iop-adma.c 49 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773
  1. /*
  2. * offload engine driver for the Intel Xscale series of i/o processors
  3. * Copyright © 2006, Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  17. *
  18. */
  19. /*
  20. * This driver supports the asynchrounous DMA copy and RAID engines available
  21. * on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
  22. */
  23. #include <linux/init.h>
  24. #include <linux/module.h>
  25. #include <linux/delay.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/spinlock.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/platform_device.h>
  30. #include <linux/memory.h>
  31. #include <linux/ioport.h>
  32. #include <linux/raid/pq.h>
  33. #include <linux/slab.h>
  34. #include <mach/adma.h>
  35. #define to_iop_adma_chan(chan) container_of(chan, struct iop_adma_chan, common)
  36. #define to_iop_adma_device(dev) \
  37. container_of(dev, struct iop_adma_device, common)
  38. #define tx_to_iop_adma_slot(tx) \
  39. container_of(tx, struct iop_adma_desc_slot, async_tx)
  40. /**
  41. * iop_adma_free_slots - flags descriptor slots for reuse
  42. * @slot: Slot to free
  43. * Caller must hold &iop_chan->lock while calling this function
  44. */
  45. static void iop_adma_free_slots(struct iop_adma_desc_slot *slot)
  46. {
  47. int stride = slot->slots_per_op;
  48. while (stride--) {
  49. slot->slots_per_op = 0;
  50. slot = list_entry(slot->slot_node.next,
  51. struct iop_adma_desc_slot,
  52. slot_node);
  53. }
  54. }
  55. static void
  56. iop_desc_unmap(struct iop_adma_chan *iop_chan, struct iop_adma_desc_slot *desc)
  57. {
  58. struct dma_async_tx_descriptor *tx = &desc->async_tx;
  59. struct iop_adma_desc_slot *unmap = desc->group_head;
  60. struct device *dev = &iop_chan->device->pdev->dev;
  61. u32 len = unmap->unmap_len;
  62. enum dma_ctrl_flags flags = tx->flags;
  63. u32 src_cnt;
  64. dma_addr_t addr;
  65. dma_addr_t dest;
  66. src_cnt = unmap->unmap_src_cnt;
  67. dest = iop_desc_get_dest_addr(unmap, iop_chan);
  68. if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
  69. enum dma_data_direction dir;
  70. if (src_cnt > 1) /* is xor? */
  71. dir = DMA_BIDIRECTIONAL;
  72. else
  73. dir = DMA_FROM_DEVICE;
  74. dma_unmap_page(dev, dest, len, dir);
  75. }
  76. if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  77. while (src_cnt--) {
  78. addr = iop_desc_get_src_addr(unmap, iop_chan, src_cnt);
  79. if (addr == dest)
  80. continue;
  81. dma_unmap_page(dev, addr, len, DMA_TO_DEVICE);
  82. }
  83. }
  84. desc->group_head = NULL;
  85. }
  86. static void
  87. iop_desc_unmap_pq(struct iop_adma_chan *iop_chan, struct iop_adma_desc_slot *desc)
  88. {
  89. struct dma_async_tx_descriptor *tx = &desc->async_tx;
  90. struct iop_adma_desc_slot *unmap = desc->group_head;
  91. struct device *dev = &iop_chan->device->pdev->dev;
  92. u32 len = unmap->unmap_len;
  93. enum dma_ctrl_flags flags = tx->flags;
  94. u32 src_cnt = unmap->unmap_src_cnt;
  95. dma_addr_t pdest = iop_desc_get_dest_addr(unmap, iop_chan);
  96. dma_addr_t qdest = iop_desc_get_qdest_addr(unmap, iop_chan);
  97. int i;
  98. if (tx->flags & DMA_PREP_CONTINUE)
  99. src_cnt -= 3;
  100. if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP) && !desc->pq_check_result) {
  101. dma_unmap_page(dev, pdest, len, DMA_BIDIRECTIONAL);
  102. dma_unmap_page(dev, qdest, len, DMA_BIDIRECTIONAL);
  103. }
  104. if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  105. dma_addr_t addr;
  106. for (i = 0; i < src_cnt; i++) {
  107. addr = iop_desc_get_src_addr(unmap, iop_chan, i);
  108. dma_unmap_page(dev, addr, len, DMA_TO_DEVICE);
  109. }
  110. if (desc->pq_check_result) {
  111. dma_unmap_page(dev, pdest, len, DMA_TO_DEVICE);
  112. dma_unmap_page(dev, qdest, len, DMA_TO_DEVICE);
  113. }
  114. }
  115. desc->group_head = NULL;
  116. }
  117. static dma_cookie_t
  118. iop_adma_run_tx_complete_actions(struct iop_adma_desc_slot *desc,
  119. struct iop_adma_chan *iop_chan, dma_cookie_t cookie)
  120. {
  121. struct dma_async_tx_descriptor *tx = &desc->async_tx;
  122. BUG_ON(tx->cookie < 0);
  123. if (tx->cookie > 0) {
  124. cookie = tx->cookie;
  125. tx->cookie = 0;
  126. /* call the callback (must not sleep or submit new
  127. * operations to this channel)
  128. */
  129. if (tx->callback)
  130. tx->callback(tx->callback_param);
  131. /* unmap dma addresses
  132. * (unmap_single vs unmap_page?)
  133. */
  134. if (desc->group_head && desc->unmap_len) {
  135. if (iop_desc_is_pq(desc))
  136. iop_desc_unmap_pq(iop_chan, desc);
  137. else
  138. iop_desc_unmap(iop_chan, desc);
  139. }
  140. }
  141. /* run dependent operations */
  142. dma_run_dependencies(tx);
  143. return cookie;
  144. }
  145. static int
  146. iop_adma_clean_slot(struct iop_adma_desc_slot *desc,
  147. struct iop_adma_chan *iop_chan)
  148. {
  149. /* the client is allowed to attach dependent operations
  150. * until 'ack' is set
  151. */
  152. if (!async_tx_test_ack(&desc->async_tx))
  153. return 0;
  154. /* leave the last descriptor in the chain
  155. * so we can append to it
  156. */
  157. if (desc->chain_node.next == &iop_chan->chain)
  158. return 1;
  159. dev_dbg(iop_chan->device->common.dev,
  160. "\tfree slot: %d slots_per_op: %d\n",
  161. desc->idx, desc->slots_per_op);
  162. list_del(&desc->chain_node);
  163. iop_adma_free_slots(desc);
  164. return 0;
  165. }
  166. static void __iop_adma_slot_cleanup(struct iop_adma_chan *iop_chan)
  167. {
  168. struct iop_adma_desc_slot *iter, *_iter, *grp_start = NULL;
  169. dma_cookie_t cookie = 0;
  170. u32 current_desc = iop_chan_get_current_descriptor(iop_chan);
  171. int busy = iop_chan_is_busy(iop_chan);
  172. int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
  173. dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
  174. /* free completed slots from the chain starting with
  175. * the oldest descriptor
  176. */
  177. list_for_each_entry_safe(iter, _iter, &iop_chan->chain,
  178. chain_node) {
  179. pr_debug("\tcookie: %d slot: %d busy: %d "
  180. "this_desc: %#x next_desc: %#x ack: %d\n",
  181. iter->async_tx.cookie, iter->idx, busy,
  182. iter->async_tx.phys, iop_desc_get_next_desc(iter),
  183. async_tx_test_ack(&iter->async_tx));
  184. prefetch(_iter);
  185. prefetch(&_iter->async_tx);
  186. /* do not advance past the current descriptor loaded into the
  187. * hardware channel, subsequent descriptors are either in
  188. * process or have not been submitted
  189. */
  190. if (seen_current)
  191. break;
  192. /* stop the search if we reach the current descriptor and the
  193. * channel is busy, or if it appears that the current descriptor
  194. * needs to be re-read (i.e. has been appended to)
  195. */
  196. if (iter->async_tx.phys == current_desc) {
  197. BUG_ON(seen_current++);
  198. if (busy || iop_desc_get_next_desc(iter))
  199. break;
  200. }
  201. /* detect the start of a group transaction */
  202. if (!slot_cnt && !slots_per_op) {
  203. slot_cnt = iter->slot_cnt;
  204. slots_per_op = iter->slots_per_op;
  205. if (slot_cnt <= slots_per_op) {
  206. slot_cnt = 0;
  207. slots_per_op = 0;
  208. }
  209. }
  210. if (slot_cnt) {
  211. pr_debug("\tgroup++\n");
  212. if (!grp_start)
  213. grp_start = iter;
  214. slot_cnt -= slots_per_op;
  215. }
  216. /* all the members of a group are complete */
  217. if (slots_per_op != 0 && slot_cnt == 0) {
