iwch_cm.c 57 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247
  1. /*
  2. * Copyright (c) 2006 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include <linux/module.h>
  33. #include <linux/list.h>
  34. #include <linux/slab.h>
  35. #include <linux/workqueue.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/timer.h>
  38. #include <linux/notifier.h>
  39. #include <linux/inetdevice.h>
  40. #include <net/neighbour.h>
  41. #include <net/netevent.h>
  42. #include <net/route.h>
  43. #include "tcb.h"
  44. #include "cxgb3_offload.h"
  45. #include "iwch.h"
  46. #include "iwch_provider.h"
  47. #include "iwch_cm.h"
  48. static char *states[] = {
  49. "idle",
  50. "listen",
  51. "connecting",
  52. "mpa_wait_req",
  53. "mpa_req_sent",
  54. "mpa_req_rcvd",
  55. "mpa_rep_sent",
  56. "fpdu_mode",
  57. "aborting",
  58. "closing",
  59. "moribund",
  60. "dead",
  61. NULL,
  62. };
  63. int peer2peer = 0;
  64. module_param(peer2peer, int, 0644);
  65. MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=0)");
  66. static int ep_timeout_secs = 60;
  67. module_param(ep_timeout_secs, int, 0644);
  68. MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
  69. "in seconds (default=60)");
  70. static int mpa_rev = 1;
  71. module_param(mpa_rev, int, 0644);
  72. MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
  73. "1 is spec compliant. (default=1)");
  74. static int markers_enabled = 0;
  75. module_param(markers_enabled, int, 0644);
  76. MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
  77. static int crc_enabled = 1;
  78. module_param(crc_enabled, int, 0644);
  79. MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
  80. static int rcv_win = 256 * 1024;
  81. module_param(rcv_win, int, 0644);
  82. MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256)");
  83. static int snd_win = 32 * 1024;
  84. module_param(snd_win, int, 0644);
  85. MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=32KB)");
  86. static unsigned int nocong = 0;
  87. module_param(nocong, uint, 0644);
  88. MODULE_PARM_DESC(nocong, "Turn off congestion control (default=0)");
  89. static unsigned int cong_flavor = 1;
  90. module_param(cong_flavor, uint, 0644);
  91. MODULE_PARM_DESC(cong_flavor, "TCP Congestion control flavor (default=1)");
  92. static void process_work(struct work_struct *work);
  93. static struct workqueue_struct *workq;
  94. static DECLARE_WORK(skb_work, process_work);
  95. static struct sk_buff_head rxq;
  96. static cxgb3_cpl_handler_func work_handlers[NUM_CPL_CMDS];
  97. static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
  98. static void ep_timeout(unsigned long arg);
  99. static void connect_reply_upcall(struct iwch_ep *ep, int status);
  100. static void start_ep_timer(struct iwch_ep *ep)
  101. {
  102. PDBG("%s ep %p\n", __func__, ep);
  103. if (timer_pending(&ep->timer)) {
  104. PDBG("%s stopped / restarted timer ep %p\n", __func__, ep);
  105. del_timer_sync(&ep->timer);
  106. } else
  107. get_ep(&ep->com);
  108. ep->timer.expires = jiffies + ep_timeout_secs * HZ;
  109. ep->timer.data = (unsigned long)ep;
  110. ep->timer.function = ep_timeout;
  111. add_timer(&ep->timer);
  112. }
  113. static void stop_ep_timer(struct iwch_ep *ep)
  114. {
  115. PDBG("%s ep %p\n", __func__, ep);
  116. if (!timer_pending(&ep->timer)) {
  117. printk(KERN_ERR "%s timer stopped when its not running! ep %p state %u\n",
  118. __func__, ep, ep->com.state);
  119. WARN_ON(1);
  120. return;
  121. }
  122. del_timer_sync(&ep->timer);
  123. put_ep(&ep->com);
  124. }
  125. int iwch_l2t_send(struct t3cdev *tdev, struct sk_buff *skb, struct l2t_entry *l2e)
  126. {
  127. int error = 0;
  128. struct cxio_rdev *rdev;
  129. rdev = (struct cxio_rdev *)tdev->ulp;
  130. if (cxio_fatal_error(rdev)) {
  131. kfree_skb(skb);
  132. return -EIO;
  133. }
  134. error = l2t_send(tdev, skb, l2e);
  135. if (error)
  136. kfree_skb(skb);
  137. return error;
  138. }
  139. int iwch_cxgb3_ofld_send(struct t3cdev *tdev, struct sk_buff *skb)
  140. {
  141. int error = 0;
  142. struct cxio_rdev *rdev;
  143. rdev = (struct cxio_rdev *)tdev->ulp;
  144. if (cxio_fatal_error(rdev)) {
  145. kfree_skb(skb);
  146. return -EIO;
  147. }
  148. error = cxgb3_ofld_send(tdev, skb);
  149. if (error)
  150. kfree_skb(skb);
  151. return error;
  152. }
  153. static void release_tid(struct t3cdev *tdev, u32 hwtid, struct sk_buff *skb)
  154. {
  155. struct cpl_tid_release *req;
  156. skb = get_skb(skb, sizeof *req, GFP_KERNEL);
  157. if (!skb)
  158. return;
  159. req = (struct cpl_tid_release *) skb_put(skb, sizeof(*req));
  160. req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
  161. OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, hwtid));
  162. skb->priority = CPL_PRIORITY_SETUP;
  163. iwch_cxgb3_ofld_send(tdev, skb);
  164. return;
  165. }
  166. int iwch_quiesce_tid(struct iwch_ep *ep)
  167. {
  168. struct cpl_set_tcb_field *req;
  169. struct sk_buff *skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
  170. if (!skb)
  171. return -ENOMEM;
  172. req = (struct cpl_set_tcb_field *) skb_put(skb, sizeof(*req));
  173. req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
  174. req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
  175. OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, ep->hwtid));
  176. req->reply = 0;
  177. req->cpu_idx = 0;
  178. req->word = htons(W_TCB_RX_QUIESCE);
  179. req->mask = cpu_to_be64(1ULL << S_TCB_RX_QUIESCE);
  180. req->val = cpu_to_be64(1 << S_TCB_RX_QUIESCE);
  181. skb->priority = CPL_PRIORITY_DATA;
  182. return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
  183. }
  184. int iwch_resume_tid(struct iwch_ep *ep)
  185. {
  186. struct cpl_set_tcb_field *req;
  187. struct sk_buff *skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
  188. if (!skb)
  189. return -ENOMEM;
  190. req = (struct cpl_set_tcb_field *) skb_put(skb, sizeof(*req));
  191. req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
  192. req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
  193. OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, ep->hwtid));
  194. req->reply = 0;
  195. req->cpu_idx = 0;
  196. req->word = htons(W_TCB_RX_QUIESCE);
  197. req->mask = cpu_to_be64(1ULL << S_TCB_RX_QUIESCE);
  198. req->val = 0;
  199. skb->priority = CPL_PRIORITY_DATA;
  200. return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
  201. }
  202. static void set_emss(struct iwch_ep *ep, u16 opt)
  203. {
  204. PDBG("%s ep %p opt %u\n", __func__, ep, opt);
  205. ep->emss = T3C_DATA(ep->com.tdev)->mtus[G_TCPOPT_MSS(opt)] - 40;
  206. if (G_TCPOPT_TSTAMP(opt))
  207. ep->emss -= 12;
  208. if (ep->emss < 128)
  209. ep->emss = 128;
  210. PDBG("emss=%d\n", ep->emss);
  211. }
  212. static enum iwch_ep_state state_read(struct iwch_ep_common *epc)
  213. {
  214. unsigned long flags;
  215. enum iwch_ep_state state;
  216. spin_lock_irqsave(&epc->lock, flags);
  217. state = epc->state;
  218. spin_unlock_irqrestore(&epc->lock, flags);
  219. return state;
  220. }
  221. static void __state_set(struct iwch_ep_common *epc, enum iwch_ep_state new)
  222. {
  223. epc->state = new;
  224. }
  225. static void state_set(struct iwch_ep_common *epc, enum iwch_ep_state new)
  226. {
  227. unsigned long flags;
  228. spin_lock_irqsave(&epc->lock, flags);
  229. PDBG("%s - %s -> %s\n", __func__, states[epc->state], states[new]);
  230. __state_set(epc, new);
  231. spin_unlock_irqrestore(&epc->lock, flags);
  232. return;
  233. }
  234. static void *alloc_ep(int size, gfp_t gfp)
  235. {
  236. struct iwch_ep_common *epc;
  237. epc = kzalloc(size, gfp);
  238. if (epc) {
  239. kref_init(&epc->kref);
  240. spin_lock_init(&epc->lock);
  241. init_waitqueue_head(&epc->waitq);
  242. }
  243. PDBG("%s alloc ep %p\n", __func__, epc);
  244. return epc;
  245. }
  246. void __free_ep(struct kref *kref)
  247. {
  248. struct iwch_ep *ep;
  249. ep = container_of(container_of(kref, struct iwch_ep_common, kref),
  250. struct iwch_ep, com);
  251. PDBG("%s ep %p state %s\n", __func__, ep, states[state_read(&ep->com)]);
  252. if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) {
  253. cxgb3_remove_tid(ep->com.tdev, (void *)ep, ep->hwtid);
  254. dst_release(ep->dst);
  255. l2t_release(L2DATA(ep->com.tdev), ep->l2t);
  256. }
  257. kfree(ep);
  258. }
  259. static void release_ep_resources(struct iwch_ep *ep)
  260. {
  261. PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid);
  262. set_bit(RELEASE_RESOURCES, &ep->com.flags);
  263. put_ep(&ep->com);
  264. }
  265. static void process_work(struct work_struct *work)
  266. {
  267. struct sk_buff *skb = NULL;
  268. void *ep;
  269. struct t3cdev *tdev;
  270. int ret;
  271. while ((skb = skb_dequeue(&rxq))) {
  272. ep = *((void **) (skb->cb));
  273. tdev = *((struct t3cdev **) (skb->cb + sizeof(void *)));
  274. ret = work_handlers[G_OPCODE(ntohl((__force __be32)skb->csum))](tdev, skb, ep);
  275. if (ret & CPL_RET_BUF_DONE)
  276. kfree_skb(skb);
  277. /*
  278. * ep was referenced in sched(), and is freed here.
