acpi_pad.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519
  1. /*
  2. * acpi_pad.c ACPI Processor Aggregator Driver
  3. *
  4. * Copyright (c) 2009, Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. *
  19. */
  20. #include <linux/kernel.h>
  21. #include <linux/cpumask.h>
  22. #include <linux/module.h>
  23. #include <linux/init.h>
  24. #include <linux/types.h>
  25. #include <linux/kthread.h>
  26. #include <linux/freezer.h>
  27. #include <linux/cpu.h>
  28. #include <linux/clockchips.h>
  29. #include <linux/slab.h>
  30. #include <acpi/acpi_bus.h>
  31. #include <acpi/acpi_drivers.h>
  32. #define ACPI_PROCESSOR_AGGREGATOR_CLASS "processor_aggregator"
  33. #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
  34. #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
  35. static DEFINE_MUTEX(isolated_cpus_lock);
  36. #define MWAIT_SUBSTATE_MASK (0xf)
  37. #define MWAIT_CSTATE_MASK (0xf)
  38. #define MWAIT_SUBSTATE_SIZE (4)
  39. #define CPUID_MWAIT_LEAF (5)
  40. #define CPUID5_ECX_EXTENSIONS_SUPPORTED (0x1)
  41. #define CPUID5_ECX_INTERRUPT_BREAK (0x2)
  42. static unsigned long power_saving_mwait_eax;
  43. static void power_saving_mwait_init(void)
  44. {
  45. unsigned int eax, ebx, ecx, edx;
  46. unsigned int highest_cstate = 0;
  47. unsigned int highest_subcstate = 0;
  48. int i;
  49. if (!boot_cpu_has(X86_FEATURE_MWAIT))
  50. return;
  51. if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
  52. return;
  53. cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
  54. if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
  55. !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
  56. return;
  57. edx >>= MWAIT_SUBSTATE_SIZE;
  58. for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
  59. if (edx & MWAIT_SUBSTATE_MASK) {
  60. highest_cstate = i;
  61. highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
  62. }
  63. }
  64. power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
  65. (highest_subcstate - 1);
  66. for_each_online_cpu(i)
  67. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ON, &i);
  68. #if defined(CONFIG_GENERIC_TIME) && defined(CONFIG_X86)
  69. switch (boot_cpu_data.x86_vendor) {
  70. case X86_VENDOR_AMD:
  71. case X86_VENDOR_INTEL:
  72. /*
  73. * AMD Fam10h TSC will tick in all
  74. * C/P/S0/S1 states when this bit is set.
  75. */
  76. if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  77. return;
  78. /*FALL THROUGH*/
  79. default:
  80. /* TSC could halt in idle, so notify users */
  81. mark_tsc_unstable("TSC halts in idle");
  82. }
  83. #endif
  84. }
  85. static unsigned long cpu_weight[NR_CPUS];
  86. static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
  87. static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
  88. static void round_robin_cpu(unsigned int tsk_index)
  89. {
  90. struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
  91. cpumask_var_t tmp;
  92. int cpu;
  93. unsigned long min_weight = -1;
  94. unsigned long uninitialized_var(preferred_cpu);
  95. if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
  96. return;
  97. mutex_lock(&isolated_cpus_lock);
  98. cpumask_clear(tmp);
  99. for_each_cpu(cpu, pad_busy_cpus)
  100. cpumask_or(tmp, tmp, topology_thread_cpumask(cpu));
  101. cpumask_andnot(tmp, cpu_online_mask, tmp);
  102. /* avoid HT sibilings if possible */
  103. if (cpumask_empty(tmp))
  104. cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
  105. if (cpumask_empty(tmp)) {
  106. mutex_unlock(&isolated_cpus_lock);
  107. return;
  108. }
  109. for_each_cpu(cpu, tmp) {
  110. if (cpu_weight[cpu] < min_weight) {
  111. min_weight = cpu_weight[cpu];
  112. preferred_cpu = cpu;
  113. }
  114. }
  115. if (tsk_in_cpu[tsk_index] != -1)
  116. cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
  117. tsk_in_cpu[tsk_index] = preferred_cpu;
  118. cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
  119. cpu_weight[preferred_cpu]++;
  120. mutex_unlock(&isolated_cpus_lock);
  121. set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
  122. }
  123. static void exit_round_robin(unsigned int tsk_index)
  124. {
  125. struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
  126. cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
  127. tsk_in_cpu[tsk_index] = -1;
  128. }
  129. static unsigned int idle_pct = 5; /* percentage */
  130. static unsigned int round_robin_time = 10; /* second */
  131. static int power_saving_thread(void *data)
  132. {
  133. struct sched_param param = {.sched_priority = 1};
  134. int do_sleep;
  135. unsigned int tsk_index = (unsigned long)data;
  136. u64 last_jiffies = 0;
  137. sched_setscheduler(current, SCHED_RR, &param);
  138. while (!kthread_should_stop()) {
  139. int cpu;
  140. u64 expire_time;
  141. try_to_freeze();
  142. /* round robin to cpus */
  143. if (last_jiffies + round_robin_time * HZ < jiffies) {
  144. last_jiffies = jiffies;
  145. round_robin_cpu(tsk_index);
  146. }
  147. do_sleep = 0;
  148. current_thread_info()->status &= ~TS_POLLING;
  149. /*
  150. * TS_POLLING-cleared state must be visible before we test
  151. * NEED_RESCHED:
  152. */
  153. smp_mb();
  154. expire_time = jiffies + HZ * (100 - idle_pct) / 100;
  155. while (!need_resched()) {
  156. local_irq_disable();
  157. cpu = smp_processor_id();
  158. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER,
  159. &cpu);
  160. stop_critical_timings();
  161. __monitor((void *)&current_thread_info()->flags, 0, 0);
  162. smp_mb();
  163. if (!need_resched())
  164. __mwait(power_saving_mwait_eax, 1);
  165. start_critical_timings();
  166. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT,
  167. &cpu);
  168. local_irq_enable();
  169. if (jiffies > expire_time) {
  170. do_sleep = 1;
  171. break;
  172. }
  173. }
  174. current_thread_info()->status |= TS_POLLING;
  175. /*
  176. * current sched_rt has threshold for rt task running time.