  218. struct iop_adma_desc_slot *grp_iter, *_grp_iter;
  219. int end_of_chain = 0;
  220. pr_debug("\tgroup end\n");
  221. /* collect the total results */
  222. if (grp_start->xor_check_result) {
  223. u32 zero_sum_result = 0;
  224. slot_cnt = grp_start->slot_cnt;
  225. grp_iter = grp_start;
  226. list_for_each_entry_from(grp_iter,
  227. &iop_chan->chain, chain_node) {
  228. zero_sum_result |=
  229. iop_desc_get_zero_result(grp_iter);
  230. pr_debug("\titer%d result: %d\n",
  231. grp_iter->idx, zero_sum_result);
  232. slot_cnt -= slots_per_op;
  233. if (slot_cnt == 0)
  234. break;
  235. }
  236. pr_debug("\tgrp_start->xor_check_result: %p\n",
  237. grp_start->xor_check_result);
  238. *grp_start->xor_check_result = zero_sum_result;
  239. }
  240. /* clean up the group */
  241. slot_cnt = grp_start->slot_cnt;
  242. grp_iter = grp_start;
  243. list_for_each_entry_safe_from(grp_iter, _grp_iter,
  244. &iop_chan->chain, chain_node) {
  245. cookie = iop_adma_run_tx_complete_actions(
  246. grp_iter, iop_chan, cookie);
  247. slot_cnt -= slots_per_op;
  248. end_of_chain = iop_adma_clean_slot(grp_iter,
  249. iop_chan);
  250. if (slot_cnt == 0 || end_of_chain)
  251. break;
  252. }
  253. /* the group should be complete at this point */
  254. BUG_ON(slot_cnt);
  255. slots_per_op = 0;
  256. grp_start = NULL;
  257. if (end_of_chain)
  258. break;
  259. else
  260. continue;
  261. } else if (slots_per_op) /* wait for group completion */
  262. continue;
  263. /* write back zero sum results (single descriptor case) */
  264. if (iter->xor_check_result && iter->async_tx.cookie)
  265. *iter->xor_check_result =
  266. iop_desc_get_zero_result(iter);
  267. cookie = iop_adma_run_tx_complete_actions(
  268. iter, iop_chan, cookie);
  269. if (iop_adma_clean_slot(iter, iop_chan))
  270. break;
  271. }
  272. if (cookie > 0) {
  273. iop_chan->completed_cookie = cookie;
  274. pr_debug("\tcompleted cookie %d\n", cookie);
  275. }
  276. }
  277. static void
  278. iop_adma_slot_cleanup(struct iop_adma_chan *iop_chan)
  279. {
  280. spin_lock_bh(&iop_chan->lock);
  281. __iop_adma_slot_cleanup(iop_chan);
  282. spin_unlock_bh(&iop_chan->lock);
  283. }
  284. static void iop_adma_tasklet(unsigned long data)
  285. {
  286. struct iop_adma_chan *iop_chan = (struct iop_adma_chan *) data;
  287. /* lockdep will flag depedency submissions as potentially
  288. * recursive locking, this is not the case as a dependency
  289. * submission will never recurse a channels submit routine.
  290. * There are checks in async_tx.c to prevent this.
  291. */
  292. spin_lock_nested(&iop_chan->lock, SINGLE_DEPTH_NESTING);
  293. __iop_adma_slot_cleanup(iop_chan);
  294. spin_unlock(&iop_chan->lock);
  295. }
  296. static struct iop_adma_desc_slot *
  297. iop_adma_alloc_slots(struct iop_adma_chan *iop_chan, int num_slots,
  298. int slots_per_op)
  299. {
  300. struct iop_adma_desc_slot *iter, *_iter, *alloc_start = NULL;
  301. LIST_HEAD(chain);
  302. int slots_found, retry = 0;
  303. /* start search from the last allocated descrtiptor
  304. * if a contiguous allocation can not be found start searching
  305. * from the beginning of the list
  306. */
  307. retry:
  308. slots_found = 0;
  309. if (retry == 0)
  310. iter = iop_chan->last_used;
  311. else
  312. iter = list_entry(&iop_chan->all_slots,
  313. struct iop_adma_desc_slot,
  314. slot_node);
  315. list_for_each_entry_safe_continue(
  316. iter, _iter, &iop_chan->all_slots, slot_node) {
  317. prefetch(_iter);
  318. prefetch(&_iter->async_tx);
  319. if (iter->slots_per_op) {
  320. /* give up after finding the first busy slot
  321. * on the second pass through the list
  322. */
  323. if (retry)
  324. break;
  325. slots_found = 0;
  326. continue;
  327. }
  328. /* start the allocation if the slot is correctly aligned */
  329. if (!slots_found++) {
  330. if (iop_desc_is_aligned(iter, slots_per_op))
  331. alloc_start = iter;
  332. else {
  333. slots_found = 0;
  334. continue;
  335. }
  336. }
  337. if (slots_found == num_slots) {
  338. struct iop_adma_desc_slot *alloc_tail = NULL;
  339. struct iop_adma_desc_slot *last_used = NULL;
  340. iter = alloc_start;
  341. while (num_slots) {
  342. int i;
  343. dev_dbg(iop_chan->device->common.dev,
  344. "allocated slot: %d "
  345. "(desc %p phys: %#x) slots_per_op %d\n",
  346. iter->idx, iter->hw_desc,
  347. iter->async_tx.phys, slots_per_op);
  348. /* pre-ack all but the last descriptor */
  349. if (num_slots != slots_per_op)
  350. async_tx_ack(&iter->async_tx);
  351. list_add_tail(&iter->chain_node, &chain);
  352. alloc_tail = iter;
  353. iter->async_tx.cookie = 0;
  354. iter->slot_cnt = num_slots;
  355. iter->xor_check_result = NULL;
  356. for (i = 0; i < slots_per_op; i++) {
  357. iter->slots_per_op = slots_per_op - i;
  358. last_used = iter;
  359. iter = list_entry(iter->slot_node.next,
  360. struct iop_adma_desc_slot,
  361. slot_node);
  362. }
  363. num_slots -= slots_per_op;
  364. }
  365. alloc_tail->group_head = alloc_start;
  366. alloc_tail->async_tx.cookie = -EBUSY;
  367. list_splice(&chain, &alloc_tail->tx_list);
  368. iop_chan->last_used = last_used;
  369. iop_desc_clear_next_desc(alloc_start);
  370. iop_desc_clear_next_desc(alloc_tail);
  371. return alloc_tail;
  372. }
  373. }
  374. if (!retry++)
  375. goto retry;
  376. /* perform direct reclaim if the allocation fails */
  377. __iop_adma_slot_cleanup(iop_chan);
  378. return NULL;
  379. }
  380. static dma_cookie_t
  381. iop_desc_assign_cookie(struct iop_adma_chan *iop_chan,
  382. struct iop_adma_desc_slot *desc)
  383. {
  384. dma_cookie_t cookie = iop_chan->common.cookie;
  385. cookie++;
  386. if (cookie < 0)
  387. cookie = 1;
  388. iop_chan->common.cookie = desc->async_tx.cookie = cookie;
  389. return cookie;
  390. }
  391. static void iop_adma_check_threshold(struct iop_adma_chan *iop_chan)
  392. {
  393. dev_dbg(iop_chan->device->common.dev, "pending: %d\n",
  394. iop_chan->pending);
  395. if (iop_chan->pending >= IOP_ADMA_THRESHOLD) {
  396. iop_chan->pending = 0;
  397. iop_chan_append(iop_chan);
  398. }
  399. }
  400. static dma_cookie_t
  401. iop_adma_tx_submit(struct dma_async_tx_descriptor *tx)
  402. {
  403. struct iop_adma_desc_slot *sw_desc = tx_to_iop_adma_slot(tx);
  404. struct iop_adma_chan *iop_chan = to_iop_adma_chan(tx->chan);
  405. struct iop_adma_desc_slot *grp_start, *old_chain_tail;
  406. int slot_cnt;
  407. int slots_per_op;
  408. dma_cookie_t cookie;
  409. dma_addr_t next_dma;
  410. grp_start = sw_desc->group_head;
  411. slot_cnt = grp_start->slot_cnt;
  412. slots_per_op = grp_start->slots_per_op;
  413. spin_lock_bh(&iop_chan->lock);
  414. cookie = iop_desc_assign_cookie(iop_chan, sw_desc);
  415. old_chain_tail = list_entry(iop_chan->chain.prev,
  416. struct iop_adma_desc_slot, chain_node);
  417. list_splice_init(&sw_desc->tx_list,
  418. &old_chain_tail->chain_node);
  419. /* fix up the hardware chain */
  420. next_dma = grp_start->async_tx.phys;
  421. iop_desc_set_next_desc(old_chain_tail, next_dma);
  422. BUG_ON(iop_desc_get_next_desc(old_chain_tail) != next_dma); /* flush */
  423. /* check for pre-chained descriptors */
  424. iop_paranoia(iop_desc_get_next_desc(sw_desc));
  425. /* increment the pending count by the number of slots
  426. * memcpy operations have a 1:1 (slot:operation) relation
  427. * other operations are heavier and will pop the threshold
  428. * more often.