  279. */
  280. put_ep((struct iwch_ep_common *)ep);
  281. }
  282. }
  283. static int status2errno(int status)
  284. {
  285. switch (status) {
  286. case CPL_ERR_NONE:
  287. return 0;
  288. case CPL_ERR_CONN_RESET:
  289. return -ECONNRESET;
  290. case CPL_ERR_ARP_MISS:
  291. return -EHOSTUNREACH;
  292. case CPL_ERR_CONN_TIMEDOUT:
  293. return -ETIMEDOUT;
  294. case CPL_ERR_TCAM_FULL:
  295. return -ENOMEM;
  296. case CPL_ERR_CONN_EXIST:
  297. return -EADDRINUSE;
  298. default:
  299. return -EIO;
  300. }
  301. }
  302. /*
  303. * Try and reuse skbs already allocated...
  304. */
  305. static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
  306. {
  307. if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
  308. skb_trim(skb, 0);
  309. skb_get(skb);
  310. } else {
  311. skb = alloc_skb(len, gfp);
  312. }
  313. return skb;
  314. }
  315. static struct rtable *find_route(struct t3cdev *dev, __be32 local_ip,
  316. __be32 peer_ip, __be16 local_port,
  317. __be16 peer_port, u8 tos)
  318. {
  319. struct rtable *rt;
  320. struct flowi fl = {
  321. .oif = 0,
  322. .nl_u = {
  323. .ip4_u = {
  324. .daddr = peer_ip,
  325. .saddr = local_ip,
  326. .tos = tos}
  327. },
  328. .proto = IPPROTO_TCP,
  329. .uli_u = {
  330. .ports = {
  331. .sport = local_port,
  332. .dport = peer_port}
  333. }
  334. };
  335. if (ip_route_output_flow(&init_net, &rt, &fl, NULL, 0))
  336. return NULL;
  337. return rt;
  338. }
  339. static unsigned int find_best_mtu(const struct t3c_data *d, unsigned short mtu)
  340. {
  341. int i = 0;
  342. while (i < d->nmtus - 1 && d->mtus[i + 1] <= mtu)
  343. ++i;
  344. return i;
  345. }
  346. static void arp_failure_discard(struct t3cdev *dev, struct sk_buff *skb)
  347. {
  348. PDBG("%s t3cdev %p\n", __func__, dev);
  349. kfree_skb(skb);
  350. }
  351. /*
  352. * Handle an ARP failure for an active open.
  353. */
  354. static void act_open_req_arp_failure(struct t3cdev *dev, struct sk_buff *skb)
  355. {
  356. printk(KERN_ERR MOD "ARP failure duing connect\n");
  357. kfree_skb(skb);
  358. }
  359. /*
  360. * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant
  361. * and send it along.
  362. */
  363. static void abort_arp_failure(struct t3cdev *dev, struct sk_buff *skb)
  364. {
  365. struct cpl_abort_req *req = cplhdr(skb);
  366. PDBG("%s t3cdev %p\n", __func__, dev);
  367. req->cmd = CPL_ABORT_NO_RST;
  368. iwch_cxgb3_ofld_send(dev, skb);
  369. }
  370. static int send_halfclose(struct iwch_ep *ep, gfp_t gfp)
  371. {
  372. struct cpl_close_con_req *req;
  373. struct sk_buff *skb;
  374. PDBG("%s ep %p\n", __func__, ep);
  375. skb = get_skb(NULL, sizeof(*req), gfp);
  376. if (!skb) {
  377. printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__);
  378. return -ENOMEM;
  379. }
  380. skb->priority = CPL_PRIORITY_DATA;
  381. set_arp_failure_handler(skb, arp_failure_discard);
  382. req = (struct cpl_close_con_req *) skb_put(skb, sizeof(*req));
  383. req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_CLOSE_CON));
  384. req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
  385. OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_CON_REQ, ep->hwtid));
  386. return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
  387. }
  388. static int send_abort(struct iwch_ep *ep, struct sk_buff *skb, gfp_t gfp)
  389. {
  390. struct cpl_abort_req *req;
  391. PDBG("%s ep %p\n", __func__, ep);
  392. skb = get_skb(skb, sizeof(*req), gfp);
  393. if (!skb) {
  394. printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
  395. __func__);
  396. return -ENOMEM;
  397. }
  398. skb->priority = CPL_PRIORITY_DATA;
  399. set_arp_failure_handler(skb, abort_arp_failure);
  400. req = (struct cpl_abort_req *) skb_put(skb, sizeof(*req));
  401. req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_REQ));
  402. req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
  403. OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ABORT_REQ, ep->hwtid));
  404. req->cmd = CPL_ABORT_SEND_RST;
  405. return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
  406. }
  407. static int send_connect(struct iwch_ep *ep)
  408. {
  409. struct cpl_act_open_req *req;
  410. struct sk_buff *skb;
  411. u32 opt0h, opt0l, opt2;
  412. unsigned int mtu_idx;
  413. int wscale;
  414. PDBG("%s ep %p\n", __func__, ep);
  415. skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
  416. if (!skb) {
  417. printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
  418. __func__);
  419. return -ENOMEM;
  420. }
  421. mtu_idx = find_best_mtu(T3C_DATA(ep->com.tdev), dst_mtu(ep->dst));
  422. wscale = compute_wscale(rcv_win);
  423. opt0h = V_NAGLE(0) |
  424. V_NO_CONG(nocong) |
  425. V_KEEP_ALIVE(1) |
  426. F_TCAM_BYPASS |
  427. V_WND_SCALE(wscale) |
  428. V_MSS_IDX(mtu_idx) |
  429. V_L2T_IDX(ep->l2t->idx) | V_TX_CHANNEL(ep->l2t->smt_idx);
  430. opt0l = V_TOS((ep->tos >> 2) & M_TOS) | V_RCV_BUFSIZ(rcv_win>>10);
  431. opt2 = V_FLAVORS_VALID(1) | V_CONG_CONTROL_FLAVOR(cong_flavor);
  432. skb->priority = CPL_PRIORITY_SETUP;
  433. set_arp_failure_handler(skb, act_open_req_arp_failure);
  434. req = (struct cpl_act_open_req *) skb_put(skb, sizeof(*req));
  435. req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
  436. OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ACT_OPEN_REQ, ep->atid));
  437. req->local_port = ep->com.local_addr.sin_port;
  438. req->peer_port = ep->com.remote_addr.sin_port;
  439. req->local_ip = ep->com.local_addr.sin_addr.s_addr;
  440. req->peer_ip = ep->com.remote_addr.sin_addr.s_addr;
  441. req->opt0h = htonl(opt0h);
  442. req->opt0l = htonl(opt0l);
  443. req->params = 0;
  444. req->opt2 = htonl(opt2);
  445. return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
  446. }
  447. static void send_mpa_req(struct iwch_ep *ep, struct sk_buff *skb)
  448. {
  449. int mpalen;
  450. struct tx_data_wr *req;
  451. struct mpa_message *mpa;
  452. int len;
  453. PDBG("%s ep %p pd_len %d\n", __func__, ep, ep->plen);
  454. BUG_ON(skb_cloned(skb));
  455. mpalen = sizeof(*mpa) + ep->plen;
  456. if (skb->data + mpalen + sizeof(*req) > skb_end_pointer(skb)) {
  457. kfree_skb(skb);
  458. skb=alloc_skb(mpalen + sizeof(*req), GFP_KERNEL);
  459. if (!skb) {
  460. connect_reply_upcall(ep, -ENOMEM);
  461. return;
  462. }
  463. }
  464. skb_trim(skb, 0);
  465. skb_reserve(skb, sizeof(*req));
  466. skb_put(skb, mpalen);
  467. skb->priority = CPL_PRIORITY_DATA;
  468. mpa = (struct mpa_message *) skb->data;
  469. memset(mpa, 0, sizeof(*mpa));
  470. memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
  471. mpa->flags = (crc_enabled ? MPA_CRC : 0) |
  472. (markers_enabled ? MPA_MARKERS : 0);
  473. mpa->private_data_size = htons(ep->plen);
  474. mpa->revision = mpa_rev;
  475. if (ep->plen)
  476. memcpy(mpa->private_data, ep->mpa_pkt + sizeof(*mpa), ep->plen);
  477. /*
  478. * Reference the mpa skb. This ensures the data area
  479. * will remain in memory until the hw acks the tx.
  480. * Function tx_ack() will deref it.
  481. */
  482. skb_get(skb);
  483. set_arp_failure_handler(skb, arp_failure_discard);
  484. skb_reset_transport_header(skb);
  485. len = skb->len;
  486. req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
  487. req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL);
  488. req->wr_lo = htonl(V_WR_TID(ep->hwtid));
  489. req->len = htonl(len);
  490. req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
  491. V_TX_SNDBUF(snd_win>>15));
  492. req->flags = htonl(F_TX_INIT);
  493. req->sndseq = htonl(ep->snd_seq);
  494. BUG_ON(ep->mpa_skb);
  495. ep->mpa_skb = skb;
  496. iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
  497. start_ep_timer(ep);
  498. state_set(&ep->com, MPA_REQ_SENT);
  499. return;
  500. }
  501. static int send_mpa_reject(struct iwch_ep *ep, const void *pdata, u8 plen)
  502. {
  503. int mpalen;
  504. struct tx_data_wr *req;
  505. struct mpa_message *mpa;
  506. struct sk_buff *skb;
  507. PDBG("%s ep %p plen %d\n", __func__, ep, plen);
  508. mpalen = sizeof(*mpa) + plen;
  509. skb = get_skb(NULL, mpalen + sizeof(*req), GFP_KERNEL);
  510. if (!skb) {
  511. printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
  512. return -ENOMEM;
  513. }
  514. skb_reserve(skb, sizeof(*req));
  515. mpa = (struct mpa_message *) skb_put(skb, mpalen);
  516. memset(mpa, 0, sizeof(*mpa));
  517. memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
  518. mpa->flags = MPA_REJECT;
  519. mpa->revision = mpa_rev;
  520. mpa->private_data_size = htons(plen);
  521. if (plen)
  522. memcpy(mpa->private_data, pdata, plen);
  523. /*
  524. * Reference the mpa skb again. This ensures the data area
  525. * will remain in memory until the hw acks the tx.
  526. * Function tx_ack() will deref it.
