ixp4xx_eth.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287
  1. /*
  2. * Intel IXP4xx Ethernet driver for Linux
  3. *
  4. * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of version 2 of the GNU General Public License
  8. * as published by the Free Software Foundation.
  9. *
  10. * Ethernet port config (0x00 is not present on IXP42X):
  11. *
  12. * logical port 0x00 0x10 0x20
  13. * NPE 0 (NPE-A) 1 (NPE-B) 2 (NPE-C)
  14. * physical PortId 2 0 1
  15. * TX queue 23 24 25
  16. * RX-free queue 26 27 28
  17. * TX-done queue is always 31, per-port RX and TX-ready queues are configurable
  18. *
  19. *
  20. * Queue entries:
  21. * bits 0 -> 1 - NPE ID (RX and TX-done)
  22. * bits 0 -> 2 - priority (TX, per 802.1D)
  23. * bits 3 -> 4 - port ID (user-set?)
  24. * bits 5 -> 31 - physical descriptor address
  25. */
  26. #include <linux/delay.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/dmapool.h>
  29. #include <linux/etherdevice.h>
  30. #include <linux/io.h>
  31. #include <linux/kernel.h>
  32. #include <linux/phy.h>
  33. #include <linux/platform_device.h>
  34. #include <linux/slab.h>
  35. #include <mach/npe.h>
  36. #include <mach/qmgr.h>
  37. #define DEBUG_DESC 0
  38. #define DEBUG_RX 0
  39. #define DEBUG_TX 0
  40. #define DEBUG_PKT_BYTES 0
  41. #define DEBUG_MDIO 0
  42. #define DEBUG_CLOSE 0
  43. #define DRV_NAME "ixp4xx_eth"
  44. #define MAX_NPES 3
  45. #define RX_DESCS 64 /* also length of all RX queues */
  46. #define TX_DESCS 16 /* also length of all TX queues */
  47. #define TXDONE_QUEUE_LEN 64 /* dwords */
  48. #define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS))
  49. #define REGS_SIZE 0x1000
  50. #define MAX_MRU 1536 /* 0x600 */
  51. #define RX_BUFF_SIZE ALIGN((NET_IP_ALIGN) + MAX_MRU, 4)
  52. #define NAPI_WEIGHT 16
  53. #define MDIO_INTERVAL (3 * HZ)
  54. #define MAX_MDIO_RETRIES 100 /* microseconds, typically 30 cycles */
  55. #define MAX_CLOSE_WAIT 1000 /* microseconds, typically 2-3 cycles */
  56. #define NPE_ID(port_id) ((port_id) >> 4)
  57. #define PHYSICAL_ID(port_id) ((NPE_ID(port_id) + 2) % 3)
  58. #define TX_QUEUE(port_id) (NPE_ID(port_id) + 23)
  59. #define RXFREE_QUEUE(port_id) (NPE_ID(port_id) + 26)
  60. #define TXDONE_QUEUE 31
  61. /* TX Control Registers */
  62. #define TX_CNTRL0_TX_EN 0x01
  63. #define TX_CNTRL0_HALFDUPLEX 0x02
  64. #define TX_CNTRL0_RETRY 0x04
  65. #define TX_CNTRL0_PAD_EN 0x08
  66. #define TX_CNTRL0_APPEND_FCS 0x10
  67. #define TX_CNTRL0_2DEFER 0x20
  68. #define TX_CNTRL0_RMII 0x40 /* reduced MII */
  69. #define TX_CNTRL1_RETRIES 0x0F /* 4 bits */
  70. /* RX Control Registers */
  71. #define RX_CNTRL0_RX_EN 0x01
  72. #define RX_CNTRL0_PADSTRIP_EN 0x02
  73. #define RX_CNTRL0_SEND_FCS 0x04
  74. #define RX_CNTRL0_PAUSE_EN 0x08
  75. #define RX_CNTRL0_LOOP_EN 0x10
  76. #define RX_CNTRL0_ADDR_FLTR_EN 0x20
  77. #define RX_CNTRL0_RX_RUNT_EN 0x40
  78. #define RX_CNTRL0_BCAST_DIS 0x80
  79. #define RX_CNTRL1_DEFER_EN 0x01
  80. /* Core Control Register */
  81. #define CORE_RESET 0x01
  82. #define CORE_RX_FIFO_FLUSH 0x02
  83. #define CORE_TX_FIFO_FLUSH 0x04
  84. #define CORE_SEND_JAM 0x08
  85. #define CORE_MDC_EN 0x10 /* MDIO using NPE-B ETH-0 only */
  86. #define DEFAULT_TX_CNTRL0 (TX_CNTRL0_TX_EN | TX_CNTRL0_RETRY | \
  87. TX_CNTRL0_PAD_EN | TX_CNTRL0_APPEND_FCS | \
  88. TX_CNTRL0_2DEFER)
  89. #define DEFAULT_RX_CNTRL0 RX_CNTRL0_RX_EN
  90. #define DEFAULT_CORE_CNTRL CORE_MDC_EN
  91. /* NPE message codes */
  92. #define NPE_GETSTATUS 0x00
  93. #define NPE_EDB_SETPORTADDRESS 0x01
  94. #define NPE_EDB_GETMACADDRESSDATABASE 0x02
  95. #define NPE_EDB_SETMACADDRESSSDATABASE 0x03
  96. #define NPE_GETSTATS 0x04
  97. #define NPE_RESETSTATS 0x05
  98. #define NPE_SETMAXFRAMELENGTHS 0x06
  99. #define NPE_VLAN_SETRXTAGMODE 0x07
  100. #define NPE_VLAN_SETDEFAULTRXVID 0x08
  101. #define NPE_VLAN_SETPORTVLANTABLEENTRY 0x09
  102. #define NPE_VLAN_SETPORTVLANTABLERANGE 0x0A
  103. #define NPE_VLAN_SETRXQOSENTRY 0x0B
  104. #define NPE_VLAN_SETPORTIDEXTRACTIONMODE 0x0C
  105. #define NPE_STP_SETBLOCKINGSTATE 0x0D
  106. #define NPE_FW_SETFIREWALLMODE 0x0E
  107. #define NPE_PC_SETFRAMECONTROLDURATIONID 0x0F
  108. #define NPE_PC_SETAPMACTABLE 0x11
  109. #define NPE_SETLOOPBACK_MODE 0x12
  110. #define NPE_PC_SETBSSIDTABLE 0x13
  111. #define NPE_ADDRESS_FILTER_CONFIG 0x14
  112. #define NPE_APPENDFCSCONFIG 0x15
  113. #define NPE_NOTIFY_MAC_RECOVERY_DONE 0x16
  114. #define NPE_MAC_RECOVERY_START 0x17
  115. #ifdef __ARMEB__
  116. typedef struct sk_buff buffer_t;
  117. #define free_buffer dev_kfree_skb
  118. #define free_buffer_irq dev_kfree_skb_irq
  119. #else
  120. typedef void buffer_t;
  121. #define free_buffer kfree
  122. #define free_buffer_irq kfree
  123. #endif
  124. struct eth_regs {
  125. u32 tx_control[2], __res1[2]; /* 000 */
  126. u32 rx_control[2], __res2[2]; /* 010 */