  429. */
  430. iop_chan->pending += slot_cnt;
  431. iop_adma_check_threshold(iop_chan);
  432. spin_unlock_bh(&iop_chan->lock);
  433. dev_dbg(iop_chan->device->common.dev, "%s cookie: %d slot: %d\n",
  434. __func__, sw_desc->async_tx.cookie, sw_desc->idx);
  435. return cookie;
  436. }
  437. static void iop_chan_start_null_memcpy(struct iop_adma_chan *iop_chan);
  438. static void iop_chan_start_null_xor(struct iop_adma_chan *iop_chan);
  439. /**
  440. * iop_adma_alloc_chan_resources - returns the number of allocated descriptors
  441. * @chan - allocate descriptor resources for this channel
  442. * @client - current client requesting the channel be ready for requests
  443. *
  444. * Note: We keep the slots for 1 operation on iop_chan->chain at all times. To
  445. * avoid deadlock, via async_xor, num_descs_in_pool must at a minimum be
  446. * greater than 2x the number slots needed to satisfy a device->max_xor
  447. * request.
  448. * */
  449. static int iop_adma_alloc_chan_resources(struct dma_chan *chan)
  450. {
  451. char *hw_desc;
  452. int idx;
  453. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  454. struct iop_adma_desc_slot *slot = NULL;
  455. int init = iop_chan->slots_allocated ? 0 : 1;
  456. struct iop_adma_platform_data *plat_data =
  457. iop_chan->device->pdev->dev.platform_data;
  458. int num_descs_in_pool = plat_data->pool_size/IOP_ADMA_SLOT_SIZE;
  459. /* Allocate descriptor slots */
  460. do {
  461. idx = iop_chan->slots_allocated;
  462. if (idx == num_descs_in_pool)
  463. break;
  464. slot = kzalloc(sizeof(*slot), GFP_KERNEL);
  465. if (!slot) {
  466. printk(KERN_INFO "IOP ADMA Channel only initialized"
  467. " %d descriptor slots", idx);
  468. break;
  469. }
  470. hw_desc = (char *) iop_chan->device->dma_desc_pool_virt;
  471. slot->hw_desc = (void *) &hw_desc[idx * IOP_ADMA_SLOT_SIZE];
  472. dma_async_tx_descriptor_init(&slot->async_tx, chan);
  473. slot->async_tx.tx_submit = iop_adma_tx_submit;
  474. INIT_LIST_HEAD(&slot->tx_list);
  475. INIT_LIST_HEAD(&slot->chain_node);
  476. INIT_LIST_HEAD(&slot->slot_node);
  477. hw_desc = (char *) iop_chan->device->dma_desc_pool;
  478. slot->async_tx.phys =
  479. (dma_addr_t) &hw_desc[idx * IOP_ADMA_SLOT_SIZE];
  480. slot->idx = idx;
  481. spin_lock_bh(&iop_chan->lock);
  482. iop_chan->slots_allocated++;
  483. list_add_tail(&slot->slot_node, &iop_chan->all_slots);
  484. spin_unlock_bh(&iop_chan->lock);
  485. } while (iop_chan->slots_allocated < num_descs_in_pool);
  486. if (idx && !iop_chan->last_used)
  487. iop_chan->last_used = list_entry(iop_chan->all_slots.next,
  488. struct iop_adma_desc_slot,
  489. slot_node);
  490. dev_dbg(iop_chan->device->common.dev,
  491. "allocated %d descriptor slots last_used: %p\n",
  492. iop_chan->slots_allocated, iop_chan->last_used);
  493. /* initialize the channel and the chain with a null operation */
  494. if (init) {
  495. if (dma_has_cap(DMA_MEMCPY,
  496. iop_chan->device->common.cap_mask))
  497. iop_chan_start_null_memcpy(iop_chan);
  498. else if (dma_has_cap(DMA_XOR,
  499. iop_chan->device->common.cap_mask))
  500. iop_chan_start_null_xor(iop_chan);
  501. else
  502. BUG();
  503. }
  504. return (idx > 0) ? idx : -ENOMEM;
  505. }
  506. static struct dma_async_tx_descriptor *
  507. iop_adma_prep_dma_interrupt(struct dma_chan *chan, unsigned long flags)
  508. {
  509. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  510. struct iop_adma_desc_slot *sw_desc, *grp_start;
  511. int slot_cnt, slots_per_op;
  512. dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
  513. spin_lock_bh(&iop_chan->lock);
  514. slot_cnt = iop_chan_interrupt_slot_count(&slots_per_op, iop_chan);
  515. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  516. if (sw_desc) {
  517. grp_start = sw_desc->group_head;
  518. iop_desc_init_interrupt(grp_start, iop_chan);
  519. grp_start->unmap_len = 0;
  520. sw_desc->async_tx.flags = flags;
  521. }
  522. spin_unlock_bh(&iop_chan->lock);
  523. return sw_desc ? &sw_desc->async_tx : NULL;
  524. }
  525. static struct dma_async_tx_descriptor *
  526. iop_adma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
  527. dma_addr_t dma_src, size_t len, unsigned long flags)
  528. {
  529. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  530. struct iop_adma_desc_slot *sw_desc, *grp_start;
  531. int slot_cnt, slots_per_op;
  532. if (unlikely(!len))
  533. return NULL;
  534. BUG_ON(unlikely(len > IOP_ADMA_MAX_BYTE_COUNT));
  535. dev_dbg(iop_chan->device->common.dev, "%s len: %u\n",
  536. __func__, len);
  537. spin_lock_bh(&iop_chan->lock);
  538. slot_cnt = iop_chan_memcpy_slot_count(len, &slots_per_op);
  539. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  540. if (sw_desc) {
  541. grp_start = sw_desc->group_head;
  542. iop_desc_init_memcpy(grp_start, flags);
  543. iop_desc_set_byte_count(grp_start, iop_chan, len);
  544. iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest);
  545. iop_desc_set_memcpy_src_addr(grp_start, dma_src);
  546. sw_desc->unmap_src_cnt = 1;
  547. sw_desc->unmap_len = len;
  548. sw_desc->async_tx.flags = flags;
  549. }
  550. spin_unlock_bh(&iop_chan->lock);
  551. return sw_desc ? &sw_desc->async_tx : NULL;
  552. }
  553. static struct dma_async_tx_descriptor *
  554. iop_adma_prep_dma_memset(struct dma_chan *chan, dma_addr_t dma_dest,
  555. int value, size_t len, unsigned long flags)
  556. {
  557. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  558. struct iop_adma_desc_slot *sw_desc, *grp_start;
  559. int slot_cnt, slots_per_op;
  560. if (unlikely(!len))
  561. return NULL;
  562. BUG_ON(unlikely(len > IOP_ADMA_MAX_BYTE_COUNT));
  563. dev_dbg(iop_chan->device->common.dev, "%s len: %u\n",
  564. __func__, len);
  565. spin_lock_bh(&iop_chan->lock);
  566. slot_cnt = iop_chan_memset_slot_count(len, &slots_per_op);
  567. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  568. if (sw_desc) {
  569. grp_start = sw_desc->group_head;
  570. iop_desc_init_memset(grp_start, flags);
  571. iop_desc_set_byte_count(grp_start, iop_chan, len);
  572. iop_desc_set_block_fill_val(grp_start, value);
  573. iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest);
  574. sw_desc->unmap_src_cnt = 1;
  575. sw_desc->unmap_len = len;
  576. sw_desc->async_tx.flags = flags;
  577. }
  578. spin_unlock_bh(&iop_chan->lock);
  579. return sw_desc ? &sw_desc->async_tx : NULL;
  580. }
  581. static struct dma_async_tx_descriptor *
  582. iop_adma_prep_dma_xor(struct dma_chan *chan, dma_addr_t dma_dest,
  583. dma_addr_t *dma_src, unsigned int src_cnt, size_t len,
  584. unsigned long flags)
  585. {
  586. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  587. struct iop_adma_desc_slot *sw_desc, *grp_start;
  588. int slot_cnt, slots_per_op;
  589. if (unlikely(!len))
  590. return NULL;
  591. BUG_ON(unlikely(len > IOP_ADMA_XOR_MAX_BYTE_COUNT));
  592. dev_dbg(iop_chan->device->common.dev,
  593. "%s src_cnt: %d len: %u flags: %lx\n",
  594. __func__, src_cnt, len, flags);
  595. spin_lock_bh(&iop_chan->lock);