  527. */
  528. skb_get(skb);
  529. skb->priority = CPL_PRIORITY_DATA;
  530. set_arp_failure_handler(skb, arp_failure_discard);
  531. skb_reset_transport_header(skb);
  532. req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
  533. req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL);
  534. req->wr_lo = htonl(V_WR_TID(ep->hwtid));
  535. req->len = htonl(mpalen);
  536. req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
  537. V_TX_SNDBUF(snd_win>>15));
  538. req->flags = htonl(F_TX_INIT);
  539. req->sndseq = htonl(ep->snd_seq);
  540. BUG_ON(ep->mpa_skb);
  541. ep->mpa_skb = skb;
  542. return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
  543. }
  544. static int send_mpa_reply(struct iwch_ep *ep, const void *pdata, u8 plen)
  545. {
  546. int mpalen;
  547. struct tx_data_wr *req;
  548. struct mpa_message *mpa;
  549. int len;
  550. struct sk_buff *skb;
  551. PDBG("%s ep %p plen %d\n", __func__, ep, plen);
  552. mpalen = sizeof(*mpa) + plen;
  553. skb = get_skb(NULL, mpalen + sizeof(*req), GFP_KERNEL);
  554. if (!skb) {
  555. printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
  556. return -ENOMEM;
  557. }
  558. skb->priority = CPL_PRIORITY_DATA;
  559. skb_reserve(skb, sizeof(*req));
  560. mpa = (struct mpa_message *) skb_put(skb, mpalen);
  561. memset(mpa, 0, sizeof(*mpa));
  562. memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
  563. mpa->flags = (ep->mpa_attr.crc_enabled ? MPA_CRC : 0) |
  564. (markers_enabled ? MPA_MARKERS : 0);
  565. mpa->revision = mpa_rev;
  566. mpa->private_data_size = htons(plen);
  567. if (plen)
  568. memcpy(mpa->private_data, pdata, plen);
  569. /*
  570. * Reference the mpa skb. This ensures the data area
  571. * will remain in memory until the hw acks the tx.
  572. * Function tx_ack() will deref it.
  573. */
  574. skb_get(skb);
  575. set_arp_failure_handler(skb, arp_failure_discard);
  576. skb_reset_transport_header(skb);
  577. len = skb->len;
  578. req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
  579. req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL);
  580. req->wr_lo = htonl(V_WR_TID(ep->hwtid));
  581. req->len = htonl(len);
  582. req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
  583. V_TX_SNDBUF(snd_win>>15));
  584. req->flags = htonl(F_TX_INIT);
  585. req->sndseq = htonl(ep->snd_seq);
  586. ep->mpa_skb = skb;
  587. state_set(&ep->com, MPA_REP_SENT);
  588. return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
  589. }
  590. static int act_establish(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
  591. {
  592. struct iwch_ep *ep = ctx;
  593. struct cpl_act_establish *req = cplhdr(skb);
  594. unsigned int tid = GET_TID(req);
  595. PDBG("%s ep %p tid %d\n", __func__, ep, tid);
  596. dst_confirm(ep->dst);
  597. /* setup the hwtid for this connection */
  598. ep->hwtid = tid;
  599. cxgb3_insert_tid(ep->com.tdev, &t3c_client, ep, tid);
  600. ep->snd_seq = ntohl(req->snd_isn);
  601. ep->rcv_seq = ntohl(req->rcv_isn);
  602. set_emss(ep, ntohs(req->tcp_opt));
  603. /* dealloc the atid */
  604. cxgb3_free_atid(ep->com.tdev, ep->atid);
  605. /* start MPA negotiation */
  606. send_mpa_req(ep, skb);
  607. return 0;
  608. }
  609. static void abort_connection(struct iwch_ep *ep, struct sk_buff *skb, gfp_t gfp)
  610. {
  611. PDBG("%s ep %p\n", __FILE__, ep);
  612. state_set(&ep->com, ABORTING);
  613. send_abort(ep, skb, gfp);
  614. }
  615. static void close_complete_upcall(struct iwch_ep *ep)
  616. {
  617. struct iw_cm_event event;
  618. PDBG("%s ep %p\n", __func__, ep);
  619. memset(&event, 0, sizeof(event));
  620. event.event = IW_CM_EVENT_CLOSE;
  621. if (ep->com.cm_id) {
  622. PDBG("close complete delivered ep %p cm_id %p tid %d\n",
  623. ep, ep->com.cm_id, ep->hwtid);
  624. ep->com.cm_id->event_handler(ep->com.cm_id, &event);
  625. ep->com.cm_id->rem_ref(ep->com.cm_id);
  626. ep->com.cm_id = NULL;
  627. ep->com.qp = NULL;
  628. }
  629. }
  630. static void peer_close_upcall(struct iwch_ep *ep)
  631. {
  632. struct iw_cm_event event;
  633. PDBG("%s ep %p\n", __func__, ep);
  634. memset(&event, 0, sizeof(event));
  635. event.event = IW_CM_EVENT_DISCONNECT;
  636. if (ep->com.cm_id) {
  637. PDBG("peer close delivered ep %p cm_id %p tid %d\n",
  638. ep, ep->com.cm_id, ep->hwtid);
  639. ep->com.cm_id->event_handler(ep->com.cm_id, &event);
  640. }
  641. }
  642. static void peer_abort_upcall(struct iwch_ep *ep)
  643. {
  644. struct iw_cm_event event;
  645. PDBG("%s ep %p\n", __func__, ep);
  646. memset(&event, 0, sizeof(event));
  647. event.event = IW_CM_EVENT_CLOSE;
  648. event.status = -ECONNRESET;
  649. if (ep->com.cm_id) {
  650. PDBG("abort delivered ep %p cm_id %p tid %d\n", ep,
  651. ep->com.cm_id, ep->hwtid);
  652. ep->com.cm_id->event_handler(ep->com.cm_id, &event);
  653. ep->com.cm_id->rem_ref(ep->com.cm_id);
  654. ep->com.cm_id = NULL;
  655. ep->com.qp = NULL;
  656. }
  657. }
  658. static void connect_reply_upcall(struct iwch_ep *ep, int status)
  659. {
  660. struct iw_cm_event event;
  661. PDBG("%s ep %p status %d\n", __func__, ep, status);
  662. memset(&event, 0, sizeof(event));
  663. event.event = IW_CM_EVENT_CONNECT_REPLY;
  664. event.status = status;
  665. event.local_addr = ep->com.local_addr;
  666. event.remote_addr = ep->com.remote_addr;
  667. if ((status == 0) || (status == -ECONNREFUSED)) {
  668. event.private_data_len = ep->plen;
  669. event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
  670. }
  671. if (ep->com.cm_id) {
  672. PDBG("%s ep %p tid %d status %d\n", __func__, ep,
  673. ep->hwtid, status);
  674. ep->com.cm_id->event_handler(ep->com.cm_id, &event);
  675. }
  676. if (status < 0) {
  677. ep->com.cm_id->rem_ref(ep->com.cm_id);
  678. ep->com.cm_id = NULL;
  679. ep->com.qp = NULL;
  680. }
  681. }
  682. static void connect_request_upcall(struct iwch_ep *ep)
  683. {
  684. struct iw_cm_event event;
  685. PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid);
  686. memset(&event, 0, sizeof(event));
  687. event.event = IW_CM_EVENT_CONNECT_REQUEST;
  688. event.local_addr = ep->com.local_addr;
  689. event.remote_addr = ep->com.remote_addr;
  690. event.private_data_len = ep->plen;
  691. event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
  692. event.provider_data = ep;
  693. if (state_read(&ep->parent_ep->com) != DEAD) {
  694. get_ep(&ep->com);
  695. ep->parent_ep->com.cm_id->event_handler(
  696. ep->parent_ep->com.cm_id,
  697. &event);
  698. }
  699. put_ep(&ep->parent_ep->com);
  700. ep->parent_ep = NULL;
  701. }
  702. static void established_upcall(struct iwch_ep *ep)
  703. {
  704. struct iw_cm_event event;
  705. PDBG("%s ep %p\n", __func__, ep);
  706. memset(&event, 0, sizeof(event));
  707. event.event = IW_CM_EVENT_ESTABLISHED;
  708. if (ep->com.cm_id) {
  709. PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid);
  710. ep->com.cm_id->event_handler(ep->com.cm_id, &event);
  711. }
  712. }
  713. static int update_rx_credits(struct iwch_ep *ep, u32 credits)
  714. {
  715. struct cpl_rx_data_ack *req;
  716. struct sk_buff *skb;
  717. PDBG("%s ep %p credits %u\n", __func__, ep, credits);
  718. skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
  719. if (!skb) {
  720. printk(KERN_ERR MOD "update_rx_credits - cannot alloc skb!\n");
  721. return 0;
  722. }
  723. req = (struct cpl_rx_data_ack *) skb_put(skb, sizeof(*req));
  724. req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
  725. OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RX_DATA_ACK, ep->hwtid));
  726. req->credit_dack = htonl(V_RX_CREDITS(credits) | V_RX_FORCE_ACK(1));
  727. skb->priority = CPL_PRIORITY_ACK;
  728. iwch_cxgb3_ofld_send(ep->com.tdev, skb);
  729. return credits;
  730. }
  731. static void process_mpa_reply(struct iwch_ep *ep, struct sk_buff *skb)
  732. {
  733. struct mpa_message *mpa;
  734. u16 plen;
  735. struct iwch_qp_attributes attrs;
  736. enum iwch_qp_attr_mask mask;
  737. int err;
  738. PDBG("%s ep %p\n", __func__, ep);
  739. /*
  740. * Stop mpa timer. If it expired, then the state has
  741. * changed and we bail since ep_timeout already aborted
  742. * the connection.
  743. */
  744. stop_ep_timer(ep);
  745. if (state_read(&ep->com) != MPA_REQ_SENT)
  746. return;
  747. /*
  748. * If we get more than the supported amount of private data
  749. * then we must fail this connection.
  750. */
  751. if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
  752. err = -EINVAL;
  753. goto err;
  754. }
  755. /*
  756. * copy the new data into our accumulation buffer.
  757. */
  758. skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
  759. skb->len);
  760. ep->mpa_pkt_len += skb->len;
  761. /*
  762. * if we don't even have the mpa message, then bail.
  763. */
  764. if (ep->mpa_pkt_len < sizeof(*mpa))
  765. return;
  766. mpa = (struct mpa_message *) ep->mpa_pkt;
  767. /* Validate MPA header. */
  768. if (mpa->revision != mpa_rev) {
  769. err = -EPROTO;
  770. goto err;
  771. }
  772. if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
  773. err = -EPROTO;
  774. goto err;
  775. }
  776. plen = ntohs(mpa->private_data_size);
  777. /*
  778. * Fail if there's too much private data.
