. static void
  518. bnx2_enable_int(struct bnx2 *bp)
  519. {
  520. int i;
  521. struct bnx2_napi *bnapi;
  522. for (i = 0; i < bp->irq_nvecs; i++) {
  523. bnapi = &bp->bnx2_napi[i];
  524. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  525. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  526. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  527. bnapi->last_status_idx);
  528. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  529. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  530. bnapi->last_status_idx);
  531. }
  532. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  533. }
  534. static void
  535. bnx2_disable_int_sync(struct bnx2 *bp)
  536. {
  537. int i;
  538. atomic_inc(&bp->intr_sem);
  539. if (!netif_running(bp->dev))
  540. return;
  541. bnx2_disable_int(bp);
  542. for (i = 0; i < bp->irq_nvecs; i++)
  543. synchronize_irq(bp->irq_tbl[i].vector);
  544. }
  545. static void
  546. bnx2_napi_disable(struct bnx2 *bp)
  547. {
  548. int i;
  549. for (i = 0; i < bp->irq_nvecs; i++)
  550. napi_disable(&bp->bnx2_napi[i].napi);
  551. }
  552. static void
  553. bnx2_napi_enable(struct bnx2 *bp)
  554. {
  555. int i;
  556. for (i = 0; i < bp->irq_nvecs; i++)
  557. napi_enable(&bp->bnx2_napi[i].napi);
  558. }
  559. static void
  560. bnx2_netif_stop(struct bnx2 *bp, bool stop_cnic)
  561. {
  562. if (stop_cnic)
  563. bnx2_cnic_stop(bp);
  564. if (netif_running(bp->dev)) {
  565. int i;
  566. bnx2_napi_disable(bp);
  567. netif_tx_disable(bp->dev);
  568. /* prevent tx timeout */
  569. for (i = 0; i < bp->dev->num_tx_queues; i++) {
  570. struct netdev_queue *txq;
  571. txq = netdev_get_tx_queue(bp->dev, i);
  572. txq->trans_start = jiffies;
  573. }
  574. }
  575. bnx2_disable_int_sync(bp);
  576. }
  577. static void
  578. bnx2_netif_start(struct bnx2 *bp, bool start_cnic)
  579. {
  580. if (atomic_dec_and_test(&bp->intr_sem)) {
  581. if (netif_running(bp->dev)) {
  582. netif_tx_wake_all_queues(bp->dev);
  583. bnx2_napi_enable(bp);
  584. bnx2_enable_int(bp);
  585. if (start_cnic)
  586. bnx2_cnic_start(bp);
  587. }
  588. }
  589. }
  590. static void
  591. bnx2_free_tx_mem(struct bnx2 *bp)
  592. {
  593. int i;
  594. for (i = 0; i < bp->num_tx_rings; i++) {
  595. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  596. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  597. if (txr->tx_desc_ring) {
  598. pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
  599. txr->tx_desc_ring,
  600. txr->tx_desc_mapping);
  601. txr->tx_desc_ring = NULL;
  602. }
  603. kfree(txr->tx_buf_ring);
  604. txr->tx_buf_ring = NULL;
  605. }
  606. }
  607. static void
  608. bnx2_free_rx_mem(struct bnx2 *bp)
  609. {
  610. int i;
  611. for (i = 0; i < bp->num_rx_rings; i++) {
  612. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  613. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  614. int j;
  615. for (j = 0; j < bp->rx_max_ring; j++) {
  616. if (rxr->rx_desc_ring[j])
  617. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  618. rxr->rx_desc_ring[j],
  619. rxr->rx_desc_mapping[j]);
  620. rxr->rx_desc_ring[j] = NULL;
  621. }
  622. vfree(rxr->rx_buf_ring);
  623. rxr->rx_buf_ring = NULL;
  624. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  625. if (rxr->rx_pg_desc_ring[j])
  626. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  627. rxr->rx_pg_desc_ring[j],
  628. rxr->rx_pg_desc_mapping[j]);
  629. rxr->rx_pg_desc_ring[j] = NULL;
  630. }
  631. vfree(rxr->rx_pg_ring);
  632. rxr->rx_pg_ring = NULL;
  633. }
  634. }
  635. static int
  636. bnx2_alloc_tx_mem(struct bnx2 *bp)
  637. {
  638. int i;
  639. for (i = 0; i < bp->num_tx_rings; i++) {
  640. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  641. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  642. txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
  643. if (txr->tx_buf_ring == NULL)
  644. return -ENOMEM;
  645. txr->tx_desc_ring =
  646. pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
  647. &txr->tx_desc_mapping);
  648. if (txr->tx_desc_ring == NULL)
  649. return -ENOMEM;
  650. }
  651. return 0;
  652. }
  653. static int
  654. bnx2_alloc_rx_mem(struct bnx2 *bp)
  655. {
  656. int i;
  657. for (i = 0; i < bp->num_rx_rings; i++) {
  658. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  659. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  660. int j;
  661. rxr->rx_buf_ring =
  662. vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
  663. if (rxr->rx_buf_ring == NULL)
  664. return -ENOMEM;
  665. memset(rxr->rx_buf_ring, 0,
  666. SW_RXBD_RING_SIZE * bp->rx_max_ring);
  667. for (j = 0; j < bp->rx_max_ring; j++) {
  668. rxr->rx_desc_ring[j] =
  669. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  670. &rxr->rx_desc_mapping[j]);
  671. if (rxr->rx_desc_ring[j] == NULL)
  672. return -ENOMEM;
  673. }
  674. if (bp->rx_pg_ring_size) {
  675. rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
  676. bp->rx_max_pg_ring);
  677. if (rxr->rx_pg_ring == NULL)
  678. return -ENOMEM;
  679. memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
  680. bp->rx_max_pg_ring);
  681. }
  682. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  683. rxr->rx_pg_desc_ring[j] =
  684. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  685. &rxr->rx_pg_desc_mapping[j]);
  686. if (rxr->rx_pg_desc_ring[j] == NULL)
  687. return -ENOMEM;
  688. }
  689. }
  690. return 0;
  691. }
  692. static void
  693. bnx2_free_mem(struct bnx2 *bp)
  694. {
  695. int i;
  696. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  697. bnx2_free_tx_mem(bp);
  698. bnx2_free_rx_mem(bp);
  699. for (i = 0; i < bp->ctx_pages; i++) {
  700. if (bp->ctx_blk[i]) {
  701. pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
  702. bp->ctx_blk[i],
  703. bp->ctx_blk_mapping[i]);
  704. bp->ctx_blk[i] = NULL;
  705. }
  706. }
  707. if (bnapi->status_blk.msi) {
  708. pci_free_consistent(bp->pdev, bp->status_stats_size,
  709. bnapi->status_blk.msi,
  710. bp->status_blk_mapping);
  711. bnapi->status_blk.msi = NULL;
  712. bp->stats_blk = NULL;
  713. }
  714. }
  715. static int
  716. bnx2_alloc_mem(struct bnx2 *bp)
  717. {
  718. int i, status_blk_size, err;
  719. struct bnx2_napi *bnapi;
  720. void *status_blk;
  721. /* Combine status and statistics blocks into one allocation. */
  722. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  723. if (bp->flags & BNX2_FLAG_MSIX_CAP)
  724. status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
  725. BNX2_SBLK_MSIX_ALIGN_SIZE);
  726. bp->status_stats_size = status_blk_size +
  727. sizeof(struct statistics_block);
  728. status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
  729. &bp->status_blk_mapping);
  730. if (status_blk == NULL)
  731. goto alloc_mem_err;
  732. memset(status_blk, 0, bp->status_stats_size);
  733. bnapi = &bp->bnx2_napi[0];
  734. bnapi->status_blk.msi = status_blk;
  735. bnapi->hw_tx_cons_ptr =
  736. &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
  737. bnapi->hw_rx_cons_ptr =
  738. &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
  739. if (bp->flags & BNX2_FLAG_MSIX_CAP) {
  740. for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
  741. struct status_block_msix *sblk;
  742. bnapi = &bp->bnx2_napi[i];
  743. sblk = (void *) (status_blk +
  744. BNX2_SBLK_MSIX_ALIGN_SIZE * i);
  745. bnapi->status_blk.msix = sblk;
  746. bnapi->hw_tx_cons_ptr =
  747. &sblk->status_tx_quick_consumer_index;
  748. bnapi->hw_rx_cons_ptr =
  749. &sblk->status_rx_quick_consumer_index;
  750. bnapi->int_num = i << 24;
  751. }
  752. }
  753. bp->stats_blk = status_blk + status_blk_size;
  754. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  755. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  756. bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
  757. if (bp->ctx_pages == 0)
  758. bp->ctx_pages = 1;
  759. for (i = 0; i < bp->ctx_pages; i++) {
  760. bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
  761. BCM_PAGE_SIZE,
  762. &bp->ctx_blk_mapping[i]);
  763. if (bp->ctx_blk[i] == NULL)
  764. goto alloc_mem_err;
  765. }
  766. }
  767. err = bnx2_alloc_rx_mem(bp);
  768. if (err)
  769. goto alloc_mem_err;
  770. err = bnx2_alloc_tx_mem(bp);
  771. if (err)
  772. goto alloc_mem_err;
  773. return 0;
  774. alloc_mem_err:
  775. bnx2_free_mem(bp);
  776. return -ENOMEM;
  777. }
  778. static void
  779. bnx2_report_fw_link(struct bnx2 *bp)
  780. {
  781. u32 fw_link_status = 0;
  782. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  783. return;
  784. if (bp->link_up) {
  785. u32 bmsr;
  786. switch (bp->line_speed) {
  787. case SPEED_10:
  788. if (bp->duplex == DUPLEX_HALF)
  789. fw_link_status = BNX2_LINK_STATUS_10HALF;
  790. else
  791. fw_link_status = BNX2_LINK_STATUS_10FULL;
  792. break;
  793. case SPEED_100:
  794. if (bp->duplex == DUPLEX_HALF)
  795. fw_link_status = BNX2_LINK_STATUS_100HALF;
  796. else
  797. fw_link_status = BNX2_LINK_STATUS_100FULL;
  798. break;
  799. case SPEED_1000:
  800. if (bp->duplex == DUPLEX_HALF)
  801. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  802. else
  803. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  804. break;
  805. case SPEED_2500:
  806. if (bp->duplex == DUPLEX_HALF)
  807. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  808. else
  809. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  810. break;
  811. }
  812. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  813. if (bp->autoneg) {
  814. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  815. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  816. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  817. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  818. bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
  819. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  820. else
  821. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  822. }
  823. }
  824. else
  825. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  826. bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
  827. }
  828. static char *
  829. bnx2_xceiver_str(struct bnx2 *bp)
  830. {
  831. return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
  832. ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
  833. "Copper"));
  834. }
  835. static void
  836. bnx2_report_link(struct bnx2 *bp)
  837. {
  838. if (bp->link_up) {
  839. netif_carrier_on(bp->dev);
  840. netdev_info(bp->dev, "NIC %s Link is Up, %d Mbps %s duplex",
  841. bnx2_xceiver_str(bp),
  842. bp->line_speed,
  843. bp->duplex == DUPLEX_FULL ? "full" : "half");
  844. if (bp->flow_ctrl) {
  845. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  846. pr_cont(", receive ");
  847. if (bp->flow_ctrl & FLOW_CTRL_TX)
  848. pr_cont("& transmit ");
  849. }
  850. else {
  851. pr_cont(", transmit ");
  852. }
  853. pr_cont("flow control ON");
  854. }
  855. pr_cont("\n");
  856. } else {
  857. netif_carrier_off(bp->dev);
  858. netdev_err(bp->dev, "NIC %s Link is Down\n",
  859. bnx2_xceiver_str(bp));
  860. }
  861. bnx2_report_fw_link(bp);
  862. }
  863. static void
  864. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  865. {
  866. u32 local_adv, remote_adv;
  867. bp->flow_ctrl = 0;
  868. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  869. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  870. if (bp->duplex == DUPLEX_FULL) {
  871. bp->flow_ctrl = bp->req_flow_ctrl;
  872. }
  873. return;
  874. }
  875. if (bp->duplex != DUPLEX_FULL) {
  876. return;
  877. }
  878. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  879. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  880. u32 val;
  881. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  882. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  883. bp->flow_ctrl |= FLOW_CTRL_TX;
  884. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  885. bp->flow_ctrl |= FLOW_CTRL_RX;
  886. return;
  887. }
  888. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  889. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  890. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  891. u32 new_local_adv = 0;
  892. u32 new_remote_adv = 0;
  893. if (local_adv & ADVERTISE_1000XPAUSE)
  894. new_local_adv |= ADVERTISE_PAUSE_CAP;
  895. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  896. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  897. if (remote_adv & ADVERTISE_1000XPAUSE)
  898. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  899. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  900. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  901. local_adv = new_local_adv;
  902. remote_adv = new_remote_adv;
  903. }
  904. /* See Table 28B-3 of 802.3ab-1999 spec. */
  905. if (local_adv & ADVERTISE_PAUSE_CAP) {
  906. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  907. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  908. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  909. }
  910. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  911. bp->flow_ctrl = FLOW_CTRL_RX;
  912. }
  913. }
  914. else {
  915. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  916. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  917. }
  918. }
  919. }
  920. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  921. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  922. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  923. bp->flow_ctrl = FLOW_CTRL_TX;
  924. }
  925. }
  926. }
  927. static int
  928. bnx2_5709s_linkup(struct bnx2 *bp)
  929. {
  930. u32 val, speed;
  931. bp->link_up = 1;
  932. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  933. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  934. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  935. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  936. bp->line_speed = bp->req_line_speed;
  937. bp->duplex = bp->req_duplex;
  938. return 0;
  939. }
  940. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  941. switch (speed) {
  942. case MII_BNX2_GP_TOP_AN_SPEED_10:
  943. bp->line_speed = SPEED_10;
  944. break;
  945. case MII_BNX2_GP_TOP_AN_SPEED_100:
  946. bp->line_speed = SPEED_100;
  947. break;
  948. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  949. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  950. bp->line_speed = SPEED_1000;
  951. break;
  952. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  953. bp->line_speed = SPEED_2500;
  954. break;
  955. }
  956. if (val & MII_BNX2_GP_TOP_AN_FD)
  957. bp->duplex = DUPLEX_FULL;
  958. else
  959. bp->duplex = DUPLEX_HALF;
  960. return 0;
  961. }
  962. static int
  963. bnx2_5708s_linkup(struct bnx2 *bp)
  964. {
  965. u32 val;
  966. bp->link_up = 1;
  967. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  968. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  969. case BCM5708S_1000X_STAT1_SPEED_10:
  970. bp->line_speed = SPEED_10;
  971. break;
  972. case BCM5708S_1000X_STAT1_SPEED_100:
  973. bp->line_speed = SPEED_100;
  974. break;
  975. case BCM5708S_1000X_STAT1_SPEED_1G:
  976. bp->line_speed = SPEED_1000;
  977. break;
  978. case BCM5708S_1000X_STAT1_SPEED_2G5:
  979. bp->line_speed = SPEED_2500;
  980. break;
  981. }
  982. if (val & BCM5708S_1000X_STAT1_FD)
  983. bp->duplex = DUPLEX_FULL;
  984. else
  985. bp->duplex = DUPLEX_HALF;
  986. return 0;
  987. }
  988. static int
  989. bnx2_5706s_linkup(struct bnx2 *bp)
  990. {
  991. u32 bmcr, local_adv, remote_adv, common;
  992. bp->link_up = 1;
  993. bp->line_speed = SPEED_1000;
  994. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  995. if (bmcr & BMCR_FULLDPLX) {
  996. bp->duplex = DUPLEX_FULL;
  997. }
  998. else {
  999. bp->duplex = DUPLEX_HALF;
  1000. }
  1001. if (!(bmcr & BMCR_ANENABLE)) {
  1002. return 0;
  1003. }
  1004. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1005. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1006. common = local_adv & remote_adv;
  1007. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  1008. if (common & ADVERTISE_1000XFULL) {
  1009. bp->duplex = DUPLEX_FULL;
  1010. }
  1011. else {
  1012. bp->duplex = DUPLEX_HALF;
  1013. }
  1014. }
  1015. return 0;
  1016. }
  1017. static int
  1018. bnx2_copper_linkup(struct bnx2 *bp)
  1019. {
  1020. u32 bmcr;
  1021. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1022. if (bmcr & BMCR_ANENABLE) {
  1023. u32 local_adv, remote_adv, common;
  1024. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  1025. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  1026. common = local_adv & (remote_adv >> 2);
  1027. if (common & ADVERTISE_1000FULL) {
  1028. bp->line_speed = SPEED_1000;
  1029. bp->duplex = DUPLEX_FULL;
  1030. }
  1031. else if (common & ADVERTISE_1000HALF) {
  1032. bp->line_speed = SPEED_1000;
  1033. bp->duplex = DUPLEX_HALF;
  1034. }
  1035. else {
  1036. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1037. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1038. common = local_adv & remote_adv;
  1039. if (common & ADVERTISE_100FULL) {
  1040. bp->line_speed = SPEED_100;
  1041. bp->duplex = DUPLEX_FULL;
  1042. }
  1043. else if (common & ADVERTISE_100HALF) {
  1044. bp->line_speed = SPEED_100;
  1045. bp->duplex = DUPLEX_HALF;
  1046. }
  1047. else if (common & ADVERTISE_10FULL) {
  1048. bp->line_speed = SPEED_10;
  1049. bp->duplex = DUPLEX_FULL;
  1050. }
  1051. else if (common & ADVERTISE_10HALF) {
  1052. bp->line_speed = SPEED_10;
  1053. bp->duplex = DUPLEX_HALF;
  1054. }
  1055. else {
  1056. bp->line_speed = 0;
  1057. bp->link_up = 0;
  1058. }
  1059. }
  1060. }
  1061. else {
  1062. if (bmcr & BMCR_SPEED100) {
  1063. bp->line_speed = SPEED_100;
  1064. }
  1065. else {
  1066. bp->line_speed = SPEED_10;
  1067. }
  1068. if (bmcr & BMCR_FULLDPLX) {
  1069. bp->duplex = DUPLEX_FULL;
  1070. }
  1071. else {
  1072. bp->duplex = DUPLEX_HALF;
  1073. }
  1074. }
  1075. return 0;
  1076. }
  1077. static void
  1078. bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
  1079. {
  1080. u32 val, rx_cid_addr = GET_CID_ADDR(cid);
  1081. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  1082. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  1083. val |= 0x02 << 8;
  1084. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1085. u32 lo_water, hi_water;
  1086. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1087. lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
  1088. else
  1089. lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
  1090. if (lo_water >= bp->rx_ring_size)
  1091. lo_water = 0;
  1092. hi_water = min_t(int, bp->rx_ring_size / 4, lo_water + 16);
  1093. if (hi_water <= lo_water)
  1094. lo_water = 0;
  1095. hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
  1096. lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
  1097. if (hi_water > 0xf)
  1098. hi_water = 0xf;
  1099. else if (hi_water == 0)
  1100. lo_water = 0;
  1101. val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
  1102. }
  1103. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
  1104. }
  1105. static void
  1106. bnx2_init_all_rx_contexts(struct bnx2 *bp)
  1107. {
  1108. int i;
  1109. u32 cid;
  1110. for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
  1111. if (i == 1)
  1112. cid = RX_RSS_CID;
  1113. bnx2_init_rx_context(bp, cid);
  1114. }
  1115. }
  1116. static void
  1117. bnx2_set_mac_link(struct bnx2 *bp)
  1118. {
  1119. u32 val;
  1120. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  1121. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  1122. (bp->duplex == DUPLEX_HALF)) {
  1123. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  1124. }
  1125. /* Configure the EMAC mode register. */
  1126. val = REG_RD(bp, BNX2_EMAC_MODE);
  1127. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1128. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1129. BNX2_EMAC_MODE_25G_MODE);
  1130. if (bp->link_up) {
  1131. switch (bp->line_speed) {
  1132. case SPEED_10:
  1133. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  1134. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  1135. break;
  1136. }
  1137. /* fall through */
  1138. case SPEED_100:
  1139. val |= BNX2_EMAC_MODE_PORT_MII;
  1140. break;
  1141. case SPEED_2500:
  1142. val |= BNX2_EMAC_MODE_25G_MODE;
  1143. /* fall through */
  1144. case SPEED_1000:
  1145. val |= BNX2_EMAC_MODE_PORT_GMII;
  1146. break;
  1147. }
  1148. }
  1149. else {
  1150. val |= BNX2_EMAC_MODE_PORT_GMII;
  1151. }
  1152. /* Set the MAC to operate in the appropriate duplex mode. */
  1153. if (bp->duplex == DUPLEX_HALF)
  1154. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  1155. REG_WR(bp, BNX2_EMAC_MODE, val);
  1156. /* Enable/disable rx PAUSE. */
  1157. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  1158. if (bp->flow_ctrl & FLOW_CTRL_RX)
  1159. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  1160. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  1161. /* Enable/disable tx PAUSE. */
  1162. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  1163. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  1164. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1165. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  1166. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  1167. /* Acknowledge the interrupt. */
  1168. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  1169. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1170. bnx2_init_all_rx_contexts(bp);
  1171. }
  1172. static void
  1173. bnx2_enable_bmsr1(struct bnx2 *bp)
  1174. {
  1175. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1176. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1177. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1178. MII_BNX2_BLK_ADDR_GP_STATUS);
  1179. }
  1180. static void
  1181. bnx2_disable_bmsr1(struct bnx2 *bp)
  1182. {
  1183. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1184. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1185. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1186. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1187. }
  1188. static int
  1189. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  1190. {
  1191. u32 up1;
  1192. int ret = 1;
  1193. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1194. return 0;
  1195. if (bp->autoneg & AUTONEG_SPEED)
  1196. bp->advertising |= ADVERTISED_2500baseX_Full;
  1197. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1198. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1199. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1200. if (!(up1 & BCM5708S_UP1_2G5)) {
  1201. up1 |= BCM5708S_UP1_2G5;
  1202. bnx2_write_phy(bp, bp->mii_up1, up1);
  1203. ret = 0;
  1204. }
  1205. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1206. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1207. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1208. return ret;
  1209. }
  1210. static int
  1211. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  1212. {
  1213. u32 up1;
  1214. int ret = 0;
  1215. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1216. return 0;
  1217. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1218. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1219. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1220. if (up1 & BCM5708S_UP1_2G5) {
  1221. up1 &= ~BCM5708S_UP1_2G5;
  1222. bnx2_write_phy(bp, bp->mii_up1, up1);
  1223. ret = 1;
  1224. }
  1225. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1226. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1227. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1228. return ret;
  1229. }
  1230. static void
  1231. bnx2_enable_forced_2g5(struct bnx2 *bp)
  1232. {
  1233. u32 bmcr;
  1234. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1235. return;
  1236. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1237. u32 val;
  1238. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1239. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1240. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  1241. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  1242. val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
  1243. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1244. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1245. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1246. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1247. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1248. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1249. bmcr |= BCM5708S_BMCR_FORCE_2500;
  1250. } else {
  1251. return;
  1252. }
  1253. if (bp->autoneg & AUTONEG_SPEED) {
  1254. bmcr &= ~BMCR_ANENABLE;
  1255. if (bp->req_duplex == DUPLEX_FULL)
  1256. bmcr |= BMCR_FULLDPLX;
  1257. }
  1258. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1259. }
  1260. static void
  1261. bnx2_disable_forced_2g5(struct bnx2 *bp)
  1262. {
  1263. u32 bmcr;
  1264. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1265. return;
  1266. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1267. u32 val;
  1268. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1269. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1270. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  1271. val &= ~MII_BNX2_SD_MISC1_FORCE;
  1272. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1273. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1274. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1275. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1276. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1277. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1278. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  1279. } else {
  1280. return;
  1281. }
  1282. if (bp->autoneg & AUTONEG_SPEED)
  1283. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  1284. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1285. }
  1286. static void
  1287. bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
  1288. {
  1289. u32 val;
  1290. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
  1291. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1292. if (start)
  1293. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
  1294. else
  1295. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
  1296. }
  1297. static int
  1298. bnx2_set_link(struct bnx2 *bp)
  1299. {
  1300. u32 bmsr;
  1301. u8 link_up;
  1302. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  1303. bp->link_up = 1;
  1304. return 0;
  1305. }
  1306. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1307. return 0;
  1308. link_up = bp->link_up;
  1309. bnx2_enable_bmsr1(bp);
  1310. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1311. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1312. bnx2_disable_bmsr1(bp);
  1313. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1314. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  1315. u32 val, an_dbg;
  1316. if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
  1317. bnx2_5706s_force_link_dn(bp, 0);
  1318. bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
  1319. }
  1320. val = REG_RD(bp, BNX2_EMAC_STATUS);
  1321. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  1322. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1323. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1324. if ((val & BNX2_EMAC_STATUS_LINK) &&
  1325. !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
  1326. bmsr |= BMSR_LSTATUS;
  1327. else
  1328. bmsr &= ~BMSR_LSTATUS;
  1329. }
  1330. if (bmsr & BMSR_LSTATUS) {
  1331. bp->link_up = 1;
  1332. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1333. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1334. bnx2_5706s_linkup(bp);
  1335. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1336. bnx2_5708s_linkup(bp);
  1337. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1338. bnx2_5709s_linkup(bp);
  1339. }
  1340. else {
  1341. bnx2_copper_linkup(bp);
  1342. }
  1343. bnx2_resolve_flow_ctrl(bp);
  1344. }
  1345. else {
  1346. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1347. (bp->autoneg & AUTONEG_SPEED))
  1348. bnx2_disable_forced_2g5(bp);
  1349. if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
  1350. u32 bmcr;
  1351. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1352. bmcr |= BMCR_ANENABLE;
  1353. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1354. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1355. }
  1356. bp->link_up = 0;
  1357. }
  1358. if (bp->link_up != link_up) {
  1359. bnx2_report_link(bp);
  1360. }
  1361. bnx2_set_mac_link(bp);
  1362. return 0;
  1363. }
  1364. static int
  1365. bnx2_reset_phy(struct bnx2 *bp)
  1366. {
  1367. int i;
  1368. u32 reg;
  1369. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1370. #define PHY_RESET_MAX_WAIT 100
  1371. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1372. udelay(10);
  1373. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1374. if (!(reg & BMCR_RESET)) {
  1375. udelay(20);
  1376. break;
  1377. }
  1378. }
  1379. if (i == PHY_RESET_MAX_WAIT) {
  1380. return -EBUSY;
  1381. }
  1382. return 0;
  1383. }
  1384. static u32
  1385. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1386. {
  1387. u32 adv = 0;
  1388. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1389. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1390. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1391. adv = ADVERTISE_1000XPAUSE;
  1392. }
  1393. else {
  1394. adv = ADVERTISE_PAUSE_CAP;
  1395. }
  1396. }
  1397. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1398. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1399. adv = ADVERTISE_1000XPSE_ASYM;
  1400. }
  1401. else {
  1402. adv = ADVERTISE_PAUSE_ASYM;
  1403. }
  1404. }
  1405. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1406. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1407. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1408. }
  1409. else {
  1410. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1411. }
  1412. }
  1413. return adv;
  1414. }
  1415. static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
  1416. static int
  1417. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1418. __releases(&bp->phy_lock)
  1419. __acquires(&bp->phy_lock)
  1420. {
  1421. u32 speed_arg = 0, pause_adv;
  1422. pause_adv = bnx2_phy_get_pause_adv(bp);
  1423. if (bp->autoneg & AUTONEG_SPEED) {
  1424. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1425. if (bp->advertising & ADVERTISED_10baseT_Half)
  1426. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1427. if (bp->advertising & ADVERTISED_10baseT_Full)
  1428. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1429. if (bp->advertising & ADVERTISED_100baseT_Half)
  1430. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1431. if (bp->advertising & ADVERTISED_100baseT_Full)
  1432. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1433. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1434. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1435. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1436. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1437. } else {
  1438. if (bp->req_line_speed == SPEED_2500)
  1439. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1440. else if (bp->req_line_speed == SPEED_1000)
  1441. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1442. else if (bp->req_line_speed == SPEED_100) {
  1443. if (bp->req_duplex == DUPLEX_FULL)
  1444. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1445. else
  1446. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1447. } else if (bp->req_line_speed == SPEED_10) {
  1448. if (bp->req_duplex == DUPLEX_FULL)
  1449. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1450. else
  1451. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1452. }
  1453. }
  1454. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1455. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1456. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
  1457. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1458. if (port == PORT_TP)
  1459. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1460. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1461. bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
  1462. spin_unlock_bh(&bp->phy_lock);
  1463. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
  1464. spin_lock_bh(&bp->phy_lock);
  1465. return 0;
  1466. }
  1467. static int
  1468. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1469. __releases(&bp->phy_lock)
  1470. __acquires(&bp->phy_lock)
  1471. {
  1472. u32 adv, bmcr;
  1473. u32 new_adv = 0;
  1474. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1475. return (bnx2_setup_remote_phy(bp, port));
  1476. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1477. u32 new_bmcr;
  1478. int force_link_down = 0;
  1479. if (bp->req_line_speed == SPEED_2500) {
  1480. if (!bnx2_test_and_enable_2g5(bp))
  1481. force_link_down = 1;
  1482. } else if (bp->req_line_speed == SPEED_1000) {
  1483. if (bnx2_test_and_disable_2g5(bp))
  1484. force_link_down = 1;
  1485. }
  1486. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1487. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1488. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1489. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1490. new_bmcr |= BMCR_SPEED1000;
  1491. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1492. if (bp->req_line_speed == SPEED_2500)
  1493. bnx2_enable_forced_2g5(bp);
  1494. else if (bp->req_line_speed == SPEED_1000) {
  1495. bnx2_disable_forced_2g5(bp);
  1496. new_bmcr &= ~0x2000;
  1497. }
  1498. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1499. if (bp->req_line_speed == SPEED_2500)
  1500. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1501. else
  1502. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1503. }
  1504. if (bp->req_duplex == DUPLEX_FULL) {
  1505. adv |= ADVERTISE_1000XFULL;
  1506. new_bmcr |= BMCR_FULLDPLX;
  1507. }
  1508. else {
  1509. adv |= ADVERTISE_1000XHALF;
  1510. new_bmcr &= ~BMCR_FULLDPLX;
  1511. }
  1512. if ((new_bmcr != bmcr) || (force_link_down)) {
  1513. /* Force a link down visible on the other side */
  1514. if (bp->link_up) {
  1515. bnx2_write_phy(bp, bp->mii_adv, adv &
  1516. ~(ADVERTISE_1000XFULL |
  1517. ADVERTISE_1000XHALF));
  1518. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1519. BMCR_ANRESTART | BMCR_ANENABLE);
  1520. bp->link_up = 0;
  1521. netif_carrier_off(bp->dev);
  1522. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1523. bnx2_report_link(bp);
  1524. }
  1525. bnx2_write_phy(bp, bp->mii_adv, adv);
  1526. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1527. } else {
  1528. bnx2_resolve_flow_ctrl(bp);
  1529. bnx2_set_mac_link(bp);
  1530. }
  1531. return 0;
  1532. }
  1533. bnx2_test_and_enable_2g5(bp);
  1534. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1535. new_adv |= ADVERTISE_1000XFULL;
  1536. new_adv |= bnx2_phy_get_pause_adv(bp);
  1537. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1538. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1539. bp->serdes_an_pending = 0;
  1540. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1541. /* Force a link down visible on the other side */
  1542. if (bp->link_up) {
  1543. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1544. spin_unlock_bh(&bp->phy_lock);
  1545. msleep(20);
  1546. spin_lock_bh(&bp->phy_lock);
  1547. }
  1548. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1549. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1550. BMCR_ANENABLE);
  1551. /* Speed up link-up time when the link partner
  1552. * does not autonegotiate which is very common
  1553. * in blade servers. Some blade servers use
  1554. * IPMI for kerboard input and it's important
  1555. * to minimize link disruptions. Autoneg. involves
  1556. * exchanging base pages plus 3 next pages and
  1557. * normally completes in about 120 msec.