  596. slot_cnt = iop_chan_xor_slot_count(len, src_cnt, &slots_per_op);
  597. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  598. if (sw_desc) {
  599. grp_start = sw_desc->group_head;
  600. iop_desc_init_xor(grp_start, src_cnt, flags);
  601. iop_desc_set_byte_count(grp_start, iop_chan, len);
  602. iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest);
  603. sw_desc->unmap_src_cnt = src_cnt;
  604. sw_desc->unmap_len = len;
  605. sw_desc->async_tx.flags = flags;
  606. while (src_cnt--)
  607. iop_desc_set_xor_src_addr(grp_start, src_cnt,
  608. dma_src[src_cnt]);
  609. }
  610. spin_unlock_bh(&iop_chan->lock);
  611. return sw_desc ? &sw_desc->async_tx : NULL;
  612. }
  613. static struct dma_async_tx_descriptor *
  614. iop_adma_prep_dma_xor_val(struct dma_chan *chan, dma_addr_t *dma_src,
  615. unsigned int src_cnt, size_t len, u32 *result,
  616. unsigned long flags)
  617. {
  618. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  619. struct iop_adma_desc_slot *sw_desc, *grp_start;
  620. int slot_cnt, slots_per_op;
  621. if (unlikely(!len))
  622. return NULL;
  623. dev_dbg(iop_chan->device->common.dev, "%s src_cnt: %d len: %u\n",
  624. __func__, src_cnt, len);
  625. spin_lock_bh(&iop_chan->lock);
  626. slot_cnt = iop_chan_zero_sum_slot_count(len, src_cnt, &slots_per_op);
  627. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  628. if (sw_desc) {
  629. grp_start = sw_desc->group_head;
  630. iop_desc_init_zero_sum(grp_start, src_cnt, flags);
  631. iop_desc_set_zero_sum_byte_count(grp_start, len);
  632. grp_start->xor_check_result = result;
  633. pr_debug("\t%s: grp_start->xor_check_result: %p\n",
  634. __func__, grp_start->xor_check_result);
  635. sw_desc->unmap_src_cnt = src_cnt;
  636. sw_desc->unmap_len = len;
  637. sw_desc->async_tx.flags = flags;
  638. while (src_cnt--)
  639. iop_desc_set_zero_sum_src_addr(grp_start, src_cnt,
  640. dma_src[src_cnt]);
  641. }
  642. spin_unlock_bh(&iop_chan->lock);
  643. return sw_desc ? &sw_desc->async_tx : NULL;
  644. }
  645. static struct dma_async_tx_descriptor *
  646. iop_adma_prep_dma_pq(struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
  647. unsigned int src_cnt, const unsigned char *scf, size_t len,
  648. unsigned long flags)
  649. {
  650. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  651. struct iop_adma_desc_slot *sw_desc, *g;
  652. int slot_cnt, slots_per_op;
  653. int continue_srcs;
  654. if (unlikely(!len))
  655. return NULL;
  656. BUG_ON(len > IOP_ADMA_XOR_MAX_BYTE_COUNT);
  657. dev_dbg(iop_chan->device->common.dev,
  658. "%s src_cnt: %d len: %u flags: %lx\n",
  659. __func__, src_cnt, len, flags);
  660. if (dmaf_p_disabled_continue(flags))
  661. continue_srcs = 1+src_cnt;
  662. else if (dmaf_continue(flags))
  663. continue_srcs = 3+src_cnt;
  664. else
  665. continue_srcs = 0+src_cnt;
  666. spin_lock_bh(&iop_chan->lock);
  667. slot_cnt = iop_chan_pq_slot_count(len, continue_srcs, &slots_per_op);
  668. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  669. if (sw_desc) {
  670. int i;
  671. g = sw_desc->group_head;
  672. iop_desc_set_byte_count(g, iop_chan, len);
  673. /* even if P is disabled its destination address (bits
  674. * [3:0]) must match Q. It is ok if P points to an
  675. * invalid address, it won't be written.
  676. */
  677. if (flags & DMA_PREP_PQ_DISABLE_P)
  678. dst[0] = dst[1] & 0x7;
  679. iop_desc_set_pq_addr(g, dst);
  680. sw_desc->unmap_src_cnt = src_cnt;
  681. sw_desc->unmap_len = len;
  682. sw_desc->async_tx.flags = flags;
  683. for (i = 0; i < src_cnt; i++)
  684. iop_desc_set_pq_src_addr(g, i, src[i], scf[i]);
  685. /* if we are continuing a previous operation factor in
  686. * the old p and q values, see the comment for dma_maxpq
  687. * in include/linux/dmaengine.h
  688. */
  689. if (dmaf_p_disabled_continue(flags))
  690. iop_desc_set_pq_src_addr(g, i++, dst[1], 1);
  691. else if (dmaf_continue(flags)) {
  692. iop_desc_set_pq_src_addr(g, i++, dst[0], 0);
  693. iop_desc_set_pq_src_addr(g, i++, dst[1], 1);
  694. iop_desc_set_pq_src_addr(g, i++, dst[1], 0);
  695. }
  696. iop_desc_init_pq(g, i, flags);
  697. }
  698. spin_unlock_bh(&iop_chan->lock);
  699. return sw_desc ? &sw_desc->async_tx : NULL;
  700. }
  701. static struct dma_async_tx_descriptor *
  702. iop_adma_prep_dma_pq_val(struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
  703. unsigned int src_cnt, const unsigned char *scf,
  704. size_t len, enum sum_check_flags *pqres,
  705. unsigned long flags)
  706. {
  707. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  708. struct iop_adma_desc_slot *sw_desc, *g;
  709. int slot_cnt, slots_per_op;
  710. if (unlikely(!len))
  711. return NULL;
  712. BUG_ON(len > IOP_ADMA_XOR_MAX_BYTE_COUNT);
  713. dev_dbg(iop_chan->device->common.dev, "%s src_cnt: %d len: %u\n",
  714. __func__, src_cnt, len);
  715. spin_lock_bh(&iop_chan->lock);
  716. slot_cnt = iop_chan_pq_zero_sum_slot_count(len, src_cnt + 2, &slots_per_op);
  717. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  718. if (sw_desc) {
  719. /* for validate operations p and q are tagged onto the
  720. * end of the source list
  721. */
  722. int pq_idx = src_cnt;
  723. g = sw_desc->group_head;
  724. iop_desc_init_pq_zero_sum(g, src_cnt+2, flags);
  725. iop_desc_set_pq_zero_sum_byte_count(g, len);
  726. g->pq_check_result = pqres;
  727. pr_debug("\t%s: g->pq_check_result: %p\n",
  728. __func__, g->pq_check_result);
  729. sw_desc->unmap_src_cnt = src_cnt+2;
  730. sw_desc->unmap_len = len;
  731. sw_desc->async_tx.flags = flags;
  732. while (src_cnt--)
  733. iop_desc_set_pq_zero_sum_src_addr(g, src_cnt,
  734. src[src_cnt],
  735. scf[src_cnt]);
  736. iop_desc_set_pq_zero_sum_addr(g, pq_idx, src);
  737. }
  738. spin_unlock_bh(&iop_chan->lock);
  739. return sw_desc ? &sw_desc->async_tx : NULL;
  740. }
  741. static void iop_adma_free_chan_resources(struct dma_chan *chan)
  742. {
  743. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  744. struct iop_adma_desc_slot *iter, *_iter;
  745. int in_use_descs = 0;
  746. iop_adma_slot_cleanup(iop_chan);
  747. spin_lock_bh(&iop_chan->lock);
  748. list_for_each_entry_safe(iter, _iter, &iop_chan->chain,
  749. chain_node) {
  750. in_use_descs++;
  751. list_del(&iter->chain_node);
  752. }
  753. list_for_each_entry_safe_reverse(
  754. iter, _iter, &iop_chan->all_slots, slot_node) {
  755. list_del(&iter->slot_node);
  756. kfree(iter);
  757. iop_chan->slots_allocated--;
  758. }
  759. iop_chan->last_used = NULL;
  760. dev_dbg(iop_chan->device->common.dev, "%s slots_allocated %d\n",
  761. __func__, iop_chan->slots_allocated);
  762. spin_unlock_bh(&iop_chan->lock);
  763. /* one is ok since we left it on there on purpose */
  764. if (in_use_descs > 1)
  765. printk(KERN_ERR "IOP: Freeing %d in use descriptors!\n",
  766. in_use_descs - 1);
  767. }
  768. /**
  769. * iop_adma_is_complete - poll the status of an ADMA transaction
  770. * @chan: ADMA channel handle
  771. * @cookie: ADMA transaction identifier
  772. */
  773. static enum dma_status iop_adma_is_complete(struct dma_chan *chan,
