dmaengine.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054
  1. /*
  2. * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the Free
  6. * Software Foundation; either version 2 of the License, or (at your option)
  7. * any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc., 59
  16. * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called COPYING.
  20. */
  21. /*
  22. * This code implements the DMA subsystem. It provides a HW-neutral interface
  23. * for other kernel code to use asynchronous memory copy capabilities,
  24. * if present, and allows different HW DMA drivers to register as providing
  25. * this capability.
  26. *
  27. * Due to the fact we are accelerating what is already a relatively fast
  28. * operation, the code goes to great lengths to avoid additional overhead,
  29. * such as locking.
  30. *
  31. * LOCKING:
  32. *
  33. * The subsystem keeps a global list of dma_device structs it is protected by a
  34. * mutex, dma_list_mutex.
  35. *
  36. * A subsystem can get access to a channel by calling dmaengine_get() followed
  37. * by dma_find_channel(), or if it has need for an exclusive channel it can call
  38. * dma_request_channel(). Once a channel is allocated a reference is taken
  39. * against its corresponding driver to disable removal.
  40. *
  41. * Each device has a channels list, which runs unlocked but is never modified
  42. * once the device is registered, it's just setup by the driver.
  43. *
  44. * See Documentation/dmaengine.txt for more details
  45. */
  46. #include <linux/init.h>
  47. #include <linux/module.h>
  48. #include <linux/mm.h>
  49. #include <linux/device.h>
  50. #include <linux/dmaengine.h>
  51. #include <linux/hardirq.h>
  52. #include <linux/spinlock.h>
  53. #include <linux/percpu.h>
  54. #include <linux/rcupdate.h>
  55. #include <linux/mutex.h>
  56. #include <linux/jiffies.h>
  57. #include <linux/rculist.h>
  58. #include <linux/idr.h>
  59. #include <linux/slab.h>
  60. static DEFINE_MUTEX(dma_list_mutex);
  61. static LIST_HEAD(dma_device_list);
  62. static long dmaengine_ref_count;
  63. static struct idr dma_idr;
  64. /* --- sysfs implementation --- */
  65. /**
  66. * dev_to_dma_chan - convert a device pointer to the its sysfs container object
  67. * @dev - device node
  68. *
  69. * Must be called under dma_list_mutex
  70. */
  71. static struct dma_chan *dev_to_dma_chan(struct device *dev)
  72. {
  73. struct dma_chan_dev *chan_dev;
  74. chan_dev = container_of(dev, typeof(*chan_dev), device);
  75. return chan_dev->chan;
  76. }
  77. static ssize_t show_memcpy_count(struct device *dev, struct device_attribute *attr, char *buf)
  78. {
  79. struct dma_chan *chan;
  80. unsigned long count = 0;
  81. int i;
  82. int err;
  83. mutex_lock(&dma_list_mutex);
  84. chan = dev_to_dma_chan(dev);
  85. if (chan) {
  86. for_each_possible_cpu(i)
  87. count += per_cpu_ptr(chan->local, i)->memcpy_count;
  88. err = sprintf(buf, "%lu\n", count);
  89. } else
  90. err = -ENODEV;
  91. mutex_unlock(&dma_list_mutex);
  92. return err;
  93. }
  94. static ssize_t show_bytes_transferred(struct device *dev, struct device_attribute *attr,
  95. char *buf)
  96. {
  97. struct dma_chan *chan;
  98. unsigned long count = 0;
  99. int i;
  100. int err;
  101. mutex_lock(&dma_list_mutex);
  102. chan = dev_to_dma_chan(dev);
  103. if (chan) {
  104. for_each_possible_cpu(i)
  105. count += per_cpu_ptr(chan->local, i)->bytes_transferred;
  106. err = sprintf(buf, "%lu\n", count);
  107. } else
  108. err = -ENODEV;
  109. mutex_unlock(&dma_list_mutex);
  110. return err;
  111. }
  112. static ssize_t show_in_use(struct device *dev, struct device_attribute *attr, char *buf)
  113. {
  114. struct dma_chan *chan;
  115. int err;
  116. mutex_lock(&dma_list_mutex);
  117. chan = dev_to_dma_chan(dev);
  118. if (chan)
  119. err = sprintf(buf, "%d\n", chan->client_count);
  120. else
  121. err = -ENODEV;
  122. mutex_unlock(&dma_list_mutex);