  1558. */
  1559. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  1560. bp->serdes_an_pending = 1;
  1561. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1562. } else {
  1563. bnx2_resolve_flow_ctrl(bp);
  1564. bnx2_set_mac_link(bp);
  1565. }
  1566. return 0;
  1567. }
  1568. #define ETHTOOL_ALL_FIBRE_SPEED \
  1569. (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
  1570. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1571. (ADVERTISED_1000baseT_Full)
  1572. #define ETHTOOL_ALL_COPPER_SPEED \
  1573. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1574. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1575. ADVERTISED_1000baseT_Full)
  1576. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1577. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1578. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1579. static void
  1580. bnx2_set_default_remote_link(struct bnx2 *bp)
  1581. {
  1582. u32 link;
  1583. if (bp->phy_port == PORT_TP)
  1584. link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
  1585. else
  1586. link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
  1587. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1588. bp->req_line_speed = 0;
  1589. bp->autoneg |= AUTONEG_SPEED;
  1590. bp->advertising = ADVERTISED_Autoneg;
  1591. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1592. bp->advertising |= ADVERTISED_10baseT_Half;
  1593. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1594. bp->advertising |= ADVERTISED_10baseT_Full;
  1595. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1596. bp->advertising |= ADVERTISED_100baseT_Half;
  1597. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1598. bp->advertising |= ADVERTISED_100baseT_Full;
  1599. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1600. bp->advertising |= ADVERTISED_1000baseT_Full;
  1601. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1602. bp->advertising |= ADVERTISED_2500baseX_Full;
  1603. } else {
  1604. bp->autoneg = 0;
  1605. bp->advertising = 0;
  1606. bp->req_duplex = DUPLEX_FULL;
  1607. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1608. bp->req_line_speed = SPEED_10;
  1609. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1610. bp->req_duplex = DUPLEX_HALF;
  1611. }
  1612. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1613. bp->req_line_speed = SPEED_100;
  1614. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1615. bp->req_duplex = DUPLEX_HALF;
  1616. }
  1617. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1618. bp->req_line_speed = SPEED_1000;
  1619. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1620. bp->req_line_speed = SPEED_2500;
  1621. }
  1622. }
  1623. static void
  1624. bnx2_set_default_link(struct bnx2 *bp)
  1625. {
  1626. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  1627. bnx2_set_default_remote_link(bp);
  1628. return;
  1629. }
  1630. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1631. bp->req_line_speed = 0;
  1632. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1633. u32 reg;
  1634. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1635. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
  1636. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1637. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1638. bp->autoneg = 0;
  1639. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1640. bp->req_duplex = DUPLEX_FULL;
  1641. }
  1642. } else
  1643. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1644. }
  1645. static void
  1646. bnx2_send_heart_beat(struct bnx2 *bp)
  1647. {
  1648. u32 msg;
  1649. u32 addr;
  1650. spin_lock(&bp->indirect_lock);
  1651. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1652. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1653. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1654. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1655. spin_unlock(&bp->indirect_lock);
  1656. }
  1657. static void
  1658. bnx2_remote_phy_event(struct bnx2 *bp)
  1659. {
  1660. u32 msg;
  1661. u8 link_up = bp->link_up;
  1662. u8 old_port;
  1663. msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  1664. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1665. bnx2_send_heart_beat(bp);
  1666. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1667. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1668. bp->link_up = 0;
  1669. else {
  1670. u32 speed;
  1671. bp->link_up = 1;
  1672. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1673. bp->duplex = DUPLEX_FULL;
  1674. switch (speed) {
  1675. case BNX2_LINK_STATUS_10HALF:
  1676. bp->duplex = DUPLEX_HALF;
  1677. case BNX2_LINK_STATUS_10FULL:
  1678. bp->line_speed = SPEED_10;
  1679. break;
  1680. case BNX2_LINK_STATUS_100HALF:
  1681. bp->duplex = DUPLEX_HALF;
  1682. case BNX2_LINK_STATUS_100BASE_T4:
  1683. case BNX2_LINK_STATUS_100FULL:
  1684. bp->line_speed = SPEED_100;
  1685. break;
  1686. case BNX2_LINK_STATUS_1000HALF:
  1687. bp->duplex = DUPLEX_HALF;
  1688. case BNX2_LINK_STATUS_1000FULL:
  1689. bp->line_speed = SPEED_1000;
  1690. break;
  1691. case BNX2_LINK_STATUS_2500HALF:
  1692. bp->duplex = DUPLEX_HALF;
  1693. case BNX2_LINK_STATUS_2500FULL:
  1694. bp->line_speed = SPEED_2500;
  1695. break;
  1696. default:
  1697. bp->line_speed = 0;
  1698. break;
  1699. }
  1700. bp->flow_ctrl = 0;
  1701. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1702. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1703. if (bp->duplex == DUPLEX_FULL)
  1704. bp->flow_ctrl = bp->req_flow_ctrl;
  1705. } else {
  1706. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1707. bp->flow_ctrl |= FLOW_CTRL_TX;
  1708. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1709. bp->flow_ctrl |= FLOW_CTRL_RX;
  1710. }
  1711. old_port = bp->phy_port;
  1712. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1713. bp->phy_port = PORT_FIBRE;
  1714. else
  1715. bp->phy_port = PORT_TP;
  1716. if (old_port != bp->phy_port)
  1717. bnx2_set_default_link(bp);
  1718. }
  1719. if (bp->link_up != link_up)
  1720. bnx2_report_link(bp);
  1721. bnx2_set_mac_link(bp);
  1722. }
  1723. static int
  1724. bnx2_set_remote_link(struct bnx2 *bp)
  1725. {
  1726. u32 evt_code;
  1727. evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
  1728. switch (evt_code) {
  1729. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1730. bnx2_remote_phy_event(bp);
  1731. break;
  1732. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1733. default:
  1734. bnx2_send_heart_beat(bp);
  1735. break;
  1736. }
  1737. return 0;
  1738. }
  1739. static int
  1740. bnx2_setup_copper_phy(struct bnx2 *bp)
  1741. __releases(&bp->phy_lock)
  1742. __acquires(&bp->phy_lock)
  1743. {
  1744. u32 bmcr;
  1745. u32 new_bmcr;
  1746. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1747. if (bp->autoneg & AUTONEG_SPEED) {
  1748. u32 adv_reg, adv1000_reg;
  1749. u32 new_adv_reg = 0;
  1750. u32 new_adv1000_reg = 0;
  1751. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1752. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1753. ADVERTISE_PAUSE_ASYM);
  1754. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1755. adv1000_reg &= PHY_ALL_1000_SPEED;
  1756. if (bp->advertising & ADVERTISED_10baseT_Half)
  1757. new_adv_reg |= ADVERTISE_10HALF;
  1758. if (bp->advertising & ADVERTISED_10baseT_Full)
  1759. new_adv_reg |= ADVERTISE_10FULL;
  1760. if (bp->advertising & ADVERTISED_100baseT_Half)
  1761. new_adv_reg |= ADVERTISE_100HALF;
  1762. if (bp->advertising & ADVERTISED_100baseT_Full)
  1763. new_adv_reg |= ADVERTISE_100FULL;
  1764. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1765. new_adv1000_reg |= ADVERTISE_1000FULL;
  1766. new_adv_reg |= ADVERTISE_CSMA;
  1767. new_adv_reg |= bnx2_phy_get_pause_adv(bp);
  1768. if ((adv1000_reg != new_adv1000_reg) ||
  1769. (adv_reg != new_adv_reg) ||
  1770. ((bmcr & BMCR_ANENABLE) == 0)) {
  1771. bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
  1772. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
  1773. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1774. BMCR_ANENABLE);
  1775. }
  1776. else if (bp->link_up) {
  1777. /* Flow ctrl may have changed from auto to forced */
  1778. /* or vice-versa. */
  1779. bnx2_resolve_flow_ctrl(bp);
  1780. bnx2_set_mac_link(bp);
  1781. }
  1782. return 0;
  1783. }
  1784. new_bmcr = 0;
  1785. if (bp->req_line_speed == SPEED_100) {
  1786. new_bmcr |= BMCR_SPEED100;
  1787. }
  1788. if (bp->req_duplex == DUPLEX_FULL) {
  1789. new_bmcr |= BMCR_FULLDPLX;
  1790. }
  1791. if (new_bmcr != bmcr) {
  1792. u32 bmsr;
  1793. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1794. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1795. if (bmsr & BMSR_LSTATUS) {
  1796. /* Force link down */
  1797. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1798. spin_unlock_bh(&bp->phy_lock);
  1799. msleep(50);
  1800. spin_lock_bh(&bp->phy_lock);
  1801. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1802. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1803. }
  1804. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1805. /* Normally, the new speed is setup after the link has
  1806. * gone down and up again. In some cases, link will not go
  1807. * down so we need to set up the new speed here.
  1808. */
  1809. if (bmsr & BMSR_LSTATUS) {
  1810. bp->line_speed = bp->req_line_speed;
  1811. bp->duplex = bp->req_duplex;
  1812. bnx2_resolve_flow_ctrl(bp);
  1813. bnx2_set_mac_link(bp);
  1814. }
  1815. } else {
  1816. bnx2_resolve_flow_ctrl(bp);
  1817. bnx2_set_mac_link(bp);
  1818. }
  1819. return 0;
  1820. }
  1821. static int
  1822. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1823. __releases(&bp->phy_lock)
  1824. __acquires(&bp->phy_lock)
  1825. {
  1826. if (bp->loopback == MAC_LOOPBACK)
  1827. return 0;
  1828. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1829. return (bnx2_setup_serdes_phy(bp, port));
  1830. }
  1831. else {
  1832. return (bnx2_setup_copper_phy(bp));
  1833. }
  1834. }
  1835. static int
  1836. bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
  1837. {
  1838. u32 val;
  1839. bp->mii_bmcr = MII_BMCR + 0x10;
  1840. bp->mii_bmsr = MII_BMSR + 0x10;
  1841. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1842. bp->mii_adv = MII_ADVERTISE + 0x10;
  1843. bp->mii_lpa = MII_LPA + 0x10;
  1844. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1845. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1846. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1847. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1848. if (reset_phy)
  1849. bnx2_reset_phy(bp);
  1850. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1851. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1852. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1853. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1854. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1855. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1856. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1857. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  1858. val |= BCM5708S_UP1_2G5;
  1859. else
  1860. val &= ~BCM5708S_UP1_2G5;
  1861. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1862. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1863. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1864. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1865. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1866. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1867. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1868. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1869. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1870. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1871. return 0;
  1872. }
  1873. static int
  1874. bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
  1875. {
  1876. u32 val;
  1877. if (reset_phy)
  1878. bnx2_reset_phy(bp);
  1879. bp->mii_up1 = BCM5708S_UP1;
  1880. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1881. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1882. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1883. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1884. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1885. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1886. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1887. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1888. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1889. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
  1890. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1891. val |= BCM5708S_UP1_2G5;
  1892. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1893. }
  1894. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  1895. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  1896. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  1897. /* increase tx signal amplitude */
  1898. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1899. BCM5708S_BLK_ADDR_TX_MISC);
  1900. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1901. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1902. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1903. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1904. }
  1905. val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
  1906. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1907. if (val) {
  1908. u32 is_backplane;
  1909. is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  1910. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1911. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1912. BCM5708S_BLK_ADDR_TX_MISC);
  1913. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1914. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1915. BCM5708S_BLK_ADDR_DIG);
  1916. }
  1917. }
  1918. return 0;
  1919. }
  1920. static int
  1921. bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
  1922. {
  1923. if (reset_phy)
  1924. bnx2_reset_phy(bp);
  1925. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1926. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1927. REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1928. if (bp->dev->mtu > 1500) {
  1929. u32 val;
  1930. /* Set extended packet length bit */
  1931. bnx2_write_phy(bp, 0x18, 0x7);
  1932. bnx2_read_phy(bp, 0x18, &val);
  1933. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1934. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1935. bnx2_read_phy(bp, 0x1c, &val);
  1936. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1937. }
  1938. else {
  1939. u32 val;
  1940. bnx2_write_phy(bp, 0x18, 0x7);
  1941. bnx2_read_phy(bp, 0x18, &val);
  1942. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1943. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1944. bnx2_read_phy(bp, 0x1c, &val);
  1945. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1946. }
  1947. return 0;
  1948. }
  1949. static int
  1950. bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
  1951. {
  1952. u32 val;
  1953. if (reset_phy)
  1954. bnx2_reset_phy(bp);
  1955. if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
  1956. bnx2_write_phy(bp, 0x18, 0x0c00);
  1957. bnx2_write_phy(bp, 0x17, 0x000a);
  1958. bnx2_write_phy(bp, 0x15, 0x310b);
  1959. bnx2_write_phy(bp, 0x17, 0x201f);
  1960. bnx2_write_phy(bp, 0x15, 0x9506);
  1961. bnx2_write_phy(bp, 0x17, 0x401f);
  1962. bnx2_write_phy(bp, 0x15, 0x14e2);
  1963. bnx2_write_phy(bp, 0x18, 0x0400);
  1964. }
  1965. if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
  1966. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1967. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1968. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1969. val &= ~(1 << 8);
  1970. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1971. }
  1972. if (bp->dev->mtu > 1500) {
  1973. /* Set extended packet length bit */
  1974. bnx2_write_phy(bp, 0x18, 0x7);
  1975. bnx2_read_phy(bp, 0x18, &val);
  1976. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1977. bnx2_read_phy(bp, 0x10, &val);
  1978. bnx2_write_phy(bp, 0x10, val | 0x1);
  1979. }
  1980. else {
  1981. bnx2_write_phy(bp, 0x18, 0x7);
  1982. bnx2_read_phy(bp, 0x18, &val);
  1983. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1984. bnx2_read_phy(bp, 0x10, &val);
  1985. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1986. }
  1987. /* ethernet@wirespeed */
  1988. bnx2_write_phy(bp, 0x18, 0x7007);
  1989. bnx2_read_phy(bp, 0x18, &val);
  1990. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  1991. return 0;
  1992. }
  1993. static int
  1994. bnx2_init_phy(struct bnx2 *bp, int reset_phy)
  1995. __releases(&bp->phy_lock)
  1996. __acquires(&bp->phy_lock)
  1997. {
  1998. u32 val;
  1999. int rc = 0;
  2000. bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
  2001. bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
  2002. bp->mii_bmcr = MII_BMCR;
  2003. bp->mii_bmsr = MII_BMSR;
  2004. bp->mii_bmsr1 = MII_BMSR;
  2005. bp->mii_adv = MII_ADVERTISE;
  2006. bp->mii_lpa = MII_LPA;
  2007. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  2008. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  2009. goto setup_phy;
  2010. bnx2_read_phy(bp, MII_PHYSID1, &val);
  2011. bp->phy_id = val << 16;
  2012. bnx2_read_phy(bp, MII_PHYSID2, &val);
  2013. bp->phy_id |= val & 0xffff;
  2014. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  2015. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  2016. rc = bnx2_init_5706s_phy(bp, reset_phy);
  2017. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  2018. rc = bnx2_init_5708s_phy(bp, reset_phy);
  2019. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2020. rc = bnx2_init_5709s_phy(bp, reset_phy);
  2021. }
  2022. else {
  2023. rc = bnx2_init_copper_phy(bp, reset_phy);
  2024. }
  2025. setup_phy:
  2026. if (!rc)
  2027. rc = bnx2_setup_phy(bp, bp->phy_port);
  2028. return rc;
  2029. }
  2030. static int
  2031. bnx2_set_mac_loopback(struct bnx2 *bp)
  2032. {
  2033. u32 mac_mode;
  2034. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2035. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  2036. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  2037. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2038. bp->link_up = 1;
  2039. return 0;
  2040. }
  2041. static int bnx2_test_link(struct bnx2 *);
  2042. static int
  2043. bnx2_set_phy_loopback(struct bnx2 *bp)
  2044. {
  2045. u32 mac_mode;
  2046. int rc, i;
  2047. spin_lock_bh(&bp->phy_lock);
  2048. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  2049. BMCR_SPEED1000);
  2050. spin_unlock_bh(&bp->phy_lock);
  2051. if (rc)
  2052. return rc;
  2053. for (i = 0; i < 10; i++) {
  2054. if (bnx2_test_link(bp) == 0)
  2055. break;
  2056. msleep(100);
  2057. }
  2058. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2059. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  2060. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  2061. BNX2_EMAC_MODE_25G_MODE);
  2062. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  2063. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2064. bp->link_up = 1;
  2065. return 0;
  2066. }
  2067. static int
  2068. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
  2069. {
  2070. int i;
  2071. u32 val;
  2072. bp->fw_wr_seq++;
  2073. msg_data |= bp->fw_wr_seq;
  2074. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2075. if (!ack)
  2076. return 0;
  2077. /* wait for an acknowledgement. */
  2078. for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
  2079. msleep(10);
  2080. val = bnx2_shmem_rd(bp, BNX2_FW_MB);
  2081. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  2082. break;
  2083. }
  2084. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  2085. return 0;
  2086. /* If we timed out, inform the firmware that this is the case. */
  2087. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  2088. if (!silent)
  2089. pr_err("fw sync timeout, reset code = %x\n", msg_data);
  2090. msg_data &= ~BNX2_DRV_MSG_CODE;
  2091. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  2092. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2093. return -EBUSY;
  2094. }
  2095. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  2096. return -EIO;
  2097. return 0;
  2098. }
  2099. static int
  2100. bnx2_init_5709_context(struct bnx2 *bp)
  2101. {
  2102. int i, ret = 0;
  2103. u32 val;
  2104. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  2105. val |= (BCM_PAGE_BITS - 8) << 16;
  2106. REG_WR(bp, BNX2_CTX_COMMAND, val);
  2107. for (i = 0; i < 10; i++) {
  2108. val = REG_RD(bp, BNX2_CTX_COMMAND);
  2109. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  2110. break;
  2111. udelay(2);
  2112. }
  2113. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  2114. return -EBUSY;
  2115. for (i = 0; i < bp->ctx_pages; i++) {
  2116. int j;
  2117. if (bp->ctx_blk[i])
  2118. memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
  2119. else
  2120. return -ENOMEM;
  2121. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  2122. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  2123. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  2124. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  2125. (u64) bp->ctx_blk_mapping[i] >> 32);
  2126. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  2127. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  2128. for (j = 0; j < 10; j++) {
  2129. val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  2130. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  2131. break;
  2132. udelay(5);
  2133. }
  2134. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  2135. ret = -EBUSY;
  2136. break;
  2137. }
  2138. }
  2139. return ret;
  2140. }
  2141. static void
  2142. bnx2_init_context(struct bnx2 *bp)
  2143. {
  2144. u32 vcid;
  2145. vcid = 96;
  2146. while (vcid) {
  2147. u32 vcid_addr, pcid_addr, offset;
  2148. int i;
  2149. vcid--;
  2150. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2151. u32 new_vcid;
  2152. vcid_addr = GET_PCID_ADDR(vcid);
  2153. if (vcid & 0x8) {
  2154. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  2155. }
  2156. else {
  2157. new_vcid = vcid;
  2158. }
  2159. pcid_addr = GET_PCID_ADDR(new_vcid);
  2160. }
  2161. else {
  2162. vcid_addr = GET_CID_ADDR(vcid);
  2163. pcid_addr = vcid_addr;
  2164. }
  2165. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  2166. vcid_addr += (i << PHY_CTX_SHIFT);
  2167. pcid_addr += (i << PHY_CTX_SHIFT);
  2168. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  2169. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  2170. /* Zero out the context. */
  2171. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  2172. bnx2_ctx_wr(bp, vcid_addr, offset, 0);
  2173. }
  2174. }
  2175. }
  2176. static int
  2177. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  2178. {
  2179. u16 *good_mbuf;
  2180. u32 good_mbuf_cnt;
  2181. u32 val;
  2182. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  2183. if (good_mbuf == NULL) {
  2184. pr_err("Failed to allocate memory in %s\n", __func__);
  2185. return -ENOMEM;
  2186. }
  2187. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2188. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  2189. good_mbuf_cnt = 0;
  2190. /* Allocate a bunch of mbufs and save the good ones in an array. */
  2191. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2192. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  2193. bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
  2194. BNX2_RBUF_COMMAND_ALLOC_REQ);
  2195. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
  2196. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  2197. /* The addresses with Bit 9 set are bad memory blocks. */
  2198. if (!(val & (1 << 9))) {
  2199. good_mbuf[good_mbuf_cnt] = (u16) val;
  2200. good_mbuf_cnt++;
  2201. }
  2202. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2203. }
  2204. /* Free the good ones back to the mbuf pool thus discarding
  2205. * all the bad ones. */
  2206. while (good_mbuf_cnt) {
  2207. good_mbuf_cnt--;
  2208. val = good_mbuf[good_mbuf_cnt];
  2209. val = (val << 9) | val | 1;
  2210. bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
  2211. }
  2212. kfree(good_mbuf);
  2213. return 0;
  2214. }
  2215. static void
  2216. bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
  2217. {
  2218. u32 val;
  2219. val = (mac_addr[0] << 8) | mac_addr[1];
  2220. REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
  2221. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  2222. (mac_addr[4] << 8) | mac_addr[5];
  2223. REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
  2224. }
  2225. static inline int
  2226. bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2227. {
  2228. dma_addr_t mapping;
  2229. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2230. struct rx_bd *rxbd =
  2231. &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
  2232. struct page *page = alloc_page(GFP_ATOMIC);
  2233. if (!page)
  2234. return -ENOMEM;
  2235. mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
  2236. PCI_DMA_FROMDEVICE);
  2237. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  2238. __free_page(page);
  2239. return -EIO;
  2240. }
  2241. rx_pg->page = page;
  2242. pci_unmap_addr_set(rx_pg, mapping, mapping);
  2243. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2244. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2245. return 0;
  2246. }
  2247. static void
  2248. bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2249. {
  2250. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2251. struct page *page = rx_pg->page;
  2252. if (!page)
  2253. return;
  2254. pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
  2255. PCI_DMA_FROMDEVICE);
  2256. __free_page(page);
  2257. rx_pg->page = NULL;
  2258. }
  2259. static inline int
  2260. bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2261. {
  2262. struct sk_buff *skb;
  2263. struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
  2264. dma_addr_t mapping;
  2265. struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
  2266. unsigned long align;
  2267. skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
  2268. if (skb == NULL) {
  2269. return -ENOMEM;
  2270. }
  2271. if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
  2272. skb_reserve(skb, BNX2_RX_ALIGN - align);
  2273. mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
  2274. PCI_DMA_FROMDEVICE);
  2275. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  2276. dev_kfree_skb(skb);
  2277. return -EIO;
  2278. }
  2279. rx_buf->skb = skb;
  2280. pci_unmap_addr_set(rx_buf, mapping, mapping);
  2281. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2282. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2283. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2284. return 0;
  2285. }
  2286. static int
  2287. bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
  2288. {
  2289. struct status_block *sblk = bnapi->status_blk.msi;
  2290. u32 new_link_state, old_link_state;
  2291. int is_set = 1;
  2292. new_link_state = sblk->status_attn_bits & event;
  2293. old_link_state = sblk->status_attn_bits_ack & event;
  2294. if (new_link_state != old_link_state) {
  2295. if (new_link_state)
  2296. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  2297. else
  2298. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  2299. } else
  2300. is_set = 0;
  2301. return is_set;
  2302. }
  2303. static void
  2304. bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2305. {
  2306. spin_lock(&bp->phy_lock);
  2307. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
  2308. bnx2_set_link(bp);
  2309. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
  2310. bnx2_set_remote_link(bp);
  2311. spin_unlock(&bp->phy_lock);
  2312. }
  2313. static inline u16
  2314. bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
  2315. {
  2316. u16 cons;
  2317. /* Tell compiler that status block fields can change. */
  2318. barrier();
  2319. cons = *bnapi->hw_tx_cons_ptr;
  2320. barrier();
  2321. if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
  2322. cons++;
  2323. return cons;
  2324. }
  2325. static int
  2326. bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2327. {
  2328. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2329. u16 hw_cons, sw_cons, sw_ring_cons;
  2330. int tx_pkt = 0, index;
  2331. struct netdev_queue *txq;
  2332. index = (bnapi - bp->bnx2_napi);
  2333. txq = netdev_get_tx_queue(bp->dev, index);
  2334. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2335. sw_cons = txr->tx_cons;
  2336. while (sw_cons != hw_cons) {
  2337. struct sw_tx_bd *tx_buf;
  2338. struct sk_buff *skb;
  2339. int i, last;
  2340. sw_ring_cons = TX_RING_IDX(sw_cons);
  2341. tx_buf = &txr->tx_buf_ring[sw_ring_cons];
  2342. skb = tx_buf->skb;
  2343. /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
  2344. prefetch(&skb->end);
  2345. /* partial BD completions possible with TSO packets */
  2346. if (tx_buf->is_gso) {
  2347. u16 last_idx, last_ring_idx;
  2348. last_idx = sw_cons + tx_buf->nr_frags + 1;
  2349. last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
  2350. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  2351. last_idx++;
  2352. }
  2353. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  2354. break;
  2355. }
  2356. }
  2357. pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  2358. skb_headlen(skb), PCI_DMA_TODEVICE);
  2359. tx_buf->skb = NULL;
  2360. last = tx_buf->nr_frags;
  2361. for (i = 0; i < last; i++) {
  2362. sw_cons = NEXT_TX_BD(sw_cons);
  2363. pci_unmap_page(bp->pdev,
  2364. pci_unmap_addr(
  2365. &txr->tx_buf_ring[TX_RING_IDX(sw_cons)],
  2366. mapping),
  2367. skb_shinfo(skb)->frags[i].size,
  2368. PCI_DMA_TODEVICE);
  2369. }
  2370. sw_cons = NEXT_TX_BD(sw_cons);
  2371. dev_kfree_skb(skb);
  2372. tx_pkt++;
  2373. if (tx_pkt == budget)
  2374. break;
  2375. if (hw_cons == sw_cons)
  2376. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2377. }
  2378. txr->hw_tx_cons = hw_cons;
  2379. txr->tx_cons = sw_cons;
  2380. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  2381. * before checking for netif_tx_queue_stopped(). Without the
  2382. * memory barrier, there is a small possibility that bnx2_start_xmit()
  2383. * will miss it and cause the queue to be stopped forever.