  779. */
  780. if (plen > MPA_MAX_PRIVATE_DATA) {
  781. err = -EPROTO;
  782. goto err;
  783. }
  784. /*
  785. * If plen does not account for pkt size
  786. */
  787. if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
  788. err = -EPROTO;
  789. goto err;
  790. }
  791. ep->plen = (u8) plen;
  792. /*
  793. * If we don't have all the pdata yet, then bail.
  794. * We'll continue process when more data arrives.
  795. */
  796. if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
  797. return;
  798. if (mpa->flags & MPA_REJECT) {
  799. err = -ECONNREFUSED;
  800. goto err;
  801. }
  802. /*
  803. * If we get here we have accumulated the entire mpa
  804. * start reply message including private data. And
  805. * the MPA header is valid.
  806. */
  807. state_set(&ep->com, FPDU_MODE);
  808. ep->mpa_attr.initiator = 1;
  809. ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
  810. ep->mpa_attr.recv_marker_enabled = markers_enabled;
  811. ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
  812. ep->mpa_attr.version = mpa_rev;
  813. PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
  814. "xmit_marker_enabled=%d, version=%d\n", __func__,
  815. ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
  816. ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version);
  817. attrs.mpa_attr = ep->mpa_attr;
  818. attrs.max_ird = ep->ird;
  819. attrs.max_ord = ep->ord;
  820. attrs.llp_stream_handle = ep;
  821. attrs.next_state = IWCH_QP_STATE_RTS;
  822. mask = IWCH_QP_ATTR_NEXT_STATE |
  823. IWCH_QP_ATTR_LLP_STREAM_HANDLE | IWCH_QP_ATTR_MPA_ATTR |
  824. IWCH_QP_ATTR_MAX_IRD | IWCH_QP_ATTR_MAX_ORD;
  825. /* bind QP and TID with INIT_WR */
  826. err = iwch_modify_qp(ep->com.qp->rhp,
  827. ep->com.qp, mask, &attrs, 1);
  828. if (err)
  829. goto err;
  830. if (peer2peer && iwch_rqes_posted(ep->com.qp) == 0) {
  831. iwch_post_zb_read(ep->com.qp);
  832. }
  833. goto out;
  834. err:
  835. abort_connection(ep, skb, GFP_KERNEL);
  836. out:
  837. connect_reply_upcall(ep, err);
  838. return;
  839. }
  840. static void process_mpa_request(struct iwch_ep *ep, struct sk_buff *skb)
  841. {
  842. struct mpa_message *mpa;
  843. u16 plen;
  844. PDBG("%s ep %p\n", __func__, ep);
  845. /*
  846. * Stop mpa timer. If it expired, then the state has
  847. * changed and we bail since ep_timeout already aborted
  848. * the connection.
  849. */
  850. stop_ep_timer(ep);
  851. if (state_read(&ep->com) != MPA_REQ_WAIT)
  852. return;
  853. /*
  854. * If we get more than the supported amount of private data
  855. * then we must fail this connection.
  856. */
  857. if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
  858. abort_connection(ep, skb, GFP_KERNEL);
  859. return;
  860. }
  861. PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
  862. /*
  863. * Copy the new data into our accumulation buffer.
  864. */
  865. skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
  866. skb->len);
  867. ep->mpa_pkt_len += skb->len;
  868. /*
  869. * If we don't even have the mpa message, then bail.
  870. * We'll continue process when more data arrives.
  871. */
  872. if (ep->mpa_pkt_len < sizeof(*mpa))
  873. return;
  874. PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
  875. mpa = (struct mpa_message *) ep->mpa_pkt;
  876. /*
  877. * Validate MPA Header.
  878. */
  879. if (mpa->revision != mpa_rev) {
  880. abort_connection(ep, skb, GFP_KERNEL);
  881. return;
  882. }
  883. if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key))) {
  884. abort_connection(ep, skb, GFP_KERNEL);
  885. return;
  886. }
  887. plen = ntohs(mpa->private_data_size);
  888. /*
  889. * Fail if there's too much private data.
  890. */
  891. if (plen > MPA_MAX_PRIVATE_DATA) {
  892. abort_connection(ep, skb, GFP_KERNEL);
  893. return;
  894. }
  895. /*
  896. * If plen does not account for pkt size
  897. */
  898. if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
  899. abort_connection(ep, skb, GFP_KERNEL);
  900. return;
  901. }
  902. ep->plen = (u8) plen;
  903. /*
  904. * If we don't have all the pdata yet, then bail.
  905. */
  906. if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
  907. return;
  908. /*
  909. * If we get here we have accumulated the entire mpa
  910. * start reply message including private data.
  911. */
  912. ep->mpa_attr.initiator = 0;
  913. ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
  914. ep->mpa_attr.recv_marker_enabled = markers_enabled;
  915. ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
  916. ep->mpa_attr.version = mpa_rev;
  917. PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
  918. "xmit_marker_enabled=%d, version=%d\n", __func__,
  919. ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
  920. ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version);
  921. state_set(&ep->com, MPA_REQ_RCVD);
  922. /* drive upcall */
  923. connect_request_upcall(ep);
  924. return;
  925. }
  926. static int rx_data(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
  927. {
  928. struct iwch_ep *ep = ctx;
  929. struct cpl_rx_data *hdr = cplhdr(skb);
  930. unsigned int dlen = ntohs(hdr->len);
  931. PDBG("%s ep %p dlen %u\n", __func__, ep, dlen);
  932. skb_pull(skb, sizeof(*hdr));
  933. skb_trim(skb, dlen);
  934. ep->rcv_seq += dlen;
  935. BUG_ON(ep->rcv_seq != (ntohl(hdr->seq) + dlen));
  936. switch (state_read(&ep->com)) {
  937. case MPA_REQ_SENT:
  938. process_mpa_reply(ep, skb);
  939. break;
  940. case MPA_REQ_WAIT:
  941. process_mpa_request(ep, skb);
  942. break;
  943. case MPA_REP_SENT:
  944. break;
  945. default:
  946. printk(KERN_ERR MOD "%s Unexpected streaming data."
  947. " ep %p state %d tid %d\n",
  948. __func__, ep, state_read(&ep->com), ep->hwtid);
  949. /*
  950. * The ep will timeout and inform the ULP of the failure.
  951. * See ep_timeout().
  952. */
  953. break;
  954. }
  955. /* update RX credits */
  956. update_rx_credits(ep, dlen);
  957. return CPL_RET_BUF_DONE;
  958. }
  959. /*
  960. * Upcall from the adapter indicating data has been transmitted.
  961. * For us its just the single MPA request or reply. We can now free
  962. * the skb holding the mpa message.
  963. */
  964. static int tx_ack(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
  965. {
  966. struct iwch_ep *ep = ctx;
  967. struct cpl_wr_ack *hdr = cplhdr(skb);
  968. unsigned int credits = ntohs(hdr->credits);
  969. PDBG("%s ep %p credits %u\n", __func__, ep, credits);
  970. if (credits == 0) {
  971. PDBG(KERN_ERR "%s 0 credit ack ep %p state %u\n",
  972. __func__, ep, state_read(&ep->com));
  973. return CPL_RET_BUF_DONE;
  974. }
  975. BUG_ON(credits != 1);
  976. dst_confirm(ep->dst);
  977. if (!ep->mpa_skb) {
  978. PDBG("%s rdma_init wr_ack ep %p state %u\n",
  979. __func__, ep, state_read(&ep->com));
  980. if (ep->mpa_attr.initiator) {
  981. PDBG("%s initiator ep %p state %u\n",
  982. __func__, ep, state_read(&ep->com));
  983. if (peer2peer)
  984. iwch_post_zb_read(ep->com.qp);
  985. } else {
  986. PDBG("%s responder ep %p state %u\n",
  987. __func__, ep, state_read(&ep->com));
  988. ep->com.rpl_done = 1;
  989. wake_up(&ep->com.waitq);
  990. }
  991. } else {
  992. PDBG("%s lsm ack ep %p state %u freeing skb\n",
  993. __func__, ep, state_read(&ep->com));
  994. kfree_skb(ep->mpa_skb);
  995. ep->mpa_skb = NULL;
  996. }
  997. return CPL_RET_BUF_DONE;
  998. }
  999. static int abort_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
  1000. {
  1001. struct iwch_ep *ep = ctx;
  1002. unsigned long flags;
  1003. int release = 0;
  1004. PDBG("%s ep %p\n", __func__, ep);
  1005. BUG_ON(!ep);
  1006. /*
  1007. * We get 2 abort replies from the HW. The first one must
  1008. * be ignored except for scribbling that we need one more.