  123. return err;
  124. }
  125. static struct device_attribute dma_attrs[] = {
  126. __ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL),
  127. __ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL),
  128. __ATTR(in_use, S_IRUGO, show_in_use, NULL),
  129. __ATTR_NULL
  130. };
  131. static void chan_dev_release(struct device *dev)
  132. {
  133. struct dma_chan_dev *chan_dev;
  134. chan_dev = container_of(dev, typeof(*chan_dev), device);
  135. if (atomic_dec_and_test(chan_dev->idr_ref)) {
  136. mutex_lock(&dma_list_mutex);
  137. idr_remove(&dma_idr, chan_dev->dev_id);
  138. mutex_unlock(&dma_list_mutex);
  139. kfree(chan_dev->idr_ref);
  140. }
  141. kfree(chan_dev);
  142. }
  143. static struct class dma_devclass = {
  144. .name = "dma",
  145. .dev_attrs = dma_attrs,
  146. .dev_release = chan_dev_release,
  147. };
  148. /* --- client and device registration --- */
  149. #define dma_device_satisfies_mask(device, mask) \
  150. __dma_device_satisfies_mask((device), &(mask))
  151. static int
  152. __dma_device_satisfies_mask(struct dma_device *device, dma_cap_mask_t *want)
  153. {
  154. dma_cap_mask_t has;
  155. bitmap_and(has.bits, want->bits, device->cap_mask.bits,
  156. DMA_TX_TYPE_END);
  157. return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
  158. }
  159. static struct module *dma_chan_to_owner(struct dma_chan *chan)
  160. {
  161. return chan->device->dev->driver->owner;
  162. }
  163. /**
  164. * balance_ref_count - catch up the channel reference count
  165. * @chan - channel to balance ->client_count versus dmaengine_ref_count
  166. *
  167. * balance_ref_count must be called under dma_list_mutex
  168. */
  169. static void balance_ref_count(struct dma_chan *chan)
  170. {
  171. struct module *owner = dma_chan_to_owner(chan);
  172. while (chan->client_count < dmaengine_ref_count) {
  173. __module_get(owner);
  174. chan->client_count++;
  175. }
  176. }
  177. /**
  178. * dma_chan_get - try to grab a dma channel's parent driver module
  179. * @chan - channel to grab
  180. *
  181. * Must be called under dma_list_mutex
  182. */
  183. static int dma_chan_get(struct dma_chan *chan)
  184. {
  185. int err = -ENODEV;
  186. struct module *owner = dma_chan_to_owner(chan);
  187. if (chan->client_count) {
  188. __module_get(owner);
  189. err = 0;
  190. } else if (try_module_get(owner))
  191. err = 0;
  192. if (err == 0)
  193. chan->client_count++;
  194. /* allocate upon first client reference */
  195. if (chan->client_count == 1 && err == 0) {
  196. int desc_cnt = chan->device->device_alloc_chan_resources(chan);
  197. if (desc_cnt < 0) {
  198. err = desc_cnt;
  199. chan->client_count = 0;
  200. module_put(owner);
  201. } else if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
  202. balance_ref_count(chan);
  203. }
  204. return err;
  205. }
  206. /**
  207. * dma_chan_put - drop a reference to a dma channel's parent driver module
  208. * @chan - channel to release
  209. *
  210. * Must be called under dma_list_mutex
  211. */
  212. static void dma_chan_put(struct dma_chan *chan)
  213. {
  214. if (!chan->client_count)
  215. return; /* this channel failed alloc_chan_resources */
  216. chan->client_count--;
  217. module_put(dma_chan_to_owner(chan));
  218. if (chan->client_count == 0)
  219. chan->device->device_free_chan_resources(chan);
  220. }
  221. enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
  222. {
  223. enum dma_status status;
  224. unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
  225. dma_async_issue_pending(chan);
  226. do {
  227. status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
  228. if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
  229. printk(KERN_ERR "dma_sync_wait_timeout!\n");
  230. return DMA_ERROR;
  231. }
  232. } while (status == DMA_IN_PROGRESS);
  233. return status;
  234. }
  235. EXPORT_SYMBOL(dma_sync_wait);
  236. /**
  237. * dma_cap_mask_all - enable iteration over all operation types