  2384. */
  2385. smp_mb();
  2386. if (unlikely(netif_tx_queue_stopped(txq)) &&
  2387. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
  2388. __netif_tx_lock(txq, smp_processor_id());
  2389. if ((netif_tx_queue_stopped(txq)) &&
  2390. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
  2391. netif_tx_wake_queue(txq);
  2392. __netif_tx_unlock(txq);
  2393. }
  2394. return tx_pkt;
  2395. }
  2396. static void
  2397. bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2398. struct sk_buff *skb, int count)
  2399. {
  2400. struct sw_pg *cons_rx_pg, *prod_rx_pg;
  2401. struct rx_bd *cons_bd, *prod_bd;
  2402. int i;
  2403. u16 hw_prod, prod;
  2404. u16 cons = rxr->rx_pg_cons;
  2405. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2406. /* The caller was unable to allocate a new page to replace the
  2407. * last one in the frags array, so we need to recycle that page
  2408. * and then free the skb.
  2409. */
  2410. if (skb) {
  2411. struct page *page;
  2412. struct skb_shared_info *shinfo;
  2413. shinfo = skb_shinfo(skb);
  2414. shinfo->nr_frags--;
  2415. page = shinfo->frags[shinfo->nr_frags].page;
  2416. shinfo->frags[shinfo->nr_frags].page = NULL;
  2417. cons_rx_pg->page = page;
  2418. dev_kfree_skb(skb);
  2419. }
  2420. hw_prod = rxr->rx_pg_prod;
  2421. for (i = 0; i < count; i++) {
  2422. prod = RX_PG_RING_IDX(hw_prod);
  2423. prod_rx_pg = &rxr->rx_pg_ring[prod];
  2424. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2425. cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2426. prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2427. if (prod != cons) {
  2428. prod_rx_pg->page = cons_rx_pg->page;
  2429. cons_rx_pg->page = NULL;
  2430. pci_unmap_addr_set(prod_rx_pg, mapping,
  2431. pci_unmap_addr(cons_rx_pg, mapping));
  2432. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2433. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2434. }
  2435. cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
  2436. hw_prod = NEXT_RX_BD(hw_prod);
  2437. }
  2438. rxr->rx_pg_prod = hw_prod;
  2439. rxr->rx_pg_cons = cons;
  2440. }
  2441. static inline void
  2442. bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2443. struct sk_buff *skb, u16 cons, u16 prod)
  2444. {
  2445. struct sw_bd *cons_rx_buf, *prod_rx_buf;
  2446. struct rx_bd *cons_bd, *prod_bd;
  2447. cons_rx_buf = &rxr->rx_buf_ring[cons];
  2448. prod_rx_buf = &rxr->rx_buf_ring[prod];
  2449. pci_dma_sync_single_for_device(bp->pdev,
  2450. pci_unmap_addr(cons_rx_buf, mapping),
  2451. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2452. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2453. prod_rx_buf->skb = skb;
  2454. if (cons == prod)
  2455. return;
  2456. pci_unmap_addr_set(prod_rx_buf, mapping,
  2457. pci_unmap_addr(cons_rx_buf, mapping));
  2458. cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2459. prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2460. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2461. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2462. }
  2463. static int
  2464. bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
  2465. unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
  2466. u32 ring_idx)
  2467. {
  2468. int err;
  2469. u16 prod = ring_idx & 0xffff;
  2470. err = bnx2_alloc_rx_skb(bp, rxr, prod);
  2471. if (unlikely(err)) {
  2472. bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
  2473. if (hdr_len) {
  2474. unsigned int raw_len = len + 4;
  2475. int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
  2476. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2477. }
  2478. return err;
  2479. }
  2480. skb_reserve(skb, BNX2_RX_OFFSET);
  2481. pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
  2482. PCI_DMA_FROMDEVICE);
  2483. if (hdr_len == 0) {
  2484. skb_put(skb, len);
  2485. return 0;
  2486. } else {
  2487. unsigned int i, frag_len, frag_size, pages;
  2488. struct sw_pg *rx_pg;
  2489. u16 pg_cons = rxr->rx_pg_cons;
  2490. u16 pg_prod = rxr->rx_pg_prod;
  2491. frag_size = len + 4 - hdr_len;
  2492. pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
  2493. skb_put(skb, hdr_len);
  2494. for (i = 0; i < pages; i++) {
  2495. dma_addr_t mapping_old;
  2496. frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
  2497. if (unlikely(frag_len <= 4)) {
  2498. unsigned int tail = 4 - frag_len;
  2499. rxr->rx_pg_cons = pg_cons;
  2500. rxr->rx_pg_prod = pg_prod;
  2501. bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
  2502. pages - i);
  2503. skb->len -= tail;
  2504. if (i == 0) {
  2505. skb->tail -= tail;
  2506. } else {
  2507. skb_frag_t *frag =
  2508. &skb_shinfo(skb)->frags[i - 1];
  2509. frag->size -= tail;
  2510. skb->data_len -= tail;
  2511. skb->truesize -= tail;
  2512. }
  2513. return 0;
  2514. }
  2515. rx_pg = &rxr->rx_pg_ring[pg_cons];
  2516. /* Don't unmap yet. If we're unable to allocate a new
  2517. * page, we need to recycle the page and the DMA addr.
  2518. */
  2519. mapping_old = pci_unmap_addr(rx_pg, mapping);
  2520. if (i == pages - 1)
  2521. frag_len -= 4;
  2522. skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
  2523. rx_pg->page = NULL;
  2524. err = bnx2_alloc_rx_page(bp, rxr,
  2525. RX_PG_RING_IDX(pg_prod));
  2526. if (unlikely(err)) {
  2527. rxr->rx_pg_cons = pg_cons;
  2528. rxr->rx_pg_prod = pg_prod;
  2529. bnx2_reuse_rx_skb_pages(bp, rxr, skb,
  2530. pages - i);
  2531. return err;
  2532. }
  2533. pci_unmap_page(bp->pdev, mapping_old,
  2534. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2535. frag_size -= frag_len;
  2536. skb->data_len += frag_len;
  2537. skb->truesize += frag_len;
  2538. skb->len += frag_len;
  2539. pg_prod = NEXT_RX_BD(pg_prod);
  2540. pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
  2541. }
  2542. rxr->rx_pg_prod = pg_prod;
  2543. rxr->rx_pg_cons = pg_cons;
  2544. }
  2545. return 0;
  2546. }
  2547. static inline u16
  2548. bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
  2549. {
  2550. u16 cons;
  2551. /* Tell compiler that status block fields can change. */
  2552. barrier();
  2553. cons = *bnapi->hw_rx_cons_ptr;
  2554. barrier();
  2555. if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
  2556. cons++;
  2557. return cons;
  2558. }
  2559. static int
  2560. bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2561. {
  2562. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2563. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2564. struct l2_fhdr *rx_hdr;
  2565. int rx_pkt = 0, pg_ring_used = 0;
  2566. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2567. sw_cons = rxr->rx_cons;
  2568. sw_prod = rxr->rx_prod;
  2569. /* Memory barrier necessary as speculative reads of the rx
  2570. * buffer can be ahead of the index in the status block
  2571. */
  2572. rmb();
  2573. while (sw_cons != hw_cons) {
  2574. unsigned int len, hdr_len;
  2575. u32 status;
  2576. struct sw_bd *rx_buf;
  2577. struct sk_buff *skb;
  2578. dma_addr_t dma_addr;
  2579. u16 vtag = 0;
  2580. int hw_vlan __maybe_unused = 0;
  2581. sw_ring_cons = RX_RING_IDX(sw_cons);
  2582. sw_ring_prod = RX_RING_IDX(sw_prod);
  2583. rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
  2584. skb = rx_buf->skb;
  2585. rx_buf->skb = NULL;
  2586. dma_addr = pci_unmap_addr(rx_buf, mapping);
  2587. pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
  2588. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
  2589. PCI_DMA_FROMDEVICE);
  2590. rx_hdr = (struct l2_fhdr *) skb->data;
  2591. len = rx_hdr->l2_fhdr_pkt_len;
  2592. status = rx_hdr->l2_fhdr_status;
  2593. hdr_len = 0;
  2594. if (status & L2_FHDR_STATUS_SPLIT) {
  2595. hdr_len = rx_hdr->l2_fhdr_ip_xsum;
  2596. pg_ring_used = 1;
  2597. } else if (len > bp->rx_jumbo_thresh) {
  2598. hdr_len = bp->rx_jumbo_thresh;
  2599. pg_ring_used = 1;
  2600. }
  2601. if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
  2602. L2_FHDR_ERRORS_PHY_DECODE |
  2603. L2_FHDR_ERRORS_ALIGNMENT |
  2604. L2_FHDR_ERRORS_TOO_SHORT |
  2605. L2_FHDR_ERRORS_GIANT_FRAME))) {
  2606. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2607. sw_ring_prod);
  2608. if (pg_ring_used) {
  2609. int pages;
  2610. pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
  2611. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2612. }
  2613. goto next_rx;
  2614. }
  2615. len -= 4;
  2616. if (len <= bp->rx_copy_thresh) {
  2617. struct sk_buff *new_skb;
  2618. new_skb = netdev_alloc_skb(bp->dev, len + 6);
  2619. if (new_skb == NULL) {
  2620. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2621. sw_ring_prod);
  2622. goto next_rx;
  2623. }
  2624. /* aligned copy */
  2625. skb_copy_from_linear_data_offset(skb,
  2626. BNX2_RX_OFFSET - 6,
  2627. new_skb->data, len + 6);
  2628. skb_reserve(new_skb, 6);
  2629. skb_put(new_skb, len);
  2630. bnx2_reuse_rx_skb(bp, rxr, skb,
  2631. sw_ring_cons, sw_ring_prod);
  2632. skb = new_skb;
  2633. } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
  2634. dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
  2635. goto next_rx;
  2636. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
  2637. !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
  2638. vtag = rx_hdr->l2_fhdr_vlan_tag;
  2639. #ifdef BCM_VLAN
  2640. if (bp->vlgrp)
  2641. hw_vlan = 1;
  2642. else
  2643. #endif
  2644. {
  2645. struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
  2646. __skb_push(skb, 4);
  2647. memmove(ve, skb->data + 4, ETH_ALEN * 2);
  2648. ve->h_vlan_proto = htons(ETH_P_8021Q);
  2649. ve->h_vlan_TCI = htons(vtag);
  2650. len += 4;
  2651. }
  2652. }
  2653. skb->protocol = eth_type_trans(skb, bp->dev);
  2654. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  2655. (ntohs(skb->protocol) != 0x8100)) {
  2656. dev_kfree_skb(skb);
  2657. goto next_rx;
  2658. }
  2659. skb->ip_summed = CHECKSUM_NONE;
  2660. if (bp->rx_csum &&
  2661. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2662. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2663. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2664. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2665. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2666. }
  2667. skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
  2668. #ifdef BCM_VLAN
  2669. if (hw_vlan)
  2670. vlan_hwaccel_receive_skb(skb, bp->vlgrp, vtag);
  2671. else
  2672. #endif
  2673. netif_receive_skb(skb);
  2674. rx_pkt++;
  2675. next_rx:
  2676. sw_cons = NEXT_RX_BD(sw_cons);
  2677. sw_prod = NEXT_RX_BD(sw_prod);
  2678. if ((rx_pkt == budget))
  2679. break;
  2680. /* Refresh hw_cons to see if there is new work */
  2681. if (sw_cons == hw_cons) {
  2682. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2683. rmb();
  2684. }
  2685. }
  2686. rxr->rx_cons = sw_cons;
  2687. rxr->rx_prod = sw_prod;
  2688. if (pg_ring_used)
  2689. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  2690. REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
  2691. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  2692. mmiowb();
  2693. return rx_pkt;
  2694. }
  2695. /* MSI ISR - The only difference between this and the INTx ISR
  2696. * is that the MSI interrupt is always serviced.
  2697. */
  2698. static irqreturn_t
  2699. bnx2_msi(int irq, void *dev_instance)
  2700. {
  2701. struct bnx2_napi *bnapi = dev_instance;
  2702. struct bnx2 *bp = bnapi->bp;
  2703. prefetch(bnapi->status_blk.msi);
  2704. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2705. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2706. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2707. /* Return here if interrupt is disabled. */
  2708. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2709. return IRQ_HANDLED;
  2710. napi_schedule(&bnapi->napi);
  2711. return IRQ_HANDLED;
  2712. }
  2713. static irqreturn_t
  2714. bnx2_msi_1shot(int irq, void *dev_instance)
  2715. {
  2716. struct bnx2_napi *bnapi = dev_instance;
  2717. struct bnx2 *bp = bnapi->bp;
  2718. prefetch(bnapi->status_blk.msi);
  2719. /* Return here if interrupt is disabled. */
  2720. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2721. return IRQ_HANDLED;
  2722. napi_schedule(&bnapi->napi);
  2723. return IRQ_HANDLED;
  2724. }
  2725. static irqreturn_t
  2726. bnx2_interrupt(int irq, void *dev_instance)
  2727. {
  2728. struct bnx2_napi *bnapi = dev_instance;
  2729. struct bnx2 *bp = bnapi->bp;
  2730. struct status_block *sblk = bnapi->status_blk.msi;
  2731. /* When using INTx, it is possible for the interrupt to arrive
  2732. * at the CPU before the status block posted prior to the
  2733. * interrupt. Reading a register will flush the status block.
  2734. * When using MSI, the MSI message will always complete after
  2735. * the status block write.
  2736. */
  2737. if ((sblk->status_idx == bnapi->last_status_idx) &&
  2738. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2739. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2740. return IRQ_NONE;
  2741. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2742. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2743. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2744. /* Read back to deassert IRQ immediately to avoid too many
  2745. * spurious interrupts.
  2746. */
  2747. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2748. /* Return here if interrupt is shared and is disabled. */
  2749. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2750. return IRQ_HANDLED;
  2751. if (napi_schedule_prep(&bnapi->napi)) {
  2752. bnapi->last_status_idx = sblk->status_idx;
  2753. __napi_schedule(&bnapi->napi);
  2754. }
  2755. return IRQ_HANDLED;
  2756. }
  2757. static inline int
  2758. bnx2_has_fast_work(struct bnx2_napi *bnapi)
  2759. {
  2760. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2761. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2762. if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
  2763. (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
  2764. return 1;
  2765. return 0;
  2766. }
  2767. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2768. STATUS_ATTN_BITS_TIMER_ABORT)
  2769. static inline int
  2770. bnx2_has_work(struct bnx2_napi *bnapi)
  2771. {
  2772. struct status_block *sblk = bnapi->status_blk.msi;
  2773. if (bnx2_has_fast_work(bnapi))
  2774. return 1;
  2775. #ifdef BCM_CNIC
  2776. if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
  2777. return 1;
  2778. #endif
  2779. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2780. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2781. return 1;
  2782. return 0;
  2783. }
  2784. static void
  2785. bnx2_chk_missed_msi(struct bnx2 *bp)
  2786. {
  2787. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2788. u32 msi_ctrl;
  2789. if (bnx2_has_work(bnapi)) {
  2790. msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
  2791. if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
  2792. return;
  2793. if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
  2794. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
  2795. ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
  2796. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
  2797. bnx2_msi(bp->irq_tbl[0].vector, bnapi);
  2798. }
  2799. }
  2800. bp->idle_chk_status_idx = bnapi->last_status_idx;
  2801. }
  2802. #ifdef BCM_CNIC
  2803. static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2804. {
  2805. struct cnic_ops *c_ops;
  2806. if (!bnapi->cnic_present)
  2807. return;
  2808. rcu_read_lock();
  2809. c_ops = rcu_dereference(bp->cnic_ops);
  2810. if (c_ops)
  2811. bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
  2812. bnapi->status_blk.msi);
  2813. rcu_read_unlock();
  2814. }
  2815. #endif
  2816. static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2817. {
  2818. struct status_block *sblk = bnapi->status_blk.msi;
  2819. u32 status_attn_bits = sblk->status_attn_bits;
  2820. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2821. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2822. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2823. bnx2_phy_int(bp, bnapi);
  2824. /* This is needed to take care of transient status
  2825. * during link changes.
  2826. */
  2827. REG_WR(bp, BNX2_HC_COMMAND,
  2828. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2829. REG_RD(bp, BNX2_HC_COMMAND);
  2830. }
  2831. }
  2832. static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
  2833. int work_done, int budget)
  2834. {
  2835. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2836. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2837. if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
  2838. bnx2_tx_int(bp, bnapi, 0);
  2839. if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
  2840. work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
  2841. return work_done;
  2842. }
  2843. static int bnx2_poll_msix(struct napi_struct *napi, int budget)
  2844. {
  2845. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2846. struct bnx2 *bp = bnapi->bp;
  2847. int work_done = 0;
  2848. struct status_block_msix *sblk = bnapi->status_blk.msix;
  2849. while (1) {
  2850. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2851. if (unlikely(work_done >= budget))
  2852. break;
  2853. bnapi->last_status_idx = sblk->status_idx;
  2854. /* status idx must be read before checking for more work. */
  2855. rmb();
  2856. if (likely(!bnx2_has_fast_work(bnapi))) {
  2857. napi_complete(napi);
  2858. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  2859. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2860. bnapi->last_status_idx);
  2861. break;
  2862. }
  2863. }
  2864. return work_done;
  2865. }
  2866. static int bnx2_poll(struct napi_struct *napi, int budget)
  2867. {
  2868. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2869. struct bnx2 *bp = bnapi->bp;
  2870. int work_done = 0;
  2871. struct status_block *sblk = bnapi->status_blk.msi;
  2872. while (1) {
  2873. bnx2_poll_link(bp, bnapi);
  2874. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2875. #ifdef BCM_CNIC
  2876. bnx2_poll_cnic(bp, bnapi);
  2877. #endif
  2878. /* bnapi->last_status_idx is used below to tell the hw how
  2879. * much work has been processed, so we must read it before
  2880. * checking for more work.
  2881. */
  2882. bnapi->last_status_idx = sblk->status_idx;
  2883. if (unlikely(work_done >= budget))
  2884. break;
  2885. rmb();
  2886. if (likely(!bnx2_has_work(bnapi))) {
  2887. napi_complete(napi);
  2888. if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
  2889. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2890. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2891. bnapi->last_status_idx);
  2892. break;
  2893. }
  2894. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2895. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2896. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2897. bnapi->last_status_idx);
  2898. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2899. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2900. bnapi->last_status_idx);
  2901. break;
  2902. }
  2903. }
  2904. return work_done;
  2905. }
  2906. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2907. * from set_multicast.