  127. u32 random_seed, __res3[3]; /* 020 */
  128. u32 partial_empty_threshold, __res4; /* 030 */
  129. u32 partial_full_threshold, __res5; /* 038 */
  130. u32 tx_start_bytes, __res6[3]; /* 040 */
  131. u32 tx_deferral, rx_deferral, __res7[2];/* 050 */
  132. u32 tx_2part_deferral[2], __res8[2]; /* 060 */
  133. u32 slot_time, __res9[3]; /* 070 */
  134. u32 mdio_command[4]; /* 080 */
  135. u32 mdio_status[4]; /* 090 */
  136. u32 mcast_mask[6], __res10[2]; /* 0A0 */
  137. u32 mcast_addr[6], __res11[2]; /* 0C0 */
  138. u32 int_clock_threshold, __res12[3]; /* 0E0 */
  139. u32 hw_addr[6], __res13[61]; /* 0F0 */
  140. u32 core_control; /* 1FC */
  141. };
  142. struct port {
  143. struct resource *mem_res;
  144. struct eth_regs __iomem *regs;
  145. struct npe *npe;
  146. struct net_device *netdev;
  147. struct napi_struct napi;
  148. struct phy_device *phydev;
  149. struct eth_plat_info *plat;
  150. buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
  151. struct desc *desc_tab; /* coherent */
  152. u32 desc_tab_phys;
  153. int id; /* logical port ID */
  154. int speed, duplex;
  155. u8 firmware[4];
  156. };
  157. /* NPE message structure */
  158. struct msg {
  159. #ifdef __ARMEB__
  160. u8 cmd, eth_id, byte2, byte3;
  161. u8 byte4, byte5, byte6, byte7;
  162. #else
  163. u8 byte3, byte2, eth_id, cmd;
  164. u8 byte7, byte6, byte5, byte4;
  165. #endif
  166. };
  167. /* Ethernet packet descriptor */
  168. struct desc {
  169. u32 next; /* pointer to next buffer, unused */
  170. #ifdef __ARMEB__
  171. u16 buf_len; /* buffer length */
  172. u16 pkt_len; /* packet length */
  173. u32 data; /* pointer to data buffer in RAM */
  174. u8 dest_id;
  175. u8 src_id;
  176. u16 flags;
  177. u8 qos;
  178. u8 padlen;
  179. u16 vlan_tci;
  180. #else
  181. u16 pkt_len; /* packet length */
  182. u16 buf_len; /* buffer length */
  183. u32 data; /* pointer to data buffer in RAM */
  184. u16 flags;
  185. u8 src_id;
  186. u8 dest_id;
  187. u16 vlan_tci;
  188. u8 padlen;
  189. u8 qos;
  190. #endif
  191. #ifdef __ARMEB__
  192. u8 dst_mac_0, dst_mac_1, dst_mac_2, dst_mac_3;
  193. u8 dst_mac_4, dst_mac_5, src_mac_0, src_mac_1;
  194. u8 src_mac_2, src_mac_3, src_mac_4, src_mac_5;
  195. #else
  196. u8 dst_mac_3, dst_mac_2, dst_mac_1, dst_mac_0;
  197. u8 src_mac_1, src_mac_0, dst_mac_5, dst_mac_4;
  198. u8 src_mac_5, src_mac_4, src_mac_3, src_mac_2;
  199. #endif
  200. };
  201. #define rx_desc_phys(port, n) ((port)->desc_tab_phys + \
  202. (n) * sizeof(struct desc))
  203. #define rx_desc_ptr(port, n) (&(port)->desc_tab[n])
  204. #define tx_desc_phys(port, n) ((port)->desc_tab_phys + \
  205. ((n) + RX_DESCS) * sizeof(struct desc))
  206. #define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS])
  207. #ifndef __ARMEB__
  208. static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
  209. {
  210. int i;
  211. for (i = 0; i < cnt; i++)
  212. dest[i] = swab32(src[i]);
  213. }
  214. #endif
  215. static spinlock_t mdio_lock;
  216. static struct eth_regs __iomem *mdio_regs; /* mdio command and status only */
  217. struct mii_bus *mdio_bus;
  218. static int ports_open;
  219. static struct port *npe_port_tab[MAX_NPES];
  220. static struct dma_pool *dma_pool;
  221. static int ixp4xx_mdio_cmd(struct mii_bus *bus, int phy_id, int location,
  222. int write, u16 cmd)
  223. {
  224. int cycles = 0;
  225. if (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80) {
  226. printk(KERN_ERR "%s: MII not ready to transmit\n", bus->name);
  227. return -1;
  228. }
  229. if (write) {
  230. __raw_writel(cmd & 0xFF, &mdio_regs->mdio_command[0]);
  231. __raw_writel(cmd >> 8, &mdio_regs->mdio_command[1]);
  232. }
  233. __raw_writel(((phy_id << 5) | location) & 0xFF,
  234. &mdio_regs->mdio_command[2]);
  235. __raw_writel((phy_id >> 3) | (write << 2) | 0x80 /* GO */,
  236. &mdio_regs->mdio_command[3]);
  237. while ((cycles < MAX_MDIO_RETRIES) &&
  238. (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80)) {
  239. udelay(1);
  240. cycles++;
  241. }
  242. if (cycles == MAX_MDIO_RETRIES) {
  243. printk(KERN_ERR "%s #%i: MII write failed\n", bus->name,
  244. phy_id);
  245. return -1;
  246. }
  247. #if DEBUG_MDIO
  248. printk(KERN_DEBUG "%s #%i: mdio_%s() took %i cycles\n", bus->name,
  249. phy_id, write ? "write" : "read", cycles);
  250. #endif
  251. if (write)
  252. return 0;
  253. if (__raw_readl(&mdio_regs->mdio_status[3]) & 0x80) {
  254. #if DEBUG_MDIO
  255. printk(KERN_DEBUG "%s #%i: MII read failed\n", bus->name,
  256. phy_id);
  257. #endif
  258. return 0xFFFF; /* don't return error */
  259. }
  260. return (__raw_readl(&mdio_regs->mdio_status[0]) & 0xFF) |
  261. ((__raw_readl(&mdio_regs->mdio_status[1]) & 0xFF) << 8);
  262. }
  263. static int ixp4xx_mdio_read(struct mii_bus *bus, int phy_id, int location)
  264. {
  265. unsigned long flags;