  1009. */
  1010. if (!test_and_set_bit(ABORT_REQ_IN_PROGRESS, &ep->com.flags)) {
  1011. return CPL_RET_BUF_DONE;
  1012. }
  1013. spin_lock_irqsave(&ep->com.lock, flags);
  1014. switch (ep->com.state) {
  1015. case ABORTING:
  1016. close_complete_upcall(ep);
  1017. __state_set(&ep->com, DEAD);
  1018. release = 1;
  1019. break;
  1020. default:
  1021. printk(KERN_ERR "%s ep %p state %d\n",
  1022. __func__, ep, ep->com.state);
  1023. break;
  1024. }
  1025. spin_unlock_irqrestore(&ep->com.lock, flags);
  1026. if (release)
  1027. release_ep_resources(ep);
  1028. return CPL_RET_BUF_DONE;
  1029. }
  1030. /*
  1031. * Return whether a failed active open has allocated a TID
  1032. */
  1033. static inline int act_open_has_tid(int status)
  1034. {
  1035. return status != CPL_ERR_TCAM_FULL && status != CPL_ERR_CONN_EXIST &&
  1036. status != CPL_ERR_ARP_MISS;
  1037. }
  1038. static int act_open_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
  1039. {
  1040. struct iwch_ep *ep = ctx;
  1041. struct cpl_act_open_rpl *rpl = cplhdr(skb);
  1042. PDBG("%s ep %p status %u errno %d\n", __func__, ep, rpl->status,
  1043. status2errno(rpl->status));
  1044. connect_reply_upcall(ep, status2errno(rpl->status));
  1045. state_set(&ep->com, DEAD);
  1046. if (ep->com.tdev->type != T3A && act_open_has_tid(rpl->status))
  1047. release_tid(ep->com.tdev, GET_TID(rpl), NULL);
  1048. cxgb3_free_atid(ep->com.tdev, ep->atid);
  1049. dst_release(ep->dst);
  1050. l2t_release(L2DATA(ep->com.tdev), ep->l2t);
  1051. put_ep(&ep->com);
  1052. return CPL_RET_BUF_DONE;
  1053. }
  1054. static int listen_start(struct iwch_listen_ep *ep)
  1055. {
  1056. struct sk_buff *skb;
  1057. struct cpl_pass_open_req *req;
  1058. PDBG("%s ep %p\n", __func__, ep);
  1059. skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
  1060. if (!skb) {
  1061. printk(KERN_ERR MOD "t3c_listen_start failed to alloc skb!\n");
  1062. return -ENOMEM;
  1063. }
  1064. req = (struct cpl_pass_open_req *) skb_put(skb, sizeof(*req));
  1065. req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
  1066. OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, ep->stid));
  1067. req->local_port = ep->com.local_addr.sin_port;
  1068. req->local_ip = ep->com.local_addr.sin_addr.s_addr;
  1069. req->peer_port = 0;
  1070. req->peer_ip = 0;
  1071. req->peer_netmask = 0;
  1072. req->opt0h = htonl(F_DELACK | F_TCAM_BYPASS);
  1073. req->opt0l = htonl(V_RCV_BUFSIZ(rcv_win>>10));
  1074. req->opt1 = htonl(V_CONN_POLICY(CPL_CONN_POLICY_ASK));
  1075. skb->priority = 1;
  1076. return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
  1077. }
  1078. static int pass_open_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
  1079. {
  1080. struct iwch_listen_ep *ep = ctx;
  1081. struct cpl_pass_open_rpl *rpl = cplhdr(skb);
  1082. PDBG("%s ep %p status %d error %d\n", __func__, ep,
  1083. rpl->status, status2errno(rpl->status));
  1084. ep->com.rpl_err = status2errno(rpl->status);
  1085. ep->com.rpl_done = 1;
  1086. wake_up(&ep->com.waitq);
  1087. return CPL_RET_BUF_DONE;
  1088. }
  1089. static int listen_stop(struct iwch_listen_ep *ep)
  1090. {
  1091. struct sk_buff *skb;
  1092. struct cpl_close_listserv_req *req;
  1093. PDBG("%s ep %p\n", __func__, ep);
  1094. skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
  1095. if (!skb) {
  1096. printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__);
  1097. return -ENOMEM;
  1098. }
  1099. req = (struct cpl_close_listserv_req *) skb_put(skb, sizeof(*req));
  1100. req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
  1101. req->cpu_idx = 0;
  1102. OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, ep->stid));
  1103. skb->priority = 1;
  1104. return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
  1105. }
  1106. static int close_listsrv_rpl(struct t3cdev *tdev, struct sk_buff *skb,
  1107. void *ctx)
  1108. {
  1109. struct iwch_listen_ep *ep = ctx;
  1110. struct cpl_close_listserv_rpl *rpl = cplhdr(skb);
  1111. PDBG("%s ep %p\n", __func__, ep);
  1112. ep->com.rpl_err = status2errno(rpl->status);
  1113. ep->com.rpl_done = 1;
  1114. wake_up(&ep->com.waitq);
  1115. return CPL_RET_BUF_DONE;
  1116. }
  1117. static void accept_cr(struct iwch_ep *ep, __be32 peer_ip, struct sk_buff *skb)
  1118. {
  1119. struct cpl_pass_accept_rpl *rpl;
  1120. unsigned int mtu_idx;
  1121. u32 opt0h, opt0l, opt2;
  1122. int wscale;
  1123. PDBG("%s ep %p\n", __func__, ep);
  1124. BUG_ON(skb_cloned(skb));
  1125. skb_trim(skb, sizeof(*rpl));
  1126. skb_get(skb);
  1127. mtu_idx = find_best_mtu(T3C_DATA(ep->com.tdev), dst_mtu(ep->dst));
  1128. wscale = compute_wscale(rcv_win);
  1129. opt0h = V_NAGLE(0) |
  1130. V_NO_CONG(nocong) |
  1131. V_KEEP_ALIVE(1) |
  1132. F_TCAM_BYPASS |
  1133. V_WND_SCALE(wscale) |
  1134. V_MSS_IDX(mtu_idx) |
  1135. V_L2T_IDX(ep->l2t->idx) | V_TX_CHANNEL(ep->l2t->smt_idx);
  1136. opt0l = V_TOS((ep->tos >> 2) & M_TOS) | V_RCV_BUFSIZ(rcv_win>>10);
  1137. opt2 = V_FLAVORS_VALID(1) | V_CONG_CONTROL_FLAVOR(cong_flavor);
  1138. rpl = cplhdr(skb);
  1139. rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
  1140. OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL, ep->hwtid));
  1141. rpl->peer_ip = peer_ip;
  1142. rpl->opt0h = htonl(opt0h);
  1143. rpl->opt0l_status = htonl(opt0l | CPL_PASS_OPEN_ACCEPT);
  1144. rpl->opt2 = htonl(opt2);
  1145. rpl->rsvd = rpl->opt2; /* workaround for HW bug */
  1146. skb->priority = CPL_PRIORITY_SETUP;
  1147. iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
  1148. return;
  1149. }
  1150. static void reject_cr(struct t3cdev *tdev, u32 hwtid, __be32 peer_ip,
  1151. struct sk_buff *skb)
  1152. {
  1153. PDBG("%s t3cdev %p tid %u peer_ip %x\n", __func__, tdev, hwtid,
  1154. peer_ip);
  1155. BUG_ON(skb_cloned(skb));
  1156. skb_trim(skb, sizeof(struct cpl_tid_release));
  1157. skb_get(skb);
  1158. if (tdev->type != T3A)
  1159. release_tid(tdev, hwtid, skb);
  1160. else {
  1161. struct cpl_pass_accept_rpl *rpl;
  1162. rpl = cplhdr(skb);
  1163. skb->priority = CPL_PRIORITY_SETUP;
  1164. rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
  1165. OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
  1166. hwtid));
  1167. rpl->peer_ip = peer_ip;
  1168. rpl->opt0h = htonl(F_TCAM_BYPASS);
  1169. rpl->opt0l_status = htonl(CPL_PASS_OPEN_REJECT);
  1170. rpl->opt2 = 0;
  1171. rpl->rsvd = rpl->opt2;
  1172. iwch_cxgb3_ofld_send(tdev, skb);
  1173. }
  1174. }
  1175. static int pass_accept_req(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
  1176. {
  1177. struct iwch_ep *child_ep, *parent_ep = ctx;
  1178. struct cpl_pass_accept_req *req = cplhdr(skb);
  1179. unsigned int hwtid = GET_TID(req);
  1180. struct dst_entry *dst;
  1181. struct l2t_entry *l2t;
  1182. struct rtable *rt;
  1183. struct iff_mac tim;
  1184. PDBG("%s parent ep %p tid %u\n", __func__, parent_ep, hwtid);
  1185. if (state_read(&parent_ep->com) != LISTEN) {
  1186. printk(KERN_ERR "%s - listening ep not in LISTEN\n",
  1187. __func__);
  1188. goto reject;
  1189. }
  1190. /*
  1191. * Find the netdev for this connection request.
  1192. */
  1193. tim.mac_addr = req->dst_mac;
  1194. tim.vlan_tag = ntohs(req->vlan_tag);
  1195. if (tdev->ctl(tdev, GET_IFF_FROM_MAC, &tim) < 0 || !tim.dev) {
  1196. printk(KERN_ERR "%s bad dst mac %pM\n",
  1197. __func__, req->dst_mac);
  1198. goto reject;
  1199. }
  1200. /* Find output route */
  1201. rt = find_route(tdev,
  1202. req->local_ip,
  1203. req->peer_ip,
  1204. req->local_port,
  1205. req->peer_port, G_PASS_OPEN_TOS(ntohl(req->tos_tid)));
  1206. if (!rt) {
  1207. printk(KERN_ERR MOD "%s - failed to find dst entry!\n",
  1208. __func__);
  1209. goto reject;
  1210. }
  1211. dst = &rt->u.dst;
  1212. l2t = t3_l2t_get(tdev, dst->neighbour, dst->neighbour->dev);
  1213. if (!l2t) {
  1214. printk(KERN_ERR MOD "%s - failed to allocate l2t entry!\n",
  1215. __func__);
  1216. dst_release(dst);
  1217. goto reject;
  1218. }
  1219. child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
  1220. if (!child_ep) {
  1221. printk(KERN_ERR MOD "%s - failed to allocate ep entry!\n",
  1222. __func__);
  1223. l2t_release(L2DATA(tdev), l2t);
  1224. dst_release(dst);
  1225. goto reject;
  1226. }
  1227. state_set(&child_ep->com, CONNECTING);
  1228. child_ep->com.tdev = tdev;
  1229. child_ep->com.cm_id = NULL;
  1230. child_ep->com.local_addr.sin_family = PF_INET;
  1231. child_ep->com.local_addr.sin_port = req->local_port;
  1232. child_ep->com.local_addr.sin_addr.s_addr = req->local_ip;
  1233. child_ep->com.remote_addr.sin_family = PF_INET;
  1234. child_ep->com.remote_addr.sin_port = req->peer_port;
  1235. child_ep->com.remote_addr.sin_addr.s_addr = req->peer_ip;
  1236. get_ep(&parent_ep->com);
  1237. child_ep->parent_ep = parent_ep;
  1238. child_ep->tos = G_PASS_OPEN_TOS(ntohl(req->tos_tid));
  1239. child_ep->l2t = l2t;
  1240. child_ep->dst = dst;
  1241. child_ep->hwtid = hwtid;
  1242. init_timer(&child_ep->timer);
  1243. cxgb3_insert_tid(tdev, &t3c_client, child_ep, hwtid);
  1244. accept_cr(child_ep, req->peer_ip, skb);
  1245. goto out;
  1246. reject:
  1247. reject_cr(tdev, hwtid, req->peer_ip, skb);
  1248. out:
  1249. return CPL_RET_BUF_DONE;
  1250. }
  1251. static int pass_establish(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
  1252. {
  1253. struct iwch_ep *ep = ctx;
  1254. struct cpl_pass_establish *req = cplhdr(skb);
  1255. PDBG("%s ep %p\n", __func__, ep);
  1256. ep->snd_seq = ntohl(req->snd_isn);
  1257. ep->rcv_seq = ntohl(req->rcv_isn);
  1258. set_emss(ep, ntohs(req->tcp_opt));
  1259. dst_confirm(ep->dst);
  1260. state_set(&ep->com, MPA_REQ_WAIT);
  1261. start_ep_timer(ep);
  1262. return CPL_RET_BUF_DONE;
  1263. }
  1264. static int peer_close(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
  1265. {
  1266. struct iwch_ep *ep = ctx;
  1267. struct iwch_qp_attributes attrs;
  1268. unsigned long flags;
  1269. int disconnect = 1;
  1270. int release = 0;
  1271. PDBG("%s ep %p\n", __func__, ep);
  1272. dst_confirm(ep->dst);
  1273. spin_lock_irqsave(&ep->com.lock, flags);
  1274. switch (ep->com.state) {
  1275. case MPA_REQ_WAIT:
  1276. __state_set(&ep->com, CLOSING);
  1277. break;
  1278. case MPA_REQ_SENT:
  1279. __state_set(&ep->com, CLOSING);
  1280. connect_reply_upcall(ep, -ECONNRESET);
  1281. break;
  1282. case MPA_REQ_RCVD:
  1283. /*
  1284. * We're gonna mark this puppy DEAD, but keep
  1285. * the reference on it until the ULP accepts or
  1286. * rejects the CR. Also wake up anyone waiting
  1287. * in rdma connection migration (see iwch_accept_cr()).