  2908. */
  2909. static void
  2910. bnx2_set_rx_mode(struct net_device *dev)
  2911. {
  2912. struct bnx2 *bp = netdev_priv(dev);
  2913. u32 rx_mode, sort_mode;
  2914. struct netdev_hw_addr *ha;
  2915. int i;
  2916. if (!netif_running(dev))
  2917. return;
  2918. spin_lock_bh(&bp->phy_lock);
  2919. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2920. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2921. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2922. #ifdef BCM_VLAN
  2923. if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  2924. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2925. #else
  2926. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  2927. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2928. #endif
  2929. if (dev->flags & IFF_PROMISC) {
  2930. /* Promiscuous mode. */
  2931. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2932. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2933. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2934. }
  2935. else if (dev->flags & IFF_ALLMULTI) {
  2936. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2937. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2938. 0xffffffff);
  2939. }
  2940. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2941. }
  2942. else {
  2943. /* Accept one or more multicast(s). */
  2944. struct dev_mc_list *mclist;
  2945. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2946. u32 regidx;
  2947. u32 bit;
  2948. u32 crc;
  2949. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2950. netdev_for_each_mc_addr(mclist, dev) {
  2951. crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
  2952. bit = crc & 0xff;
  2953. regidx = (bit & 0xe0) >> 5;
  2954. bit &= 0x1f;
  2955. mc_filter[regidx] |= (1 << bit);
  2956. }
  2957. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2958. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2959. mc_filter[i]);
  2960. }
  2961. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  2962. }
  2963. if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) {
  2964. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2965. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2966. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2967. } else if (!(dev->flags & IFF_PROMISC)) {
  2968. /* Add all entries into to the match filter list */
  2969. i = 0;
  2970. netdev_for_each_uc_addr(ha, dev) {
  2971. bnx2_set_mac_addr(bp, ha->addr,
  2972. i + BNX2_START_UNICAST_ADDRESS_INDEX);
  2973. sort_mode |= (1 <<
  2974. (i + BNX2_START_UNICAST_ADDRESS_INDEX));
  2975. i++;
  2976. }
  2977. }
  2978. if (rx_mode != bp->rx_mode) {
  2979. bp->rx_mode = rx_mode;
  2980. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  2981. }
  2982. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  2983. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  2984. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  2985. spin_unlock_bh(&bp->phy_lock);
  2986. }
  2987. static int __devinit
  2988. check_fw_section(const struct firmware *fw,
  2989. const struct bnx2_fw_file_section *section,
  2990. u32 alignment, bool non_empty)
  2991. {
  2992. u32 offset = be32_to_cpu(section->offset);
  2993. u32 len = be32_to_cpu(section->len);
  2994. if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
  2995. return -EINVAL;
  2996. if ((non_empty && len == 0) || len > fw->size - offset ||
  2997. len & (alignment - 1))
  2998. return -EINVAL;
  2999. return 0;
  3000. }
  3001. static int __devinit
  3002. check_mips_fw_entry(const struct firmware *fw,
  3003. const struct bnx2_mips_fw_file_entry *entry)
  3004. {
  3005. if (check_fw_section(fw, &entry->text, 4, true) ||
  3006. check_fw_section(fw, &entry->data, 4, false) ||
  3007. check_fw_section(fw, &entry->rodata, 4, false))
  3008. return -EINVAL;
  3009. return 0;
  3010. }
  3011. static int __devinit
  3012. bnx2_request_firmware(struct bnx2 *bp)
  3013. {
  3014. const char *mips_fw_file, *rv2p_fw_file;
  3015. const struct bnx2_mips_fw_file *mips_fw;
  3016. const struct bnx2_rv2p_fw_file *rv2p_fw;
  3017. int rc;
  3018. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3019. mips_fw_file = FW_MIPS_FILE_09;
  3020. if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
  3021. (CHIP_ID(bp) == CHIP_ID_5709_A1))
  3022. rv2p_fw_file = FW_RV2P_FILE_09_Ax;
  3023. else
  3024. rv2p_fw_file = FW_RV2P_FILE_09;
  3025. } else {
  3026. mips_fw_file = FW_MIPS_FILE_06;
  3027. rv2p_fw_file = FW_RV2P_FILE_06;
  3028. }
  3029. rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
  3030. if (rc) {
  3031. pr_err("Can't load firmware file \"%s\"\n", mips_fw_file);
  3032. return rc;
  3033. }
  3034. rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
  3035. if (rc) {
  3036. pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file);
  3037. return rc;
  3038. }
  3039. mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3040. rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3041. if (bp->mips_firmware->size < sizeof(*mips_fw) ||
  3042. check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
  3043. check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
  3044. check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
  3045. check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
  3046. check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
  3047. pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file);
  3048. return -EINVAL;
  3049. }
  3050. if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
  3051. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
  3052. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
  3053. pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file);
  3054. return -EINVAL;
  3055. }
  3056. return 0;
  3057. }
  3058. static u32
  3059. rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
  3060. {
  3061. switch (idx) {
  3062. case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
  3063. rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
  3064. rv2p_code |= RV2P_BD_PAGE_SIZE;
  3065. break;
  3066. }
  3067. return rv2p_code;
  3068. }
  3069. static int
  3070. load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
  3071. const struct bnx2_rv2p_fw_file_entry *fw_entry)
  3072. {
  3073. u32 rv2p_code_len, file_offset;
  3074. __be32 *rv2p_code;
  3075. int i;
  3076. u32 val, cmd, addr;
  3077. rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
  3078. file_offset = be32_to_cpu(fw_entry->rv2p.offset);
  3079. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3080. if (rv2p_proc == RV2P_PROC1) {
  3081. cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  3082. addr = BNX2_RV2P_PROC1_ADDR_CMD;
  3083. } else {
  3084. cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  3085. addr = BNX2_RV2P_PROC2_ADDR_CMD;
  3086. }
  3087. for (i = 0; i < rv2p_code_len; i += 8) {
  3088. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
  3089. rv2p_code++;
  3090. REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
  3091. rv2p_code++;
  3092. val = (i / 8) | cmd;
  3093. REG_WR(bp, addr, val);
  3094. }
  3095. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3096. for (i = 0; i < 8; i++) {
  3097. u32 loc, code;
  3098. loc = be32_to_cpu(fw_entry->fixup[i]);
  3099. if (loc && ((loc * 4) < rv2p_code_len)) {
  3100. code = be32_to_cpu(*(rv2p_code + loc - 1));
  3101. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
  3102. code = be32_to_cpu(*(rv2p_code + loc));
  3103. code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
  3104. REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
  3105. val = (loc / 2) | cmd;
  3106. REG_WR(bp, addr, val);
  3107. }
  3108. }
  3109. /* Reset the processor, un-stall is done later. */
  3110. if (rv2p_proc == RV2P_PROC1) {
  3111. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  3112. }
  3113. else {
  3114. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  3115. }
  3116. return 0;
  3117. }
  3118. static int
  3119. load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
  3120. const struct bnx2_mips_fw_file_entry *fw_entry)
  3121. {
  3122. u32 addr, len, file_offset;
  3123. __be32 *data;
  3124. u32 offset;
  3125. u32 val;
  3126. /* Halt the CPU. */
  3127. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3128. val |= cpu_reg->mode_value_halt;
  3129. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3130. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3131. /* Load the Text area. */
  3132. addr = be32_to_cpu(fw_entry->text.addr);
  3133. len = be32_to_cpu(fw_entry->text.len);
  3134. file_offset = be32_to_cpu(fw_entry->text.offset);
  3135. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3136. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3137. if (len) {
  3138. int j;
  3139. for (j = 0; j < (len / 4); j++, offset += 4)
  3140. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3141. }
  3142. /* Load the Data area. */
  3143. addr = be32_to_cpu(fw_entry->data.addr);
  3144. len = be32_to_cpu(fw_entry->data.len);
  3145. file_offset = be32_to_cpu(fw_entry->data.offset);
  3146. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3147. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3148. if (len) {
  3149. int j;
  3150. for (j = 0; j < (len / 4); j++, offset += 4)
  3151. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3152. }
  3153. /* Load the Read-Only area. */
  3154. addr = be32_to_cpu(fw_entry->rodata.addr);
  3155. len = be32_to_cpu(fw_entry->rodata.len);
  3156. file_offset = be32_to_cpu(fw_entry->rodata.offset);
  3157. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3158. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3159. if (len) {
  3160. int j;
  3161. for (j = 0; j < (len / 4); j++, offset += 4)
  3162. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3163. }
  3164. /* Clear the pre-fetch instruction. */
  3165. bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
  3166. val = be32_to_cpu(fw_entry->start_addr);
  3167. bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
  3168. /* Start the CPU. */
  3169. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3170. val &= ~cpu_reg->mode_value_halt;
  3171. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3172. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3173. return 0;
  3174. }
  3175. static int
  3176. bnx2_init_cpus(struct bnx2 *bp)
  3177. {
  3178. const struct bnx2_mips_fw_file *mips_fw =
  3179. (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3180. const struct bnx2_rv2p_fw_file *rv2p_fw =
  3181. (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3182. int rc;
  3183. /* Initialize the RV2P processor. */
  3184. load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
  3185. load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
  3186. /* Initialize the RX Processor. */
  3187. rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
  3188. if (rc)
  3189. goto init_cpu_err;
  3190. /* Initialize the TX Processor. */
  3191. rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
  3192. if (rc)
  3193. goto init_cpu_err;
  3194. /* Initialize the TX Patch-up Processor. */
  3195. rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
  3196. if (rc)
  3197. goto init_cpu_err;
  3198. /* Initialize the Completion Processor. */
  3199. rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
  3200. if (rc)
  3201. goto init_cpu_err;
  3202. /* Initialize the Command Processor. */
  3203. rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
  3204. init_cpu_err:
  3205. return rc;
  3206. }
  3207. static int
  3208. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  3209. {
  3210. u16 pmcsr;
  3211. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  3212. switch (state) {
  3213. case PCI_D0: {
  3214. u32 val;
  3215. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3216. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  3217. PCI_PM_CTRL_PME_STATUS);
  3218. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  3219. /* delay required during transition out of D3hot */
  3220. msleep(20);
  3221. val = REG_RD(bp, BNX2_EMAC_MODE);
  3222. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  3223. val &= ~BNX2_EMAC_MODE_MPKT;
  3224. REG_WR(bp, BNX2_EMAC_MODE, val);
  3225. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3226. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3227. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3228. break;
  3229. }
  3230. case PCI_D3hot: {
  3231. int i;
  3232. u32 val, wol_msg;
  3233. if (bp->wol) {
  3234. u32 advertising;
  3235. u8 autoneg;
  3236. autoneg = bp->autoneg;
  3237. advertising = bp->advertising;
  3238. if (bp->phy_port == PORT_TP) {
  3239. bp->autoneg = AUTONEG_SPEED;
  3240. bp->advertising = ADVERTISED_10baseT_Half |
  3241. ADVERTISED_10baseT_Full |
  3242. ADVERTISED_100baseT_Half |
  3243. ADVERTISED_100baseT_Full |
  3244. ADVERTISED_Autoneg;
  3245. }
  3246. spin_lock_bh(&bp->phy_lock);
  3247. bnx2_setup_phy(bp, bp->phy_port);
  3248. spin_unlock_bh(&bp->phy_lock);
  3249. bp->autoneg = autoneg;
  3250. bp->advertising = advertising;
  3251. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3252. val = REG_RD(bp, BNX2_EMAC_MODE);
  3253. /* Enable port mode. */
  3254. val &= ~BNX2_EMAC_MODE_PORT;
  3255. val |= BNX2_EMAC_MODE_MPKT_RCVD |
  3256. BNX2_EMAC_MODE_ACPI_RCVD |
  3257. BNX2_EMAC_MODE_MPKT;
  3258. if (bp->phy_port == PORT_TP)
  3259. val |= BNX2_EMAC_MODE_PORT_MII;
  3260. else {
  3261. val |= BNX2_EMAC_MODE_PORT_GMII;
  3262. if (bp->line_speed == SPEED_2500)
  3263. val |= BNX2_EMAC_MODE_25G_MODE;
  3264. }
  3265. REG_WR(bp, BNX2_EMAC_MODE, val);
  3266. /* receive all multicast */
  3267. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3268. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3269. 0xffffffff);
  3270. }
  3271. REG_WR(bp, BNX2_EMAC_RX_MODE,
  3272. BNX2_EMAC_RX_MODE_SORT_MODE);
  3273. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  3274. BNX2_RPM_SORT_USER0_MC_EN;
  3275. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3276. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  3277. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  3278. BNX2_RPM_SORT_USER0_ENA);
  3279. /* Need to enable EMAC and RPM for WOL. */
  3280. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3281. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  3282. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  3283. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  3284. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3285. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3286. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3287. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3288. }
  3289. else {
  3290. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3291. }
  3292. if (!(bp->flags & BNX2_FLAG_NO_WOL))
  3293. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
  3294. 1, 0);
  3295. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3296. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3297. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  3298. if (bp->wol)
  3299. pmcsr |= 3;
  3300. }
  3301. else {
  3302. pmcsr |= 3;
  3303. }
  3304. if (bp->wol) {
  3305. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  3306. }
  3307. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3308. pmcsr);
  3309. /* No more memory access after this point until
  3310. * device is brought back to D0.
  3311. */
  3312. udelay(50);
  3313. break;
  3314. }
  3315. default:
  3316. return -EINVAL;
  3317. }
  3318. return 0;
  3319. }
  3320. static int
  3321. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  3322. {
  3323. u32 val;
  3324. int j;
  3325. /* Request access to the flash interface. */
  3326. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  3327. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3328. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3329. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  3330. break;
  3331. udelay(5);
  3332. }
  3333. if (j >= NVRAM_TIMEOUT_COUNT)
  3334. return -EBUSY;
  3335. return 0;
  3336. }
  3337. static int
  3338. bnx2_release_nvram_lock(struct bnx2 *bp)
  3339. {
  3340. int j;
  3341. u32 val;
  3342. /* Relinquish nvram interface. */
  3343. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  3344. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3345. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3346. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  3347. break;
  3348. udelay(5);
  3349. }
  3350. if (j >= NVRAM_TIMEOUT_COUNT)
  3351. return -EBUSY;
  3352. return 0;
  3353. }
  3354. static int
  3355. bnx2_enable_nvram_write(struct bnx2 *bp)
  3356. {
  3357. u32 val;
  3358. val = REG_RD(bp, BNX2_MISC_CFG);
  3359. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  3360. if (bp->flash_info->flags & BNX2_NV_WREN) {
  3361. int j;
  3362. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3363. REG_WR(bp, BNX2_NVM_COMMAND,
  3364. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  3365. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3366. udelay(5);
  3367. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3368. if (val & BNX2_NVM_COMMAND_DONE)
  3369. break;
  3370. }
  3371. if (j >= NVRAM_TIMEOUT_COUNT)
  3372. return -EBUSY;
  3373. }
  3374. return 0;
  3375. }
  3376. static void
  3377. bnx2_disable_nvram_write(struct bnx2 *bp)
  3378. {
  3379. u32 val;
  3380. val = REG_RD(bp, BNX2_MISC_CFG);
  3381. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  3382. }
  3383. static void
  3384. bnx2_enable_nvram_access(struct bnx2 *bp)
  3385. {
  3386. u32 val;
  3387. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3388. /* Enable both bits, even on read. */
  3389. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3390. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  3391. }
  3392. static void
  3393. bnx2_disable_nvram_access(struct bnx2 *bp)
  3394. {
  3395. u32 val;
  3396. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3397. /* Disable both bits, even after read. */
  3398. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3399. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  3400. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  3401. }
  3402. static int
  3403. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  3404. {
  3405. u32 cmd;
  3406. int j;
  3407. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  3408. /* Buffered flash, no erase needed */
  3409. return 0;
  3410. /* Build an erase command */
  3411. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  3412. BNX2_NVM_COMMAND_DOIT;
  3413. /* Need to clear DONE bit separately. */
  3414. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3415. /* Address of the NVRAM to read from. */
  3416. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3417. /* Issue an erase command. */
  3418. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3419. /* Wait for completion. */
  3420. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3421. u32 val;
  3422. udelay(5);
  3423. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3424. if (val & BNX2_NVM_COMMAND_DONE)
  3425. break;
  3426. }
  3427. if (j >= NVRAM_TIMEOUT_COUNT)
  3428. return -EBUSY;
  3429. return 0;
  3430. }
  3431. static int
  3432. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  3433. {
  3434. u32 cmd;
  3435. int j;
  3436. /* Build the command word. */
  3437. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  3438. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3439. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3440. offset = ((offset / bp->flash_info->page_size) <<
  3441. bp->flash_info->page_bits) +
  3442. (offset % bp->flash_info->page_size);
  3443. }
  3444. /* Need to clear DONE bit separately. */
  3445. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3446. /* Address of the NVRAM to read from. */
  3447. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3448. /* Issue a read command. */
  3449. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3450. /* Wait for completion. */
  3451. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3452. u32 val;
  3453. udelay(5);
  3454. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3455. if (val & BNX2_NVM_COMMAND_DONE) {
  3456. __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
  3457. memcpy(ret_val, &v, 4);
  3458. break;
  3459. }
  3460. }
  3461. if (j >= NVRAM_TIMEOUT_COUNT)
  3462. return -EBUSY;
  3463. return 0;
  3464. }
  3465. static int
  3466. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  3467. {
  3468. u32 cmd;
  3469. __be32 val32;
  3470. int j;
  3471. /* Build the command word. */
  3472. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  3473. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3474. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3475. offset = ((offset / bp->flash_info->page_size) <<
  3476. bp->flash_info->page_bits) +
  3477. (offset % bp->flash_info->page_size);
  3478. }
  3479. /* Need to clear DONE bit separately. */
  3480. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3481. memcpy(&val32, val, 4);
  3482. /* Write the data. */
  3483. REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
  3484. /* Address of the NVRAM to write to. */
  3485. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3486. /* Issue the write command. */
  3487. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3488. /* Wait for completion. */
  3489. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3490. udelay(5);
  3491. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  3492. break;
  3493. }
  3494. if (j >= NVRAM_TIMEOUT_COUNT)
  3495. return -EBUSY;
  3496. return 0;
  3497. }
  3498. static int
  3499. bnx2_init_nvram(struct bnx2 *bp)
  3500. {
  3501. u32 val;
  3502. int j, entry_count, rc = 0;
  3503. const struct flash_spec *flash;
  3504. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3505. bp->flash_info = &flash_5709;
  3506. goto get_flash_size;
  3507. }
  3508. /* Determine the selected interface. */
  3509. val = REG_RD(bp, BNX2_NVM_CFG1);
  3510. entry_count = ARRAY_SIZE(flash_table);
  3511. if (val & 0x40000000) {
  3512. /* Flash interface has been reconfigured */
  3513. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3514. j++, flash++) {
  3515. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  3516. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  3517. bp->flash_info = flash;
  3518. break;
  3519. }
  3520. }
  3521. }
  3522. else {
  3523. u32 mask;
  3524. /* Not yet been reconfigured */
  3525. if (val & (1 << 23))
  3526. mask = FLASH_BACKUP_STRAP_MASK;
  3527. else
  3528. mask = FLASH_STRAP_MASK;
  3529. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3530. j++, flash++) {
  3531. if ((val & mask) == (flash->strapping & mask)) {
  3532. bp->flash_info = flash;
  3533. /* Request access to the flash interface. */
  3534. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3535. return rc;
  3536. /* Enable access to flash interface */
  3537. bnx2_enable_nvram_access(bp);
  3538. /* Reconfigure the flash interface */
  3539. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  3540. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  3541. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  3542. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  3543. /* Disable access to flash interface */
  3544. bnx2_disable_nvram_access(bp);
  3545. bnx2_release_nvram_lock(bp);
  3546. break;
  3547. }
  3548. }
  3549. } /* if (val & 0x40000000) */
  3550. if (j == entry_count) {
  3551. bp->flash_info = NULL;
  3552. pr_alert("Unknown flash/EEPROM type\n");
  3553. return -ENODEV;
  3554. }
  3555. get_flash_size:
  3556. val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
  3557. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  3558. if (val)
  3559. bp->flash_size = val;
  3560. else
  3561. bp->flash_size = bp->flash_info->total_size;
  3562. return rc;
  3563. }
  3564. static int
  3565. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  3566. int buf_size)
  3567. {
  3568. int rc = 0;
  3569. u32 cmd_flags, offset32, len32, extra;
  3570. if (buf_size == 0)
  3571. return 0;
  3572. /* Request access to the flash interface. */
  3573. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3574. return rc;
  3575. /* Enable access to flash interface */
  3576. bnx2_enable_nvram_access(bp);
  3577. len32 = buf_size;
  3578. offset32 = offset;
  3579. extra = 0;
  3580. cmd_flags = 0;
  3581. if (offset32 & 3) {
  3582. u8 buf[4];
  3583. u32 pre_len;
  3584. offset32 &= ~3;
  3585. pre_len = 4 - (offset & 3);
  3586. if (pre_len >= len32) {
  3587. pre_len = len32;
  3588. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3589. BNX2_NVM_COMMAND_LAST;
  3590. }
  3591. else {
  3592. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3593. }
  3594. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3595. if (rc)
  3596. return rc;
  3597. memcpy(ret_buf, buf + (offset & 3), pre_len);
  3598. offset32 += 4;
  3599. ret_buf += pre_len;
  3600. len32 -= pre_len;
  3601. }
  3602. if (len32 & 3) {
  3603. extra = 4 - (len32 & 3);
  3604. len32 = (len32 + 4) & ~3;
  3605. }
  3606. if (len32 == 4) {
  3607. u8 buf[4];
  3608. if (cmd_flags)
  3609. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3610. else
  3611. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3612. BNX2_NVM_COMMAND_LAST;
  3613. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3614. memcpy(ret_buf, buf, 4 - extra);
  3615. }
  3616. else if (len32 > 0) {
  3617. u8 buf[4];
  3618. /* Read the first word. */
  3619. if (cmd_flags)
  3620. cmd_flags = 0;
  3621. else
  3622. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3623. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  3624. /* Advance to the next dword. */
  3625. offset32 += 4;
  3626. ret_buf += 4;
  3627. len32 -= 4;
  3628. while (len32 > 4 && rc == 0) {
  3629. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  3630. /* Advance to the next dword. */
  3631. offset32 += 4;
  3632. ret_buf += 4;
  3633. len32 -= 4;
  3634. }
  3635. if (rc)
  3636. return rc;
  3637. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3638. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3639. memcpy(ret_buf, buf, 4 - extra);
  3640. }
  3641. /* Disable access to flash interface */
  3642. bnx2_disable_nvram_access(bp);
  3643. bnx2_release_nvram_lock(bp);
  3644. return rc;
  3645. }
  3646. static int
  3647. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  3648. int buf_size)
  3649. {
  3650. u32 written, offset32, len32;
  3651. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  3652. int rc = 0;
  3653. int align_start, align_end;
  3654. buf = data_buf;
  3655. offset32 = offset;
  3656. len32 = buf_size;
  3657. align_start = align_end = 0;
  3658. if ((align_start = (offset32 & 3))) {
  3659. offset32 &= ~3;
  3660. len32 += align_start;
  3661. if (len32 < 4)
  3662. len32 = 4;
  3663. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  3664. return rc;
  3665. }
  3666. if (len32 & 3) {
  3667. align_end = 4 - (len32 & 3);
  3668. len32 += align_end;
  3669. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  3670. return rc;
  3671. }
  3672. if (align_start || align_end) {
  3673. align_buf = kmalloc(len32, GFP_KERNEL);
  3674. if (align_buf == NULL)
  3675. return -ENOMEM;
  3676. if (align_start) {
  3677. memcpy(align_buf, start, 4);
  3678. }
  3679. if (align_end) {
  3680. memcpy(align_buf + len32 - 4, end, 4);
  3681. }
  3682. memcpy(align_buf + align_start, data_buf, buf_size);
  3683. buf = align_buf;
  3684. }
  3685. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3686. flash_buffer = kmalloc(264, GFP_KERNEL);
  3687. if (flash_buffer == NULL) {
  3688. rc = -ENOMEM;
  3689. goto nvram_write_end;
  3690. }
  3691. }
  3692. written = 0;
  3693. while ((written < len32) && (rc == 0)) {
  3694. u32 page_start, page_end, data_start, data_end;
  3695. u32 addr, cmd_flags;
  3696. int i;
  3697. /* Find the page_start addr */
  3698. page_start = offset32 + written;
  3699. page_start -= (page_start % bp->flash_info->page_size);
  3700. /* Find the page_end addr */
  3701. page_end = page_start + bp->flash_info->page_size;
  3702. /* Find the data_start addr */
  3703. data_start = (written == 0) ? offset32 : page_start;
  3704. /* Find the data_end addr */
  3705. data_end = (page_end > offset32 + len32) ?
  3706. (offset32 + len32) : page_end;
  3707. /* Request access to the flash interface. */
  3708. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3709. goto nvram_write_end;
  3710. /* Enable access to flash interface */
  3711. bnx2_enable_nvram_access(bp);
  3712. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3713. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3714. int j;
  3715. /* Read the whole page into the buffer
  3716. * (non-buffer flash only) */
  3717. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3718. if (j == (bp->flash_info->page_size - 4)) {
  3719. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3720. }
  3721. rc = bnx2_nvram_read_dword(bp,
  3722. page_start + j,
  3723. &flash_buffer[j],
  3724. cmd_flags);
  3725. if (rc)
  3726. goto nvram_write_end;
  3727. cmd_flags = 0;
  3728. }
  3729. }
  3730. /* Enable writes to flash interface (unlock write-protect) */
  3731. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3732. goto nvram_write_end;
  3733. /* Loop to write back the buffer data from page_start to
  3734. * data_start */
  3735. i = 0;
  3736. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3737. /* Erase the page */
  3738. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3739. goto nvram_write_end;
  3740. /* Re-enable the write again for the actual write */
  3741. bnx2_enable_nvram_write(bp);
  3742. for (addr = page_start; addr < data_start;
  3743. addr += 4, i += 4) {
  3744. rc = bnx2_nvram_write_dword(bp, addr,
  3745. &flash_buffer[i], cmd_flags);
  3746. if (rc != 0)
  3747. goto nvram_write_end;
  3748. cmd_flags = 0;
  3749. }
  3750. }
  3751. /* Loop to write the new data from data_start to data_end */
  3752. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3753. if ((addr == page_end - 4) ||
  3754. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3755. (addr == data_end - 4))) {
  3756. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3757. }
  3758. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3759. cmd_flags);
  3760. if (rc != 0)
  3761. goto nvram_write_end;
  3762. cmd_flags = 0;
  3763. buf += 4;
  3764. }
  3765. /* Loop to write back the buffer data from data_end
  3766. * to page_end */
  3767. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3768. for (addr = data_end; addr < page_end;
  3769. addr += 4, i += 4) {
  3770. if (addr == page_end-4) {
  3771. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3772. }
  3773. rc = bnx2_nvram_write_dword(bp, addr,
  3774. &flash_buffer[i], cmd_flags);
  3775. if (rc != 0)
  3776. goto nvram_write_end;
  3777. cmd_flags = 0;
  3778. }
  3779. }
  3780. /* Disable writes to flash interface (lock write-protect) */
  3781. bnx2_disable_nvram_write(bp);
  3782. /* Disable access to flash interface */
  3783. bnx2_disable_nvram_access(bp);
  3784. bnx2_release_nvram_lock(bp);
  3785. /* Increment written */
  3786. written += data_end - data_start;
  3787. }
  3788. nvram_write_end:
  3789. kfree(flash_buffer);
  3790. kfree(align_buf);
  3791. return rc;
  3792. }
  3793. static void
  3794. bnx2_init_fw_cap(struct bnx2 *bp)
  3795. {
  3796. u32 val, sig = 0;
  3797. bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3798. bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
  3799. if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
  3800. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3801. val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
  3802. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3803. return;
  3804. if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
  3805. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3806. sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
  3807. }
  3808. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  3809. (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
  3810. u32 link;
  3811. bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3812. link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  3813. if (link & BNX2_LINK_STATUS_SERDES_LINK)
  3814. bp->phy_port = PORT_FIBRE;
  3815. else
  3816. bp->phy_port = PORT_TP;
  3817. sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
  3818. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3819. }
  3820. if (netif_running(bp->dev) && sig)
  3821. bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
  3822. }
  3823. static void
  3824. bnx2_setup_msix_tbl(struct bnx2 *bp)
  3825. {
  3826. REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
  3827. REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
  3828. REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
  3829. }
  3830. static int
  3831. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3832. {
  3833. u32 val;
  3834. int i, rc = 0;
  3835. u8 old_port;
  3836. /* Wait for the current PCI transaction to complete before
  3837. * issuing a reset. */
  3838. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3839. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3840. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3841. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3842. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3843. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3844. udelay(5);
  3845. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3846. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
  3847. /* Deposit a driver reset signature so the firmware knows that
  3848. * this is a soft reset. */
  3849. bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
  3850. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3851. /* Do a dummy read to force the chip to complete all current transaction
  3852. * before we issue a reset. */
  3853. val = REG_RD(bp, BNX2_MISC_ID);
  3854. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3855. REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3856. REG_RD(bp, BNX2_MISC_COMMAND);
  3857. udelay(5);
  3858. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3859. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3860. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
  3861. } else {
  3862. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3863. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3864. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3865. /* Chip reset. */
  3866. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3867. /* Reading back any register after chip reset will hang the
  3868. * bus on 5706 A0 and A1. The msleep below provides plenty
  3869. * of margin for write posting.