  266. int ret;
  267. spin_lock_irqsave(&mdio_lock, flags);
  268. ret = ixp4xx_mdio_cmd(bus, phy_id, location, 0, 0);
  269. spin_unlock_irqrestore(&mdio_lock, flags);
  270. #if DEBUG_MDIO
  271. printk(KERN_DEBUG "%s #%i: MII read [%i] -> 0x%X\n", bus->name,
  272. phy_id, location, ret);
  273. #endif
  274. return ret;
  275. }
  276. static int ixp4xx_mdio_write(struct mii_bus *bus, int phy_id, int location,
  277. u16 val)
  278. {
  279. unsigned long flags;
  280. int ret;
  281. spin_lock_irqsave(&mdio_lock, flags);
  282. ret = ixp4xx_mdio_cmd(bus, phy_id, location, 1, val);
  283. spin_unlock_irqrestore(&mdio_lock, flags);
  284. #if DEBUG_MDIO
  285. printk(KERN_DEBUG "%s #%i: MII write [%i] <- 0x%X, err = %i\n",
  286. bus->name, phy_id, location, val, ret);
  287. #endif
  288. return ret;
  289. }
  290. static int ixp4xx_mdio_register(void)
  291. {
  292. int err;
  293. if (!(mdio_bus = mdiobus_alloc()))
  294. return -ENOMEM;
  295. if (cpu_is_ixp43x()) {
  296. /* IXP43x lacks NPE-B and uses NPE-C for MII PHY access */
  297. if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEC_ETH))
  298. return -ENODEV;
  299. mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
  300. } else {
  301. /* All MII PHY accesses use NPE-B Ethernet registers */
  302. if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEB_ETH0))
  303. return -ENODEV;
  304. mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
  305. }
  306. __raw_writel(DEFAULT_CORE_CNTRL, &mdio_regs->core_control);
  307. spin_lock_init(&mdio_lock);
  308. mdio_bus->name = "IXP4xx MII Bus";
  309. mdio_bus->read = &ixp4xx_mdio_read;
  310. mdio_bus->write = &ixp4xx_mdio_write;
  311. strcpy(mdio_bus->id, "0");
  312. if ((err = mdiobus_register(mdio_bus)))
  313. mdiobus_free(mdio_bus);
  314. return err;
  315. }
  316. static void ixp4xx_mdio_remove(void)
  317. {
  318. mdiobus_unregister(mdio_bus);
  319. mdiobus_free(mdio_bus);
  320. }
  321. static void ixp4xx_adjust_link(struct net_device *dev)
  322. {
  323. struct port *port = netdev_priv(dev);
  324. struct phy_device *phydev = port->phydev;
  325. if (!phydev->link) {
  326. if (port->speed) {
  327. port->speed = 0;
  328. printk(KERN_INFO "%s: link down\n", dev->name);
  329. }
  330. return;
  331. }
  332. if (port->speed == phydev->speed && port->duplex == phydev->duplex)
  333. return;
  334. port->speed = phydev->speed;
  335. port->duplex = phydev->duplex;
  336. if (port->duplex)
  337. __raw_writel(DEFAULT_TX_CNTRL0 & ~TX_CNTRL0_HALFDUPLEX,
  338. &port->regs->tx_control[0]);
  339. else
  340. __raw_writel(DEFAULT_TX_CNTRL0 | TX_CNTRL0_HALFDUPLEX,
  341. &port->regs->tx_control[0]);
  342. printk(KERN_INFO "%s: link up, speed %u Mb/s, %s duplex\n",
  343. dev->name, port->speed, port->duplex ? "full" : "half");
  344. }
  345. static inline void debug_pkt(struct net_device *dev, const char *func,
  346. u8 *data, int len)
  347. {
  348. #if DEBUG_PKT_BYTES
  349. int i;
  350. printk(KERN_DEBUG "%s: %s(%i) ", dev->name, func, len);
  351. for (i = 0; i < len; i++) {
  352. if (i >= DEBUG_PKT_BYTES)
  353. break;
  354. printk("%s%02X",
  355. ((i == 6) || (i == 12) || (i >= 14)) ? " " : "",
  356. data[i]);
  357. }
  358. printk("\n");
  359. #endif
  360. }
  361. static inline void debug_desc(u32 phys, struct desc *desc)
  362. {
  363. #if DEBUG_DESC
  364. printk(KERN_DEBUG "%X: %X %3X %3X %08X %2X < %2X %4X %X"
  365. " %X %X %02X%02X%02X%02X%02X%02X < %02X%02X%02X%02X%02X%02X\n",
  366. phys, desc->next, desc->buf_len, desc->pkt_len,
  367. desc->data, desc->dest_id, desc->src_id, desc->flags,
  368. desc->qos, desc->padlen, desc->vlan_tci,
  369. desc->dst_mac_0, desc->dst_mac_1, desc->dst_mac_2,
  370. desc->dst_mac_3, desc->dst_mac_4, desc->dst_mac_5,
  371. desc->src_mac_0, desc->src_mac_1, desc->src_mac_2,
  372. desc->src_mac_3, desc->src_mac_4, desc->src_mac_5);
  373. #endif
  374. }
  375. static inline int queue_get_desc(unsigned int queue, struct port *port,
  376. int is_tx)
  377. {
  378. u32 phys, tab_phys, n_desc;
  379. struct desc *tab;
  380. if (!(phys = qmgr_get_entry(queue)))
  381. return -1;
  382. phys &= ~0x1F; /* mask out non-address bits */
  383. tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
  384. tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
  385. n_desc = (phys - tab_phys) / sizeof(struct desc);
  386. BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
  387. debug_desc(phys, &tab[n_desc]);
  388. BUG_ON(tab[n_desc].next);
  389. return n_desc;
  390. }
  391. static inline void queue_put_desc(unsigned int queue, u32 phys,
  392. struct desc *desc)
  393. {
  394. debug_desc(phys, desc);
  395. BUG_ON(phys & 0x1F);
  396. qmgr_put_entry(queue, phys);
  397. /* Don't check for queue overflow here, we've allocated sufficient
  398. length and queues >= 32 don't support this check anyway. */
  399. }