  1288. */
  1289. __state_set(&ep->com, CLOSING);
  1290. ep->com.rpl_done = 1;
  1291. ep->com.rpl_err = -ECONNRESET;
  1292. PDBG("waking up ep %p\n", ep);
  1293. wake_up(&ep->com.waitq);
  1294. break;
  1295. case MPA_REP_SENT:
  1296. __state_set(&ep->com, CLOSING);
  1297. ep->com.rpl_done = 1;
  1298. ep->com.rpl_err = -ECONNRESET;
  1299. PDBG("waking up ep %p\n", ep);
  1300. wake_up(&ep->com.waitq);
  1301. break;
  1302. case FPDU_MODE:
  1303. start_ep_timer(ep);
  1304. __state_set(&ep->com, CLOSING);
  1305. attrs.next_state = IWCH_QP_STATE_CLOSING;
  1306. iwch_modify_qp(ep->com.qp->rhp, ep->com.qp,
  1307. IWCH_QP_ATTR_NEXT_STATE, &attrs, 1);
  1308. peer_close_upcall(ep);
  1309. break;
  1310. case ABORTING:
  1311. disconnect = 0;
  1312. break;
  1313. case CLOSING:
  1314. __state_set(&ep->com, MORIBUND);
  1315. disconnect = 0;
  1316. break;
  1317. case MORIBUND:
  1318. stop_ep_timer(ep);
  1319. if (ep->com.cm_id && ep->com.qp) {
  1320. attrs.next_state = IWCH_QP_STATE_IDLE;
  1321. iwch_modify_qp(ep->com.qp->rhp, ep->com.qp,
  1322. IWCH_QP_ATTR_NEXT_STATE, &attrs, 1);
  1323. }
  1324. close_complete_upcall(ep);
  1325. __state_set(&ep->com, DEAD);
  1326. release = 1;
  1327. disconnect = 0;
  1328. break;
  1329. case DEAD:
  1330. disconnect = 0;
  1331. break;
  1332. default:
  1333. BUG_ON(1);
  1334. }
  1335. spin_unlock_irqrestore(&ep->com.lock, flags);
  1336. if (disconnect)
  1337. iwch_ep_disconnect(ep, 0, GFP_KERNEL);
  1338. if (release)
  1339. release_ep_resources(ep);
  1340. return CPL_RET_BUF_DONE;
  1341. }
  1342. /*
  1343. * Returns whether an ABORT_REQ_RSS message is a negative advice.
  1344. */
  1345. static int is_neg_adv_abort(unsigned int status)
  1346. {
  1347. return status == CPL_ERR_RTX_NEG_ADVICE ||
  1348. status == CPL_ERR_PERSIST_NEG_ADVICE;
  1349. }
  1350. static int peer_abort(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
  1351. {
  1352. struct cpl_abort_req_rss *req = cplhdr(skb);
  1353. struct iwch_ep *ep = ctx;
  1354. struct cpl_abort_rpl *rpl;
  1355. struct sk_buff *rpl_skb;
  1356. struct iwch_qp_attributes attrs;
  1357. int ret;
  1358. int release = 0;
  1359. unsigned long flags;
  1360. if (is_neg_adv_abort(req->status)) {
  1361. PDBG("%s neg_adv_abort ep %p tid %d\n", __func__, ep,
  1362. ep->hwtid);
  1363. t3_l2t_send_event(ep->com.tdev, ep->l2t);
  1364. return CPL_RET_BUF_DONE;
  1365. }
  1366. /*
  1367. * We get 2 peer aborts from the HW. The first one must
  1368. * be ignored except for scribbling that we need one more.
  1369. */
  1370. if (!test_and_set_bit(PEER_ABORT_IN_PROGRESS, &ep->com.flags)) {
  1371. return CPL_RET_BUF_DONE;
  1372. }
  1373. spin_lock_irqsave(&ep->com.lock, flags);
  1374. PDBG("%s ep %p state %u\n", __func__, ep, ep->com.state);
  1375. switch (ep->com.state) {
  1376. case CONNECTING:
  1377. break;
  1378. case MPA_REQ_WAIT:
  1379. stop_ep_timer(ep);
  1380. break;
  1381. case MPA_REQ_SENT:
  1382. stop_ep_timer(ep);
  1383. connect_reply_upcall(ep, -ECONNRESET);
  1384. break;
  1385. case MPA_REP_SENT:
  1386. ep->com.rpl_done = 1;
  1387. ep->com.rpl_err = -ECONNRESET;
  1388. PDBG("waking up ep %p\n", ep);
  1389. wake_up(&ep->com.waitq);
  1390. break;
  1391. case MPA_REQ_RCVD:
  1392. /*
  1393. * We're gonna mark this puppy DEAD, but keep
  1394. * the reference on it until the ULP accepts or
  1395. * rejects the CR. Also wake up anyone waiting
  1396. * in rdma connection migration (see iwch_accept_cr()).
  1397. */
  1398. ep->com.rpl_done = 1;
  1399. ep->com.rpl_err = -ECONNRESET;
  1400. PDBG("waking up ep %p\n", ep);
  1401. wake_up(&ep->com.waitq);
  1402. break;
  1403. case MORIBUND:
  1404. case CLOSING:
  1405. stop_ep_timer(ep);
  1406. /*FALLTHROUGH*/
  1407. case FPDU_MODE:
  1408. if (ep->com.cm_id && ep->com.qp) {
  1409. attrs.next_state = IWCH_QP_STATE_ERROR;
  1410. ret = iwch_modify_qp(ep->com.qp->rhp,
  1411. ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
  1412. &attrs, 1);
  1413. if (ret)
  1414. printk(KERN_ERR MOD
  1415. "%s - qp <- error failed!\n",
  1416. __func__);
  1417. }
  1418. peer_abort_upcall(ep);
  1419. break;
  1420. case ABORTING:
  1421. break;
  1422. case DEAD:
  1423. PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__);
  1424. spin_unlock_irqrestore(&ep->com.lock, flags);
  1425. return CPL_RET_BUF_DONE;
  1426. default:
  1427. BUG_ON(1);
  1428. break;
  1429. }
  1430. dst_confirm(ep->dst);
  1431. if (ep->com.state != ABORTING) {
  1432. __state_set(&ep->com, DEAD);
  1433. release = 1;
  1434. }
  1435. spin_unlock_irqrestore(&ep->com.lock, flags);
  1436. rpl_skb = get_skb(skb, sizeof(*rpl), GFP_KERNEL);
  1437. if (!rpl_skb) {
  1438. printk(KERN_ERR MOD "%s - cannot allocate skb!\n",
  1439. __func__);
  1440. release = 1;
  1441. goto out;
  1442. }
  1443. rpl_skb->priority = CPL_PRIORITY_DATA;
  1444. rpl = (struct cpl_abort_rpl *) skb_put(rpl_skb, sizeof(*rpl));
  1445. rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
  1446. rpl->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
  1447. OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, ep->hwtid));
  1448. rpl->cmd = CPL_ABORT_NO_RST;
  1449. iwch_cxgb3_ofld_send(ep->com.tdev, rpl_skb);
  1450. out:
  1451. if (release)
  1452. release_ep_resources(ep);
  1453. return CPL_RET_BUF_DONE;
  1454. }
  1455. static int close_con_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
  1456. {
  1457. struct iwch_ep *ep = ctx;
  1458. struct iwch_qp_attributes attrs;
  1459. unsigned long flags;
  1460. int release = 0;
  1461. PDBG("%s ep %p\n", __func__, ep);
  1462. BUG_ON(!ep);
  1463. /* The cm_id may be null if we failed to connect */
  1464. spin_lock_irqsave(&ep->com.lock, flags);
  1465. switch (ep->com.state) {
  1466. case CLOSING:
  1467. __state_set(&ep->com, MORIBUND);
  1468. break;
  1469. case MORIBUND:
  1470. stop_ep_timer(ep);
  1471. if ((ep->com.cm_id) && (ep->com.qp)) {
  1472. attrs.next_state = IWCH_QP_STATE_IDLE;
  1473. iwch_modify_qp(ep->com.qp->rhp,
  1474. ep->com.qp,
  1475. IWCH_QP_ATTR_NEXT_STATE,
  1476. &attrs, 1);
  1477. }
  1478. close_complete_upcall(ep);
  1479. __state_set(&ep->com, DEAD);
  1480. release = 1;
  1481. break;
  1482. case ABORTING:
  1483. case DEAD:
  1484. break;
  1485. default:
  1486. BUG_ON(1);
  1487. break;
  1488. }
  1489. spin_unlock_irqrestore(&ep->com.lock, flags);
  1490. if (release)
  1491. release_ep_resources(ep);
  1492. return CPL_RET_BUF_DONE;
  1493. }
  1494. /*
  1495. * T3A does 3 things when a TERM is received:
  1496. * 1) send up a CPL_RDMA_TERMINATE message with the TERM packet
  1497. * 2) generate an async event on the QP with the TERMINATE opcode
  1498. * 3) post a TERMINATE opcde cqe into the associated CQ.
  1499. *
  1500. * For (1), we save the message in the qp for later consumer consumption.
  1501. * For (2), we move the QP into TERMINATE, post a QP event and disconnect.
  1502. * For (3), we toss the CQE in cxio_poll_cq().
  1503. *
  1504. * terminate() handles case (1)...