  3870. */
  3871. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3872. (CHIP_ID(bp) == CHIP_ID_5706_A1))
  3873. msleep(20);
  3874. /* Reset takes approximate 30 usec */
  3875. for (i = 0; i < 10; i++) {
  3876. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3877. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3878. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3879. break;
  3880. udelay(10);
  3881. }
  3882. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3883. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  3884. pr_err("Chip reset did not complete\n");
  3885. return -EBUSY;
  3886. }
  3887. }
  3888. /* Make sure byte swapping is properly configured. */
  3889. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  3890. if (val != 0x01020304) {
  3891. pr_err("Chip not in correct endian mode\n");
  3892. return -ENODEV;
  3893. }
  3894. /* Wait for the firmware to finish its initialization. */
  3895. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
  3896. if (rc)
  3897. return rc;
  3898. spin_lock_bh(&bp->phy_lock);
  3899. old_port = bp->phy_port;
  3900. bnx2_init_fw_cap(bp);
  3901. if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
  3902. old_port != bp->phy_port)
  3903. bnx2_set_default_remote_link(bp);
  3904. spin_unlock_bh(&bp->phy_lock);
  3905. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3906. /* Adjust the voltage regular to two steps lower. The default
  3907. * of this register is 0x0000000e. */
  3908. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  3909. /* Remove bad rbuf memory from the free pool. */
  3910. rc = bnx2_alloc_bad_rbuf(bp);
  3911. }
  3912. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  3913. bnx2_setup_msix_tbl(bp);
  3914. /* Prevent MSIX table reads and write from timing out */
  3915. REG_WR(bp, BNX2_MISC_ECO_HW_CTL,
  3916. BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN);
  3917. }
  3918. return rc;
  3919. }
  3920. static int
  3921. bnx2_init_chip(struct bnx2 *bp)
  3922. {
  3923. u32 val, mtu;
  3924. int rc, i;
  3925. /* Make sure the interrupt is not active. */
  3926. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  3927. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  3928. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  3929. #ifdef __BIG_ENDIAN
  3930. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  3931. #endif
  3932. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  3933. DMA_READ_CHANS << 12 |
  3934. DMA_WRITE_CHANS << 16;
  3935. val |= (0x2 << 20) | (1 << 11);
  3936. if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
  3937. val |= (1 << 23);
  3938. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  3939. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
  3940. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  3941. REG_WR(bp, BNX2_DMA_CONFIG, val);
  3942. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3943. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  3944. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  3945. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  3946. }
  3947. if (bp->flags & BNX2_FLAG_PCIX) {
  3948. u16 val16;
  3949. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3950. &val16);
  3951. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3952. val16 & ~PCI_X_CMD_ERO);
  3953. }
  3954. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3955. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  3956. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  3957. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  3958. /* Initialize context mapping and zero out the quick contexts. The
  3959. * context block must have already been enabled. */
  3960. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3961. rc = bnx2_init_5709_context(bp);
  3962. if (rc)
  3963. return rc;
  3964. } else
  3965. bnx2_init_context(bp);
  3966. if ((rc = bnx2_init_cpus(bp)) != 0)
  3967. return rc;
  3968. bnx2_init_nvram(bp);
  3969. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3970. val = REG_RD(bp, BNX2_MQ_CONFIG);
  3971. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  3972. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  3973. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3974. val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
  3975. if (CHIP_REV(bp) == CHIP_REV_Ax)
  3976. val |= BNX2_MQ_CONFIG_HALT_DIS;
  3977. }
  3978. REG_WR(bp, BNX2_MQ_CONFIG, val);
  3979. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  3980. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  3981. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  3982. val = (BCM_PAGE_BITS - 8) << 24;
  3983. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  3984. /* Configure page size. */
  3985. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  3986. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  3987. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  3988. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  3989. val = bp->mac_addr[0] +
  3990. (bp->mac_addr[1] << 8) +
  3991. (bp->mac_addr[2] << 16) +
  3992. bp->mac_addr[3] +
  3993. (bp->mac_addr[4] << 8) +
  3994. (bp->mac_addr[5] << 16);
  3995. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  3996. /* Program the MTU. Also include 4 bytes for CRC32. */
  3997. mtu = bp->dev->mtu;
  3998. val = mtu + ETH_HLEN + ETH_FCS_LEN;
  3999. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  4000. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  4001. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  4002. if (mtu < 1500)
  4003. mtu = 1500;
  4004. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
  4005. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
  4006. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
  4007. memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
  4008. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
  4009. bp->bnx2_napi[i].last_status_idx = 0;
  4010. bp->idle_chk_status_idx = 0xffff;
  4011. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  4012. /* Set up how to generate a link change interrupt. */
  4013. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  4014. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  4015. (u64) bp->status_blk_mapping & 0xffffffff);
  4016. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  4017. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  4018. (u64) bp->stats_blk_mapping & 0xffffffff);
  4019. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  4020. (u64) bp->stats_blk_mapping >> 32);
  4021. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  4022. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  4023. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  4024. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  4025. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  4026. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  4027. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4028. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4029. REG_WR(bp, BNX2_HC_COM_TICKS,
  4030. (bp->com_ticks_int << 16) | bp->com_ticks);
  4031. REG_WR(bp, BNX2_HC_CMD_TICKS,
  4032. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  4033. if (bp->flags & BNX2_FLAG_BROKEN_STATS)
  4034. REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
  4035. else
  4036. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  4037. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  4038. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  4039. val = BNX2_HC_CONFIG_COLLECT_STATS;
  4040. else {
  4041. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  4042. BNX2_HC_CONFIG_COLLECT_STATS;
  4043. }
  4044. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  4045. REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
  4046. BNX2_HC_MSIX_BIT_VECTOR_VAL);
  4047. val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
  4048. }
  4049. if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
  4050. val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
  4051. REG_WR(bp, BNX2_HC_CONFIG, val);
  4052. for (i = 1; i < bp->irq_nvecs; i++) {
  4053. u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
  4054. BNX2_HC_SB_CONFIG_1;
  4055. REG_WR(bp, base,
  4056. BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
  4057. BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
  4058. BNX2_HC_SB_CONFIG_1_ONE_SHOT);
  4059. REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
  4060. (bp->tx_quick_cons_trip_int << 16) |
  4061. bp->tx_quick_cons_trip);
  4062. REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
  4063. (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4064. REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
  4065. (bp->rx_quick_cons_trip_int << 16) |
  4066. bp->rx_quick_cons_trip);
  4067. REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
  4068. (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4069. }
  4070. /* Clear internal stats counters. */
  4071. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  4072. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  4073. /* Initialize the receive filter. */
  4074. bnx2_set_rx_mode(bp->dev);
  4075. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4076. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  4077. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  4078. REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  4079. }
  4080. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  4081. 1, 0);
  4082. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  4083. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  4084. udelay(20);
  4085. bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
  4086. return rc;
  4087. }
  4088. static void
  4089. bnx2_clear_ring_states(struct bnx2 *bp)
  4090. {
  4091. struct bnx2_napi *bnapi;
  4092. struct bnx2_tx_ring_info *txr;
  4093. struct bnx2_rx_ring_info *rxr;
  4094. int i;
  4095. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4096. bnapi = &bp->bnx2_napi[i];
  4097. txr = &bnapi->tx_ring;
  4098. rxr = &bnapi->rx_ring;
  4099. txr->tx_cons = 0;
  4100. txr->hw_tx_cons = 0;
  4101. rxr->rx_prod_bseq = 0;
  4102. rxr->rx_prod = 0;
  4103. rxr->rx_cons = 0;
  4104. rxr->rx_pg_prod = 0;
  4105. rxr->rx_pg_cons = 0;
  4106. }
  4107. }
  4108. static void
  4109. bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
  4110. {
  4111. u32 val, offset0, offset1, offset2, offset3;
  4112. u32 cid_addr = GET_CID_ADDR(cid);
  4113. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4114. offset0 = BNX2_L2CTX_TYPE_XI;
  4115. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  4116. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  4117. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  4118. } else {
  4119. offset0 = BNX2_L2CTX_TYPE;
  4120. offset1 = BNX2_L2CTX_CMD_TYPE;
  4121. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  4122. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  4123. }
  4124. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  4125. bnx2_ctx_wr(bp, cid_addr, offset0, val);
  4126. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  4127. bnx2_ctx_wr(bp, cid_addr, offset1, val);
  4128. val = (u64) txr->tx_desc_mapping >> 32;
  4129. bnx2_ctx_wr(bp, cid_addr, offset2, val);
  4130. val = (u64) txr->tx_desc_mapping & 0xffffffff;
  4131. bnx2_ctx_wr(bp, cid_addr, offset3, val);
  4132. }
  4133. static void
  4134. bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
  4135. {
  4136. struct tx_bd *txbd;
  4137. u32 cid = TX_CID;
  4138. struct bnx2_napi *bnapi;
  4139. struct bnx2_tx_ring_info *txr;
  4140. bnapi = &bp->bnx2_napi[ring_num];
  4141. txr = &bnapi->tx_ring;
  4142. if (ring_num == 0)
  4143. cid = TX_CID;
  4144. else
  4145. cid = TX_TSS_CID + ring_num - 1;
  4146. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  4147. txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
  4148. txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
  4149. txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
  4150. txr->tx_prod = 0;
  4151. txr->tx_prod_bseq = 0;
  4152. txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  4153. txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  4154. bnx2_init_tx_context(bp, cid, txr);
  4155. }
  4156. static void
  4157. bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
  4158. int num_rings)
  4159. {
  4160. int i;
  4161. struct rx_bd *rxbd;
  4162. for (i = 0; i < num_rings; i++) {
  4163. int j;
  4164. rxbd = &rx_ring[i][0];
  4165. for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
  4166. rxbd->rx_bd_len = buf_size;
  4167. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  4168. }
  4169. if (i == (num_rings - 1))
  4170. j = 0;
  4171. else
  4172. j = i + 1;
  4173. rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
  4174. rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
  4175. }
  4176. }
  4177. static void
  4178. bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
  4179. {
  4180. int i;
  4181. u16 prod, ring_prod;
  4182. u32 cid, rx_cid_addr, val;
  4183. struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
  4184. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4185. if (ring_num == 0)
  4186. cid = RX_CID;
  4187. else
  4188. cid = RX_RSS_CID + ring_num - 1;
  4189. rx_cid_addr = GET_CID_ADDR(cid);
  4190. bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
  4191. bp->rx_buf_use_size, bp->rx_max_ring);
  4192. bnx2_init_rx_context(bp, cid);
  4193. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4194. val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
  4195. REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
  4196. }
  4197. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
  4198. if (bp->rx_pg_ring_size) {
  4199. bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
  4200. rxr->rx_pg_desc_mapping,
  4201. PAGE_SIZE, bp->rx_max_pg_ring);
  4202. val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
  4203. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
  4204. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
  4205. BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
  4206. val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
  4207. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
  4208. val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
  4209. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
  4210. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4211. REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
  4212. }
  4213. val = (u64) rxr->rx_desc_mapping[0] >> 32;
  4214. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
  4215. val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
  4216. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
  4217. ring_prod = prod = rxr->rx_pg_prod;
  4218. for (i = 0; i < bp->rx_pg_ring_size; i++) {
  4219. if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0) {
  4220. netdev_warn(bp->dev, "init'ed rx page ring %d with %d/%d pages only\n",
  4221. ring_num, i, bp->rx_pg_ring_size);
  4222. break;
  4223. }
  4224. prod = NEXT_RX_BD(prod);
  4225. ring_prod = RX_PG_RING_IDX(prod);
  4226. }
  4227. rxr->rx_pg_prod = prod;
  4228. ring_prod = prod = rxr->rx_prod;
  4229. for (i = 0; i < bp->rx_ring_size; i++) {
  4230. if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0) {
  4231. netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
  4232. ring_num, i, bp->rx_ring_size);
  4233. break;
  4234. }
  4235. prod = NEXT_RX_BD(prod);
  4236. ring_prod = RX_RING_IDX(prod);
  4237. }
  4238. rxr->rx_prod = prod;
  4239. rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
  4240. rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
  4241. rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
  4242. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  4243. REG_WR16(bp, rxr->rx_bidx_addr, prod);
  4244. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  4245. }
  4246. static void
  4247. bnx2_init_all_rings(struct bnx2 *bp)
  4248. {
  4249. int i;
  4250. u32 val;
  4251. bnx2_clear_ring_states(bp);
  4252. REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
  4253. for (i = 0; i < bp->num_tx_rings; i++)
  4254. bnx2_init_tx_ring(bp, i);
  4255. if (bp->num_tx_rings > 1)
  4256. REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
  4257. (TX_TSS_CID << 7));
  4258. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
  4259. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
  4260. for (i = 0; i < bp->num_rx_rings; i++)
  4261. bnx2_init_rx_ring(bp, i);
  4262. if (bp->num_rx_rings > 1) {
  4263. u32 tbl_32;
  4264. u8 *tbl = (u8 *) &tbl_32;
  4265. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
  4266. BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
  4267. for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
  4268. tbl[i % 4] = i % (bp->num_rx_rings - 1);
  4269. if ((i % 4) == 3)
  4270. bnx2_reg_wr_ind(bp,
  4271. BNX2_RXP_SCRATCH_RSS_TBL + i,
  4272. cpu_to_be32(tbl_32));
  4273. }
  4274. val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
  4275. BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
  4276. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
  4277. }
  4278. }
  4279. static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
  4280. {
  4281. u32 max, num_rings = 1;
  4282. while (ring_size > MAX_RX_DESC_CNT) {
  4283. ring_size -= MAX_RX_DESC_CNT;
  4284. num_rings++;
  4285. }
  4286. /* round to next power of 2 */
  4287. max = max_size;
  4288. while ((max & num_rings) == 0)
  4289. max >>= 1;
  4290. if (num_rings != max)
  4291. max <<= 1;
  4292. return max;
  4293. }
  4294. static void
  4295. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  4296. {
  4297. u32 rx_size, rx_space, jumbo_size;
  4298. /* 8 for CRC and VLAN */
  4299. rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
  4300. rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
  4301. sizeof(struct skb_shared_info);
  4302. bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
  4303. bp->rx_pg_ring_size = 0;
  4304. bp->rx_max_pg_ring = 0;
  4305. bp->rx_max_pg_ring_idx = 0;
  4306. if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
  4307. int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  4308. jumbo_size = size * pages;
  4309. if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
  4310. jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
  4311. bp->rx_pg_ring_size = jumbo_size;
  4312. bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
  4313. MAX_RX_PG_RINGS);
  4314. bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
  4315. rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
  4316. bp->rx_copy_thresh = 0;
  4317. }
  4318. bp->rx_buf_use_size = rx_size;
  4319. /* hw alignment */
  4320. bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
  4321. bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
  4322. bp->rx_ring_size = size;
  4323. bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
  4324. bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
  4325. }
  4326. static void
  4327. bnx2_free_tx_skbs(struct bnx2 *bp)
  4328. {
  4329. int i;
  4330. for (i = 0; i < bp->num_tx_rings; i++) {
  4331. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4332. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4333. int j;
  4334. if (txr->tx_buf_ring == NULL)
  4335. continue;
  4336. for (j = 0; j < TX_DESC_CNT; ) {
  4337. struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
  4338. struct sk_buff *skb = tx_buf->skb;
  4339. int k, last;
  4340. if (skb == NULL) {
  4341. j++;
  4342. continue;
  4343. }
  4344. pci_unmap_single(bp->pdev,
  4345. pci_unmap_addr(tx_buf, mapping),
  4346. skb_headlen(skb),
  4347. PCI_DMA_TODEVICE);
  4348. tx_buf->skb = NULL;
  4349. last = tx_buf->nr_frags;
  4350. j++;
  4351. for (k = 0; k < last; k++, j++) {
  4352. tx_buf = &txr->tx_buf_ring[TX_RING_IDX(j)];
  4353. pci_unmap_page(bp->pdev,
  4354. pci_unmap_addr(tx_buf, mapping),
  4355. skb_shinfo(skb)->frags[k].size,
  4356. PCI_DMA_TODEVICE);
  4357. }
  4358. dev_kfree_skb(skb);
  4359. }
  4360. }
  4361. }
  4362. static void
  4363. bnx2_free_rx_skbs(struct bnx2 *bp)
  4364. {
  4365. int i;
  4366. for (i = 0; i < bp->num_rx_rings; i++) {
  4367. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4368. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4369. int j;
  4370. if (rxr->rx_buf_ring == NULL)
  4371. return;
  4372. for (j = 0; j < bp->rx_max_ring_idx; j++) {
  4373. struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
  4374. struct sk_buff *skb = rx_buf->skb;
  4375. if (skb == NULL)
  4376. continue;
  4377. pci_unmap_single(bp->pdev,
  4378. pci_unmap_addr(rx_buf, mapping),
  4379. bp->rx_buf_use_size,
  4380. PCI_DMA_FROMDEVICE);
  4381. rx_buf->skb = NULL;
  4382. dev_kfree_skb(skb);
  4383. }
  4384. for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
  4385. bnx2_free_rx_page(bp, rxr, j);
  4386. }
  4387. }
  4388. static void
  4389. bnx2_free_skbs(struct bnx2 *bp)
  4390. {
  4391. bnx2_free_tx_skbs(bp);
  4392. bnx2_free_rx_skbs(bp);
  4393. }
  4394. static int
  4395. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  4396. {
  4397. int rc;
  4398. rc = bnx2_reset_chip(bp, reset_code);
  4399. bnx2_free_skbs(bp);
  4400. if (rc)
  4401. return rc;
  4402. if ((rc = bnx2_init_chip(bp)) != 0)
  4403. return rc;
  4404. bnx2_init_all_rings(bp);
  4405. return 0;
  4406. }
  4407. static int
  4408. bnx2_init_nic(struct bnx2 *bp, int reset_phy)
  4409. {
  4410. int rc;
  4411. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  4412. return rc;
  4413. spin_lock_bh(&bp->phy_lock);
  4414. bnx2_init_phy(bp, reset_phy);
  4415. bnx2_set_link(bp);
  4416. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4417. bnx2_remote_phy_event(bp);
  4418. spin_unlock_bh(&bp->phy_lock);
  4419. return 0;
  4420. }
  4421. static int
  4422. bnx2_shutdown_chip(struct bnx2 *bp)
  4423. {
  4424. u32 reset_code;
  4425. if (bp->flags & BNX2_FLAG_NO_WOL)
  4426. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4427. else if (bp->wol)
  4428. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4429. else
  4430. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4431. return bnx2_reset_chip(bp, reset_code);
  4432. }
  4433. static int
  4434. bnx2_test_registers(struct bnx2 *bp)
  4435. {
  4436. int ret;
  4437. int i, is_5709;
  4438. static const struct {
  4439. u16 offset;
  4440. u16 flags;
  4441. #define BNX2_FL_NOT_5709 1
  4442. u32 rw_mask;
  4443. u32 ro_mask;
  4444. } reg_tbl[] = {
  4445. { 0x006c, 0, 0x00000000, 0x0000003f },
  4446. { 0x0090, 0, 0xffffffff, 0x00000000 },
  4447. { 0x0094, 0, 0x00000000, 0x00000000 },
  4448. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  4449. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4450. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4451. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  4452. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  4453. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4454. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  4455. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4456. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4457. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4458. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4459. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4460. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4461. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4462. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4463. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4464. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  4465. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  4466. { 0x1000, 0, 0x00000000, 0x00000001 },
  4467. { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
  4468. { 0x1408, 0, 0x01c00800, 0x00000000 },
  4469. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  4470. { 0x14a8, 0, 0x00000000, 0x000001ff },
  4471. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  4472. { 0x14b0, 0, 0x00000002, 0x00000001 },
  4473. { 0x14b8, 0, 0x00000000, 0x00000000 },
  4474. { 0x14c0, 0, 0x00000000, 0x00000009 },
  4475. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  4476. { 0x14cc, 0, 0x00000000, 0x00000001 },
  4477. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  4478. { 0x1800, 0, 0x00000000, 0x00000001 },
  4479. { 0x1804, 0, 0x00000000, 0x00000003 },
  4480. { 0x2800, 0, 0x00000000, 0x00000001 },
  4481. { 0x2804, 0, 0x00000000, 0x00003f01 },
  4482. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  4483. { 0x2810, 0, 0xffff0000, 0x00000000 },
  4484. { 0x2814, 0, 0xffff0000, 0x00000000 },
  4485. { 0x2818, 0, 0xffff0000, 0x00000000 },
  4486. { 0x281c, 0, 0xffff0000, 0x00000000 },
  4487. { 0x2834, 0, 0xffffffff, 0x00000000 },
  4488. { 0x2840, 0, 0x00000000, 0xffffffff },
  4489. { 0x2844, 0, 0x00000000, 0xffffffff },
  4490. { 0x2848, 0, 0xffffffff, 0x00000000 },
  4491. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  4492. { 0x2c00, 0, 0x00000000, 0x00000011 },
  4493. { 0x2c04, 0, 0x00000000, 0x00030007 },
  4494. { 0x3c00, 0, 0x00000000, 0x00000001 },
  4495. { 0x3c04, 0, 0x00000000, 0x00070000 },
  4496. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  4497. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  4498. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  4499. { 0x3c14, 0, 0x00000000, 0xffffffff },
  4500. { 0x3c18, 0, 0x00000000, 0xffffffff },
  4501. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  4502. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  4503. { 0x5004, 0, 0x00000000, 0x0000007f },
  4504. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  4505. { 0x5c00, 0, 0x00000000, 0x00000001 },
  4506. { 0x5c04, 0, 0x00000000, 0x0003000f },
  4507. { 0x5c08, 0, 0x00000003, 0x00000000 },
  4508. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  4509. { 0x5c10, 0, 0x00000000, 0xffffffff },
  4510. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  4511. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  4512. { 0x5c88, 0, 0x00000000, 0x00077373 },
  4513. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  4514. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  4515. { 0x680c, 0, 0xffffffff, 0x00000000 },
  4516. { 0x6810, 0, 0xffffffff, 0x00000000 },
  4517. { 0x6814, 0, 0xffffffff, 0x00000000 },
  4518. { 0x6818, 0, 0xffffffff, 0x00000000 },
  4519. { 0x681c, 0, 0xffffffff, 0x00000000 },
  4520. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  4521. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  4522. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  4523. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  4524. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  4525. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  4526. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  4527. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  4528. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  4529. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  4530. { 0x684c, 0, 0xffffffff, 0x00000000 },
  4531. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  4532. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  4533. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  4534. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  4535. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  4536. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  4537. { 0xffff, 0, 0x00000000, 0x00000000 },
  4538. };
  4539. ret = 0;
  4540. is_5709 = 0;
  4541. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4542. is_5709 = 1;
  4543. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  4544. u32 offset, rw_mask, ro_mask, save_val, val;
  4545. u16 flags = reg_tbl[i].flags;
  4546. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  4547. continue;
  4548. offset = (u32) reg_tbl[i].offset;
  4549. rw_mask = reg_tbl[i].rw_mask;
  4550. ro_mask = reg_tbl[i].ro_mask;
  4551. save_val = readl(bp->regview + offset);
  4552. writel(0, bp->regview + offset);
  4553. val = readl(bp->regview + offset);
  4554. if ((val & rw_mask) != 0) {
  4555. goto reg_test_err;
  4556. }
  4557. if ((val & ro_mask) != (save_val & ro_mask)) {
  4558. goto reg_test_err;
  4559. }
  4560. writel(0xffffffff, bp->regview + offset);
  4561. val = readl(bp->regview + offset);
  4562. if ((val & rw_mask) != rw_mask) {
  4563. goto reg_test_err;
  4564. }
  4565. if ((val & ro_mask) != (save_val & ro_mask)) {
  4566. goto reg_test_err;
  4567. }
  4568. writel(save_val, bp->regview + offset);
  4569. continue;
  4570. reg_test_err:
  4571. writel(save_val, bp->regview + offset);
  4572. ret = -ENODEV;
  4573. break;
  4574. }
  4575. return ret;
  4576. }
  4577. static int
  4578. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  4579. {
  4580. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  4581. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  4582. int i;
  4583. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  4584. u32 offset;
  4585. for (offset = 0; offset < size; offset += 4) {
  4586. bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
  4587. if (bnx2_reg_rd_ind(bp, start + offset) !=
  4588. test_pattern[i]) {
  4589. return -ENODEV;
  4590. }
  4591. }
  4592. }
  4593. return 0;
  4594. }
  4595. static int
  4596. bnx2_test_memory(struct bnx2 *bp)
  4597. {
  4598. int ret = 0;
  4599. int i;
  4600. static struct mem_entry {
  4601. u32 offset;
  4602. u32 len;
  4603. } mem_tbl_5706[] = {
  4604. { 0x60000, 0x4000 },
  4605. { 0xa0000, 0x3000 },
  4606. { 0xe0000, 0x4000 },
  4607. { 0x120000, 0x4000 },
  4608. { 0x1a0000, 0x4000 },
  4609. { 0x160000, 0x4000 },
  4610. { 0xffffffff, 0 },
  4611. },
  4612. mem_tbl_5709[] = {
  4613. { 0x60000, 0x4000 },
  4614. { 0xa0000, 0x3000 },
  4615. { 0xe0000, 0x4000 },
  4616. { 0x120000, 0x4000 },
  4617. { 0x1a0000, 0x4000 },
  4618. { 0xffffffff, 0 },
  4619. };
  4620. struct mem_entry *mem_tbl;
  4621. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4622. mem_tbl = mem_tbl_5709;
  4623. else
  4624. mem_tbl = mem_tbl_5706;
  4625. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  4626. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  4627. mem_tbl[i].len)) != 0) {
  4628. return ret;
  4629. }
  4630. }
  4631. return ret;
  4632. }
  4633. #define BNX2_MAC_LOOPBACK 0
  4634. #define BNX2_PHY_LOOPBACK 1
  4635. static int
  4636. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  4637. {
  4638. unsigned int pkt_size, num_pkts, i;
  4639. struct sk_buff *skb, *rx_skb;