  400. static inline void dma_unmap_tx(struct port *port, struct desc *desc)
  401. {
  402. #ifdef __ARMEB__
  403. dma_unmap_single(&port->netdev->dev, desc->data,
  404. desc->buf_len, DMA_TO_DEVICE);
  405. #else
  406. dma_unmap_single(&port->netdev->dev, desc->data & ~3,
  407. ALIGN((desc->data & 3) + desc->buf_len, 4),
  408. DMA_TO_DEVICE);
  409. #endif
  410. }
  411. static void eth_rx_irq(void *pdev)
  412. {
  413. struct net_device *dev = pdev;
  414. struct port *port = netdev_priv(dev);
  415. #if DEBUG_RX
  416. printk(KERN_DEBUG "%s: eth_rx_irq\n", dev->name);
  417. #endif
  418. qmgr_disable_irq(port->plat->rxq);
  419. napi_schedule(&port->napi);
  420. }
  421. static int eth_poll(struct napi_struct *napi, int budget)
  422. {
  423. struct port *port = container_of(napi, struct port, napi);
  424. struct net_device *dev = port->netdev;
  425. unsigned int rxq = port->plat->rxq, rxfreeq = RXFREE_QUEUE(port->id);
  426. int received = 0;
  427. #if DEBUG_RX
  428. printk(KERN_DEBUG "%s: eth_poll\n", dev->name);
  429. #endif
  430. while (received < budget) {
  431. struct sk_buff *skb;
  432. struct desc *desc;
  433. int n;
  434. #ifdef __ARMEB__
  435. struct sk_buff *temp;
  436. u32 phys;
  437. #endif
  438. if ((n = queue_get_desc(rxq, port, 0)) < 0) {
  439. #if DEBUG_RX
  440. printk(KERN_DEBUG "%s: eth_poll napi_complete\n",
  441. dev->name);
  442. #endif
  443. napi_complete(napi);
  444. qmgr_enable_irq(rxq);
  445. if (!qmgr_stat_below_low_watermark(rxq) &&
  446. napi_reschedule(napi)) { /* not empty again */
  447. #if DEBUG_RX
  448. printk(KERN_DEBUG "%s: eth_poll"
  449. " napi_reschedule successed\n",
  450. dev->name);
  451. #endif
  452. qmgr_disable_irq(rxq);
  453. continue;
  454. }
  455. #if DEBUG_RX
  456. printk(KERN_DEBUG "%s: eth_poll all done\n",
  457. dev->name);
  458. #endif
  459. return received; /* all work done */
  460. }
  461. desc = rx_desc_ptr(port, n);
  462. #ifdef __ARMEB__
  463. if ((skb = netdev_alloc_skb(dev, RX_BUFF_SIZE))) {
  464. phys = dma_map_single(&dev->dev, skb->data,
  465. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  466. if (dma_mapping_error(&dev->dev, phys)) {
  467. dev_kfree_skb(skb);
  468. skb = NULL;
  469. }
  470. }
  471. #else
  472. skb = netdev_alloc_skb(dev,
  473. ALIGN(NET_IP_ALIGN + desc->pkt_len, 4));
  474. #endif
  475. if (!skb) {
  476. dev->stats.rx_dropped++;
  477. /* put the desc back on RX-ready queue */
  478. desc->buf_len = MAX_MRU;
  479. desc->pkt_len = 0;
  480. queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
  481. continue;
  482. }
  483. /* process received frame */
  484. #ifdef __ARMEB__
  485. temp = skb;
  486. skb = port->rx_buff_tab[n];
  487. dma_unmap_single(&dev->dev, desc->data - NET_IP_ALIGN,
  488. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  489. #else
  490. dma_sync_single_for_cpu(&dev->dev, desc->data - NET_IP_ALIGN,
  491. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  492. memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
  493. ALIGN(NET_IP_ALIGN + desc->pkt_len, 4) / 4);
  494. #endif
  495. skb_reserve(skb, NET_IP_ALIGN);
  496. skb_put(skb, desc->pkt_len);
  497. debug_pkt(dev, "eth_poll", skb->data, skb->len);
  498. skb->protocol = eth_type_trans(skb, dev);
  499. dev->stats.rx_packets++;
  500. dev->stats.rx_bytes += skb->len;
  501. netif_receive_skb(skb);
  502. /* put the new buffer on RX-free queue */
  503. #ifdef __ARMEB__
  504. port->rx_buff_tab[n] = temp;
  505. desc->data = phys + NET_IP_ALIGN;
  506. #endif
  507. desc->buf_len = MAX_MRU;
  508. desc->pkt_len = 0;
  509. queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
  510. received++;
  511. }
  512. #if DEBUG_RX
  513. printk(KERN_DEBUG "eth_poll(): end, not all work done\n");
  514. #endif
  515. return received; /* not all work done */
  516. }
  517. static void eth_txdone_irq(void *unused)
  518. {
  519. u32 phys;
  520. #if DEBUG_TX
  521. printk(KERN_DEBUG DRV_NAME ": eth_txdone_irq\n");
  522. #endif
  523. while ((phys = qmgr_get_entry(TXDONE_QUEUE)) != 0) {
  524. u32 npe_id, n_desc;
  525. struct port *port;
  526. struct desc *desc;
  527. int start;
  528. npe_id = phys & 3;
  529. BUG_ON(npe_id >= MAX_NPES);
  530. port = npe_port_tab[npe_id];
  531. BUG_ON(!port);
  532. phys &= ~0x1F; /* mask out non-address bits */
  533. n_desc = (phys - tx_desc_phys(port, 0)) / sizeof(struct desc);
  534. BUG_ON(n_desc >= TX_DESCS);
  535. desc = tx_desc_ptr(port, n_desc);
  536. debug_desc(phys, desc);
  537. if (port->tx_buff_tab[n_desc]) { /* not the draining packet */
  538. port->netdev->stats.tx_packets++;
  539. port->netdev->stats.tx_bytes += desc->pkt_len;
  540. dma_unmap_tx(port, desc);
  541. #if DEBUG_TX
  542. printk(KERN_DEBUG "%s: eth_txdone_irq free %p\n",
  543. port->netdev->name, port->tx_buff_tab[n_desc]);
  544. #endif