  238. */
  239. static dma_cap_mask_t dma_cap_mask_all;
  240. /**
  241. * dma_chan_tbl_ent - tracks channel allocations per core/operation
  242. * @chan - associated channel for this entry
  243. */
  244. struct dma_chan_tbl_ent {
  245. struct dma_chan *chan;
  246. };
  247. /**
  248. * channel_table - percpu lookup table for memory-to-memory offload providers
  249. */
  250. static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
  251. static int __init dma_channel_table_init(void)
  252. {
  253. enum dma_transaction_type cap;
  254. int err = 0;
  255. bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
  256. /* 'interrupt', 'private', and 'slave' are channel capabilities,
  257. * but are not associated with an operation so they do not need
  258. * an entry in the channel_table
  259. */
  260. clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
  261. clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
  262. clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
  263. for_each_dma_cap_mask(cap, dma_cap_mask_all) {
  264. channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
  265. if (!channel_table[cap]) {
  266. err = -ENOMEM;
  267. break;
  268. }
  269. }
  270. if (err) {
  271. pr_err("dmaengine: initialization failure\n");
  272. for_each_dma_cap_mask(cap, dma_cap_mask_all)
  273. if (channel_table[cap])
  274. free_percpu(channel_table[cap]);
  275. }
  276. return err;
  277. }
  278. arch_initcall(dma_channel_table_init);
  279. /**
  280. * dma_find_channel - find a channel to carry out the operation
  281. * @tx_type: transaction type
  282. */
  283. struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
  284. {
  285. return this_cpu_read(channel_table[tx_type]->chan);
  286. }
  287. EXPORT_SYMBOL(dma_find_channel);
  288. /**
  289. * dma_issue_pending_all - flush all pending operations across all channels
  290. */
  291. void dma_issue_pending_all(void)
  292. {
  293. struct dma_device *device;
  294. struct dma_chan *chan;
  295. rcu_read_lock();
  296. list_for_each_entry_rcu(device, &dma_device_list, global_node) {
  297. if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
  298. continue;
  299. list_for_each_entry(chan, &device->channels, device_node)
  300. if (chan->client_count)
  301. device->device_issue_pending(chan);
  302. }
  303. rcu_read_unlock();
  304. }
  305. EXPORT_SYMBOL(dma_issue_pending_all);
  306. /**
  307. * nth_chan - returns the nth channel of the given capability
  308. * @cap: capability to match
  309. * @n: nth channel desired
  310. *
  311. * Defaults to returning the channel with the desired capability and the
  312. * lowest reference count when 'n' cannot be satisfied. Must be called
  313. * under dma_list_mutex.
  314. */
  315. static struct dma_chan *nth_chan(enum dma_transaction_type cap, int n)
  316. {
  317. struct dma_device *device;
  318. struct dma_chan *chan;
  319. struct dma_chan *ret = NULL;
  320. struct dma_chan *min = NULL;
  321. list_for_each_entry(device, &dma_device_list, global_node) {
  322. if (!dma_has_cap(cap, device->cap_mask) ||
  323. dma_has_cap(DMA_PRIVATE, device->cap_mask))
  324. continue;
  325. list_for_each_entry(chan, &device->channels, device_node) {
  326. if (!chan->client_count)
  327. continue;
  328. if (!min)
  329. min = chan;
  330. else if (chan->table_count < min->table_count)
  331. min = chan;
  332. if (n-- == 0) {
  333. ret = chan;
  334. break; /* done */
  335. }
  336. }
  337. if (ret)
  338. break; /* done */
  339. }
  340. if (!ret)
  341. ret = min;
  342. if (ret)
  343. ret->table_count++;
  344. return ret;
  345. }
  346. /**
  347. * dma_channel_rebalance - redistribute the available channels
  348. *
  349. * Optimize for cpu isolation (each cpu gets a dedicated channel for an
  350. * operation type) in the SMP case, and operation isolation (avoid
  351. * multi-tasking channels) in the non-SMP case. Must be called under
  352. * dma_list_mutex.