  4640. unsigned char *packet;
  4641. u16 rx_start_idx, rx_idx;
  4642. dma_addr_t map;
  4643. struct tx_bd *txbd;
  4644. struct sw_bd *rx_buf;
  4645. struct l2_fhdr *rx_hdr;
  4646. int ret = -ENODEV;
  4647. struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
  4648. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4649. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4650. tx_napi = bnapi;
  4651. txr = &tx_napi->tx_ring;
  4652. rxr = &bnapi->rx_ring;
  4653. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  4654. bp->loopback = MAC_LOOPBACK;
  4655. bnx2_set_mac_loopback(bp);
  4656. }
  4657. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  4658. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4659. return 0;
  4660. bp->loopback = PHY_LOOPBACK;
  4661. bnx2_set_phy_loopback(bp);
  4662. }
  4663. else
  4664. return -EINVAL;
  4665. pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
  4666. skb = netdev_alloc_skb(bp->dev, pkt_size);
  4667. if (!skb)
  4668. return -ENOMEM;
  4669. packet = skb_put(skb, pkt_size);
  4670. memcpy(packet, bp->dev->dev_addr, 6);
  4671. memset(packet + 6, 0x0, 8);
  4672. for (i = 14; i < pkt_size; i++)
  4673. packet[i] = (unsigned char) (i & 0xff);
  4674. map = pci_map_single(bp->pdev, skb->data, pkt_size,
  4675. PCI_DMA_TODEVICE);
  4676. if (pci_dma_mapping_error(bp->pdev, map)) {
  4677. dev_kfree_skb(skb);
  4678. return -EIO;
  4679. }
  4680. REG_WR(bp, BNX2_HC_COMMAND,
  4681. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4682. REG_RD(bp, BNX2_HC_COMMAND);
  4683. udelay(5);
  4684. rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
  4685. num_pkts = 0;
  4686. txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
  4687. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  4688. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  4689. txbd->tx_bd_mss_nbytes = pkt_size;
  4690. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  4691. num_pkts++;
  4692. txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
  4693. txr->tx_prod_bseq += pkt_size;
  4694. REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
  4695. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  4696. udelay(100);
  4697. REG_WR(bp, BNX2_HC_COMMAND,
  4698. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4699. REG_RD(bp, BNX2_HC_COMMAND);
  4700. udelay(5);
  4701. pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
  4702. dev_kfree_skb(skb);
  4703. if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
  4704. goto loopback_test_done;
  4705. rx_idx = bnx2_get_hw_rx_cons(bnapi);
  4706. if (rx_idx != rx_start_idx + num_pkts) {
  4707. goto loopback_test_done;
  4708. }
  4709. rx_buf = &rxr->rx_buf_ring[rx_start_idx];
  4710. rx_skb = rx_buf->skb;
  4711. rx_hdr = (struct l2_fhdr *) rx_skb->data;
  4712. skb_reserve(rx_skb, BNX2_RX_OFFSET);
  4713. pci_dma_sync_single_for_cpu(bp->pdev,
  4714. pci_unmap_addr(rx_buf, mapping),
  4715. bp->rx_buf_size, PCI_DMA_FROMDEVICE);
  4716. if (rx_hdr->l2_fhdr_status &
  4717. (L2_FHDR_ERRORS_BAD_CRC |
  4718. L2_FHDR_ERRORS_PHY_DECODE |
  4719. L2_FHDR_ERRORS_ALIGNMENT |
  4720. L2_FHDR_ERRORS_TOO_SHORT |
  4721. L2_FHDR_ERRORS_GIANT_FRAME)) {
  4722. goto loopback_test_done;
  4723. }
  4724. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  4725. goto loopback_test_done;
  4726. }
  4727. for (i = 14; i < pkt_size; i++) {
  4728. if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
  4729. goto loopback_test_done;
  4730. }
  4731. }
  4732. ret = 0;
  4733. loopback_test_done:
  4734. bp->loopback = 0;
  4735. return ret;
  4736. }
  4737. #define BNX2_MAC_LOOPBACK_FAILED 1
  4738. #define BNX2_PHY_LOOPBACK_FAILED 2
  4739. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  4740. BNX2_PHY_LOOPBACK_FAILED)
  4741. static int
  4742. bnx2_test_loopback(struct bnx2 *bp)
  4743. {
  4744. int rc = 0;
  4745. if (!netif_running(bp->dev))
  4746. return BNX2_LOOPBACK_FAILED;
  4747. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  4748. spin_lock_bh(&bp->phy_lock);
  4749. bnx2_init_phy(bp, 1);
  4750. spin_unlock_bh(&bp->phy_lock);
  4751. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  4752. rc |= BNX2_MAC_LOOPBACK_FAILED;
  4753. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  4754. rc |= BNX2_PHY_LOOPBACK_FAILED;
  4755. return rc;
  4756. }
  4757. #define NVRAM_SIZE 0x200
  4758. #define CRC32_RESIDUAL 0xdebb20e3
  4759. static int
  4760. bnx2_test_nvram(struct bnx2 *bp)
  4761. {
  4762. __be32 buf[NVRAM_SIZE / 4];
  4763. u8 *data = (u8 *) buf;
  4764. int rc = 0;
  4765. u32 magic, csum;
  4766. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  4767. goto test_nvram_done;
  4768. magic = be32_to_cpu(buf[0]);
  4769. if (magic != 0x669955aa) {
  4770. rc = -ENODEV;
  4771. goto test_nvram_done;
  4772. }
  4773. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  4774. goto test_nvram_done;
  4775. csum = ether_crc_le(0x100, data);
  4776. if (csum != CRC32_RESIDUAL) {
  4777. rc = -ENODEV;
  4778. goto test_nvram_done;
  4779. }
  4780. csum = ether_crc_le(0x100, data + 0x100);
  4781. if (csum != CRC32_RESIDUAL) {
  4782. rc = -ENODEV;
  4783. }
  4784. test_nvram_done:
  4785. return rc;
  4786. }
  4787. static int
  4788. bnx2_test_link(struct bnx2 *bp)
  4789. {
  4790. u32 bmsr;
  4791. if (!netif_running(bp->dev))
  4792. return -ENODEV;
  4793. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  4794. if (bp->link_up)
  4795. return 0;
  4796. return -ENODEV;
  4797. }
  4798. spin_lock_bh(&bp->phy_lock);
  4799. bnx2_enable_bmsr1(bp);
  4800. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4801. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4802. bnx2_disable_bmsr1(bp);
  4803. spin_unlock_bh(&bp->phy_lock);
  4804. if (bmsr & BMSR_LSTATUS) {
  4805. return 0;
  4806. }
  4807. return -ENODEV;
  4808. }
  4809. static int
  4810. bnx2_test_intr(struct bnx2 *bp)
  4811. {
  4812. int i;
  4813. u16 status_idx;
  4814. if (!netif_running(bp->dev))
  4815. return -ENODEV;
  4816. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  4817. /* This register is not touched during run-time. */
  4818. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  4819. REG_RD(bp, BNX2_HC_COMMAND);
  4820. for (i = 0; i < 10; i++) {
  4821. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  4822. status_idx) {
  4823. break;
  4824. }
  4825. msleep_interruptible(10);
  4826. }
  4827. if (i < 10)
  4828. return 0;
  4829. return -ENODEV;
  4830. }
  4831. /* Determining link for parallel detection. */
  4832. static int
  4833. bnx2_5706_serdes_has_link(struct bnx2 *bp)
  4834. {
  4835. u32 mode_ctl, an_dbg, exp;
  4836. if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
  4837. return 0;
  4838. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
  4839. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
  4840. if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
  4841. return 0;
  4842. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4843. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4844. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4845. if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
  4846. return 0;
  4847. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
  4848. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4849. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4850. if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
  4851. return 0;
  4852. return 1;
  4853. }
  4854. static void
  4855. bnx2_5706_serdes_timer(struct bnx2 *bp)
  4856. {
  4857. int check_link = 1;
  4858. spin_lock(&bp->phy_lock);
  4859. if (bp->serdes_an_pending) {
  4860. bp->serdes_an_pending--;
  4861. check_link = 0;
  4862. } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4863. u32 bmcr;
  4864. bp->current_interval = BNX2_TIMER_INTERVAL;
  4865. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4866. if (bmcr & BMCR_ANENABLE) {
  4867. if (bnx2_5706_serdes_has_link(bp)) {
  4868. bmcr &= ~BMCR_ANENABLE;
  4869. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  4870. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4871. bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
  4872. }
  4873. }
  4874. }
  4875. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  4876. (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
  4877. u32 phy2;
  4878. bnx2_write_phy(bp, 0x17, 0x0f01);
  4879. bnx2_read_phy(bp, 0x15, &phy2);
  4880. if (phy2 & 0x20) {
  4881. u32 bmcr;
  4882. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4883. bmcr |= BMCR_ANENABLE;
  4884. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4885. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  4886. }
  4887. } else
  4888. bp->current_interval = BNX2_TIMER_INTERVAL;
  4889. if (check_link) {
  4890. u32 val;
  4891. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4892. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4893. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4894. if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
  4895. if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
  4896. bnx2_5706s_force_link_dn(bp, 1);
  4897. bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
  4898. } else
  4899. bnx2_set_link(bp);
  4900. } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
  4901. bnx2_set_link(bp);
  4902. }
  4903. spin_unlock(&bp->phy_lock);
  4904. }
  4905. static void
  4906. bnx2_5708_serdes_timer(struct bnx2 *bp)
  4907. {
  4908. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4909. return;
  4910. if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
  4911. bp->serdes_an_pending = 0;
  4912. return;
  4913. }
  4914. spin_lock(&bp->phy_lock);
  4915. if (bp->serdes_an_pending)
  4916. bp->serdes_an_pending--;
  4917. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4918. u32 bmcr;
  4919. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4920. if (bmcr & BMCR_ANENABLE) {
  4921. bnx2_enable_forced_2g5(bp);
  4922. bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
  4923. } else {
  4924. bnx2_disable_forced_2g5(bp);
  4925. bp->serdes_an_pending = 2;
  4926. bp->current_interval = BNX2_TIMER_INTERVAL;
  4927. }
  4928. } else
  4929. bp->current_interval = BNX2_TIMER_INTERVAL;
  4930. spin_unlock(&bp->phy_lock);
  4931. }
  4932. static void
  4933. bnx2_timer(unsigned long data)
  4934. {
  4935. struct bnx2 *bp = (struct bnx2 *) data;
  4936. if (!netif_running(bp->dev))
  4937. return;
  4938. if (atomic_read(&bp->intr_sem) != 0)
  4939. goto bnx2_restart_timer;
  4940. if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
  4941. BNX2_FLAG_USING_MSI)
  4942. bnx2_chk_missed_msi(bp);
  4943. bnx2_send_heart_beat(bp);
  4944. bp->stats_blk->stat_FwRxDrop =
  4945. bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
  4946. /* workaround occasional corrupted counters */
  4947. if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
  4948. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  4949. BNX2_HC_COMMAND_STATS_NOW);
  4950. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  4951. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  4952. bnx2_5706_serdes_timer(bp);
  4953. else
  4954. bnx2_5708_serdes_timer(bp);
  4955. }
  4956. bnx2_restart_timer:
  4957. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4958. }
  4959. static int
  4960. bnx2_request_irq(struct bnx2 *bp)
  4961. {
  4962. unsigned long flags;
  4963. struct bnx2_irq *irq;
  4964. int rc = 0, i;
  4965. if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
  4966. flags = 0;
  4967. else
  4968. flags = IRQF_SHARED;
  4969. for (i = 0; i < bp->irq_nvecs; i++) {
  4970. irq = &bp->irq_tbl[i];
  4971. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  4972. &bp->bnx2_napi[i]);
  4973. if (rc)
  4974. break;
  4975. irq->requested = 1;
  4976. }
  4977. return rc;
  4978. }
  4979. static void
  4980. bnx2_free_irq(struct bnx2 *bp)
  4981. {
  4982. struct bnx2_irq *irq;
  4983. int i;
  4984. for (i = 0; i < bp->irq_nvecs; i++) {
  4985. irq = &bp->irq_tbl[i];
  4986. if (irq->requested)
  4987. free_irq(irq->vector, &bp->bnx2_napi[i]);
  4988. irq->requested = 0;
  4989. }
  4990. if (bp->flags & BNX2_FLAG_USING_MSI)
  4991. pci_disable_msi(bp->pdev);
  4992. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  4993. pci_disable_msix(bp->pdev);
  4994. bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
  4995. }
  4996. static void
  4997. bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
  4998. {
  4999. int i, rc;
  5000. struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
  5001. struct net_device *dev = bp->dev;
  5002. const int len = sizeof(bp->irq_tbl[0].name);
  5003. bnx2_setup_msix_tbl(bp);
  5004. REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
  5005. REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
  5006. REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
  5007. /* Need to flush the previous three writes to ensure MSI-X
  5008. * is setup properly */
  5009. REG_RD(bp, BNX2_PCI_MSIX_CONTROL);
  5010. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  5011. msix_ent[i].entry = i;
  5012. msix_ent[i].vector = 0;
  5013. }
  5014. rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
  5015. if (rc != 0)
  5016. return;
  5017. bp->irq_nvecs = msix_vecs;
  5018. bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
  5019. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  5020. bp->irq_tbl[i].vector = msix_ent[i].vector;
  5021. snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
  5022. bp->irq_tbl[i].handler = bnx2_msi_1shot;
  5023. }
  5024. }
  5025. static void
  5026. bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
  5027. {
  5028. int cpus = num_online_cpus();
  5029. int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
  5030. bp->irq_tbl[0].handler = bnx2_interrupt;
  5031. strcpy(bp->irq_tbl[0].name, bp->dev->name);
  5032. bp->irq_nvecs = 1;
  5033. bp->irq_tbl[0].vector = bp->pdev->irq;
  5034. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
  5035. bnx2_enable_msix(bp, msix_vecs);
  5036. if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
  5037. !(bp->flags & BNX2_FLAG_USING_MSIX)) {
  5038. if (pci_enable_msi(bp->pdev) == 0) {
  5039. bp->flags |= BNX2_FLAG_USING_MSI;
  5040. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  5041. bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
  5042. bp->irq_tbl[0].handler = bnx2_msi_1shot;
  5043. } else
  5044. bp->irq_tbl[0].handler = bnx2_msi;
  5045. bp->irq_tbl[0].vector = bp->pdev->irq;
  5046. }
  5047. }
  5048. bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
  5049. bp->dev->real_num_tx_queues = bp->num_tx_rings;
  5050. bp->num_rx_rings = bp->irq_nvecs;
  5051. }
  5052. /* Called with rtnl_lock */
  5053. static int
  5054. bnx2_open(struct net_device *dev)
  5055. {
  5056. struct bnx2 *bp = netdev_priv(dev);
  5057. int rc;
  5058. netif_carrier_off(dev);
  5059. bnx2_set_power_state(bp, PCI_D0);
  5060. bnx2_disable_int(bp);
  5061. bnx2_setup_int_mode(bp, disable_msi);
  5062. bnx2_init_napi(bp);
  5063. bnx2_napi_enable(bp);
  5064. rc = bnx2_alloc_mem(bp);
  5065. if (rc)
  5066. goto open_err;
  5067. rc = bnx2_request_irq(bp);
  5068. if (rc)
  5069. goto open_err;
  5070. rc = bnx2_init_nic(bp, 1);
  5071. if (rc)
  5072. goto open_err;
  5073. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5074. atomic_set(&bp->intr_sem, 0);
  5075. memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block));
  5076. bnx2_enable_int(bp);
  5077. if (bp->flags & BNX2_FLAG_USING_MSI) {
  5078. /* Test MSI to make sure it is working
  5079. * If MSI test fails, go back to INTx mode
  5080. */
  5081. if (bnx2_test_intr(bp) != 0) {
  5082. netdev_warn(bp->dev, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
  5083. bnx2_disable_int(bp);
  5084. bnx2_free_irq(bp);
  5085. bnx2_setup_int_mode(bp, 1);
  5086. rc = bnx2_init_nic(bp, 0);
  5087. if (!rc)
  5088. rc = bnx2_request_irq(bp);
  5089. if (rc) {
  5090. del_timer_sync(&bp->timer);
  5091. goto open_err;
  5092. }
  5093. bnx2_enable_int(bp);
  5094. }
  5095. }
  5096. if (bp->flags & BNX2_FLAG_USING_MSI)
  5097. netdev_info(dev, "using MSI\n");
  5098. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5099. netdev_info(dev, "using MSIX\n");
  5100. netif_tx_start_all_queues(dev);
  5101. return 0;
  5102. open_err:
  5103. bnx2_napi_disable(bp);
  5104. bnx2_free_skbs(bp);
  5105. bnx2_free_irq(bp);
  5106. bnx2_free_mem(bp);
  5107. return rc;
  5108. }
  5109. static void
  5110. bnx2_reset_task(struct work_struct *work)
  5111. {
  5112. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  5113. rtnl_lock();
  5114. if (!netif_running(bp->dev)) {
  5115. rtnl_unlock();
  5116. return;
  5117. }
  5118. bnx2_netif_stop(bp, true);
  5119. bnx2_init_nic(bp, 1);
  5120. atomic_set(&bp->intr_sem, 1);
  5121. bnx2_netif_start(bp, true);
  5122. rtnl_unlock();
  5123. }
  5124. static void
  5125. bnx2_dump_state(struct bnx2 *bp)
  5126. {
  5127. struct net_device *dev = bp->dev;
  5128. netdev_err(dev, "DEBUG: intr_sem[%x]\n", atomic_read(&bp->intr_sem));
  5129. netdev_err(dev, "DEBUG: EMAC_TX_STATUS[%08x] RPM_MGMT_PKT_CTRL[%08x]\n",
  5130. REG_RD(bp, BNX2_EMAC_TX_STATUS),
  5131. REG_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
  5132. netdev_err(dev, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
  5133. bnx2_reg_rd_ind(bp, BNX2_MCP_STATE_P0),
  5134. bnx2_reg_rd_ind(bp, BNX2_MCP_STATE_P1));
  5135. netdev_err(dev, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
  5136. REG_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
  5137. if (bp->flags & BNX2_FLAG_USING_MSIX)
  5138. netdev_err(dev, "DEBUG: PBA[%08x]\n",
  5139. REG_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
  5140. }
  5141. static void
  5142. bnx2_tx_timeout(struct net_device *dev)
  5143. {
  5144. struct bnx2 *bp = netdev_priv(dev);
  5145. bnx2_dump_state(bp);
  5146. /* This allows the netif to be shutdown gracefully before resetting */
  5147. schedule_work(&bp->reset_task);
  5148. }
  5149. #ifdef BCM_VLAN
  5150. /* Called with rtnl_lock */
  5151. static void
  5152. bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
  5153. {
  5154. struct bnx2 *bp = netdev_priv(dev);
  5155. if (netif_running(dev))
  5156. bnx2_netif_stop(bp, false);
  5157. bp->vlgrp = vlgrp;
  5158. if (!netif_running(dev))
  5159. return;
  5160. bnx2_set_rx_mode(dev);
  5161. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  5162. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
  5163. bnx2_netif_start(bp, false);
  5164. }
  5165. #endif
  5166. /* Called with netif_tx_lock.
  5167. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  5168. * netif_wake_queue().
  5169. */
  5170. static netdev_tx_t
  5171. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5172. {
  5173. struct bnx2 *bp = netdev_priv(dev);
  5174. dma_addr_t mapping;
  5175. struct tx_bd *txbd;
  5176. struct sw_tx_bd *tx_buf;
  5177. u32 len, vlan_tag_flags, last_frag, mss;
  5178. u16 prod, ring_prod;
  5179. int i;
  5180. struct bnx2_napi *bnapi;
  5181. struct bnx2_tx_ring_info *txr;
  5182. struct netdev_queue *txq;
  5183. /* Determine which tx ring we will be placed on */
  5184. i = skb_get_queue_mapping(skb);
  5185. bnapi = &bp->bnx2_napi[i];
  5186. txr = &bnapi->tx_ring;
  5187. txq = netdev_get_tx_queue(dev, i);
  5188. if (unlikely(bnx2_tx_avail(bp, txr) <
  5189. (skb_shinfo(skb)->nr_frags + 1))) {
  5190. netif_tx_stop_queue(txq);
  5191. netdev_err(dev, "BUG! Tx ring full when queue awake!\n");
  5192. return NETDEV_TX_BUSY;
  5193. }
  5194. len = skb_headlen(skb);
  5195. prod = txr->tx_prod;
  5196. ring_prod = TX_RING_IDX(prod);
  5197. vlan_tag_flags = 0;
  5198. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5199. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  5200. }
  5201. #ifdef BCM_VLAN
  5202. if (bp->vlgrp && vlan_tx_tag_present(skb)) {
  5203. vlan_tag_flags |=
  5204. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  5205. }
  5206. #endif
  5207. if ((mss = skb_shinfo(skb)->gso_size)) {
  5208. u32 tcp_opt_len;
  5209. struct iphdr *iph;
  5210. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  5211. tcp_opt_len = tcp_optlen(skb);
  5212. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  5213. u32 tcp_off = skb_transport_offset(skb) -
  5214. sizeof(struct ipv6hdr) - ETH_HLEN;
  5215. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  5216. TX_BD_FLAGS_SW_FLAGS;
  5217. if (likely(tcp_off == 0))
  5218. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  5219. else {
  5220. tcp_off >>= 3;
  5221. vlan_tag_flags |= ((tcp_off & 0x3) <<
  5222. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  5223. ((tcp_off & 0x10) <<
  5224. TX_BD_FLAGS_TCP6_OFF4_SHL);
  5225. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  5226. }
  5227. } else {
  5228. iph = ip_hdr(skb);
  5229. if (tcp_opt_len || (iph->ihl > 5)) {
  5230. vlan_tag_flags |= ((iph->ihl - 5) +
  5231. (tcp_opt_len >> 2)) << 8;
  5232. }
  5233. }
  5234. } else
  5235. mss = 0;
  5236. mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
  5237. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  5238. dev_kfree_skb(skb);
  5239. return NETDEV_TX_OK;
  5240. }
  5241. tx_buf = &txr->tx_buf_ring[ring_prod];
  5242. tx_buf->skb = skb;
  5243. pci_unmap_addr_set(tx_buf, mapping, mapping);
  5244. txbd = &txr->tx_desc_ring[ring_prod];
  5245. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5246. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5247. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5248. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  5249. last_frag = skb_shinfo(skb)->nr_frags;
  5250. tx_buf->nr_frags = last_frag;
  5251. tx_buf->is_gso = skb_is_gso(skb);
  5252. for (i = 0; i < last_frag; i++) {
  5253. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5254. prod = NEXT_TX_BD(prod);
  5255. ring_prod = TX_RING_IDX(prod);
  5256. txbd = &txr->tx_desc_ring[ring_prod];
  5257. len = frag->size;
  5258. mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
  5259. len, PCI_DMA_TODEVICE);
  5260. if (pci_dma_mapping_error(bp->pdev, mapping))
  5261. goto dma_error;
  5262. pci_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
  5263. mapping);
  5264. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5265. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5266. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5267. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  5268. }
  5269. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  5270. prod = NEXT_TX_BD(prod);
  5271. txr->tx_prod_bseq += skb->len;
  5272. REG_WR16(bp, txr->tx_bidx_addr, prod);
  5273. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  5274. mmiowb();
  5275. txr->tx_prod = prod;
  5276. if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
  5277. netif_tx_stop_queue(txq);
  5278. if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
  5279. netif_tx_wake_queue(txq);
  5280. }
  5281. return NETDEV_TX_OK;
  5282. dma_error:
  5283. /* save value of frag that failed */
  5284. last_frag = i;
  5285. /* start back at beginning and unmap skb */
  5286. prod = txr->tx_prod;
  5287. ring_prod = TX_RING_IDX(prod);
  5288. tx_buf = &txr->tx_buf_ring[ring_prod];
  5289. tx_buf->skb = NULL;
  5290. pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  5291. skb_headlen(skb), PCI_DMA_TODEVICE);
  5292. /* unmap remaining mapped pages */
  5293. for (i = 0; i < last_frag; i++) {
  5294. prod = NEXT_TX_BD(prod);
  5295. ring_prod = TX_RING_IDX(prod);
  5296. tx_buf = &txr->tx_buf_ring[ring_prod];
  5297. pci_unmap_page(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  5298. skb_shinfo(skb)->frags[i].size,
  5299. PCI_DMA_TODEVICE);
  5300. }
  5301. dev_kfree_skb(skb);
  5302. return NETDEV_TX_OK;
  5303. }
  5304. /* Called with rtnl_lock */
  5305. static int
  5306. bnx2_close(struct net_device *dev)
  5307. {
  5308. struct bnx2 *bp = netdev_priv(dev);
  5309. cancel_work_sync(&bp->reset_task);
  5310. bnx2_disable_int_sync(bp);
  5311. bnx2_napi_disable(bp);
  5312. del_timer_sync(&bp->timer);
  5313. bnx2_shutdown_chip(bp);
  5314. bnx2_free_irq(bp);
  5315. bnx2_free_skbs(bp);
  5316. bnx2_free_mem(bp);
  5317. bp->link_up = 0;
  5318. netif_carrier_off(bp->dev);
  5319. bnx2_set_power_state(bp, PCI_D3hot);
  5320. return 0;
  5321. }
  5322. static void
  5323. bnx2_save_stats(struct bnx2 *bp)
  5324. {
  5325. u32 *hw_stats = (u32 *) bp->stats_blk;
  5326. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  5327. int i;
  5328. /* The 1st 10 counters are 64-bit counters */
  5329. for (i = 0; i < 20; i += 2) {
  5330. u32 hi;
  5331. u64 lo;
  5332. hi = temp_stats[i] + hw_stats[i];
  5333. lo = (u64) temp_stats[i + 1] + (u64) hw_stats[i + 1];
  5334. if (lo > 0xffffffff)
  5335. hi++;
  5336. temp_stats[i] = hi;
  5337. temp_stats[i + 1] = lo & 0xffffffff;
  5338. }
  5339. for ( ; i < sizeof(struct statistics_block) / 4; i++)
  5340. temp_stats[i] += hw_stats[i];
  5341. }
  5342. #define GET_64BIT_NET_STATS64(ctr) \
  5343. (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
  5344. (unsigned long) (ctr##_lo)
  5345. #define GET_64BIT_NET_STATS32(ctr) \
  5346. (ctr##_lo)
  5347. #if (BITS_PER_LONG == 64)
  5348. #define GET_64BIT_NET_STATS(ctr) \
  5349. GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
  5350. GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
  5351. #else
  5352. #define GET_64BIT_NET_STATS(ctr) \
  5353. GET_64BIT_NET_STATS32(bp->stats_blk->ctr) + \
  5354. GET_64BIT_NET_STATS32(bp->temp_stats_blk->ctr)
  5355. #endif
  5356. #define GET_32BIT_NET_STATS(ctr) \
  5357. (unsigned long) (bp->stats_blk->ctr + \
  5358. bp->temp_stats_blk->ctr)
  5359. static struct net_device_stats *
  5360. bnx2_get_stats(struct net_device *dev)
  5361. {
  5362. struct bnx2 *bp = netdev_priv(dev);
  5363. struct net_device_stats *net_stats = &dev->stats;
  5364. if (bp->stats_blk == NULL) {
  5365. return net_stats;
  5366. }
  5367. net_stats->rx_packets =
  5368. GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) +
  5369. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) +
  5370. GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts);
  5371. net_stats->tx_packets =
  5372. GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) +
  5373. GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) +
  5374. GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts);
  5375. net_stats->rx_bytes =
  5376. GET_64BIT_NET_STATS(stat_IfHCInOctets);
  5377. net_stats->tx_bytes =
  5378. GET_64BIT_NET_STATS(stat_IfHCOutOctets);
  5379. net_stats->multicast =
  5380. GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts);
  5381. net_stats->collisions =
  5382. GET_32BIT_NET_STATS(stat_EtherStatsCollisions);
  5383. net_stats->rx_length_errors =
  5384. GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) +
  5385. GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts);
  5386. net_stats->rx_over_errors =
  5387. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5388. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards);
  5389. net_stats->rx_frame_errors =
  5390. GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors);
  5391. net_stats->rx_crc_errors =
  5392. GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors);
  5393. net_stats->rx_errors = net_stats->rx_length_errors +
  5394. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  5395. net_stats->rx_crc_errors;
  5396. net_stats->tx_aborted_errors =
  5397. GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) +
  5398. GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions);
  5399. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  5400. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5401. net_stats->tx_carrier_errors = 0;
  5402. else {
  5403. net_stats->tx_carrier_errors =
  5404. GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors);
  5405. }
  5406. net_stats->tx_errors =
  5407. GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) +
  5408. net_stats->tx_aborted_errors +
  5409. net_stats->tx_carrier_errors;
  5410. net_stats->rx_missed_errors =
  5411. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5412. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) +
  5413. GET_32BIT_NET_STATS(stat_FwRxDrop);
  5414. return net_stats;
  5415. }
  5416. /* All ethtool functions called with rtnl_lock */
  5417. static int
  5418. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5419. {
  5420. struct bnx2 *bp = netdev_priv(dev);
  5421. int support_serdes = 0, support_copper = 0;
  5422. cmd->supported = SUPPORTED_Autoneg;
  5423. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5424. support_serdes = 1;
  5425. support_copper = 1;
  5426. } else if (bp->phy_port == PORT_FIBRE)
  5427. support_serdes = 1;
  5428. else
  5429. support_copper = 1;
  5430. if (support_serdes) {
  5431. cmd->supported |= SUPPORTED_1000baseT_Full |
  5432. SUPPORTED_FIBRE;
  5433. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  5434. cmd->supported |= SUPPORTED_2500baseX_Full;
  5435. }
  5436. if (support_copper) {
  5437. cmd->supported |= SUPPORTED_10baseT_Half |
  5438. SUPPORTED_10baseT_Full |
  5439. SUPPORTED_100baseT_Half |
  5440. SUPPORTED_100baseT_Full |
  5441. SUPPORTED_1000baseT_Full |
  5442. SUPPORTED_TP;
  5443. }
  5444. spin_lock_bh(&bp->phy_lock);
  5445. cmd->port = bp->phy_port;
  5446. cmd->advertising = bp->advertising;
  5447. if (bp->autoneg & AUTONEG_SPEED) {
  5448. cmd->autoneg = AUTONEG_ENABLE;
  5449. }
  5450. else {
  5451. cmd->autoneg = AUTONEG_DISABLE;
  5452. }
  5453. if (netif_carrier_ok(dev)) {
  5454. cmd->speed = bp->line_speed;
  5455. cmd->duplex = bp->duplex;
  5456. }
  5457. else {
  5458. cmd->speed = -1;
  5459. cmd->duplex = -1;
  5460. }
  5461. spin_unlock_bh(&bp->phy_lock);
  5462. cmd->transceiver = XCVR_INTERNAL;
  5463. cmd->phy_address = bp->phy_addr;
  5464. return 0;
  5465. }
  5466. static int
  5467. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5468. {
  5469. struct bnx2 *bp = netdev_priv(dev);
  5470. u8 autoneg = bp->autoneg;
  5471. u8 req_duplex = bp->req_duplex;
  5472. u16 req_line_speed = bp->req_line_speed;
  5473. u32 advertising = bp->advertising;
  5474. int err = -EINVAL;
  5475. spin_lock_bh(&bp->phy_lock);
  5476. if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
  5477. goto err_out_unlock;
  5478. if (cmd->port != bp->phy_port &&
  5479. !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
  5480. goto err_out_unlock;
  5481. /* If device is down, we can store the settings only if the user
  5482. * is setting the currently active port.