  545. free_buffer_irq(port->tx_buff_tab[n_desc]);
  546. port->tx_buff_tab[n_desc] = NULL;
  547. }
  548. start = qmgr_stat_below_low_watermark(port->plat->txreadyq);
  549. queue_put_desc(port->plat->txreadyq, phys, desc);
  550. if (start) { /* TX-ready queue was empty */
  551. #if DEBUG_TX
  552. printk(KERN_DEBUG "%s: eth_txdone_irq xmit ready\n",
  553. port->netdev->name);
  554. #endif
  555. netif_wake_queue(port->netdev);
  556. }
  557. }
  558. }
  559. static int eth_xmit(struct sk_buff *skb, struct net_device *dev)
  560. {
  561. struct port *port = netdev_priv(dev);
  562. unsigned int txreadyq = port->plat->txreadyq;
  563. int len, offset, bytes, n;
  564. void *mem;
  565. u32 phys;
  566. struct desc *desc;
  567. #if DEBUG_TX
  568. printk(KERN_DEBUG "%s: eth_xmit\n", dev->name);
  569. #endif
  570. if (unlikely(skb->len > MAX_MRU)) {
  571. dev_kfree_skb(skb);
  572. dev->stats.tx_errors++;
  573. return NETDEV_TX_OK;
  574. }
  575. debug_pkt(dev, "eth_xmit", skb->data, skb->len);
  576. len = skb->len;
  577. #ifdef __ARMEB__
  578. offset = 0; /* no need to keep alignment */
  579. bytes = len;
  580. mem = skb->data;
  581. #else
  582. offset = (int)skb->data & 3; /* keep 32-bit alignment */
  583. bytes = ALIGN(offset + len, 4);
  584. if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
  585. dev_kfree_skb(skb);
  586. dev->stats.tx_dropped++;
  587. return NETDEV_TX_OK;
  588. }
  589. memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4);
  590. dev_kfree_skb(skb);
  591. #endif
  592. phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
  593. if (dma_mapping_error(&dev->dev, phys)) {
  594. #ifdef __ARMEB__
  595. dev_kfree_skb(skb);
  596. #else
  597. kfree(mem);
  598. #endif
  599. dev->stats.tx_dropped++;
  600. return NETDEV_TX_OK;
  601. }
  602. n = queue_get_desc(txreadyq, port, 1);
  603. BUG_ON(n < 0);
  604. desc = tx_desc_ptr(port, n);
  605. #ifdef __ARMEB__
  606. port->tx_buff_tab[n] = skb;
  607. #else
  608. port->tx_buff_tab[n] = mem;
  609. #endif
  610. desc->data = phys + offset;
  611. desc->buf_len = desc->pkt_len = len;
  612. /* NPE firmware pads short frames with zeros internally */
  613. wmb();
  614. queue_put_desc(TX_QUEUE(port->id), tx_desc_phys(port, n), desc);
  615. dev->trans_start = jiffies;
  616. if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
  617. #if DEBUG_TX
  618. printk(KERN_DEBUG "%s: eth_xmit queue full\n", dev->name);
  619. #endif
  620. netif_stop_queue(dev);
  621. /* we could miss TX ready interrupt */
  622. /* really empty in fact */
  623. if (!qmgr_stat_below_low_watermark(txreadyq)) {
  624. #if DEBUG_TX
  625. printk(KERN_DEBUG "%s: eth_xmit ready again\n",
  626. dev->name);
  627. #endif
  628. netif_wake_queue(dev);
  629. }
  630. }
  631. #if DEBUG_TX
  632. printk(KERN_DEBUG "%s: eth_xmit end\n", dev->name);
  633. #endif
  634. return NETDEV_TX_OK;
  635. }
  636. static void eth_set_mcast_list(struct net_device *dev)
  637. {
  638. struct port *port = netdev_priv(dev);
  639. struct dev_mc_list *mclist;
  640. u8 diffs[ETH_ALEN], *addr;
  641. int i;
  642. if ((dev->flags & IFF_PROMISC) || netdev_mc_empty(dev)) {
  643. __raw_writel(DEFAULT_RX_CNTRL0 & ~RX_CNTRL0_ADDR_FLTR_EN,
  644. &port->regs->rx_control[0]);
  645. return;
  646. }
  647. memset(diffs, 0, ETH_ALEN);
  648. addr = NULL;
  649. netdev_for_each_mc_addr(mclist, dev) {
  650. if (!addr)
  651. addr = mclist->dmi_addr; /* first MAC address */
  652. for (i = 0; i < ETH_ALEN; i++)
  653. diffs[i] |= addr[i] ^ mclist->dmi_addr[i];
  654. }
  655. for (i = 0; i < ETH_ALEN; i++) {
  656. __raw_writel(addr[i], &port->regs->mcast_addr[i]);
  657. __raw_writel(~diffs[i], &port->regs->mcast_mask[i]);
  658. }
  659. __raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
  660. &port->regs->rx_control[0]);
  661. }
  662. static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
  663. {
  664. struct port *port = netdev_priv(dev);
  665. if (!netif_running(dev))
  666. return -EINVAL;
  667. return phy_mii_ioctl(port->phydev, if_mii(req), cmd);
  668. }
  669. /* ethtool support */
  670. static void ixp4xx_get_drvinfo(struct net_device *dev,
  671. struct ethtool_drvinfo *info)
  672. {
  673. struct port *port = netdev_priv(dev);
  674. strcpy(info->driver, DRV_NAME);
  675. snprintf(info->fw_version, sizeof(info->fw_version), "%u:%u:%u:%u",
  676. port->firmware[0], port->firmware[1],
  677. port->firmware[2], port->firmware[3]);
  678. strcpy(info->bus_info, "internal");
  679. }
  680. static int ixp4xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  681. {
  682. struct port *port = netdev_priv(dev);
  683. return phy_ethtool_gset(port->phydev, cmd);
  684. }
  685. static int ixp4xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  686. {
  687. struct port *port = netdev_priv(dev);
  688. return phy_ethtool_sset(port->phydev, cmd);
  689. }