  774. dma_cookie_t cookie,
  775. dma_cookie_t *done,
  776. dma_cookie_t *used)
  777. {
  778. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  779. dma_cookie_t last_used;
  780. dma_cookie_t last_complete;
  781. enum dma_status ret;
  782. last_used = chan->cookie;
  783. last_complete = iop_chan->completed_cookie;
  784. if (done)
  785. *done = last_complete;
  786. if (used)
  787. *used = last_used;
  788. ret = dma_async_is_complete(cookie, last_complete, last_used);
  789. if (ret == DMA_SUCCESS)
  790. return ret;
  791. iop_adma_slot_cleanup(iop_chan);
  792. last_used = chan->cookie;
  793. last_complete = iop_chan->completed_cookie;
  794. if (done)
  795. *done = last_complete;
  796. if (used)
  797. *used = last_used;
  798. return dma_async_is_complete(cookie, last_complete, last_used);
  799. }
  800. static irqreturn_t iop_adma_eot_handler(int irq, void *data)
  801. {
  802. struct iop_adma_chan *chan = data;
  803. dev_dbg(chan->device->common.dev, "%s\n", __func__);
  804. tasklet_schedule(&chan->irq_tasklet);
  805. iop_adma_device_clear_eot_status(chan);
  806. return IRQ_HANDLED;
  807. }
  808. static irqreturn_t iop_adma_eoc_handler(int irq, void *data)
  809. {
  810. struct iop_adma_chan *chan = data;
  811. dev_dbg(chan->device->common.dev, "%s\n", __func__);
  812. tasklet_schedule(&chan->irq_tasklet);
  813. iop_adma_device_clear_eoc_status(chan);
  814. return IRQ_HANDLED;
  815. }
  816. static irqreturn_t iop_adma_err_handler(int irq, void *data)
  817. {
  818. struct iop_adma_chan *chan = data;
  819. unsigned long status = iop_chan_get_status(chan);
  820. dev_printk(KERN_ERR, chan->device->common.dev,
  821. "error ( %s%s%s%s%s%s%s)\n",
  822. iop_is_err_int_parity(status, chan) ? "int_parity " : "",
  823. iop_is_err_mcu_abort(status, chan) ? "mcu_abort " : "",
  824. iop_is_err_int_tabort(status, chan) ? "int_tabort " : "",
  825. iop_is_err_int_mabort(status, chan) ? "int_mabort " : "",
  826. iop_is_err_pci_tabort(status, chan) ? "pci_tabort " : "",
  827. iop_is_err_pci_mabort(status, chan) ? "pci_mabort " : "",
  828. iop_is_err_split_tx(status, chan) ? "split_tx " : "");
  829. iop_adma_device_clear_err_status(chan);
  830. BUG();
  831. return IRQ_HANDLED;
  832. }
  833. static void iop_adma_issue_pending(struct dma_chan *chan)
  834. {
  835. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  836. if (iop_chan->pending) {
  837. iop_chan->pending = 0;
  838. iop_chan_append(iop_chan);
  839. }
  840. }
  841. /*
  842. * Perform a transaction to verify the HW works.
  843. */
  844. #define IOP_ADMA_TEST_SIZE 2000
  845. static int __devinit iop_adma_memcpy_self_test(struct iop_adma_device *device)
  846. {
  847. int i;
  848. void *src, *dest;
  849. dma_addr_t src_dma, dest_dma;
  850. struct dma_chan *dma_chan;
  851. dma_cookie_t cookie;
  852. struct dma_async_tx_descriptor *tx;
  853. int err = 0;
  854. struct iop_adma_chan *iop_chan;
  855. dev_dbg(device->common.dev, "%s\n", __func__);
  856. src = kmalloc(IOP_ADMA_TEST_SIZE, GFP_KERNEL);
  857. if (!src)
  858. return -ENOMEM;
  859. dest = kzalloc(IOP_ADMA_TEST_SIZE, GFP_KERNEL);
  860. if (!dest) {
  861. kfree(src);
  862. return -ENOMEM;
  863. }
  864. /* Fill in src buffer */
  865. for (i = 0; i < IOP_ADMA_TEST_SIZE; i++)
  866. ((u8 *) src)[i] = (u8)i;
  867. /* Start copy, using first DMA channel */
  868. dma_chan = container_of(device->common.channels.next,
  869. struct dma_chan,
  870. device_node);
  871. if (iop_adma_alloc_chan_resources(dma_chan) < 1) {
  872. err = -ENODEV;
  873. goto out;
  874. }
  875. dest_dma = dma_map_single(dma_chan->device->dev, dest,
  876. IOP_ADMA_TEST_SIZE, DMA_FROM_DEVICE);
  877. src_dma = dma_map_single(dma_chan->device->dev, src,
  878. IOP_ADMA_TEST_SIZE, DMA_TO_DEVICE);
  879. tx = iop_adma_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
  880. IOP_ADMA_TEST_SIZE,
  881. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  882. cookie = iop_adma_tx_submit(tx);
  883. iop_adma_issue_pending(dma_chan);
  884. msleep(1);
  885. if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
  886. DMA_SUCCESS) {
  887. dev_printk(KERN_ERR, dma_chan->device->dev,
  888. "Self-test copy timed out, disabling\n");
  889. err = -ENODEV;
  890. goto free_resources;
  891. }
  892. iop_chan = to_iop_adma_chan(dma_chan);
  893. dma_sync_single_for_cpu(&iop_chan->device->pdev->dev, dest_dma,
  894. IOP_ADMA_TEST_SIZE, DMA_FROM_DEVICE);
  895. if (memcmp(src, dest, IOP_ADMA_TEST_SIZE)) {
  896. dev_printk(KERN_ERR, dma_chan->device->dev,
  897. "Self-test copy failed compare, disabling\n");
  898. err = -ENODEV;
  899. goto free_resources;
  900. }
  901. free_resources:
  902. iop_adma_free_chan_resources(dma_chan);
  903. out:
  904. kfree(src);
  905. kfree(dest);
  906. return err;
  907. }
  908. #define IOP_ADMA_NUM_SRC_TEST 4 /* must be <= 15 */
  909. static int __devinit
  910. iop_adma_xor_val_self_test(struct iop_adma_device *device)
  911. {
  912. int i, src_idx;
  913. struct page *dest;
  914. struct page *xor_srcs[IOP_ADMA_NUM_SRC_TEST];
  915. struct page *zero_sum_srcs[IOP_ADMA_NUM_SRC_TEST + 1];
  916. dma_addr_t dma_srcs[IOP_ADMA_NUM_SRC_TEST + 1];
  917. dma_addr_t dma_addr, dest_dma;
  918. struct dma_async_tx_descriptor *tx;
  919. struct dma_chan *dma_chan;
  920. dma_cookie_t cookie;
  921. u8 cmp_byte = 0;
  922. u32 cmp_word;
  923. u32 zero_sum_result;
  924. int err = 0;
  925. struct iop_adma_chan *iop_chan;
  926. dev_dbg(device->common.dev, "%s\n", __func__);
  927. for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++) {
  928. xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
  929. if (!xor_srcs[src_idx]) {
  930. while (src_idx--)
  931. __free_page(xor_srcs[src_idx]);
  932. return -ENOMEM;
  933. }
  934. }
  935. dest = alloc_page(GFP_KERNEL);
  936. if (!dest) {
  937. while (src_idx--)
  938. __free_page(xor_srcs[src_idx]);
  939. return -ENOMEM;
  940. }
  941. /* Fill in src buffers */
  942. for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++) {
  943. u8 *ptr = page_address(xor_srcs[src_idx]);
  944. for (i = 0; i < PAGE_SIZE; i++)
  945. ptr[i] = (1 << src_idx);
  946. }
  947. for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++)
  948. cmp_byte ^= (u8) (1 << src_idx);
  949. cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
  950. (cmp_byte << 8) | cmp_byte;
  951. memset(page_address(dest), 0, PAGE_SIZE);
  952. dma_chan = container_of(device->common.channels.next,
  953. struct dma_chan,
  954. device_node);
  955. if (iop_adma_alloc_chan_resources(dma_chan) < 1) {
  956. err = -ENODEV;
  957. goto out;
  958. }
  959. /* test xor */
  960. dest_dma = dma_map_page(dma_chan->device->dev, dest, 0,
  961. PAGE_SIZE, DMA_FROM_DEVICE);
  962. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++)
  963. dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
  964. 0, PAGE_SIZE, DMA_TO_DEVICE);
  965. tx = iop_adma_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
  966. IOP_ADMA_NUM_SRC_TEST, PAGE_SIZE,