  5483. */
  5484. if (!netif_running(dev) && cmd->port != bp->phy_port)
  5485. goto err_out_unlock;
  5486. if (cmd->autoneg == AUTONEG_ENABLE) {
  5487. autoneg |= AUTONEG_SPEED;
  5488. advertising = cmd->advertising;
  5489. if (cmd->port == PORT_TP) {
  5490. advertising &= ETHTOOL_ALL_COPPER_SPEED;
  5491. if (!advertising)
  5492. advertising = ETHTOOL_ALL_COPPER_SPEED;
  5493. } else {
  5494. advertising &= ETHTOOL_ALL_FIBRE_SPEED;
  5495. if (!advertising)
  5496. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  5497. }
  5498. advertising |= ADVERTISED_Autoneg;
  5499. }
  5500. else {
  5501. if (cmd->port == PORT_FIBRE) {
  5502. if ((cmd->speed != SPEED_1000 &&
  5503. cmd->speed != SPEED_2500) ||
  5504. (cmd->duplex != DUPLEX_FULL))
  5505. goto err_out_unlock;
  5506. if (cmd->speed == SPEED_2500 &&
  5507. !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  5508. goto err_out_unlock;
  5509. }
  5510. else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
  5511. goto err_out_unlock;
  5512. autoneg &= ~AUTONEG_SPEED;
  5513. req_line_speed = cmd->speed;
  5514. req_duplex = cmd->duplex;
  5515. advertising = 0;
  5516. }
  5517. bp->autoneg = autoneg;
  5518. bp->advertising = advertising;
  5519. bp->req_line_speed = req_line_speed;
  5520. bp->req_duplex = req_duplex;
  5521. err = 0;
  5522. /* If device is down, the new settings will be picked up when it is
  5523. * brought up.
  5524. */
  5525. if (netif_running(dev))
  5526. err = bnx2_setup_phy(bp, cmd->port);
  5527. err_out_unlock:
  5528. spin_unlock_bh(&bp->phy_lock);
  5529. return err;
  5530. }
  5531. static void
  5532. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  5533. {
  5534. struct bnx2 *bp = netdev_priv(dev);
  5535. strcpy(info->driver, DRV_MODULE_NAME);
  5536. strcpy(info->version, DRV_MODULE_VERSION);
  5537. strcpy(info->bus_info, pci_name(bp->pdev));
  5538. strcpy(info->fw_version, bp->fw_version);
  5539. }
  5540. #define BNX2_REGDUMP_LEN (32 * 1024)
  5541. static int
  5542. bnx2_get_regs_len(struct net_device *dev)
  5543. {
  5544. return BNX2_REGDUMP_LEN;
  5545. }
  5546. static void
  5547. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  5548. {
  5549. u32 *p = _p, i, offset;
  5550. u8 *orig_p = _p;
  5551. struct bnx2 *bp = netdev_priv(dev);
  5552. u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
  5553. 0x0800, 0x0880, 0x0c00, 0x0c10,
  5554. 0x0c30, 0x0d08, 0x1000, 0x101c,
  5555. 0x1040, 0x1048, 0x1080, 0x10a4,
  5556. 0x1400, 0x1490, 0x1498, 0x14f0,
  5557. 0x1500, 0x155c, 0x1580, 0x15dc,
  5558. 0x1600, 0x1658, 0x1680, 0x16d8,
  5559. 0x1800, 0x1820, 0x1840, 0x1854,
  5560. 0x1880, 0x1894, 0x1900, 0x1984,
  5561. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  5562. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  5563. 0x2000, 0x2030, 0x23c0, 0x2400,
  5564. 0x2800, 0x2820, 0x2830, 0x2850,
  5565. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  5566. 0x3c00, 0x3c94, 0x4000, 0x4010,
  5567. 0x4080, 0x4090, 0x43c0, 0x4458,
  5568. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  5569. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  5570. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  5571. 0x5fc0, 0x6000, 0x6400, 0x6428,
  5572. 0x6800, 0x6848, 0x684c, 0x6860,
  5573. 0x6888, 0x6910, 0x8000 };
  5574. regs->version = 0;
  5575. memset(p, 0, BNX2_REGDUMP_LEN);
  5576. if (!netif_running(bp->dev))
  5577. return;
  5578. i = 0;
  5579. offset = reg_boundaries[0];
  5580. p += offset;
  5581. while (offset < BNX2_REGDUMP_LEN) {
  5582. *p++ = REG_RD(bp, offset);
  5583. offset += 4;
  5584. if (offset == reg_boundaries[i + 1]) {
  5585. offset = reg_boundaries[i + 2];
  5586. p = (u32 *) (orig_p + offset);
  5587. i += 2;
  5588. }
  5589. }
  5590. }
  5591. static void
  5592. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5593. {
  5594. struct bnx2 *bp = netdev_priv(dev);
  5595. if (bp->flags & BNX2_FLAG_NO_WOL) {
  5596. wol->supported = 0;
  5597. wol->wolopts = 0;
  5598. }
  5599. else {
  5600. wol->supported = WAKE_MAGIC;
  5601. if (bp->wol)
  5602. wol->wolopts = WAKE_MAGIC;
  5603. else
  5604. wol->wolopts = 0;
  5605. }
  5606. memset(&wol->sopass, 0, sizeof(wol->sopass));
  5607. }
  5608. static int
  5609. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5610. {
  5611. struct bnx2 *bp = netdev_priv(dev);
  5612. if (wol->wolopts & ~WAKE_MAGIC)
  5613. return -EINVAL;
  5614. if (wol->wolopts & WAKE_MAGIC) {
  5615. if (bp->flags & BNX2_FLAG_NO_WOL)
  5616. return -EINVAL;
  5617. bp->wol = 1;
  5618. }
  5619. else {
  5620. bp->wol = 0;
  5621. }
  5622. return 0;
  5623. }
  5624. static int
  5625. bnx2_nway_reset(struct net_device *dev)
  5626. {
  5627. struct bnx2 *bp = netdev_priv(dev);
  5628. u32 bmcr;
  5629. if (!netif_running(dev))
  5630. return -EAGAIN;
  5631. if (!(bp->autoneg & AUTONEG_SPEED)) {
  5632. return -EINVAL;
  5633. }
  5634. spin_lock_bh(&bp->phy_lock);
  5635. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5636. int rc;
  5637. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  5638. spin_unlock_bh(&bp->phy_lock);
  5639. return rc;
  5640. }
  5641. /* Force a link down visible on the other side */
  5642. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5643. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  5644. spin_unlock_bh(&bp->phy_lock);
  5645. msleep(20);
  5646. spin_lock_bh(&bp->phy_lock);
  5647. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  5648. bp->serdes_an_pending = 1;
  5649. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5650. }
  5651. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5652. bmcr &= ~BMCR_LOOPBACK;
  5653. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  5654. spin_unlock_bh(&bp->phy_lock);
  5655. return 0;
  5656. }
  5657. static u32
  5658. bnx2_get_link(struct net_device *dev)
  5659. {
  5660. struct bnx2 *bp = netdev_priv(dev);
  5661. return bp->link_up;
  5662. }
  5663. static int
  5664. bnx2_get_eeprom_len(struct net_device *dev)
  5665. {
  5666. struct bnx2 *bp = netdev_priv(dev);
  5667. if (bp->flash_info == NULL)
  5668. return 0;
  5669. return (int) bp->flash_size;
  5670. }
  5671. static int
  5672. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5673. u8 *eebuf)
  5674. {
  5675. struct bnx2 *bp = netdev_priv(dev);
  5676. int rc;
  5677. if (!netif_running(dev))
  5678. return -EAGAIN;
  5679. /* parameters already validated in ethtool_get_eeprom */
  5680. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  5681. return rc;
  5682. }
  5683. static int
  5684. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5685. u8 *eebuf)
  5686. {
  5687. struct bnx2 *bp = netdev_priv(dev);
  5688. int rc;
  5689. if (!netif_running(dev))
  5690. return -EAGAIN;
  5691. /* parameters already validated in ethtool_set_eeprom */
  5692. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  5693. return rc;
  5694. }
  5695. static int
  5696. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5697. {
  5698. struct bnx2 *bp = netdev_priv(dev);
  5699. memset(coal, 0, sizeof(struct ethtool_coalesce));
  5700. coal->rx_coalesce_usecs = bp->rx_ticks;
  5701. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  5702. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  5703. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  5704. coal->tx_coalesce_usecs = bp->tx_ticks;
  5705. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  5706. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  5707. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  5708. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  5709. return 0;
  5710. }
  5711. static int
  5712. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5713. {
  5714. struct bnx2 *bp = netdev_priv(dev);
  5715. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  5716. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  5717. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  5718. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  5719. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  5720. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  5721. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  5722. if (bp->rx_quick_cons_trip_int > 0xff)
  5723. bp->rx_quick_cons_trip_int = 0xff;
  5724. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  5725. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  5726. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  5727. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  5728. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  5729. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  5730. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  5731. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  5732. 0xff;
  5733. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  5734. if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
  5735. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  5736. bp->stats_ticks = USEC_PER_SEC;
  5737. }
  5738. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  5739. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5740. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5741. if (netif_running(bp->dev)) {
  5742. bnx2_netif_stop(bp, true);
  5743. bnx2_init_nic(bp, 0);
  5744. bnx2_netif_start(bp, true);
  5745. }
  5746. return 0;
  5747. }
  5748. static void
  5749. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5750. {
  5751. struct bnx2 *bp = netdev_priv(dev);
  5752. ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
  5753. ering->rx_mini_max_pending = 0;
  5754. ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
  5755. ering->rx_pending = bp->rx_ring_size;
  5756. ering->rx_mini_pending = 0;
  5757. ering->rx_jumbo_pending = bp->rx_pg_ring_size;
  5758. ering->tx_max_pending = MAX_TX_DESC_CNT;
  5759. ering->tx_pending = bp->tx_ring_size;
  5760. }
  5761. static int
  5762. bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
  5763. {
  5764. if (netif_running(bp->dev)) {
  5765. /* Reset will erase chipset stats; save them */
  5766. bnx2_save_stats(bp);
  5767. bnx2_netif_stop(bp, true);
  5768. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  5769. bnx2_free_skbs(bp);
  5770. bnx2_free_mem(bp);
  5771. }
  5772. bnx2_set_rx_ring_size(bp, rx);
  5773. bp->tx_ring_size = tx;
  5774. if (netif_running(bp->dev)) {
  5775. int rc;
  5776. rc = bnx2_alloc_mem(bp);
  5777. if (!rc)
  5778. rc = bnx2_init_nic(bp, 0);
  5779. if (rc) {
  5780. bnx2_napi_enable(bp);
  5781. dev_close(bp->dev);
  5782. return rc;
  5783. }
  5784. #ifdef BCM_CNIC
  5785. mutex_lock(&bp->cnic_lock);
  5786. /* Let cnic know about the new status block. */
  5787. if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD)
  5788. bnx2_setup_cnic_irq_info(bp);
  5789. mutex_unlock(&bp->cnic_lock);
  5790. #endif
  5791. bnx2_netif_start(bp, true);
  5792. }
  5793. return 0;
  5794. }
  5795. static int
  5796. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5797. {
  5798. struct bnx2 *bp = netdev_priv(dev);
  5799. int rc;
  5800. if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
  5801. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  5802. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  5803. return -EINVAL;
  5804. }
  5805. rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
  5806. return rc;
  5807. }
  5808. static void
  5809. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5810. {
  5811. struct bnx2 *bp = netdev_priv(dev);
  5812. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  5813. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  5814. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  5815. }
  5816. static int
  5817. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5818. {
  5819. struct bnx2 *bp = netdev_priv(dev);
  5820. bp->req_flow_ctrl = 0;
  5821. if (epause->rx_pause)
  5822. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  5823. if (epause->tx_pause)
  5824. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  5825. if (epause->autoneg) {
  5826. bp->autoneg |= AUTONEG_FLOW_CTRL;
  5827. }
  5828. else {
  5829. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  5830. }
  5831. if (netif_running(dev)) {
  5832. spin_lock_bh(&bp->phy_lock);
  5833. bnx2_setup_phy(bp, bp->phy_port);
  5834. spin_unlock_bh(&bp->phy_lock);
  5835. }
  5836. return 0;
  5837. }
  5838. static u32
  5839. bnx2_get_rx_csum(struct net_device *dev)
  5840. {
  5841. struct bnx2 *bp = netdev_priv(dev);
  5842. return bp->rx_csum;
  5843. }
  5844. static int
  5845. bnx2_set_rx_csum(struct net_device *dev, u32 data)
  5846. {
  5847. struct bnx2 *bp = netdev_priv(dev);
  5848. bp->rx_csum = data;
  5849. return 0;
  5850. }
  5851. static int
  5852. bnx2_set_tso(struct net_device *dev, u32 data)
  5853. {
  5854. struct bnx2 *bp = netdev_priv(dev);
  5855. if (data) {
  5856. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  5857. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5858. dev->features |= NETIF_F_TSO6;
  5859. } else
  5860. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
  5861. NETIF_F_TSO_ECN);
  5862. return 0;
  5863. }
  5864. static struct {
  5865. char string[ETH_GSTRING_LEN];
  5866. } bnx2_stats_str_arr[] = {
  5867. { "rx_bytes" },
  5868. { "rx_error_bytes" },
  5869. { "tx_bytes" },
  5870. { "tx_error_bytes" },
  5871. { "rx_ucast_packets" },
  5872. { "rx_mcast_packets" },
  5873. { "rx_bcast_packets" },
  5874. { "tx_ucast_packets" },
  5875. { "tx_mcast_packets" },
  5876. { "tx_bcast_packets" },
  5877. { "tx_mac_errors" },
  5878. { "tx_carrier_errors" },
  5879. { "rx_crc_errors" },
  5880. { "rx_align_errors" },
  5881. { "tx_single_collisions" },
  5882. { "tx_multi_collisions" },
  5883. { "tx_deferred" },
  5884. { "tx_excess_collisions" },
  5885. { "tx_late_collisions" },
  5886. { "tx_total_collisions" },
  5887. { "rx_fragments" },
  5888. { "rx_jabbers" },
  5889. { "rx_undersize_packets" },
  5890. { "rx_oversize_packets" },
  5891. { "rx_64_byte_packets" },
  5892. { "rx_65_to_127_byte_packets" },
  5893. { "rx_128_to_255_byte_packets" },
  5894. { "rx_256_to_511_byte_packets" },
  5895. { "rx_512_to_1023_byte_packets" },
  5896. { "rx_1024_to_1522_byte_packets" },
  5897. { "rx_1523_to_9022_byte_packets" },
  5898. { "tx_64_byte_packets" },
  5899. { "tx_65_to_127_byte_packets" },
  5900. { "tx_128_to_255_byte_packets" },
  5901. { "tx_256_to_511_byte_packets" },
  5902. { "tx_512_to_1023_byte_packets" },
  5903. { "tx_1024_to_1522_byte_packets" },
  5904. { "tx_1523_to_9022_byte_packets" },
  5905. { "rx_xon_frames" },
  5906. { "rx_xoff_frames" },
  5907. { "tx_xon_frames" },
  5908. { "tx_xoff_frames" },
  5909. { "rx_mac_ctrl_frames" },
  5910. { "rx_filtered_packets" },
  5911. { "rx_ftq_discards" },
  5912. { "rx_discards" },
  5913. { "rx_fw_discards" },
  5914. };
  5915. #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
  5916. sizeof(bnx2_stats_str_arr[0]))
  5917. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  5918. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  5919. STATS_OFFSET32(stat_IfHCInOctets_hi),
  5920. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  5921. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  5922. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  5923. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  5924. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  5925. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  5926. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  5927. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  5928. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  5929. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  5930. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  5931. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  5932. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  5933. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  5934. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  5935. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  5936. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  5937. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  5938. STATS_OFFSET32(stat_EtherStatsCollisions),
  5939. STATS_OFFSET32(stat_EtherStatsFragments),
  5940. STATS_OFFSET32(stat_EtherStatsJabbers),
  5941. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  5942. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  5943. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  5944. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  5945. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  5946. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  5947. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  5948. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  5949. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  5950. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  5951. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  5952. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  5953. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  5954. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  5955. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  5956. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  5957. STATS_OFFSET32(stat_XonPauseFramesReceived),
  5958. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  5959. STATS_OFFSET32(stat_OutXonSent),
  5960. STATS_OFFSET32(stat_OutXoffSent),
  5961. STATS_OFFSET32(stat_MacControlFramesReceived),
  5962. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  5963. STATS_OFFSET32(stat_IfInFTQDiscards),
  5964. STATS_OFFSET32(stat_IfInMBUFDiscards),
  5965. STATS_OFFSET32(stat_FwRxDrop),
  5966. };
  5967. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  5968. * skipped because of errata.
  5969. */
  5970. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  5971. 8,0,8,8,8,8,8,8,8,8,
  5972. 4,0,4,4,4,4,4,4,4,4,
  5973. 4,4,4,4,4,4,4,4,4,4,
  5974. 4,4,4,4,4,4,4,4,4,4,
  5975. 4,4,4,4,4,4,4,
  5976. };
  5977. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  5978. 8,0,8,8,8,8,8,8,8,8,
  5979. 4,4,4,4,4,4,4,4,4,4,
  5980. 4,4,4,4,4,4,4,4,4,4,
  5981. 4,4,4,4,4,4,4,4,4,4,
  5982. 4,4,4,4,4,4,4,
  5983. };
  5984. #define BNX2_NUM_TESTS 6
  5985. static struct {
  5986. char string[ETH_GSTRING_LEN];
  5987. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  5988. { "register_test (offline)" },
  5989. { "memory_test (offline)" },
  5990. { "loopback_test (offline)" },
  5991. { "nvram_test (online)" },
  5992. { "interrupt_test (online)" },
  5993. { "link_test (online)" },
  5994. };
  5995. static int
  5996. bnx2_get_sset_count(struct net_device *dev, int sset)
  5997. {
  5998. switch (sset) {
  5999. case ETH_SS_TEST:
  6000. return BNX2_NUM_TESTS;
  6001. case ETH_SS_STATS:
  6002. return BNX2_NUM_STATS;
  6003. default:
  6004. return -EOPNOTSUPP;
  6005. }
  6006. }
  6007. static void
  6008. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  6009. {
  6010. struct bnx2 *bp = netdev_priv(dev);
  6011. bnx2_set_power_state(bp, PCI_D0);
  6012. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  6013. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  6014. int i;
  6015. bnx2_netif_stop(bp, true);
  6016. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  6017. bnx2_free_skbs(bp);
  6018. if (bnx2_test_registers(bp) != 0) {
  6019. buf[0] = 1;
  6020. etest->flags |= ETH_TEST_FL_FAILED;
  6021. }
  6022. if (bnx2_test_memory(bp) != 0) {
  6023. buf[1] = 1;
  6024. etest->flags |= ETH_TEST_FL_FAILED;
  6025. }
  6026. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  6027. etest->flags |= ETH_TEST_FL_FAILED;
  6028. if (!netif_running(bp->dev))
  6029. bnx2_shutdown_chip(bp);
  6030. else {
  6031. bnx2_init_nic(bp, 1);
  6032. bnx2_netif_start(bp, true);
  6033. }
  6034. /* wait for link up */
  6035. for (i = 0; i < 7; i++) {
  6036. if (bp->link_up)
  6037. break;
  6038. msleep_interruptible(1000);
  6039. }
  6040. }
  6041. if (bnx2_test_nvram(bp) != 0) {
  6042. buf[3] = 1;
  6043. etest->flags |= ETH_TEST_FL_FAILED;
  6044. }
  6045. if (bnx2_test_intr(bp) != 0) {
  6046. buf[4] = 1;
  6047. etest->flags |= ETH_TEST_FL_FAILED;
  6048. }
  6049. if (bnx2_test_link(bp) != 0) {
  6050. buf[5] = 1;
  6051. etest->flags |= ETH_TEST_FL_FAILED;
  6052. }
  6053. if (!netif_running(bp->dev))
  6054. bnx2_set_power_state(bp, PCI_D3hot);
  6055. }
  6056. static void
  6057. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  6058. {
  6059. switch (stringset) {
  6060. case ETH_SS_STATS:
  6061. memcpy(buf, bnx2_stats_str_arr,
  6062. sizeof(bnx2_stats_str_arr));
  6063. break;
  6064. case ETH_SS_TEST:
  6065. memcpy(buf, bnx2_tests_str_arr,
  6066. sizeof(bnx2_tests_str_arr));
  6067. break;
  6068. }
  6069. }
  6070. static void
  6071. bnx2_get_ethtool_stats(struct net_device *dev,
  6072. struct ethtool_stats *stats, u64 *buf)
  6073. {
  6074. struct bnx2 *bp = netdev_priv(dev);
  6075. int i;
  6076. u32 *hw_stats = (u32 *) bp->stats_blk;
  6077. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  6078. u8 *stats_len_arr = NULL;
  6079. if (hw_stats == NULL) {
  6080. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  6081. return;
  6082. }
  6083. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  6084. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  6085. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  6086. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  6087. stats_len_arr = bnx2_5706_stats_len_arr;
  6088. else
  6089. stats_len_arr = bnx2_5708_stats_len_arr;
  6090. for (i = 0; i < BNX2_NUM_STATS; i++) {
  6091. unsigned long offset;
  6092. if (stats_len_arr[i] == 0) {
  6093. /* skip this counter */
  6094. buf[i] = 0;
  6095. continue;
  6096. }
  6097. offset = bnx2_stats_offset_arr[i];
  6098. if (stats_len_arr[i] == 4) {
  6099. /* 4-byte counter */
  6100. buf[i] = (u64) *(hw_stats + offset) +
  6101. *(temp_stats + offset);
  6102. continue;
  6103. }
  6104. /* 8-byte counter */
  6105. buf[i] = (((u64) *(hw_stats + offset)) << 32) +
  6106. *(hw_stats + offset + 1) +
  6107. (((u64) *(temp_stats + offset)) << 32) +
  6108. *(temp_stats + offset + 1);
  6109. }
  6110. }
  6111. static int
  6112. bnx2_phys_id(struct net_device *dev, u32 data)
  6113. {
  6114. struct bnx2 *bp = netdev_priv(dev);
  6115. int i;
  6116. u32 save;
  6117. bnx2_set_power_state(bp, PCI_D0);
  6118. if (data == 0)
  6119. data = 2;
  6120. save = REG_RD(bp, BNX2_MISC_CFG);
  6121. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  6122. for (i = 0; i < (data * 2); i++) {
  6123. if ((i % 2) == 0) {
  6124. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  6125. }
  6126. else {
  6127. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  6128. BNX2_EMAC_LED_1000MB_OVERRIDE |
  6129. BNX2_EMAC_LED_100MB_OVERRIDE |
  6130. BNX2_EMAC_LED_10MB_OVERRIDE |
  6131. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  6132. BNX2_EMAC_LED_TRAFFIC);
  6133. }
  6134. msleep_interruptible(500);
  6135. if (signal_pending(current))
  6136. break;
  6137. }
  6138. REG_WR(bp, BNX2_EMAC_LED, 0);
  6139. REG_WR(bp, BNX2_MISC_CFG, save);
  6140. if (!netif_running(dev))
  6141. bnx2_set_power_state(bp, PCI_D3hot);
  6142. return 0;
  6143. }
  6144. static int
  6145. bnx2_set_tx_csum(struct net_device *dev, u32 data)
  6146. {
  6147. struct bnx2 *bp = netdev_priv(dev);
  6148. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6149. return (ethtool_op_set_tx_ipv6_csum(dev, data));
  6150. else
  6151. return (ethtool_op_set_tx_csum(dev, data));
  6152. }
  6153. static const struct ethtool_ops bnx2_ethtool_ops = {
  6154. .get_settings = bnx2_get_settings,
  6155. .set_settings = bnx2_set_settings,
  6156. .get_drvinfo = bnx2_get_drvinfo,
  6157. .get_regs_len = bnx2_get_regs_len,
  6158. .get_regs = bnx2_get_regs,
  6159. .get_wol = bnx2_get_wol,
  6160. .set_wol = bnx2_set_wol,
  6161. .nway_reset = bnx2_nway_reset,
  6162. .get_link = bnx2_get_link,
  6163. .get_eeprom_len = bnx2_get_eeprom_len,
  6164. .get_eeprom = bnx2_get_eeprom,
  6165. .set_eeprom = bnx2_set_eeprom,
  6166. .get_coalesce = bnx2_get_coalesce,
  6167. .set_coalesce = bnx2_set_coalesce,
  6168. .get_ringparam = bnx2_get_ringparam,
  6169. .set_ringparam = bnx2_set_ringparam,
  6170. .get_pauseparam = bnx2_get_pauseparam,
  6171. .set_pauseparam = bnx2_set_pauseparam,
  6172. .get_rx_csum = bnx2_get_rx_csum,
  6173. .set_rx_csum = bnx2_set_rx_csum,
  6174. .set_tx_csum = bnx2_set_tx_csum,
  6175. .set_sg = ethtool_op_set_sg,
  6176. .set_tso = bnx2_set_tso,
  6177. .self_test = bnx2_self_test,
  6178. .get_strings = bnx2_get_strings,
  6179. .phys_id = bnx2_phys_id,
  6180. .get_ethtool_stats = bnx2_get_ethtool_stats,
  6181. .get_sset_count = bnx2_get_sset_count,
  6182. };
  6183. /* Called with rtnl_lock */
  6184. static int
  6185. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  6186. {
  6187. struct mii_ioctl_data *data = if_mii(ifr);
  6188. struct bnx2 *bp = netdev_priv(dev);
  6189. int err;
  6190. switch(cmd) {
  6191. case SIOCGMIIPHY:
  6192. data->phy_id = bp->phy_addr;
  6193. /* fallthru */
  6194. case SIOCGMIIREG: {
  6195. u32 mii_regval;
  6196. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6197. return -EOPNOTSUPP;
  6198. if (!netif_running(dev))
  6199. return -EAGAIN;
  6200. spin_lock_bh(&bp->phy_lock);
  6201. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  6202. spin_unlock_bh(&bp->phy_lock);
  6203. data->val_out = mii_regval;
  6204. return err;
  6205. }
  6206. case SIOCSMIIREG:
  6207. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6208. return -EOPNOTSUPP;
  6209. if (!netif_running(dev))
  6210. return -EAGAIN;
  6211. spin_lock_bh(&bp->phy_lock);
  6212. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  6213. spin_unlock_bh(&bp->phy_lock);
  6214. return err;
  6215. default:
  6216. /* do nothing */
  6217. break;
  6218. }
  6219. return -EOPNOTSUPP;
  6220. }
  6221. /* Called with rtnl_lock */
  6222. static int
  6223. bnx2_change_mac_addr(struct net_device *dev, void *p)
  6224. {
  6225. struct sockaddr *addr = p;
  6226. struct bnx2 *bp = netdev_priv(dev);
  6227. if (!is_valid_ether_addr(addr->sa_data))
  6228. return -EINVAL;
  6229. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  6230. if (netif_running(dev))
  6231. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  6232. return 0;
  6233. }
  6234. /* Called with rtnl_lock */
  6235. static int
  6236. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  6237. {
  6238. struct bnx2 *bp = netdev_priv(dev);
  6239. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  6240. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  6241. return -EINVAL;
  6242. dev->mtu = new_mtu;
  6243. return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
  6244. }
  6245. #ifdef CONFIG_NET_POLL_CONTROLLER
  6246. static void
  6247. poll_bnx2(struct net_device *dev)
  6248. {
  6249. struct bnx2 *bp = netdev_priv(dev);
  6250. int i;
  6251. for (i = 0; i < bp->irq_nvecs; i++) {
  6252. struct bnx2_irq *irq = &bp->irq_tbl[i];
  6253. disable_irq(irq->vector);
  6254. irq->handler(irq->vector, &bp->bnx2_napi[i]);
  6255. enable_irq(irq->vector);
  6256. }
  6257. }
  6258. #endif
  6259. static void __devinit
  6260. bnx2_get_5709_media(struct bnx2 *bp)
  6261. {
  6262. u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  6263. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  6264. u32 strap;
  6265. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  6266. return;
  6267. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  6268. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6269. return;
  6270. }
  6271. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  6272. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  6273. else
  6274. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  6275. if (PCI_FUNC(bp->pdev->devfn) == 0) {
  6276. switch (strap) {
  6277. case 0x4:
  6278. case 0x5:
  6279. case 0x6:
  6280. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6281. return;
  6282. }
  6283. } else {
  6284. switch (strap) {
  6285. case 0x1:
  6286. case 0x2:
  6287. case 0x4:
  6288. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6289. return;
  6290. }
  6291. }
  6292. }
  6293. static void __devinit
  6294. bnx2_get_pci_speed(struct bnx2 *bp)
  6295. {
  6296. u32 reg;
  6297. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  6298. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  6299. u32 clkreg;
  6300. bp->flags |= BNX2_FLAG_PCIX;
  6301. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  6302. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  6303. switch (clkreg) {
  6304. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  6305. bp->bus_speed_mhz = 133;
  6306. break;
  6307. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  6308. bp->bus_speed_mhz = 100;
  6309. break;
  6310. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  6311. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  6312. bp->bus_speed_mhz = 66;
  6313. break;
  6314. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  6315. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  6316. bp->bus_speed_mhz = 50;
  6317. break;
  6318. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  6319. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  6320. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  6321. bp->bus_speed_mhz = 33;
  6322. break;
  6323. }
  6324. }
  6325. else {
  6326. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  6327. bp->bus_speed_mhz = 66;
  6328. else
  6329. bp->bus_speed_mhz = 33;
  6330. }
  6331. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  6332. bp->flags |= BNX2_FLAG_PCI_32BIT;
  6333. }
  6334. static void __devinit
  6335. bnx2_read_vpd_fw_ver(struct bnx2 *bp)
  6336. {
  6337. int rc, i, j;
  6338. u8 *data;
  6339. unsigned int block_end, rosize, len;
  6340. #define BNX2_VPD_NVRAM_OFFSET 0x300
  6341. #define BNX2_VPD_LEN 128
  6342. #define BNX2_MAX_VER_SLEN 30
  6343. data = kmalloc(256, GFP_KERNEL);
  6344. if (!data)
  6345. return;
  6346. rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
  6347. BNX2_VPD_LEN);
  6348. if (rc)
  6349. goto vpd_done;
  6350. for (i = 0; i < BNX2_VPD_LEN; i += 4) {
  6351. data[i] = data[i + BNX2_VPD_LEN + 3];
  6352. data[i + 1] = data[i + BNX2_VPD_LEN + 2];
  6353. data[i + 2] = data[i + BNX2_VPD_LEN + 1];
  6354. data[i + 3] = data[i + BNX2_VPD_LEN];
  6355. }
  6356. i = pci_vpd_find_tag(data, 0, BNX2_VPD_LEN, PCI_VPD_LRDT_RO_DATA);
  6357. if (i < 0)
  6358. goto vpd_done;
  6359. rosize = pci_vpd_lrdt_size(&data[i]);
  6360. i += PCI_VPD_LRDT_TAG_SIZE;
  6361. block_end = i + rosize;
  6362. if (block_end > BNX2_VPD_LEN)
  6363. goto vpd_done;
  6364. j = pci_vpd_find_info_keyword(data, i, rosize,
  6365. PCI_VPD_RO_KEYWORD_MFR_ID);
  6366. if (j < 0)
  6367. goto vpd_done;
  6368. len = pci_vpd_info_field_size(&data[j]);
  6369. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6370. if (j + len > block_end || len != 4 ||
  6371. memcmp(&data[j], "1028", 4))
  6372. goto vpd_done;
  6373. j = pci_vpd_find_info_keyword(data, i, rosize,
  6374. PCI_VPD_RO_KEYWORD_VENDOR0);
  6375. if (j < 0)
  6376. goto vpd_done;
  6377. len = pci_vpd_info_field_size(&data[j]);
  6378. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6379. if (j + len > block_end || len > BNX2_MAX_VER_SLEN)
  6380. goto vpd_done;
  6381. memcpy(bp->fw_version, &data[j], len);
  6382. bp->fw_version[len] = ' ';
  6383. vpd_done:
  6384. kfree(data);
  6385. }
  6386. static int __devinit
  6387. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  6388. {
  6389. struct bnx2 *bp;
  6390. unsigned long mem_len;
  6391. int rc, i, j;
  6392. u32 reg;
  6393. u64 dma_mask, persist_dma_mask;
  6394. SET_NETDEV_DEV(dev, &pdev->dev);
  6395. bp = netdev_priv(dev);
  6396. bp->flags = 0;
  6397. bp->phy_flags = 0;
  6398. bp->temp_stats_blk =
  6399. kzalloc(sizeof(struct statistics_block), GFP_KERNEL);
  6400. if (bp->temp_stats_blk == NULL) {
  6401. rc = -ENOMEM;
  6402. goto err_out;
  6403. }
  6404. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  6405. rc = pci_enable_device(pdev);
  6406. if (rc) {
  6407. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  6408. goto err_out;
  6409. }
  6410. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  6411. dev_err(&pdev->dev,
  6412. "Cannot find PCI device base address, aborting\n");
  6413. rc = -ENODEV;
  6414. goto err_out_disable;
  6415. }
  6416. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  6417. if (rc) {
  6418. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  6419. goto err_out_disable;
  6420. }
  6421. pci_set_master(pdev);
  6422. pci_save_state(pdev);
  6423. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  6424. if (bp->pm_cap == 0) {
  6425. dev_err(&pdev->dev,
  6426. "Cannot find power management capability, aborting\n");
  6427. rc = -EIO;
  6428. goto err_out_release;
  6429. }
  6430. bp->dev = dev;
  6431. bp->pdev = pdev;
  6432. spin_lock_init(&bp->phy_lock);
  6433. spin_lock_init(&bp->indirect_lock);
  6434. #ifdef BCM_CNIC
  6435. mutex_init(&bp->cnic_lock);
  6436. #endif
  6437. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  6438. dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
  6439. mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
  6440. dev->mem_end = dev->mem_start + mem_len;
  6441. dev->irq = pdev->irq;
  6442. bp->regview = ioremap_nocache(dev->base_addr, mem_len);
  6443. if (!bp->regview) {
  6444. dev_err(&pdev->dev, "Cannot map register space, aborting\n");
  6445. rc = -ENOMEM;
  6446. goto err_out_release;
  6447. }
  6448. /* Configure byte swap and enable write to the reg_window registers.