  353. */
  354. static void dma_channel_rebalance(void)
  355. {
  356. struct dma_chan *chan;
  357. struct dma_device *device;
  358. int cpu;
  359. int cap;
  360. int n;
  361. /* undo the last distribution */
  362. for_each_dma_cap_mask(cap, dma_cap_mask_all)
  363. for_each_possible_cpu(cpu)
  364. per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
  365. list_for_each_entry(device, &dma_device_list, global_node) {
  366. if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
  367. continue;
  368. list_for_each_entry(chan, &device->channels, device_node)
  369. chan->table_count = 0;
  370. }
  371. /* don't populate the channel_table if no clients are available */
  372. if (!dmaengine_ref_count)
  373. return;
  374. /* redistribute available channels */
  375. n = 0;
  376. for_each_dma_cap_mask(cap, dma_cap_mask_all)
  377. for_each_online_cpu(cpu) {
  378. if (num_possible_cpus() > 1)
  379. chan = nth_chan(cap, n++);
  380. else
  381. chan = nth_chan(cap, -1);
  382. per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
  383. }
  384. }
  385. static struct dma_chan *private_candidate(dma_cap_mask_t *mask, struct dma_device *dev,
  386. dma_filter_fn fn, void *fn_param)
  387. {
  388. struct dma_chan *chan;
  389. if (!__dma_device_satisfies_mask(dev, mask)) {
  390. pr_debug("%s: wrong capabilities\n", __func__);
  391. return NULL;
  392. }
  393. /* devices with multiple channels need special handling as we need to
  394. * ensure that all channels are either private or public.
  395. */
  396. if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
  397. list_for_each_entry(chan, &dev->channels, device_node) {
  398. /* some channels are already publicly allocated */
  399. if (chan->client_count)
  400. return NULL;
  401. }
  402. list_for_each_entry(chan, &dev->channels, device_node) {
  403. if (chan->client_count) {
  404. pr_debug("%s: %s busy\n",
  405. __func__, dma_chan_name(chan));
  406. continue;
  407. }
  408. if (fn && !fn(chan, fn_param)) {
  409. pr_debug("%s: %s filter said false\n",
  410. __func__, dma_chan_name(chan));
  411. continue;
  412. }
  413. return chan;
  414. }
  415. return NULL;
  416. }
  417. /**
  418. * dma_request_channel - try to allocate an exclusive channel
  419. * @mask: capabilities that the channel must satisfy
  420. * @fn: optional callback to disposition available channels
  421. * @fn_param: opaque parameter to pass to dma_filter_fn
  422. */
  423. struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param)
  424. {
  425. struct dma_device *device, *_d;
  426. struct dma_chan *chan = NULL;
  427. int err;
  428. /* Find a channel */
  429. mutex_lock(&dma_list_mutex);
  430. list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
  431. chan = private_candidate(mask, device, fn, fn_param);
  432. if (chan) {
  433. /* Found a suitable channel, try to grab, prep, and
  434. * return it. We first set DMA_PRIVATE to disable
  435. * balance_ref_count as this channel will not be
  436. * published in the general-purpose allocator
  437. */
  438. dma_cap_set(DMA_PRIVATE, device->cap_mask);
  439. device->privatecnt++;
  440. err = dma_chan_get(chan);
  441. if (err == -ENODEV) {
  442. pr_debug("%s: %s module removed\n", __func__,
  443. dma_chan_name(chan));
  444. list_del_rcu(&device->global_node);
  445. } else if (err)
  446. pr_err("dmaengine: failed to get %s: (%d)\n",
  447. dma_chan_name(chan), err);
  448. else
  449. break;
  450. if (--device->privatecnt == 0)
  451. dma_cap_clear(DMA_PRIVATE, device->cap_mask);
  452. chan->private = NULL;
  453. chan = NULL;
  454. }
  455. }
  456. mutex_unlock(&dma_list_mutex);
  457. pr_debug("%s: %s (%s)\n", __func__, chan ? "success" : "fail",
  458. chan ? dma_chan_name(chan) : NULL);
  459. return chan;
  460. }
  461. EXPORT_SYMBOL_GPL(__dma_request_channel);
  462. void dma_release_channel(struct dma_chan *chan)
  463. {
  464. mutex_lock(&dma_list_mutex);
  465. WARN_ONCE(chan->client_count != 1,
  466. "chan reference count %d != 1\n", chan->client_count);
  467. dma_chan_put(chan);
  468. /* drop PRIVATE cap enabled by __dma_request_channel() */
  469. if (--chan->device->privatecnt == 0)
  470. dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
  471. chan->private = NULL;