  967. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  968. cookie = iop_adma_tx_submit(tx);
  969. iop_adma_issue_pending(dma_chan);
  970. msleep(8);
  971. if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
  972. DMA_SUCCESS) {
  973. dev_printk(KERN_ERR, dma_chan->device->dev,
  974. "Self-test xor timed out, disabling\n");
  975. err = -ENODEV;
  976. goto free_resources;
  977. }
  978. iop_chan = to_iop_adma_chan(dma_chan);
  979. dma_sync_single_for_cpu(&iop_chan->device->pdev->dev, dest_dma,
  980. PAGE_SIZE, DMA_FROM_DEVICE);
  981. for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
  982. u32 *ptr = page_address(dest);
  983. if (ptr[i] != cmp_word) {
  984. dev_printk(KERN_ERR, dma_chan->device->dev,
  985. "Self-test xor failed compare, disabling\n");
  986. err = -ENODEV;
  987. goto free_resources;
  988. }
  989. }
  990. dma_sync_single_for_device(&iop_chan->device->pdev->dev, dest_dma,
  991. PAGE_SIZE, DMA_TO_DEVICE);
  992. /* skip zero sum if the capability is not present */
  993. if (!dma_has_cap(DMA_XOR_VAL, dma_chan->device->cap_mask))
  994. goto free_resources;
  995. /* zero sum the sources with the destintation page */
  996. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++)
  997. zero_sum_srcs[i] = xor_srcs[i];
  998. zero_sum_srcs[i] = dest;
  999. zero_sum_result = 1;
  1000. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 1; i++)
  1001. dma_srcs[i] = dma_map_page(dma_chan->device->dev,
  1002. zero_sum_srcs[i], 0, PAGE_SIZE,
  1003. DMA_TO_DEVICE);
  1004. tx = iop_adma_prep_dma_xor_val(dma_chan, dma_srcs,
  1005. IOP_ADMA_NUM_SRC_TEST + 1, PAGE_SIZE,
  1006. &zero_sum_result,
  1007. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  1008. cookie = iop_adma_tx_submit(tx);
  1009. iop_adma_issue_pending(dma_chan);
  1010. msleep(8);
  1011. if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
  1012. dev_printk(KERN_ERR, dma_chan->device->dev,
  1013. "Self-test zero sum timed out, disabling\n");
  1014. err = -ENODEV;
  1015. goto free_resources;
  1016. }
  1017. if (zero_sum_result != 0) {
  1018. dev_printk(KERN_ERR, dma_chan->device->dev,
  1019. "Self-test zero sum failed compare, disabling\n");
  1020. err = -ENODEV;
  1021. goto free_resources;
  1022. }
  1023. /* test memset */
  1024. dma_addr = dma_map_page(dma_chan->device->dev, dest, 0,
  1025. PAGE_SIZE, DMA_FROM_DEVICE);
  1026. tx = iop_adma_prep_dma_memset(dma_chan, dma_addr, 0, PAGE_SIZE,
  1027. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  1028. cookie = iop_adma_tx_submit(tx);
  1029. iop_adma_issue_pending(dma_chan);
  1030. msleep(8);
  1031. if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
  1032. dev_printk(KERN_ERR, dma_chan->device->dev,
  1033. "Self-test memset timed out, disabling\n");
  1034. err = -ENODEV;
  1035. goto free_resources;
  1036. }
  1037. for (i = 0; i < PAGE_SIZE/sizeof(u32); i++) {
  1038. u32 *ptr = page_address(dest);
  1039. if (ptr[i]) {
  1040. dev_printk(KERN_ERR, dma_chan->device->dev,
  1041. "Self-test memset failed compare, disabling\n");
  1042. err = -ENODEV;
  1043. goto free_resources;
  1044. }
  1045. }
  1046. /* test for non-zero parity sum */
  1047. zero_sum_result = 0;
  1048. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 1; i++)
  1049. dma_srcs[i] = dma_map_page(dma_chan->device->dev,
  1050. zero_sum_srcs[i], 0, PAGE_SIZE,
  1051. DMA_TO_DEVICE);
  1052. tx = iop_adma_prep_dma_xor_val(dma_chan, dma_srcs,
  1053. IOP_ADMA_NUM_SRC_TEST + 1, PAGE_SIZE,
  1054. &zero_sum_result,
  1055. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  1056. cookie = iop_adma_tx_submit(tx);
  1057. iop_adma_issue_pending(dma_chan);
  1058. msleep(8);
  1059. if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
  1060. dev_printk(KERN_ERR, dma_chan->device->dev,
  1061. "Self-test non-zero sum timed out, disabling\n");
  1062. err = -ENODEV;
  1063. goto free_resources;
  1064. }
  1065. if (zero_sum_result != 1) {
  1066. dev_printk(KERN_ERR, dma_chan->device->dev,
  1067. "Self-test non-zero sum failed compare, disabling\n");
  1068. err = -ENODEV;
  1069. goto free_resources;
  1070. }
  1071. free_resources:
  1072. iop_adma_free_chan_resources(dma_chan);
  1073. out:
  1074. src_idx = IOP_ADMA_NUM_SRC_TEST;
  1075. while (src_idx--)
  1076. __free_page(xor_srcs[src_idx]);
  1077. __free_page(dest);
  1078. return err;
  1079. }
  1080. #ifdef CONFIG_MD_RAID6_PQ
  1081. static int __devinit
  1082. iop_adma_pq_zero_sum_self_test(struct iop_adma_device *device)
  1083. {
  1084. /* combined sources, software pq results, and extra hw pq results */
  1085. struct page *pq[IOP_ADMA_NUM_SRC_TEST+2+2];
  1086. /* ptr to the extra hw pq buffers defined above */
  1087. struct page **pq_hw = &pq[IOP_ADMA_NUM_SRC_TEST+2];
  1088. /* address conversion buffers (dma_map / page_address) */
  1089. void *pq_sw[IOP_ADMA_NUM_SRC_TEST+2];
  1090. dma_addr_t pq_src[IOP_ADMA_NUM_SRC_TEST];
  1091. dma_addr_t pq_dest[2];
  1092. int i;
  1093. struct dma_async_tx_descriptor *tx;
  1094. struct dma_chan *dma_chan;
  1095. dma_cookie_t cookie;
  1096. u32 zero_sum_result;
  1097. int err = 0;
  1098. struct device *dev;
  1099. dev_dbg(device->common.dev, "%s\n", __func__);
  1100. for (i = 0; i < ARRAY_SIZE(pq); i++) {
  1101. pq[i] = alloc_page(GFP_KERNEL);
  1102. if (!pq[i]) {
  1103. while (i--)
  1104. __free_page(pq[i]);
  1105. return -ENOMEM;
  1106. }
  1107. }
  1108. /* Fill in src buffers */
  1109. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++) {
  1110. pq_sw[i] = page_address(pq[i]);
  1111. memset(pq_sw[i], 0x11111111 * (1<<i), PAGE_SIZE);
  1112. }
  1113. pq_sw[i] = page_address(pq[i]);
  1114. pq_sw[i+1] = page_address(pq[i+1]);
  1115. dma_chan = container_of(device->common.channels.next,
  1116. struct dma_chan,
  1117. device_node);
  1118. if (iop_adma_alloc_chan_resources(dma_chan) < 1) {
  1119. err = -ENODEV;
  1120. goto out;
  1121. }
  1122. dev = dma_chan->device->dev;
  1123. /* initialize the dests */
  1124. memset(page_address(pq_hw[0]), 0 , PAGE_SIZE);
  1125. memset(page_address(pq_hw[1]), 0 , PAGE_SIZE);
  1126. /* test pq */
  1127. pq_dest[0] = dma_map_page(dev, pq_hw[0], 0, PAGE_SIZE, DMA_FROM_DEVICE);
  1128. pq_dest[1] = dma_map_page(dev, pq_hw[1], 0, PAGE_SIZE, DMA_FROM_DEVICE);
  1129. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++)
  1130. pq_src[i] = dma_map_page(dev, pq[i], 0, PAGE_SIZE,
  1131. DMA_TO_DEVICE);
  1132. tx = iop_adma_prep_dma_pq(dma_chan, pq_dest, pq_src,
  1133. IOP_ADMA_NUM_SRC_TEST, (u8 *)raid6_gfexp,
  1134. PAGE_SIZE,
  1135. DMA_PREP_INTERRUPT |
  1136. DMA_CTRL_ACK);
  1137. cookie = iop_adma_tx_submit(tx);
  1138. iop_adma_issue_pending(dma_chan);
  1139. msleep(8);
  1140. if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
  1141. DMA_SUCCESS) {
  1142. dev_err(dev, "Self-test pq timed out, disabling\n");
  1143. err = -ENODEV;
  1144. goto free_resources;
  1145. }
  1146. raid6_call.gen_syndrome(IOP_ADMA_NUM_SRC_TEST+2, PAGE_SIZE, pq_sw);
  1147. if (memcmp(pq_sw[IOP_ADMA_NUM_SRC_TEST],
  1148. page_address(pq_hw[0]), PAGE_SIZE) != 0) {