  690. static int ixp4xx_nway_reset(struct net_device *dev)
  691. {
  692. struct port *port = netdev_priv(dev);
  693. return phy_start_aneg(port->phydev);
  694. }
  695. static const struct ethtool_ops ixp4xx_ethtool_ops = {
  696. .get_drvinfo = ixp4xx_get_drvinfo,
  697. .get_settings = ixp4xx_get_settings,
  698. .set_settings = ixp4xx_set_settings,
  699. .nway_reset = ixp4xx_nway_reset,
  700. .get_link = ethtool_op_get_link,
  701. };
  702. static int request_queues(struct port *port)
  703. {
  704. int err;
  705. err = qmgr_request_queue(RXFREE_QUEUE(port->id), RX_DESCS, 0, 0,
  706. "%s:RX-free", port->netdev->name);
  707. if (err)
  708. return err;
  709. err = qmgr_request_queue(port->plat->rxq, RX_DESCS, 0, 0,
  710. "%s:RX", port->netdev->name);
  711. if (err)
  712. goto rel_rxfree;
  713. err = qmgr_request_queue(TX_QUEUE(port->id), TX_DESCS, 0, 0,
  714. "%s:TX", port->netdev->name);
  715. if (err)
  716. goto rel_rx;
  717. err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
  718. "%s:TX-ready", port->netdev->name);
  719. if (err)
  720. goto rel_tx;
  721. /* TX-done queue handles skbs sent out by the NPEs */
  722. if (!ports_open) {
  723. err = qmgr_request_queue(TXDONE_QUEUE, TXDONE_QUEUE_LEN, 0, 0,
  724. "%s:TX-done", DRV_NAME);
  725. if (err)
  726. goto rel_txready;
  727. }
  728. return 0;
  729. rel_txready:
  730. qmgr_release_queue(port->plat->txreadyq);
  731. rel_tx:
  732. qmgr_release_queue(TX_QUEUE(port->id));
  733. rel_rx:
  734. qmgr_release_queue(port->plat->rxq);
  735. rel_rxfree:
  736. qmgr_release_queue(RXFREE_QUEUE(port->id));
  737. printk(KERN_DEBUG "%s: unable to request hardware queues\n",
  738. port->netdev->name);
  739. return err;
  740. }
  741. static void release_queues(struct port *port)
  742. {
  743. qmgr_release_queue(RXFREE_QUEUE(port->id));
  744. qmgr_release_queue(port->plat->rxq);
  745. qmgr_release_queue(TX_QUEUE(port->id));
  746. qmgr_release_queue(port->plat->txreadyq);
  747. if (!ports_open)
  748. qmgr_release_queue(TXDONE_QUEUE);
  749. }
  750. static int init_queues(struct port *port)
  751. {
  752. int i;
  753. if (!ports_open)
  754. if (!(dma_pool = dma_pool_create(DRV_NAME, NULL,
  755. POOL_ALLOC_SIZE, 32, 0)))
  756. return -ENOMEM;
  757. if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
  758. &port->desc_tab_phys)))
  759. return -ENOMEM;
  760. memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
  761. memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
  762. memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
  763. /* Setup RX buffers */
  764. for (i = 0; i < RX_DESCS; i++) {
  765. struct desc *desc = rx_desc_ptr(port, i);
  766. buffer_t *buff; /* skb or kmalloc()ated memory */
  767. void *data;
  768. #ifdef __ARMEB__
  769. if (!(buff = netdev_alloc_skb(port->netdev, RX_BUFF_SIZE)))
  770. return -ENOMEM;
  771. data = buff->data;
  772. #else
  773. if (!(buff = kmalloc(RX_BUFF_SIZE, GFP_KERNEL)))
  774. return -ENOMEM;
  775. data = buff;
  776. #endif
  777. desc->buf_len = MAX_MRU;
  778. desc->data = dma_map_single(&port->netdev->dev, data,
  779. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  780. if (dma_mapping_error(&port->netdev->dev, desc->data)) {
  781. free_buffer(buff);
  782. return -EIO;
  783. }
  784. desc->data += NET_IP_ALIGN;
  785. port->rx_buff_tab[i] = buff;
  786. }
  787. return 0;
  788. }
  789. static void destroy_queues(struct port *port)
  790. {
  791. int i;
  792. if (port->desc_tab) {
  793. for (i = 0; i < RX_DESCS; i++) {
  794. struct desc *desc = rx_desc_ptr(port, i);
  795. buffer_t *buff = port->rx_buff_tab[i];
  796. if (buff) {
  797. dma_unmap_single(&port->netdev->dev,
  798. desc->data - NET_IP_ALIGN,
  799. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  800. free_buffer(buff);
  801. }
  802. }
  803. for (i = 0; i < TX_DESCS; i++) {
  804. struct desc *desc = tx_desc_ptr(port, i);
  805. buffer_t *buff = port->tx_buff_tab[i];
  806. if (buff) {
  807. dma_unmap_tx(port, desc);
  808. free_buffer(buff);
  809. }
  810. }
  811. dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
  812. port->desc_tab = NULL;
  813. }
  814. if (!ports_open && dma_pool) {
  815. dma_pool_destroy(dma_pool);
  816. dma_pool = NULL;
  817. }
  818. }
  819. static int eth_open(struct net_device *dev)
  820. {
  821. struct port *port = netdev_priv(dev);
  822. struct npe *npe = port->npe;
  823. struct msg msg;
  824. int i, err;
  825. if (!npe_running(npe)) {
  826. err = npe_load_firmware(npe, npe_name(npe), &dev->dev);
  827. if (err)
  828. return err;
  829. if (npe_recv_message(npe, &msg, "ETH_GET_STATUS")) {
  830. printk(KERN_ERR "%s: %s not responding\n", dev->name,
  831. npe_name(npe));
  832. return -EIO;
  833. }
  834. port->firmware[0] = msg.byte4;
  835. port->firmware[1] = msg.byte5;
  836. port->firmware[2] = msg.byte6;