  1505. */
  1506. static int terminate(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
  1507. {
  1508. struct iwch_ep *ep = ctx;
  1509. if (state_read(&ep->com) != FPDU_MODE)
  1510. return CPL_RET_BUF_DONE;
  1511. PDBG("%s ep %p\n", __func__, ep);
  1512. skb_pull(skb, sizeof(struct cpl_rdma_terminate));
  1513. PDBG("%s saving %d bytes of term msg\n", __func__, skb->len);
  1514. skb_copy_from_linear_data(skb, ep->com.qp->attr.terminate_buffer,
  1515. skb->len);
  1516. ep->com.qp->attr.terminate_msg_len = skb->len;
  1517. ep->com.qp->attr.is_terminate_local = 0;
  1518. return CPL_RET_BUF_DONE;
  1519. }
  1520. static int ec_status(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
  1521. {
  1522. struct cpl_rdma_ec_status *rep = cplhdr(skb);
  1523. struct iwch_ep *ep = ctx;
  1524. PDBG("%s ep %p tid %u status %d\n", __func__, ep, ep->hwtid,
  1525. rep->status);
  1526. if (rep->status) {
  1527. struct iwch_qp_attributes attrs;
  1528. printk(KERN_ERR MOD "%s BAD CLOSE - Aborting tid %u\n",
  1529. __func__, ep->hwtid);
  1530. stop_ep_timer(ep);
  1531. attrs.next_state = IWCH_QP_STATE_ERROR;
  1532. iwch_modify_qp(ep->com.qp->rhp,
  1533. ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
  1534. &attrs, 1);
  1535. abort_connection(ep, NULL, GFP_KERNEL);
  1536. }
  1537. return CPL_RET_BUF_DONE;
  1538. }
  1539. static void ep_timeout(unsigned long arg)
  1540. {
  1541. struct iwch_ep *ep = (struct iwch_ep *)arg;
  1542. struct iwch_qp_attributes attrs;
  1543. unsigned long flags;
  1544. int abort = 1;
  1545. spin_lock_irqsave(&ep->com.lock, flags);
  1546. PDBG("%s ep %p tid %u state %d\n", __func__, ep, ep->hwtid,
  1547. ep->com.state);
  1548. switch (ep->com.state) {
  1549. case MPA_REQ_SENT:
  1550. __state_set(&ep->com, ABORTING);
  1551. connect_reply_upcall(ep, -ETIMEDOUT);
  1552. break;
  1553. case MPA_REQ_WAIT:
  1554. __state_set(&ep->com, ABORTING);
  1555. break;
  1556. case CLOSING:
  1557. case MORIBUND:
  1558. if (ep->com.cm_id && ep->com.qp) {
  1559. attrs.next_state = IWCH_QP_STATE_ERROR;
  1560. iwch_modify_qp(ep->com.qp->rhp,
  1561. ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
  1562. &attrs, 1);
  1563. }
  1564. __state_set(&ep->com, ABORTING);
  1565. break;
  1566. default:
  1567. printk(KERN_ERR "%s unexpected state ep %p state %u\n",
  1568. __func__, ep, ep->com.state);
  1569. WARN_ON(1);
  1570. abort = 0;
  1571. }
  1572. spin_unlock_irqrestore(&ep->com.lock, flags);
  1573. if (abort)
  1574. abort_connection(ep, NULL, GFP_ATOMIC);
  1575. put_ep(&ep->com);
  1576. }
  1577. int iwch_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
  1578. {
  1579. int err;
  1580. struct iwch_ep *ep = to_ep(cm_id);
  1581. PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
  1582. if (state_read(&ep->com) == DEAD) {
  1583. put_ep(&ep->com);
  1584. return -ECONNRESET;
  1585. }
  1586. BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
  1587. if (mpa_rev == 0)
  1588. abort_connection(ep, NULL, GFP_KERNEL);
  1589. else {
  1590. err = send_mpa_reject(ep, pdata, pdata_len);
  1591. err = iwch_ep_disconnect(ep, 0, GFP_KERNEL);
  1592. }
  1593. put_ep(&ep->com);
  1594. return 0;
  1595. }
  1596. int iwch_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
  1597. {
  1598. int err;
  1599. struct iwch_qp_attributes attrs;
  1600. enum iwch_qp_attr_mask mask;
  1601. struct iwch_ep *ep = to_ep(cm_id);
  1602. struct iwch_dev *h = to_iwch_dev(cm_id->device);
  1603. struct iwch_qp *qp = get_qhp(h, conn_param->qpn);
  1604. PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
  1605. if (state_read(&ep->com) == DEAD) {
  1606. err = -ECONNRESET;
  1607. goto err;
  1608. }
  1609. BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
  1610. BUG_ON(!qp);
  1611. if ((conn_param->ord > qp->rhp->attr.max_rdma_read_qp_depth) ||
  1612. (conn_param->ird > qp->rhp->attr.max_rdma_reads_per_qp)) {
  1613. abort_connection(ep, NULL, GFP_KERNEL);
  1614. err = -EINVAL;
  1615. goto err;
  1616. }
  1617. cm_id->add_ref(cm_id);
  1618. ep->com.cm_id = cm_id;
  1619. ep->com.qp = qp;
  1620. ep->ird = conn_param->ird;
  1621. ep->ord = conn_param->ord;
  1622. if (peer2peer && ep->ird == 0)
  1623. ep->ird = 1;
  1624. PDBG("%s %d ird %d ord %d\n", __func__, __LINE__, ep->ird, ep->ord);
  1625. /* bind QP to EP and move to RTS */
  1626. attrs.mpa_attr = ep->mpa_attr;
  1627. attrs.max_ird = ep->ird;
  1628. attrs.max_ord = ep->ord;
  1629. attrs.llp_stream_handle = ep;
  1630. attrs.next_state = IWCH_QP_STATE_RTS;
  1631. /* bind QP and TID with INIT_WR */
  1632. mask = IWCH_QP_ATTR_NEXT_STATE |
  1633. IWCH_QP_ATTR_LLP_STREAM_HANDLE |
  1634. IWCH_QP_ATTR_MPA_ATTR |
  1635. IWCH_QP_ATTR_MAX_IRD |
  1636. IWCH_QP_ATTR_MAX_ORD;
  1637. err = iwch_modify_qp(ep->com.qp->rhp,
  1638. ep->com.qp, mask, &attrs, 1);
  1639. if (err)
  1640. goto err1;
  1641. /* if needed, wait for wr_ack */
  1642. if (iwch_rqes_posted(qp)) {
  1643. wait_event(ep->com.waitq, ep->com.rpl_done);
  1644. err = ep->com.rpl_err;
  1645. if (err)
  1646. goto err1;
  1647. }
  1648. err = send_mpa_reply(ep, conn_param->private_data,
  1649. conn_param->private_data_len);
  1650. if (err)
  1651. goto err1;
  1652. state_set(&ep->com, FPDU_MODE);
  1653. established_upcall(ep);
  1654. put_ep(&ep->com);
  1655. return 0;
  1656. err1:
  1657. ep->com.cm_id = NULL;
  1658. ep->com.qp = NULL;
  1659. cm_id->rem_ref(cm_id);
  1660. err:
  1661. put_ep(&ep->com);
  1662. return err;
  1663. }
  1664. static int is_loopback_dst(struct iw_cm_id *cm_id)
  1665. {
  1666. struct net_device *dev;
  1667. dev = ip_dev_find(&init_net, cm_id->remote_addr.sin_addr.s_addr);
  1668. if (!dev)
  1669. return 0;
  1670. dev_put(dev);
  1671. return 1;
  1672. }
  1673. int iwch_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
  1674. {
  1675. int err = 0;
  1676. struct iwch_dev *h = to_iwch_dev(cm_id->device);
  1677. struct iwch_ep *ep;
  1678. struct rtable *rt;
  1679. if (is_loopback_dst(cm_id)) {
  1680. err = -ENOSYS;
  1681. goto out;
  1682. }
  1683. ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
  1684. if (!ep) {
  1685. printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
  1686. err = -ENOMEM;
  1687. goto out;
  1688. }
  1689. init_timer(&ep->timer);
  1690. ep->plen = conn_param->private_data_len;
  1691. if (ep->plen)
  1692. memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
  1693. conn_param->private_data, ep->plen);
  1694. ep->ird = conn_param->ird;
  1695. ep->ord = conn_param->ord;
  1696. if (peer2peer && ep->ord == 0)
  1697. ep->ord = 1;
  1698. ep->com.tdev = h->rdev.t3cdev_p;
  1699. cm_id->add_ref(cm_id);
  1700. ep->com.cm_id = cm_id;
  1701. ep->com.qp = get_qhp(h, conn_param->qpn);
  1702. BUG_ON(!ep->com.qp);
  1703. PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__, conn_param->qpn,
  1704. ep->com.qp, cm_id);
  1705. /*
  1706. * Allocate an active TID to initiate a TCP connection.
  1707. */
  1708. ep->atid = cxgb3_alloc_atid(h->rdev.t3cdev_p, &t3c_client, ep);
  1709. if (ep->atid == -1) {
  1710. printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
  1711. err = -ENOMEM;
  1712. goto fail2;
  1713. }
  1714. /* find a route */
  1715. rt = find_route(h->rdev.t3cdev_p,
  1716. cm_id->local_addr.sin_addr.s_addr,
  1717. cm_id->remote_addr.sin_addr.s_addr,
  1718. cm_id->local_addr.sin_port,
  1719. cm_id->remote_addr.sin_port, IPTOS_LOWDELAY);
  1720. if (!rt) {
  1721. printk(KERN_ERR MOD "%s - cannot find route.\n", __func__);
  1722. err = -EHOSTUNREACH;
  1723. goto fail3;
  1724. }
  1725. ep->dst = &rt->u.dst;
  1726. /* get a l2t entry */
  1727. ep->l2t = t3_l2t_get(ep->com.tdev, ep->dst->neighbour,
  1728. ep->dst->neighbour->dev);
  1729. if (!ep->l2t) {
  1730. printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __func__);
  1731. err = -ENOMEM;
  1732. goto fail4;
  1733. }
  1734. state_set(&ep->com, CONNECTING);
  1735. ep->tos = IPTOS_LOWDELAY;
  1736. ep->com.local_addr = cm_id->local_addr;
  1737. ep->com.remote_addr = cm_id->remote_addr;
  1738. /* send connect request to rnic */
  1739. err = send_connect(ep);
  1740. if (!err)
  1741. goto out;
  1742. l2t_release(L2DATA(h->rdev.t3cdev_p), ep->l2t);
  1743. fail4:
  1744. dst_release(ep->dst);
  1745. fail3:
  1746. cxgb3_free_atid(ep->com.tdev, ep->atid);
  1747. fail2:
  1748. cm_id->rem_ref(cm_id);
  1749. put_ep(&ep->com);
  1750. out:
  1751. return err;
  1752. }
  1753. int iwch_create_listen(struct iw_cm_id *cm_id, int backlog)
  1754. {
  1755. int err = 0;
  1756. struct iwch_dev *h = to_iwch_dev(cm_id->device);
  1757. struct iwch_listen_ep *ep;
  1758. might_sleep();
  1759. ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
  1760. if (!ep) {
  1761. printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
  1762. err = -ENOMEM;
  1763. goto fail1;
  1764. }
  1765. PDBG("%s ep %p\n", __func__, ep);
  1766. ep->com.tdev = h->rdev.t3cdev_p;
  1767. cm_id->add_ref(cm_id);
  1768. ep->com.cm_id = cm_id;
  1769. ep->backlog = backlog;
  1770. ep->com.local_addr = cm_id->local_addr;
  1771. /*
  1772. * Allocate a server TID.