  1149. dev_err(dev, "Self-test p failed compare, disabling\n");
  1150. err = -ENODEV;
  1151. goto free_resources;
  1152. }
  1153. if (memcmp(pq_sw[IOP_ADMA_NUM_SRC_TEST+1],
  1154. page_address(pq_hw[1]), PAGE_SIZE) != 0) {
  1155. dev_err(dev, "Self-test q failed compare, disabling\n");
  1156. err = -ENODEV;
  1157. goto free_resources;
  1158. }
  1159. /* test correct zero sum using the software generated pq values */
  1160. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 2; i++)
  1161. pq_src[i] = dma_map_page(dev, pq[i], 0, PAGE_SIZE,
  1162. DMA_TO_DEVICE);
  1163. zero_sum_result = ~0;
  1164. tx = iop_adma_prep_dma_pq_val(dma_chan, &pq_src[IOP_ADMA_NUM_SRC_TEST],
  1165. pq_src, IOP_ADMA_NUM_SRC_TEST,
  1166. raid6_gfexp, PAGE_SIZE, &zero_sum_result,
  1167. DMA_PREP_INTERRUPT|DMA_CTRL_ACK);
  1168. cookie = iop_adma_tx_submit(tx);
  1169. iop_adma_issue_pending(dma_chan);
  1170. msleep(8);
  1171. if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
  1172. DMA_SUCCESS) {
  1173. dev_err(dev, "Self-test pq-zero-sum timed out, disabling\n");
  1174. err = -ENODEV;
  1175. goto free_resources;
  1176. }
  1177. if (zero_sum_result != 0) {
  1178. dev_err(dev, "Self-test pq-zero-sum failed to validate: %x\n",
  1179. zero_sum_result);
  1180. err = -ENODEV;
  1181. goto free_resources;
  1182. }
  1183. /* test incorrect zero sum */
  1184. i = IOP_ADMA_NUM_SRC_TEST;
  1185. memset(pq_sw[i] + 100, 0, 100);
  1186. memset(pq_sw[i+1] + 200, 0, 200);
  1187. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 2; i++)
  1188. pq_src[i] = dma_map_page(dev, pq[i], 0, PAGE_SIZE,
  1189. DMA_TO_DEVICE);
  1190. zero_sum_result = 0;
  1191. tx = iop_adma_prep_dma_pq_val(dma_chan, &pq_src[IOP_ADMA_NUM_SRC_TEST],
  1192. pq_src, IOP_ADMA_NUM_SRC_TEST,
  1193. raid6_gfexp, PAGE_SIZE, &zero_sum_result,
  1194. DMA_PREP_INTERRUPT|DMA_CTRL_ACK);
  1195. cookie = iop_adma_tx_submit(tx);
  1196. iop_adma_issue_pending(dma_chan);
  1197. msleep(8);
  1198. if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
  1199. DMA_SUCCESS) {
  1200. dev_err(dev, "Self-test !pq-zero-sum timed out, disabling\n");
  1201. err = -ENODEV;
  1202. goto free_resources;
  1203. }
  1204. if (zero_sum_result != (SUM_CHECK_P_RESULT | SUM_CHECK_Q_RESULT)) {
  1205. dev_err(dev, "Self-test !pq-zero-sum failed to validate: %x\n",
  1206. zero_sum_result);
  1207. err = -ENODEV;
  1208. goto free_resources;
  1209. }
  1210. free_resources:
  1211. iop_adma_free_chan_resources(dma_chan);
  1212. out:
  1213. i = ARRAY_SIZE(pq);
  1214. while (i--)
  1215. __free_page(pq[i]);
  1216. return err;
  1217. }
  1218. #endif
  1219. static int __devexit iop_adma_remove(struct platform_device *dev)
  1220. {
  1221. struct iop_adma_device *device = platform_get_drvdata(dev);
  1222. struct dma_chan *chan, *_chan;
  1223. struct iop_adma_chan *iop_chan;
  1224. struct iop_adma_platform_data *plat_data = dev->dev.platform_data;
  1225. dma_async_device_unregister(&device->common);
  1226. dma_free_coherent(&dev->dev, plat_data->pool_size,
  1227. device->dma_desc_pool_virt, device->dma_desc_pool);
  1228. list_for_each_entry_safe(chan, _chan, &device->common.channels,
  1229. device_node) {
  1230. iop_chan = to_iop_adma_chan(chan);
  1231. list_del(&chan->device_node);
  1232. kfree(iop_chan);
  1233. }
  1234. kfree(device);
  1235. return 0;
  1236. }
  1237. static int __devinit iop_adma_probe(struct platform_device *pdev)
  1238. {
  1239. struct resource *res;
  1240. int ret = 0, i;
  1241. struct iop_adma_device *adev;
  1242. struct iop_adma_chan *iop_chan;
  1243. struct dma_device *dma_dev;
  1244. struct iop_adma_platform_data *plat_data = pdev->dev.platform_data;
  1245. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1246. if (!res)
  1247. return -ENODEV;
  1248. if (!devm_request_mem_region(&pdev->dev, res->start,
  1249. resource_size(res), pdev->name))
  1250. return -EBUSY;
  1251. adev = kzalloc(sizeof(*adev), GFP_KERNEL);
  1252. if (!adev)
  1253. return -ENOMEM;
  1254. dma_dev = &adev->common;
  1255. /* allocate coherent memory for hardware descriptors
  1256. * note: writecombine gives slightly better performance, but
  1257. * requires that we explicitly flush the writes
  1258. */
  1259. if ((adev->dma_desc_pool_virt = dma_alloc_writecombine(&pdev->dev,
  1260. plat_data->pool_size,
  1261. &adev->dma_desc_pool,
  1262. GFP_KERNEL)) == NULL) {
  1263. ret = -ENOMEM;
  1264. goto err_free_adev;
  1265. }
  1266. dev_dbg(&pdev->dev, "%s: allocted descriptor pool virt %p phys %p\n",
  1267. __func__, adev->dma_desc_pool_virt,
  1268. (void *) adev->dma_desc_pool);
  1269. adev->id = plat_data->hw_id;
  1270. /* discover transaction capabilites from the platform data */
  1271. dma_dev->cap_mask = plat_data->cap_mask;
  1272. adev->pdev = pdev;
  1273. platform_set_drvdata(pdev, adev);
  1274. INIT_LIST_HEAD(&dma_dev->channels);
  1275. /* set base routines */
  1276. dma_dev->device_alloc_chan_resources = iop_adma_alloc_chan_resources;
  1277. dma_dev->device_free_chan_resources = iop_adma_free_chan_resources;
  1278. dma_dev->device_is_tx_complete = iop_adma_is_complete;
  1279. dma_dev->device_issue_pending = iop_adma_issue_pending;
  1280. dma_dev->dev = &pdev->dev;
  1281. /* set prep routines based on capability */
  1282. if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
  1283. dma_dev->device_prep_dma_memcpy = iop_adma_prep_dma_memcpy;
  1284. if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask))
  1285. dma_dev->device_prep_dma_memset = iop_adma_prep_dma_memset;
  1286. if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
  1287. dma_dev->max_xor = iop_adma_get_max_xor();
  1288. dma_dev->device_prep_dma_xor = iop_adma_prep_dma_xor;
  1289. }
  1290. if (dma_has_cap(DMA_XOR_VAL, dma_dev->cap_mask))
  1291. dma_dev->device_prep_dma_xor_val =
  1292. iop_adma_prep_dma_xor_val;
  1293. if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
  1294. dma_set_maxpq(dma_dev, iop_adma_get_max_pq(), 0);
  1295. dma_dev->device_prep_dma_pq = iop_adma_prep_dma_pq;
  1296. }
  1297. if (dma_has_cap(DMA_PQ_VAL, dma_dev->cap_mask))
  1298. dma_dev->device_prep_dma_pq_val =
  1299. iop_adma_prep_dma_pq_val;
  1300. if (dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask))
  1301. dma_dev->device_prep_dma_interrupt =
  1302. iop_adma_prep_dma_interrupt;
  1303. iop_chan = kzalloc(sizeof(*iop_chan), GFP_KERNEL);
  1304. if (!iop_chan) {
  1305. ret = -ENOMEM;
  1306. goto err_free_dma;
  1307. }
  1308. iop_chan->device = adev;
  1309. iop_chan->mmr_base = devm_ioremap(&pdev->dev, res->start,
  1310. resource_size(res));
  1311. if (!iop_chan->mmr_base) {
  1312. ret = -ENOMEM;
  1313. goto err_free_iop_chan;
  1314. }
  1315. tasklet_init(&iop_chan->irq_tasklet, iop_adma_tasklet, (unsigned long)
  1316. iop_chan);
  1317. /* clear errors before enabling interrupts */
  1318. iop_adma_device_clear_err_status(iop_chan);
  1319. for (i = 0; i < 3; i++) {
  1320. irq_handler_t handler[] = { iop_adma_eot_handler,
  1321. iop_adma_eoc_handler,
  1322. iop_adma_err_handler };