  837. port->firmware[3] = msg.byte7;
  838. }
  839. memset(&msg, 0, sizeof(msg));
  840. msg.cmd = NPE_VLAN_SETRXQOSENTRY;
  841. msg.eth_id = port->id;
  842. msg.byte5 = port->plat->rxq | 0x80;
  843. msg.byte7 = port->plat->rxq << 4;
  844. for (i = 0; i < 8; i++) {
  845. msg.byte3 = i;
  846. if (npe_send_recv_message(port->npe, &msg, "ETH_SET_RXQ"))
  847. return -EIO;
  848. }
  849. msg.cmd = NPE_EDB_SETPORTADDRESS;
  850. msg.eth_id = PHYSICAL_ID(port->id);
  851. msg.byte2 = dev->dev_addr[0];
  852. msg.byte3 = dev->dev_addr[1];
  853. msg.byte4 = dev->dev_addr[2];
  854. msg.byte5 = dev->dev_addr[3];
  855. msg.byte6 = dev->dev_addr[4];
  856. msg.byte7 = dev->dev_addr[5];
  857. if (npe_send_recv_message(port->npe, &msg, "ETH_SET_MAC"))
  858. return -EIO;
  859. memset(&msg, 0, sizeof(msg));
  860. msg.cmd = NPE_FW_SETFIREWALLMODE;
  861. msg.eth_id = port->id;
  862. if (npe_send_recv_message(port->npe, &msg, "ETH_SET_FIREWALL_MODE"))
  863. return -EIO;
  864. if ((err = request_queues(port)) != 0)
  865. return err;
  866. if ((err = init_queues(port)) != 0) {
  867. destroy_queues(port);
  868. release_queues(port);
  869. return err;
  870. }
  871. port->speed = 0; /* force "link up" message */
  872. phy_start(port->phydev);
  873. for (i = 0; i < ETH_ALEN; i++)
  874. __raw_writel(dev->dev_addr[i], &port->regs->hw_addr[i]);
  875. __raw_writel(0x08, &port->regs->random_seed);
  876. __raw_writel(0x12, &port->regs->partial_empty_threshold);
  877. __raw_writel(0x30, &port->regs->partial_full_threshold);
  878. __raw_writel(0x08, &port->regs->tx_start_bytes);
  879. __raw_writel(0x15, &port->regs->tx_deferral);
  880. __raw_writel(0x08, &port->regs->tx_2part_deferral[0]);
  881. __raw_writel(0x07, &port->regs->tx_2part_deferral[1]);
  882. __raw_writel(0x80, &port->regs->slot_time);
  883. __raw_writel(0x01, &port->regs->int_clock_threshold);
  884. /* Populate queues with buffers, no failure after this point */
  885. for (i = 0; i < TX_DESCS; i++)
  886. queue_put_desc(port->plat->txreadyq,
  887. tx_desc_phys(port, i), tx_desc_ptr(port, i));
  888. for (i = 0; i < RX_DESCS; i++)
  889. queue_put_desc(RXFREE_QUEUE(port->id),
  890. rx_desc_phys(port, i), rx_desc_ptr(port, i));
  891. __raw_writel(TX_CNTRL1_RETRIES, &port->regs->tx_control[1]);
  892. __raw_writel(DEFAULT_TX_CNTRL0, &port->regs->tx_control[0]);
  893. __raw_writel(0, &port->regs->rx_control[1]);
  894. __raw_writel(DEFAULT_RX_CNTRL0, &port->regs->rx_control[0]);
  895. napi_enable(&port->napi);
  896. eth_set_mcast_list(dev);
  897. netif_start_queue(dev);
  898. qmgr_set_irq(port->plat->rxq, QUEUE_IRQ_SRC_NOT_EMPTY,
  899. eth_rx_irq, dev);
  900. if (!ports_open) {
  901. qmgr_set_irq(TXDONE_QUEUE, QUEUE_IRQ_SRC_NOT_EMPTY,
  902. eth_txdone_irq, NULL);
  903. qmgr_enable_irq(TXDONE_QUEUE);
  904. }
  905. ports_open++;
  906. /* we may already have RX data, enables IRQ */
  907. napi_schedule(&port->napi);
  908. return 0;
  909. }
  910. static int eth_close(struct net_device *dev)
  911. {
  912. struct port *port = netdev_priv(dev);
  913. struct msg msg;
  914. int buffs = RX_DESCS; /* allocated RX buffers */
  915. int i;
  916. ports_open--;
  917. qmgr_disable_irq(port->plat->rxq);
  918. napi_disable(&port->napi);
  919. netif_stop_queue(dev);
  920. while (queue_get_desc(RXFREE_QUEUE(port->id), port, 0) >= 0)
  921. buffs--;
  922. memset(&msg, 0, sizeof(msg));
  923. msg.cmd = NPE_SETLOOPBACK_MODE;
  924. msg.eth_id = port->id;
  925. msg.byte3 = 1;
  926. if (npe_send_recv_message(port->npe, &msg, "ETH_ENABLE_LOOPBACK"))
  927. printk(KERN_CRIT "%s: unable to enable loopback\n", dev->name);
  928. i = 0;
  929. do { /* drain RX buffers */
  930. while (queue_get_desc(port->plat->rxq, port, 0) >= 0)
  931. buffs--;
  932. if (!buffs)
  933. break;
  934. if (qmgr_stat_empty(TX_QUEUE(port->id))) {
  935. /* we have to inject some packet */
  936. struct desc *desc;
  937. u32 phys;
  938. int n = queue_get_desc(port->plat->txreadyq, port, 1);
  939. BUG_ON(n < 0);
  940. desc = tx_desc_ptr(port, n);
  941. phys = tx_desc_phys(port, n);
  942. desc->buf_len = desc->pkt_len = 1;
  943. wmb();
  944. queue_put_desc(TX_QUEUE(port->id), phys, desc);
  945. }
  946. udelay(1);
  947. } while (++i < MAX_CLOSE_WAIT);
  948. if (buffs)
  949. printk(KERN_CRIT "%s: unable to drain RX queue, %i buffer(s)"
  950. " left in NPE\n", dev->name, buffs);
  951. #if DEBUG_CLOSE
  952. if (!buffs)
  953. printk(KERN_DEBUG "Draining RX queue took %i cycles\n", i);
  954. #endif
  955. buffs = TX_DESCS;
  956. while (queue_get_desc(TX_QUEUE(port->id), port, 1) >= 0)
  957. buffs--; /* cancel TX */
  958. i = 0;
  959. do {
  960. while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
  961. buffs--;
  962. if (!buffs)
  963. break;
  964. } while (++i < MAX_CLOSE_WAIT);
  965. if (buffs)
  966. printk(KERN_CRIT "%s: unable to drain TX queue, %i buffer(s) "