  1773. */
  1774. ep->stid = cxgb3_alloc_stid(h->rdev.t3cdev_p, &t3c_client, ep);
  1775. if (ep->stid == -1) {
  1776. printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
  1777. err = -ENOMEM;
  1778. goto fail2;
  1779. }
  1780. state_set(&ep->com, LISTEN);
  1781. err = listen_start(ep);
  1782. if (err)
  1783. goto fail3;
  1784. /* wait for pass_open_rpl */
  1785. wait_event(ep->com.waitq, ep->com.rpl_done);
  1786. err = ep->com.rpl_err;
  1787. if (!err) {
  1788. cm_id->provider_data = ep;
  1789. goto out;
  1790. }
  1791. fail3:
  1792. cxgb3_free_stid(ep->com.tdev, ep->stid);
  1793. fail2:
  1794. cm_id->rem_ref(cm_id);
  1795. put_ep(&ep->com);
  1796. fail1:
  1797. out:
  1798. return err;
  1799. }
  1800. int iwch_destroy_listen(struct iw_cm_id *cm_id)
  1801. {
  1802. int err;
  1803. struct iwch_listen_ep *ep = to_listen_ep(cm_id);
  1804. PDBG("%s ep %p\n", __func__, ep);
  1805. might_sleep();
  1806. state_set(&ep->com, DEAD);
  1807. ep->com.rpl_done = 0;
  1808. ep->com.rpl_err = 0;
  1809. err = listen_stop(ep);
  1810. if (err)
  1811. goto done;
  1812. wait_event(ep->com.waitq, ep->com.rpl_done);
  1813. cxgb3_free_stid(ep->com.tdev, ep->stid);
  1814. done:
  1815. err = ep->com.rpl_err;
  1816. cm_id->rem_ref(cm_id);
  1817. put_ep(&ep->com);
  1818. return err;
  1819. }
  1820. int iwch_ep_disconnect(struct iwch_ep *ep, int abrupt, gfp_t gfp)
  1821. {
  1822. int ret=0;
  1823. unsigned long flags;
  1824. int close = 0;
  1825. int fatal = 0;
  1826. struct t3cdev *tdev;
  1827. struct cxio_rdev *rdev;
  1828. spin_lock_irqsave(&ep->com.lock, flags);
  1829. PDBG("%s ep %p state %s, abrupt %d\n", __func__, ep,
  1830. states[ep->com.state], abrupt);
  1831. tdev = (struct t3cdev *)ep->com.tdev;
  1832. rdev = (struct cxio_rdev *)tdev->ulp;
  1833. if (cxio_fatal_error(rdev)) {
  1834. fatal = 1;
  1835. close_complete_upcall(ep);
  1836. ep->com.state = DEAD;
  1837. }
  1838. switch (ep->com.state) {
  1839. case MPA_REQ_WAIT:
  1840. case MPA_REQ_SENT:
  1841. case MPA_REQ_RCVD:
  1842. case MPA_REP_SENT:
  1843. case FPDU_MODE:
  1844. close = 1;
  1845. if (abrupt)
  1846. ep->com.state = ABORTING;
  1847. else {
  1848. ep->com.state = CLOSING;
  1849. start_ep_timer(ep);
  1850. }
  1851. set_bit(CLOSE_SENT, &ep->com.flags);
  1852. break;
  1853. case CLOSING:
  1854. if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) {
  1855. close = 1;
  1856. if (abrupt) {
  1857. stop_ep_timer(ep);
  1858. ep->com.state = ABORTING;
  1859. } else
  1860. ep->com.state = MORIBUND;
  1861. }
  1862. break;
  1863. case MORIBUND:
  1864. case ABORTING:
  1865. case DEAD:
  1866. PDBG("%s ignoring disconnect ep %p state %u\n",
  1867. __func__, ep, ep->com.state);
  1868. break;
  1869. default:
  1870. BUG();
  1871. break;
  1872. }
  1873. spin_unlock_irqrestore(&ep->com.lock, flags);
  1874. if (close) {
  1875. if (abrupt)
  1876. ret = send_abort(ep, NULL, gfp);
  1877. else
  1878. ret = send_halfclose(ep, gfp);
  1879. if (ret)
  1880. fatal = 1;
  1881. }
  1882. if (fatal)
  1883. release_ep_resources(ep);
  1884. return ret;
  1885. }
  1886. int iwch_ep_redirect(void *ctx, struct dst_entry *old, struct dst_entry *new,
  1887. struct l2t_entry *l2t)
  1888. {
  1889. struct iwch_ep *ep = ctx;
  1890. if (ep->dst != old)
  1891. return 0;
  1892. PDBG("%s ep %p redirect to dst %p l2t %p\n", __func__, ep, new,
  1893. l2t);
  1894. dst_hold(new);
  1895. l2t_release(L2DATA(ep->com.tdev), ep->l2t);
  1896. ep->l2t = l2t;
  1897. dst_release(old);
  1898. ep->dst = new;
  1899. return 1;
  1900. }
  1901. /*
  1902. * All the CM events are handled on a work queue to have a safe context.
  1903. */
  1904. static int sched(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
  1905. {
  1906. struct iwch_ep_common *epc = ctx;
  1907. get_ep(epc);
  1908. /*
  1909. * Save ctx and tdev in the skb->cb area.
  1910. */
  1911. *((void **) skb->cb) = ctx;
  1912. *((struct t3cdev **) (skb->cb + sizeof(void *))) = tdev;
  1913. /*
  1914. * Queue the skb and schedule the worker thread.
  1915. */
  1916. skb_queue_tail(&rxq, skb);
  1917. queue_work(workq, &skb_work);
  1918. return 0;
  1919. }
  1920. static int set_tcb_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
  1921. {
  1922. struct cpl_set_tcb_rpl *rpl = cplhdr(skb);
  1923. if (rpl->status != CPL_ERR_NONE) {
  1924. printk(KERN_ERR MOD "Unexpected SET_TCB_RPL status %u "
  1925. "for tid %u\n", rpl->status, GET_TID(rpl));
  1926. }
  1927. return CPL_RET_BUF_DONE;
  1928. }
  1929. int __init iwch_cm_init(void)
  1930. {
  1931. skb_queue_head_init(&rxq);
  1932. workq = create_singlethread_workqueue("iw_cxgb3");
  1933. if (!workq)
  1934. return -ENOMEM;
  1935. /*
  1936. * All upcalls from the T3 Core go to sched() to
  1937. * schedule the processing on a work queue.
  1938. */
  1939. t3c_handlers[CPL_ACT_ESTABLISH] = sched;
  1940. t3c_handlers[CPL_ACT_OPEN_RPL] = sched;
  1941. t3c_handlers[CPL_RX_DATA] = sched;
  1942. t3c_handlers[CPL_TX_DMA_ACK] = sched;
  1943. t3c_handlers[CPL_ABORT_RPL_RSS] = sched;
  1944. t3c_handlers[CPL_ABORT_RPL] = sched;
  1945. t3c_handlers[CPL_PASS_OPEN_RPL] = sched;
  1946. t3c_handlers[CPL_CLOSE_LISTSRV_RPL] = sched;
  1947. t3c_handlers[CPL_PASS_ACCEPT_REQ] = sched;
  1948. t3c_handlers[CPL_PASS_ESTABLISH] = sched;
  1949. t3c_handlers[CPL_PEER_CLOSE] = sched;
  1950. t3c_handlers[CPL_CLOSE_CON_RPL] = sched;
  1951. t3c_handlers[CPL_ABORT_REQ_RSS] = sched;
  1952. t3c_handlers[CPL_RDMA_TERMINATE] = sched;
  1953. t3c_handlers[CPL_RDMA_EC_STATUS] = sched;
  1954. t3c_handlers[CPL_SET_TCB_RPL] = set_tcb_rpl;
  1955. /*
  1956. * These are the real handlers that are called from a
  1957. * work queue.
  1958. */
  1959. work_handlers[CPL_ACT_ESTABLISH] = act_establish;
  1960. work_handlers[CPL_ACT_OPEN_RPL] = act_open_rpl;
  1961. work_handlers[CPL_RX_DATA] = rx_data;
  1962. work_handlers[CPL_TX_DMA_ACK] = tx_ack;
  1963. work_handlers[CPL_ABORT_RPL_RSS] = abort_rpl;
  1964. work_handlers[CPL_ABORT_RPL] = abort_rpl;
  1965. work_handlers[CPL_PASS_OPEN_RPL] = pass_open_rpl;
  1966. work_handlers[CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl;
  1967. work_handlers[CPL_PASS_ACCEPT_REQ] = pass_accept_req;
  1968. work_handlers[CPL_PASS_ESTABLISH] = pass_establish;
  1969. work_handlers[CPL_PEER_CLOSE] = peer_close;
  1970. work_handlers[CPL_ABORT_REQ_RSS] = peer_abort;
  1971. work_handlers[CPL_CLOSE_CON_RPL] = close_con_rpl;
  1972. work_handlers[CPL_RDMA_TERMINATE] = terminate;
  1973. work_handlers[CPL_RDMA_EC_STATUS] = ec_status;
  1974. return 0;
  1975. }
  1976. void __exit iwch_cm_term(void)
  1977. {
  1978. flush_workqueue(workq);
  1979. destroy_workqueue(workq);
  1980. }