  6449. * Rely on CPU to do target byte swapping on big endian systems
  6450. * The chip's target access swapping will not swap all accesses
  6451. */
  6452. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
  6453. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  6454. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  6455. bnx2_set_power_state(bp, PCI_D0);
  6456. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  6457. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6458. if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
  6459. dev_err(&pdev->dev,
  6460. "Cannot find PCIE capability, aborting\n");
  6461. rc = -EIO;
  6462. goto err_out_unmap;
  6463. }
  6464. bp->flags |= BNX2_FLAG_PCIE;
  6465. if (CHIP_REV(bp) == CHIP_REV_Ax)
  6466. bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
  6467. } else {
  6468. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  6469. if (bp->pcix_cap == 0) {
  6470. dev_err(&pdev->dev,
  6471. "Cannot find PCIX capability, aborting\n");
  6472. rc = -EIO;
  6473. goto err_out_unmap;
  6474. }
  6475. bp->flags |= BNX2_FLAG_BROKEN_STATS;
  6476. }
  6477. if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
  6478. if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
  6479. bp->flags |= BNX2_FLAG_MSIX_CAP;
  6480. }
  6481. if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
  6482. if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
  6483. bp->flags |= BNX2_FLAG_MSI_CAP;
  6484. }
  6485. /* 5708 cannot support DMA addresses > 40-bit. */
  6486. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  6487. persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
  6488. else
  6489. persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
  6490. /* Configure DMA attributes. */
  6491. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  6492. dev->features |= NETIF_F_HIGHDMA;
  6493. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  6494. if (rc) {
  6495. dev_err(&pdev->dev,
  6496. "pci_set_consistent_dma_mask failed, aborting\n");
  6497. goto err_out_unmap;
  6498. }
  6499. } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
  6500. dev_err(&pdev->dev, "System does not support DMA, aborting\n");
  6501. goto err_out_unmap;
  6502. }
  6503. if (!(bp->flags & BNX2_FLAG_PCIE))
  6504. bnx2_get_pci_speed(bp);
  6505. /* 5706A0 may falsely detect SERR and PERR. */
  6506. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6507. reg = REG_RD(bp, PCI_COMMAND);
  6508. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  6509. REG_WR(bp, PCI_COMMAND, reg);
  6510. }
  6511. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  6512. !(bp->flags & BNX2_FLAG_PCIX)) {
  6513. dev_err(&pdev->dev,
  6514. "5706 A1 can only be used in a PCIX bus, aborting\n");
  6515. goto err_out_unmap;
  6516. }
  6517. bnx2_init_nvram(bp);
  6518. reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
  6519. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  6520. BNX2_SHM_HDR_SIGNATURE_SIG) {
  6521. u32 off = PCI_FUNC(pdev->devfn) << 2;
  6522. bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
  6523. } else
  6524. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  6525. /* Get the permanent MAC address. First we need to make sure the
  6526. * firmware is actually running.
  6527. */
  6528. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
  6529. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  6530. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  6531. dev_err(&pdev->dev, "Firmware not running, aborting\n");
  6532. rc = -ENODEV;
  6533. goto err_out_unmap;
  6534. }
  6535. bnx2_read_vpd_fw_ver(bp);
  6536. j = strlen(bp->fw_version);
  6537. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
  6538. for (i = 0; i < 3 && j < 24; i++) {
  6539. u8 num, k, skip0;
  6540. if (i == 0) {
  6541. bp->fw_version[j++] = 'b';
  6542. bp->fw_version[j++] = 'c';
  6543. bp->fw_version[j++] = ' ';
  6544. }
  6545. num = (u8) (reg >> (24 - (i * 8)));
  6546. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  6547. if (num >= k || !skip0 || k == 1) {
  6548. bp->fw_version[j++] = (num / k) + '0';
  6549. skip0 = 0;
  6550. }
  6551. }
  6552. if (i != 2)
  6553. bp->fw_version[j++] = '.';
  6554. }
  6555. reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  6556. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  6557. bp->wol = 1;
  6558. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  6559. bp->flags |= BNX2_FLAG_ASF_ENABLE;
  6560. for (i = 0; i < 30; i++) {
  6561. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6562. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  6563. break;
  6564. msleep(10);
  6565. }
  6566. }
  6567. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6568. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  6569. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  6570. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  6571. u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
  6572. if (j < 32)
  6573. bp->fw_version[j++] = ' ';
  6574. for (i = 0; i < 3 && j < 28; i++) {
  6575. reg = bnx2_reg_rd_ind(bp, addr + i * 4);
  6576. reg = swab32(reg);
  6577. memcpy(&bp->fw_version[j], &reg, 4);
  6578. j += 4;
  6579. }
  6580. }
  6581. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
  6582. bp->mac_addr[0] = (u8) (reg >> 8);
  6583. bp->mac_addr[1] = (u8) reg;
  6584. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
  6585. bp->mac_addr[2] = (u8) (reg >> 24);
  6586. bp->mac_addr[3] = (u8) (reg >> 16);
  6587. bp->mac_addr[4] = (u8) (reg >> 8);
  6588. bp->mac_addr[5] = (u8) reg;
  6589. bp->tx_ring_size = MAX_TX_DESC_CNT;
  6590. bnx2_set_rx_ring_size(bp, 255);
  6591. bp->rx_csum = 1;
  6592. bp->tx_quick_cons_trip_int = 2;
  6593. bp->tx_quick_cons_trip = 20;
  6594. bp->tx_ticks_int = 18;
  6595. bp->tx_ticks = 80;
  6596. bp->rx_quick_cons_trip_int = 2;
  6597. bp->rx_quick_cons_trip = 12;
  6598. bp->rx_ticks_int = 18;
  6599. bp->rx_ticks = 18;
  6600. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  6601. bp->current_interval = BNX2_TIMER_INTERVAL;
  6602. bp->phy_addr = 1;
  6603. /* Disable WOL support if we are running on a SERDES chip. */
  6604. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6605. bnx2_get_5709_media(bp);
  6606. else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
  6607. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6608. bp->phy_port = PORT_TP;
  6609. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  6610. bp->phy_port = PORT_FIBRE;
  6611. reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  6612. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  6613. bp->flags |= BNX2_FLAG_NO_WOL;
  6614. bp->wol = 0;
  6615. }
  6616. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  6617. /* Don't do parallel detect on this board because of
  6618. * some board problems. The link will not go down
  6619. * if we do parallel detect.
  6620. */
  6621. if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
  6622. pdev->subsystem_device == 0x310c)
  6623. bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
  6624. } else {
  6625. bp->phy_addr = 2;
  6626. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  6627. bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
  6628. }
  6629. } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
  6630. CHIP_NUM(bp) == CHIP_NUM_5708)
  6631. bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
  6632. else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
  6633. (CHIP_REV(bp) == CHIP_REV_Ax ||
  6634. CHIP_REV(bp) == CHIP_REV_Bx))
  6635. bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
  6636. bnx2_init_fw_cap(bp);
  6637. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  6638. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  6639. (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
  6640. !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
  6641. bp->flags |= BNX2_FLAG_NO_WOL;
  6642. bp->wol = 0;
  6643. }
  6644. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6645. bp->tx_quick_cons_trip_int =
  6646. bp->tx_quick_cons_trip;
  6647. bp->tx_ticks_int = bp->tx_ticks;
  6648. bp->rx_quick_cons_trip_int =
  6649. bp->rx_quick_cons_trip;
  6650. bp->rx_ticks_int = bp->rx_ticks;
  6651. bp->comp_prod_trip_int = bp->comp_prod_trip;
  6652. bp->com_ticks_int = bp->com_ticks;
  6653. bp->cmd_ticks_int = bp->cmd_ticks;
  6654. }
  6655. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  6656. *
  6657. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  6658. * with byte enables disabled on the unused 32-bit word. This is legal
  6659. * but causes problems on the AMD 8132 which will eventually stop
  6660. * responding after a while.
  6661. *
  6662. * AMD believes this incompatibility is unique to the 5706, and
  6663. * prefers to locally disable MSI rather than globally disabling it.
  6664. */
  6665. if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
  6666. struct pci_dev *amd_8132 = NULL;
  6667. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  6668. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  6669. amd_8132))) {
  6670. if (amd_8132->revision >= 0x10 &&
  6671. amd_8132->revision <= 0x13) {
  6672. disable_msi = 1;
  6673. pci_dev_put(amd_8132);
  6674. break;
  6675. }
  6676. }
  6677. }
  6678. bnx2_set_default_link(bp);
  6679. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  6680. init_timer(&bp->timer);
  6681. bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
  6682. bp->timer.data = (unsigned long) bp;
  6683. bp->timer.function = bnx2_timer;
  6684. return 0;
  6685. err_out_unmap:
  6686. if (bp->regview) {
  6687. iounmap(bp->regview);
  6688. bp->regview = NULL;
  6689. }
  6690. err_out_release:
  6691. pci_release_regions(pdev);
  6692. err_out_disable:
  6693. pci_disable_device(pdev);
  6694. pci_set_drvdata(pdev, NULL);
  6695. err_out:
  6696. return rc;
  6697. }
  6698. static char * __devinit
  6699. bnx2_bus_string(struct bnx2 *bp, char *str)
  6700. {
  6701. char *s = str;
  6702. if (bp->flags & BNX2_FLAG_PCIE) {
  6703. s += sprintf(s, "PCI Express");
  6704. } else {
  6705. s += sprintf(s, "PCI");
  6706. if (bp->flags & BNX2_FLAG_PCIX)
  6707. s += sprintf(s, "-X");
  6708. if (bp->flags & BNX2_FLAG_PCI_32BIT)
  6709. s += sprintf(s, " 32-bit");
  6710. else
  6711. s += sprintf(s, " 64-bit");
  6712. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  6713. }
  6714. return str;
  6715. }
  6716. static void __devinit
  6717. bnx2_init_napi(struct bnx2 *bp)
  6718. {
  6719. int i;
  6720. for (i = 0; i < bp->irq_nvecs; i++) {
  6721. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  6722. int (*poll)(struct napi_struct *, int);
  6723. if (i == 0)
  6724. poll = bnx2_poll;
  6725. else
  6726. poll = bnx2_poll_msix;
  6727. netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
  6728. bnapi->bp = bp;
  6729. }
  6730. }
  6731. static const struct net_device_ops bnx2_netdev_ops = {
  6732. .ndo_open = bnx2_open,
  6733. .ndo_start_xmit = bnx2_start_xmit,
  6734. .ndo_stop = bnx2_close,
  6735. .ndo_get_stats = bnx2_get_stats,
  6736. .ndo_set_rx_mode = bnx2_set_rx_mode,
  6737. .ndo_do_ioctl = bnx2_ioctl,
  6738. .ndo_validate_addr = eth_validate_addr,
  6739. .ndo_set_mac_address = bnx2_change_mac_addr,
  6740. .ndo_change_mtu = bnx2_change_mtu,
  6741. .ndo_tx_timeout = bnx2_tx_timeout,
  6742. #ifdef BCM_VLAN
  6743. .ndo_vlan_rx_register = bnx2_vlan_rx_register,
  6744. #endif
  6745. #ifdef CONFIG_NET_POLL_CONTROLLER
  6746. .ndo_poll_controller = poll_bnx2,
  6747. #endif
  6748. };
  6749. static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
  6750. {
  6751. #ifdef BCM_VLAN
  6752. dev->vlan_features |= flags;
  6753. #endif
  6754. }
  6755. static int __devinit
  6756. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  6757. {
  6758. static int version_printed = 0;
  6759. struct net_device *dev = NULL;
  6760. struct bnx2 *bp;
  6761. int rc;
  6762. char str[40];
  6763. if (version_printed++ == 0)
  6764. pr_info("%s", version);
  6765. /* dev zeroed in init_etherdev */
  6766. dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
  6767. if (!dev)
  6768. return -ENOMEM;
  6769. rc = bnx2_init_board(pdev, dev);
  6770. if (rc < 0) {
  6771. free_netdev(dev);
  6772. return rc;
  6773. }
  6774. dev->netdev_ops = &bnx2_netdev_ops;
  6775. dev->watchdog_timeo = TX_TIMEOUT;
  6776. dev->ethtool_ops = &bnx2_ethtool_ops;
  6777. bp = netdev_priv(dev);
  6778. pci_set_drvdata(pdev, dev);
  6779. rc = bnx2_request_firmware(bp);
  6780. if (rc)
  6781. goto error;
  6782. memcpy(dev->dev_addr, bp->mac_addr, 6);
  6783. memcpy(dev->perm_addr, bp->mac_addr, 6);
  6784. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  6785. vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
  6786. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6787. dev->features |= NETIF_F_IPV6_CSUM;
  6788. vlan_features_add(dev, NETIF_F_IPV6_CSUM);
  6789. }
  6790. #ifdef BCM_VLAN
  6791. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6792. #endif
  6793. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  6794. vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
  6795. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6796. dev->features |= NETIF_F_TSO6;
  6797. vlan_features_add(dev, NETIF_F_TSO6);
  6798. }
  6799. if ((rc = register_netdev(dev))) {
  6800. dev_err(&pdev->dev, "Cannot register net device\n");
  6801. goto error;
  6802. }
  6803. netdev_info(dev, "%s (%c%d) %s found at mem %lx, IRQ %d, node addr %pM\n",
  6804. board_info[ent->driver_data].name,
  6805. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  6806. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  6807. bnx2_bus_string(bp, str),
  6808. dev->base_addr,
  6809. bp->pdev->irq, dev->dev_addr);
  6810. return 0;
  6811. error:
  6812. if (bp->mips_firmware)
  6813. release_firmware(bp->mips_firmware);
  6814. if (bp->rv2p_firmware)
  6815. release_firmware(bp->rv2p_firmware);
  6816. if (bp->regview)
  6817. iounmap(bp->regview);
  6818. pci_release_regions(pdev);
  6819. pci_disable_device(pdev);
  6820. pci_set_drvdata(pdev, NULL);
  6821. free_netdev(dev);
  6822. return rc;
  6823. }
  6824. static void __devexit
  6825. bnx2_remove_one(struct pci_dev *pdev)
  6826. {
  6827. struct net_device *dev = pci_get_drvdata(pdev);
  6828. struct bnx2 *bp = netdev_priv(dev);
  6829. flush_scheduled_work();
  6830. unregister_netdev(dev);
  6831. if (bp->mips_firmware)
  6832. release_firmware(bp->mips_firmware);
  6833. if (bp->rv2p_firmware)
  6834. release_firmware(bp->rv2p_firmware);
  6835. if (bp->regview)
  6836. iounmap(bp->regview);
  6837. kfree(bp->temp_stats_blk);
  6838. free_netdev(dev);
  6839. pci_release_regions(pdev);
  6840. pci_disable_device(pdev);
  6841. pci_set_drvdata(pdev, NULL);
  6842. }
  6843. static int
  6844. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  6845. {
  6846. struct net_device *dev = pci_get_drvdata(pdev);
  6847. struct bnx2 *bp = netdev_priv(dev);
  6848. /* PCI register 4 needs to be saved whether netif_running() or not.
  6849. * MSI address and data need to be saved if using MSI and
  6850. * netif_running().
  6851. */
  6852. pci_save_state(pdev);
  6853. if (!netif_running(dev))
  6854. return 0;
  6855. flush_scheduled_work();
  6856. bnx2_netif_stop(bp, true);
  6857. netif_device_detach(dev);
  6858. del_timer_sync(&bp->timer);
  6859. bnx2_shutdown_chip(bp);
  6860. bnx2_free_skbs(bp);
  6861. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  6862. return 0;
  6863. }
  6864. static int
  6865. bnx2_resume(struct pci_dev *pdev)
  6866. {
  6867. struct net_device *dev = pci_get_drvdata(pdev);
  6868. struct bnx2 *bp = netdev_priv(dev);
  6869. pci_restore_state(pdev);
  6870. if (!netif_running(dev))
  6871. return 0;
  6872. bnx2_set_power_state(bp, PCI_D0);
  6873. netif_device_attach(dev);
  6874. bnx2_init_nic(bp, 1);
  6875. bnx2_netif_start(bp, true);
  6876. return 0;
  6877. }
  6878. /**
  6879. * bnx2_io_error_detected - called when PCI error is detected
  6880. * @pdev: Pointer to PCI device
  6881. * @state: The current pci connection state
  6882. *
  6883. * This function is called after a PCI bus error affecting
  6884. * this device has been detected.
  6885. */
  6886. static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
  6887. pci_channel_state_t state)
  6888. {
  6889. struct net_device *dev = pci_get_drvdata(pdev);
  6890. struct bnx2 *bp = netdev_priv(dev);
  6891. rtnl_lock();
  6892. netif_device_detach(dev);
  6893. if (state == pci_channel_io_perm_failure) {
  6894. rtnl_unlock();
  6895. return PCI_ERS_RESULT_DISCONNECT;
  6896. }
  6897. if (netif_running(dev)) {
  6898. bnx2_netif_stop(bp, true);
  6899. del_timer_sync(&bp->timer);
  6900. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  6901. }
  6902. pci_disable_device(pdev);
  6903. rtnl_unlock();
  6904. /* Request a slot slot reset. */
  6905. return PCI_ERS_RESULT_NEED_RESET;
  6906. }
  6907. /**
  6908. * bnx2_io_slot_reset - called after the pci bus has been reset.
  6909. * @pdev: Pointer to PCI device
  6910. *
  6911. * Restart the card from scratch, as if from a cold-boot.
  6912. */
  6913. static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
  6914. {
  6915. struct net_device *dev = pci_get_drvdata(pdev);
  6916. struct bnx2 *bp = netdev_priv(dev);
  6917. rtnl_lock();
  6918. if (pci_enable_device(pdev)) {
  6919. dev_err(&pdev->dev,
  6920. "Cannot re-enable PCI device after reset\n");
  6921. rtnl_unlock();
  6922. return PCI_ERS_RESULT_DISCONNECT;
  6923. }
  6924. pci_set_master(pdev);
  6925. pci_restore_state(pdev);
  6926. pci_save_state(pdev);
  6927. if (netif_running(dev)) {
  6928. bnx2_set_power_state(bp, PCI_D0);
  6929. bnx2_init_nic(bp, 1);
  6930. }
  6931. rtnl_unlock();
  6932. return PCI_ERS_RESULT_RECOVERED;
  6933. }
  6934. /**
  6935. * bnx2_io_resume - called when traffic can start flowing again.
  6936. * @pdev: Pointer to PCI device
  6937. *
  6938. * This callback is called when the error recovery driver tells us that
  6939. * its OK to resume normal operation.
  6940. */
  6941. static void bnx2_io_resume(struct pci_dev *pdev)
  6942. {
  6943. struct net_device *dev = pci_get_drvdata(pdev);
  6944. struct bnx2 *bp = netdev_priv(dev);
  6945. rtnl_lock();
  6946. if (netif_running(dev))
  6947. bnx2_netif_start(bp, true);
  6948. netif_device_attach(dev);
  6949. rtnl_unlock();
  6950. }
  6951. static struct pci_error_handlers bnx2_err_handler = {
  6952. .error_detected = bnx2_io_error_detected,
  6953. .slot_reset = bnx2_io_slot_reset,
  6954. .resume = bnx2_io_resume,
  6955. };
  6956. static struct pci_driver bnx2_pci_driver = {
  6957. .name = DRV_MODULE_NAME,
  6958. .id_table = bnx2_pci_tbl,
  6959. .probe = bnx2_init_one,
  6960. .remove = __devexit_p(bnx2_remove_one),
  6961. .suspend = bnx2_suspend,
  6962. .resume = bnx2_resume,
  6963. .err_handler = &bnx2_err_handler,
  6964. };
  6965. static int __init bnx2_init(void)
  6966. {
  6967. return pci_register_driver(&bnx2_pci_driver);
  6968. }
  6969. static void __exit bnx2_cleanup(void)
  6970. {
  6971. pci_unregister_driver(&bnx2_pci_driver);
  6972. }
  6973. module_init(bnx2_init);
  6974. module_exit(bnx2_cleanup);