  967. "left in NPE\n", dev->name, buffs);
  968. #if DEBUG_CLOSE
  969. if (!buffs)
  970. printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
  971. #endif
  972. msg.byte3 = 0;
  973. if (npe_send_recv_message(port->npe, &msg, "ETH_DISABLE_LOOPBACK"))
  974. printk(KERN_CRIT "%s: unable to disable loopback\n",
  975. dev->name);
  976. phy_stop(port->phydev);
  977. if (!ports_open)
  978. qmgr_disable_irq(TXDONE_QUEUE);
  979. destroy_queues(port);
  980. release_queues(port);
  981. return 0;
  982. }
  983. static const struct net_device_ops ixp4xx_netdev_ops = {
  984. .ndo_open = eth_open,
  985. .ndo_stop = eth_close,
  986. .ndo_start_xmit = eth_xmit,
  987. .ndo_set_multicast_list = eth_set_mcast_list,
  988. .ndo_do_ioctl = eth_ioctl,
  989. .ndo_change_mtu = eth_change_mtu,
  990. .ndo_set_mac_address = eth_mac_addr,
  991. .ndo_validate_addr = eth_validate_addr,
  992. };
  993. static int __devinit eth_init_one(struct platform_device *pdev)
  994. {
  995. struct port *port;
  996. struct net_device *dev;
  997. struct eth_plat_info *plat = pdev->dev.platform_data;
  998. u32 regs_phys;
  999. char phy_id[MII_BUS_ID_SIZE + 3];
  1000. int err;
  1001. if (!(dev = alloc_etherdev(sizeof(struct port))))
  1002. return -ENOMEM;
  1003. SET_NETDEV_DEV(dev, &pdev->dev);
  1004. port = netdev_priv(dev);
  1005. port->netdev = dev;
  1006. port->id = pdev->id;
  1007. switch (port->id) {
  1008. case IXP4XX_ETH_NPEA:
  1009. port->regs = (struct eth_regs __iomem *)IXP4XX_EthA_BASE_VIRT;
  1010. regs_phys = IXP4XX_EthA_BASE_PHYS;
  1011. break;
  1012. case IXP4XX_ETH_NPEB:
  1013. port->regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
  1014. regs_phys = IXP4XX_EthB_BASE_PHYS;
  1015. break;
  1016. case IXP4XX_ETH_NPEC:
  1017. port->regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
  1018. regs_phys = IXP4XX_EthC_BASE_PHYS;
  1019. break;
  1020. default:
  1021. err = -ENODEV;
  1022. goto err_free;
  1023. }
  1024. dev->netdev_ops = &ixp4xx_netdev_ops;
  1025. dev->ethtool_ops = &ixp4xx_ethtool_ops;
  1026. dev->tx_queue_len = 100;
  1027. netif_napi_add(dev, &port->napi, eth_poll, NAPI_WEIGHT);
  1028. if (!(port->npe = npe_request(NPE_ID(port->id)))) {
  1029. err = -EIO;
  1030. goto err_free;
  1031. }
  1032. port->mem_res = request_mem_region(regs_phys, REGS_SIZE, dev->name);
  1033. if (!port->mem_res) {
  1034. err = -EBUSY;
  1035. goto err_npe_rel;
  1036. }
  1037. port->plat = plat;
  1038. npe_port_tab[NPE_ID(port->id)] = port;
  1039. memcpy(dev->dev_addr, plat->hwaddr, ETH_ALEN);
  1040. platform_set_drvdata(pdev, dev);
  1041. __raw_writel(DEFAULT_CORE_CNTRL | CORE_RESET,
  1042. &port->regs->core_control);
  1043. udelay(50);
  1044. __raw_writel(DEFAULT_CORE_CNTRL, &port->regs->core_control);
  1045. udelay(50);
  1046. snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, "0", plat->phy);
  1047. port->phydev = phy_connect(dev, phy_id, &ixp4xx_adjust_link, 0,
  1048. PHY_INTERFACE_MODE_MII);
  1049. if ((err = IS_ERR(port->phydev)))
  1050. goto err_free_mem;
  1051. port->phydev->irq = PHY_POLL;
  1052. if ((err = register_netdev(dev)))
  1053. goto err_phy_dis;
  1054. printk(KERN_INFO "%s: MII PHY %i on %s\n", dev->name, plat->phy,
  1055. npe_name(port->npe));
  1056. return 0;
  1057. err_phy_dis:
  1058. phy_disconnect(port->phydev);
  1059. err_free_mem:
  1060. npe_port_tab[NPE_ID(port->id)] = NULL;
  1061. platform_set_drvdata(pdev, NULL);
  1062. release_resource(port->mem_res);
  1063. err_npe_rel:
  1064. npe_release(port->npe);
  1065. err_free:
  1066. free_netdev(dev);
  1067. return err;
  1068. }
  1069. static int __devexit eth_remove_one(struct platform_device *pdev)
  1070. {
  1071. struct net_device *dev = platform_get_drvdata(pdev);
  1072. struct port *port = netdev_priv(dev);
  1073. unregister_netdev(dev);
  1074. phy_disconnect(port->phydev);
  1075. npe_port_tab[NPE_ID(port->id)] = NULL;
  1076. platform_set_drvdata(pdev, NULL);
  1077. npe_release(port->npe);
  1078. release_resource(port->mem_res);
  1079. free_netdev(dev);
  1080. return 0;
  1081. }
  1082. static struct platform_driver ixp4xx_eth_driver = {
  1083. .driver.name = DRV_NAME,
  1084. .probe = eth_init_one,
  1085. .remove = eth_remove_one,
  1086. };
  1087. static int __init eth_init_module(void)
  1088. {
  1089. int err;
  1090. if ((err = ixp4xx_mdio_register()))
  1091. return err;
  1092. return platform_driver_register(&ixp4xx_eth_driver);
  1093. }
  1094. static void __exit eth_cleanup_module(void)
  1095. {
  1096. platform_driver_unregister(&ixp4xx_eth_driver);
  1097. ixp4xx_mdio_remove();
  1098. }
  1099. MODULE_AUTHOR("Krzysztof Halasa");
  1100. MODULE_DESCRIPTION("Intel IXP4xx Ethernet driver");
  1101. MODULE_LICENSE("GPL v2");
  1102. MODULE_ALIAS("platform:ixp4xx_eth");
  1103. module_init(eth_init_module);
  1104. module_exit(eth_cleanup_module);