  472. mutex_unlock(&dma_list_mutex);
  473. }
  474. EXPORT_SYMBOL_GPL(dma_release_channel);
  475. /**
  476. * dmaengine_get - register interest in dma_channels
  477. */
  478. void dmaengine_get(void)
  479. {
  480. struct dma_device *device, *_d;
  481. struct dma_chan *chan;
  482. int err;
  483. mutex_lock(&dma_list_mutex);
  484. dmaengine_ref_count++;
  485. /* try to grab channels */
  486. list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
  487. if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
  488. continue;
  489. list_for_each_entry(chan, &device->channels, device_node) {
  490. err = dma_chan_get(chan);
  491. if (err == -ENODEV) {
  492. /* module removed before we could use it */
  493. list_del_rcu(&device->global_node);
  494. break;
  495. } else if (err)
  496. pr_err("dmaengine: failed to get %s: (%d)\n",
  497. dma_chan_name(chan), err);
  498. }
  499. }
  500. /* if this is the first reference and there were channels
  501. * waiting we need to rebalance to get those channels
  502. * incorporated into the channel table
  503. */
  504. if (dmaengine_ref_count == 1)
  505. dma_channel_rebalance();
  506. mutex_unlock(&dma_list_mutex);
  507. }
  508. EXPORT_SYMBOL(dmaengine_get);
  509. /**
  510. * dmaengine_put - let dma drivers be removed when ref_count == 0
  511. */
  512. void dmaengine_put(void)
  513. {
  514. struct dma_device *device;
  515. struct dma_chan *chan;
  516. mutex_lock(&dma_list_mutex);
  517. dmaengine_ref_count--;
  518. BUG_ON(dmaengine_ref_count < 0);
  519. /* drop channel references */
  520. list_for_each_entry(device, &dma_device_list, global_node) {
  521. if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
  522. continue;
  523. list_for_each_entry(chan, &device->channels, device_node)
  524. dma_chan_put(chan);
  525. }
  526. mutex_unlock(&dma_list_mutex);
  527. }
  528. EXPORT_SYMBOL(dmaengine_put);
  529. static bool device_has_all_tx_types(struct dma_device *device)
  530. {
  531. /* A device that satisfies this test has channels that will never cause
  532. * an async_tx channel switch event as all possible operation types can
  533. * be handled.
  534. */
  535. #ifdef CONFIG_ASYNC_TX_DMA
  536. if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
  537. return false;
  538. #endif
  539. #if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE)
  540. if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
  541. return false;
  542. #endif
  543. #if defined(CONFIG_ASYNC_MEMSET) || defined(CONFIG_ASYNC_MEMSET_MODULE)
  544. if (!dma_has_cap(DMA_MEMSET, device->cap_mask))
  545. return false;
  546. #endif
  547. #if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
  548. if (!dma_has_cap(DMA_XOR, device->cap_mask))
  549. return false;
  550. #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
  551. if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
  552. return false;
  553. #endif
  554. #endif
  555. #if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE)
  556. if (!dma_has_cap(DMA_PQ, device->cap_mask))
  557. return false;
  558. #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
  559. if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
  560. return false;
  561. #endif
  562. #endif
  563. return true;
  564. }
  565. static int get_dma_id(struct dma_device *device)
  566. {
  567. int rc;
  568. idr_retry:
  569. if (!idr_pre_get(&dma_idr, GFP_KERNEL))
  570. return -ENOMEM;
  571. mutex_lock(&dma_list_mutex);
  572. rc = idr_get_new(&dma_idr, NULL, &device->dev_id);
  573. mutex_unlock(&dma_list_mutex);
  574. if (rc == -EAGAIN)
  575. goto idr_retry;
  576. else if (rc != 0)
  577. return rc;
  578. return 0;
  579. }
  580. /**
  581. * dma_async_device_register - registers DMA devices found
  582. * @device: &dma_device
  583. */
  584. int dma_async_device_register(struct dma_device *device)
  585. {
  586. int chancnt = 0, rc;
  587. struct dma_chan* chan;
  588. atomic_t *idr_ref;
  589. if (!device)
  590. return -ENODEV;
  591. /* validate device routines */
  592. BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
  593. !device->device_prep_dma_memcpy);
  594. BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
  595. !device->device_prep_dma_xor);