  1323. int irq = platform_get_irq(pdev, i);
  1324. if (irq < 0) {
  1325. ret = -ENXIO;
  1326. goto err_free_iop_chan;
  1327. } else {
  1328. ret = devm_request_irq(&pdev->dev, irq,
  1329. handler[i], 0, pdev->name, iop_chan);
  1330. if (ret)
  1331. goto err_free_iop_chan;
  1332. }
  1333. }
  1334. spin_lock_init(&iop_chan->lock);
  1335. INIT_LIST_HEAD(&iop_chan->chain);
  1336. INIT_LIST_HEAD(&iop_chan->all_slots);
  1337. iop_chan->common.device = dma_dev;
  1338. list_add_tail(&iop_chan->common.device_node, &dma_dev->channels);
  1339. if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
  1340. ret = iop_adma_memcpy_self_test(adev);
  1341. dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
  1342. if (ret)
  1343. goto err_free_iop_chan;
  1344. }
  1345. if (dma_has_cap(DMA_XOR, dma_dev->cap_mask) ||
  1346. dma_has_cap(DMA_MEMSET, dma_dev->cap_mask)) {
  1347. ret = iop_adma_xor_val_self_test(adev);
  1348. dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
  1349. if (ret)
  1350. goto err_free_iop_chan;
  1351. }
  1352. if (dma_has_cap(DMA_PQ, dma_dev->cap_mask) &&
  1353. dma_has_cap(DMA_PQ_VAL, dma_dev->cap_mask)) {
  1354. #ifdef CONFIG_MD_RAID6_PQ
  1355. ret = iop_adma_pq_zero_sum_self_test(adev);
  1356. dev_dbg(&pdev->dev, "pq self test returned %d\n", ret);
  1357. #else
  1358. /* can not test raid6, so do not publish capability */
  1359. dma_cap_clear(DMA_PQ, dma_dev->cap_mask);
  1360. dma_cap_clear(DMA_PQ_VAL, dma_dev->cap_mask);
  1361. ret = 0;
  1362. #endif
  1363. if (ret)
  1364. goto err_free_iop_chan;
  1365. }
  1366. dev_printk(KERN_INFO, &pdev->dev, "Intel(R) IOP: "
  1367. "( %s%s%s%s%s%s%s)\n",
  1368. dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "pq " : "",
  1369. dma_has_cap(DMA_PQ_VAL, dma_dev->cap_mask) ? "pq_val " : "",
  1370. dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
  1371. dma_has_cap(DMA_XOR_VAL, dma_dev->cap_mask) ? "xor_val " : "",
  1372. dma_has_cap(DMA_MEMSET, dma_dev->cap_mask) ? "fill " : "",
  1373. dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
  1374. dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
  1375. dma_async_device_register(dma_dev);
  1376. goto out;
  1377. err_free_iop_chan:
  1378. kfree(iop_chan);
  1379. err_free_dma:
  1380. dma_free_coherent(&adev->pdev->dev, plat_data->pool_size,
  1381. adev->dma_desc_pool_virt, adev->dma_desc_pool);
  1382. err_free_adev:
  1383. kfree(adev);
  1384. out:
  1385. return ret;
  1386. }
  1387. static void iop_chan_start_null_memcpy(struct iop_adma_chan *iop_chan)
  1388. {
  1389. struct iop_adma_desc_slot *sw_desc, *grp_start;
  1390. dma_cookie_t cookie;
  1391. int slot_cnt, slots_per_op;
  1392. dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
  1393. spin_lock_bh(&iop_chan->lock);
  1394. slot_cnt = iop_chan_memcpy_slot_count(0, &slots_per_op);
  1395. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  1396. if (sw_desc) {
  1397. grp_start = sw_desc->group_head;
  1398. list_splice_init(&sw_desc->tx_list, &iop_chan->chain);
  1399. async_tx_ack(&sw_desc->async_tx);
  1400. iop_desc_init_memcpy(grp_start, 0);
  1401. iop_desc_set_byte_count(grp_start, iop_chan, 0);
  1402. iop_desc_set_dest_addr(grp_start, iop_chan, 0);
  1403. iop_desc_set_memcpy_src_addr(grp_start, 0);
  1404. cookie = iop_chan->common.cookie;
  1405. cookie++;
  1406. if (cookie <= 1)
  1407. cookie = 2;
  1408. /* initialize the completed cookie to be less than
  1409. * the most recently used cookie
  1410. */
  1411. iop_chan->completed_cookie = cookie - 1;
  1412. iop_chan->common.cookie = sw_desc->async_tx.cookie = cookie;
  1413. /* channel should not be busy */
  1414. BUG_ON(iop_chan_is_busy(iop_chan));
  1415. /* clear any prior error-status bits */
  1416. iop_adma_device_clear_err_status(iop_chan);
  1417. /* disable operation */
  1418. iop_chan_disable(iop_chan);
  1419. /* set the descriptor address */
  1420. iop_chan_set_next_descriptor(iop_chan, sw_desc->async_tx.phys);
  1421. /* 1/ don't add pre-chained descriptors
  1422. * 2/ dummy read to flush next_desc write
  1423. */
  1424. BUG_ON(iop_desc_get_next_desc(sw_desc));
  1425. /* run the descriptor */
  1426. iop_chan_enable(iop_chan);
  1427. } else
  1428. dev_printk(KERN_ERR, iop_chan->device->common.dev,
  1429. "failed to allocate null descriptor\n");
  1430. spin_unlock_bh(&iop_chan->lock);
  1431. }
  1432. static void iop_chan_start_null_xor(struct iop_adma_chan *iop_chan)
  1433. {
  1434. struct iop_adma_desc_slot *sw_desc, *grp_start;
  1435. dma_cookie_t cookie;
  1436. int slot_cnt, slots_per_op;
  1437. dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
  1438. spin_lock_bh(&iop_chan->lock);
  1439. slot_cnt = iop_chan_xor_slot_count(0, 2, &slots_per_op);
  1440. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  1441. if (sw_desc) {
  1442. grp_start = sw_desc->group_head;
  1443. list_splice_init(&sw_desc->tx_list, &iop_chan->chain);
  1444. async_tx_ack(&sw_desc->async_tx);
  1445. iop_desc_init_null_xor(grp_start, 2, 0);
  1446. iop_desc_set_byte_count(grp_start, iop_chan, 0);
  1447. iop_desc_set_dest_addr(grp_start, iop_chan, 0);
  1448. iop_desc_set_xor_src_addr(grp_start, 0, 0);
  1449. iop_desc_set_xor_src_addr(grp_start, 1, 0);
  1450. cookie = iop_chan->common.cookie;
  1451. cookie++;
  1452. if (cookie <= 1)
  1453. cookie = 2;
  1454. /* initialize the completed cookie to be less than
  1455. * the most recently used cookie
  1456. */
  1457. iop_chan->completed_cookie = cookie - 1;
  1458. iop_chan->common.cookie = sw_desc->async_tx.cookie = cookie;
  1459. /* channel should not be busy */
  1460. BUG_ON(iop_chan_is_busy(iop_chan));
  1461. /* clear any prior error-status bits */
  1462. iop_adma_device_clear_err_status(iop_chan);
  1463. /* disable operation */
  1464. iop_chan_disable(iop_chan);
  1465. /* set the descriptor address */
  1466. iop_chan_set_next_descriptor(iop_chan, sw_desc->async_tx.phys);
  1467. /* 1/ don't add pre-chained descriptors
  1468. * 2/ dummy read to flush next_desc write
  1469. */
  1470. BUG_ON(iop_desc_get_next_desc(sw_desc));
  1471. /* run the descriptor */
  1472. iop_chan_enable(iop_chan);
  1473. } else
  1474. dev_printk(KERN_ERR, iop_chan->device->common.dev,
  1475. "failed to allocate null descriptor\n");
  1476. spin_unlock_bh(&iop_chan->lock);
  1477. }
  1478. MODULE_ALIAS("platform:iop-adma");
  1479. static struct platform_driver iop_adma_driver = {
  1480. .probe = iop_adma_probe,
  1481. .remove = __devexit_p(iop_adma_remove),
  1482. .driver = {
  1483. .owner = THIS_MODULE,
  1484. .name = "iop-adma",
  1485. },
  1486. };
  1487. static int __init iop_adma_init (void)
  1488. {
  1489. return platform_driver_register(&iop_adma_driver);
  1490. }
  1491. static void __exit iop_adma_exit (void)
  1492. {
  1493. platform_driver_unregister(&iop_adma_driver);
  1494. return;
  1495. }
  1496. module_exit(iop_adma_exit);
  1497. module_init(iop_adma_init);
  1498. MODULE_AUTHOR("Intel Corporation");
  1499. MODULE_DESCRIPTION("IOP ADMA Engine Driver");
  1500. MODULE_LICENSE("GPL");