  596. BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) &&
  597. !device->device_prep_dma_xor_val);
  598. BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) &&
  599. !device->device_prep_dma_pq);
  600. BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) &&
  601. !device->device_prep_dma_pq_val);
  602. BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) &&
  603. !device->device_prep_dma_memset);
  604. BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
  605. !device->device_prep_dma_interrupt);
  606. BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
  607. !device->device_prep_slave_sg);
  608. BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
  609. !device->device_terminate_all);
  610. BUG_ON(!device->device_alloc_chan_resources);
  611. BUG_ON(!device->device_free_chan_resources);
  612. BUG_ON(!device->device_is_tx_complete);
  613. BUG_ON(!device->device_issue_pending);
  614. BUG_ON(!device->dev);
  615. /* note: this only matters in the
  616. * CONFIG_ASYNC_TX_DISABLE_CHANNEL_SWITCH=y case
  617. */
  618. if (device_has_all_tx_types(device))
  619. dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
  620. idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
  621. if (!idr_ref)
  622. return -ENOMEM;
  623. rc = get_dma_id(device);
  624. if (rc != 0) {
  625. kfree(idr_ref);
  626. return rc;
  627. }
  628. atomic_set(idr_ref, 0);
  629. /* represent channels in sysfs. Probably want devs too */
  630. list_for_each_entry(chan, &device->channels, device_node) {
  631. rc = -ENOMEM;
  632. chan->local = alloc_percpu(typeof(*chan->local));
  633. if (chan->local == NULL)
  634. goto err_out;
  635. chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
  636. if (chan->dev == NULL) {
  637. free_percpu(chan->local);
  638. chan->local = NULL;
  639. goto err_out;
  640. }
  641. chan->chan_id = chancnt++;
  642. chan->dev->device.class = &dma_devclass;
  643. chan->dev->device.parent = device->dev;
  644. chan->dev->chan = chan;
  645. chan->dev->idr_ref = idr_ref;
  646. chan->dev->dev_id = device->dev_id;
  647. atomic_inc(idr_ref);
  648. dev_set_name(&chan->dev->device, "dma%dchan%d",
  649. device->dev_id, chan->chan_id);
  650. rc = device_register(&chan->dev->device);
  651. if (rc) {
  652. free_percpu(chan->local);
  653. chan->local = NULL;
  654. kfree(chan->dev);
  655. atomic_dec(idr_ref);
  656. goto err_out;
  657. }
  658. chan->client_count = 0;
  659. }
  660. device->chancnt = chancnt;
  661. mutex_lock(&dma_list_mutex);
  662. /* take references on public channels */
  663. if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
  664. list_for_each_entry(chan, &device->channels, device_node) {
  665. /* if clients are already waiting for channels we need
  666. * to take references on their behalf
  667. */
  668. if (dma_chan_get(chan) == -ENODEV) {
  669. /* note we can only get here for the first
  670. * channel as the remaining channels are
  671. * guaranteed to get a reference
  672. */
  673. rc = -ENODEV;
  674. mutex_unlock(&dma_list_mutex);
  675. goto err_out;
  676. }
  677. }
  678. list_add_tail_rcu(&device->global_node, &dma_device_list);
  679. if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
  680. device->privatecnt++; /* Always private */
  681. dma_channel_rebalance();
  682. mutex_unlock(&dma_list_mutex);
  683. return 0;
  684. err_out:
  685. /* if we never registered a channel just release the idr */
  686. if (atomic_read(idr_ref) == 0) {
  687. mutex_lock(&dma_list_mutex);
  688. idr_remove(&dma_idr, device->dev_id);
  689. mutex_unlock(&dma_list_mutex);
  690. kfree(idr_ref);
  691. return rc;
  692. }
  693. list_for_each_entry(chan, &device->channels, device_node) {
  694. if (chan->local == NULL)
  695. continue;
  696. mutex_lock(&dma_list_mutex);
  697. chan->dev->chan = NULL;
  698. mutex_unlock(&dma_list_mutex);
  699. device_unregister(&chan->dev->device);
  700. free_percpu(chan->local);
  701. }
  702. return rc;
  703. }
  704. EXPORT_SYMBOL(dma_async_device_register);
  705. /**
  706. * dma_async_device_unregister - unregister a DMA device
  707. * @device: &dma_device
  708. *
  709. * This routine is called by dma driver exit routines, dmaengine holds module
  710. * references to prevent it being called while channels are in use.
  711. */
  712. void dma_async_device_unregister(struct dma_device *device)
  713. {
  714. struct dma_chan *chan;
  715. mutex_lock(&dma_list_mutex);
  716. list_del_rcu(&device->global_node);
  717. dma_channel_rebalance();
  718. mutex_unlock(&dma_list_mutex);
  719. list_for_each_entry(chan, &device->channels, device_node) {
  720. WARN_ONCE(chan->client_count,
  721. "%s called while %d clients hold a reference\n",
  722. __func__, chan->client_count);
  723. mutex_lock(&dma_list_mutex);
  724. chan->dev->chan = NULL;
  725. mutex_unlock(&dma_list_mutex);
  726. device_unregister(&chan->dev->device);
  727. free_percpu(chan->local);
  728. }
  729. }
  730. EXPORT_SYMBOL(dma_async_device_unregister);
  731. /**
  732. * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses
  733. * @chan: DMA channel to offload copy to
  734. * @dest: destination address (virtual)
  735. * @src: source address (virtual)
  736. * @len: length
  737. *
  738. * Both @dest and @src must be mappable to a bus address according to the
  739. * DMA mapping API rules for streaming mappings.
  740. * Both @dest and @src must stay memory resident (kernel memory or locked
  741. * user space pages).
  742. */
  743. dma_cookie_t
  744. dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest,
  745. void *src, size_t len)
  746. {
  747. struct dma_device *dev = chan->device;
  748. struct dma_async_tx_descriptor *tx;
  749. dma_addr_t dma_dest, dma_src;
  750. dma_cookie_t cookie;
  751. unsigned long flags;
  752. dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE);
  753. dma_dest = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE);
  754. flags = DMA_CTRL_ACK |
  755. DMA_COMPL_SRC_UNMAP_SINGLE |
  756. DMA_COMPL_DEST_UNMAP_SINGLE;
  757. tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
  758. if (!tx) {
  759. dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
  760. dma_unmap_single(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
  761. return -ENOMEM;
  762. }
  763. tx->callback = NULL;
  764. cookie = tx->tx_submit(tx);
  765. preempt_disable();
  766. __this_cpu_add(chan->local->bytes_transferred, len);
  767. __this_cpu_inc(chan->local->memcpy_count);
  768. preempt_enable();
  769. return cookie;
  770. }
  771. EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf);
  772. /**
  773. * dma_async_memcpy_buf_to_pg - offloaded copy from address to page
  774. * @chan: DMA channel to offload copy to
  775. * @page: destination page
  776. * @offset: offset in page to copy to
  777. * @kdata: source address (virtual)
  778. * @len: length
  779. *
  780. * Both @page/@offset and @kdata must be mappable to a bus address according
  781. * to the DMA mapping API rules for streaming mappings.
  782. * Both @page/@offset and @kdata must stay memory resident (kernel memory or
  783. * locked user space pages)
  784. */
  785. dma_cookie_t
  786. dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page,
  787. unsigned int offset, void *kdata, size_t len)
  788. {
  789. struct dma_device *dev = chan->device;
  790. struct dma_async_tx_descriptor *tx;
  791. dma_addr_t dma_dest, dma_src;
  792. dma_cookie_t cookie;
  793. unsigned long flags;
  794. dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE);
  795. dma_dest = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE);
  796. flags = DMA_CTRL_ACK | DMA_COMPL_SRC_UNMAP_SINGLE;
  797. tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
  798. if (!tx) {
  799. dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
  800. dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
  801. return -ENOMEM;
  802. }
  803. tx->callback = NULL;
  804. cookie = tx->tx_submit(tx);
  805. preempt_disable();
  806. __this_cpu_add(chan->local->bytes_transferred, len);
  807. __this_cpu_inc(chan->local->memcpy_count);
  808. preempt_enable();
  809. return cookie;
  810. }
  811. EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg);
  812. /**
  813. * dma_async_memcpy_pg_to_pg - offloaded copy from page to page
  814. * @chan: DMA channel to offload copy to
  815. * @dest_pg: destination page
  816. * @dest_off: offset in page to copy to
  817. * @src_pg: source page
  818. * @src_off: offset in page to copy from
  819. * @len: length
  820. *
  821. * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus
  822. * address according to the DMA mapping API rules for streaming mappings.
  823. * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident
  824. * (kernel memory or locked user space pages).
  825. */
  826. dma_cookie_t
  827. dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg,
  828. unsigned int dest_off, struct page *src_pg, unsigned int src_off,
  829. size_t len)
  830. {
  831. struct dma_device *dev = chan->device;
  832. struct dma_async_tx_descriptor *tx;
  833. dma_addr_t dma_dest, dma_src;
  834. dma_cookie_t cookie;
  835. unsigned long flags;
  836. dma_src = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE);
  837. dma_dest = dma_map_page(dev->dev, dest_pg, dest_off, len,
  838. DMA_FROM_DEVICE);
  839. flags = DMA_CTRL_ACK;
  840. tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
  841. if (!tx) {
  842. dma_unmap_page(dev->dev, dma_src, len, DMA_TO_DEVICE);
  843. dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
  844. return -ENOMEM;
  845. }
  846. tx->callback = NULL;
  847. cookie = tx->tx_submit(tx);
  848. preempt_disable();
  849. __this_cpu_add(chan->local->bytes_transferred, len);
  850. __this_cpu_inc(chan->local->memcpy_count);
  851. preempt_enable();
  852. return cookie;
  853. }
  854. EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg);
  855. void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
  856. struct dma_chan *chan)
  857. {
  858. tx->chan = chan;
  859. spin_lock_init(&tx->lock);
  860. }
  861. EXPORT_SYMBOL(dma_async_tx_descriptor_init);
  862. /* dma_wait_for_async_tx - spin wait for a transaction to complete
  863. * @tx: in-flight transaction to wait on
  864. */
  865. enum dma_status
  866. dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
  867. {
  868. unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
  869. if (!tx)
  870. return DMA_SUCCESS;
  871. while (tx->cookie == -EBUSY) {
  872. if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
  873. pr_err("%s timeout waiting for descriptor submission\n",
  874. __func__);
  875. return DMA_ERROR;
  876. }
  877. cpu_relax();
  878. }
  879. return dma_sync_wait(tx->chan, tx->cookie);
  880. }
  881. EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
  882. /* dma_run_dependencies - helper routine for dma drivers to process
  883. * (start) dependent operations on their target channel
  884. * @tx: transaction with dependencies
  885. */
  886. void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
  887. {
  888. struct dma_async_tx_descriptor *dep = tx->next;
  889. struct dma_async_tx_descriptor *dep_next;
  890. struct dma_chan *chan;
  891. if (!dep)
  892. return;
  893. /* we'll submit tx->next now, so clear the link */
  894. tx->next = NULL;
  895. chan = dep->chan;
  896. /* keep submitting up until a channel switch is detected
  897. * in that case we will be called again as a result of
  898. * processing the interrupt from async_tx_channel_switch
  899. */
  900. for (; dep; dep = dep_next) {
  901. spin_lock_bh(&dep->lock);
  902. dep->parent = NULL;
  903. dep_next = dep->next;
  904. if (dep_next && dep_next->chan == chan)
  905. dep->next = NULL; /* ->next will be submitted */
  906. else
  907. dep_next = NULL; /* submit current dep and terminate */
  908. spin_unlock_bh(&dep->lock);
  909. dep->tx_submit(dep);
  910. }
  911. chan->device->device_issue_pending(chan);
  912. }
  913. EXPORT_SYMBOL_GPL(dma_run_dependencies);
  914. static int __init dma_bus_init(void)
  915. {
  916. idr_init(&dma_idr);
  917. mutex_init(&dma_list_mutex);
  918. return class_register(&dma_devclass);
  919. }
  920. arch_initcall(dma_bus_init);