  177. * When a rt task uses 95% CPU time, the rt thread will be
  178. * scheduled out for 5% CPU time to not starve other tasks. But
  179. * the mechanism only works when all CPUs have RT task running,
  180. * as if one CPU hasn't RT task, RT task from other CPUs will
  181. * borrow CPU time from this CPU and cause RT task use > 95%
  182. * CPU time. To make 'avoid starvation' work, takes a nap here.
  183. */
  184. if (do_sleep)
  185. schedule_timeout_killable(HZ * idle_pct / 100);
  186. }
  187. exit_round_robin(tsk_index);
  188. return 0;
  189. }
  190. static struct task_struct *ps_tsks[NR_CPUS];
  191. static unsigned int ps_tsk_num;
  192. static int create_power_saving_task(void)
  193. {
  194. int rc = -ENOMEM;
  195. ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
  196. (void *)(unsigned long)ps_tsk_num,
  197. "power_saving/%d", ps_tsk_num);
  198. rc = IS_ERR(ps_tsks[ps_tsk_num]) ? PTR_ERR(ps_tsks[ps_tsk_num]) : 0;
  199. if (!rc)
  200. ps_tsk_num++;
  201. else
  202. ps_tsks[ps_tsk_num] = NULL;
  203. return rc;
  204. }
  205. static void destroy_power_saving_task(void)
  206. {
  207. if (ps_tsk_num > 0) {
  208. ps_tsk_num--;
  209. kthread_stop(ps_tsks[ps_tsk_num]);
  210. ps_tsks[ps_tsk_num] = NULL;
  211. }
  212. }
  213. static void set_power_saving_task_num(unsigned int num)
  214. {
  215. if (num > ps_tsk_num) {
  216. while (ps_tsk_num < num) {
  217. if (create_power_saving_task())
  218. return;
  219. }
  220. } else if (num < ps_tsk_num) {
  221. while (ps_tsk_num > num)
  222. destroy_power_saving_task();
  223. }
  224. }
  225. static void acpi_pad_idle_cpus(unsigned int num_cpus)
  226. {
  227. get_online_cpus();
  228. num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
  229. set_power_saving_task_num(num_cpus);
  230. put_online_cpus();
  231. }
  232. static uint32_t acpi_pad_idle_cpus_num(void)
  233. {
  234. return ps_tsk_num;
  235. }
  236. static ssize_t acpi_pad_rrtime_store(struct device *dev,
  237. struct device_attribute *attr, const char *buf, size_t count)
  238. {
  239. unsigned long num;
  240. if (strict_strtoul(buf, 0, &num))
  241. return -EINVAL;
  242. if (num < 1 || num >= 100)
  243. return -EINVAL;
  244. mutex_lock(&isolated_cpus_lock);
  245. round_robin_time = num;
  246. mutex_unlock(&isolated_cpus_lock);
  247. return count;
  248. }
  249. static ssize_t acpi_pad_rrtime_show(struct device *dev,
  250. struct device_attribute *attr, char *buf)
  251. {
  252. return scnprintf(buf, PAGE_SIZE, "%d", round_robin_time);
  253. }
  254. static DEVICE_ATTR(rrtime, S_IRUGO|S_IWUSR,
  255. acpi_pad_rrtime_show,
  256. acpi_pad_rrtime_store);
  257. static ssize_t acpi_pad_idlepct_store(struct device *dev,
  258. struct device_attribute *attr, const char *buf, size_t count)
  259. {
  260. unsigned long num;
  261. if (strict_strtoul(buf, 0, &num))
  262. return -EINVAL;
  263. if (num < 1 || num >= 100)
  264. return -EINVAL;
  265. mutex_lock(&isolated_cpus_lock);
  266. idle_pct = num;
  267. mutex_unlock(&isolated_cpus_lock);
  268. return count;
  269. }
  270. static ssize_t acpi_pad_idlepct_show(struct device *dev,
  271. struct device_attribute *attr, char *buf)
  272. {
  273. return scnprintf(buf, PAGE_SIZE, "%d", idle_pct);
  274. }
  275. static DEVICE_ATTR(idlepct, S_IRUGO|S_IWUSR,
  276. acpi_pad_idlepct_show,
  277. acpi_pad_idlepct_store);
  278. static ssize_t acpi_pad_idlecpus_store(struct device *dev,
  279. struct device_attribute *attr, const char *buf, size_t count)
  280. {
  281. unsigned long num;
  282. if (strict_strtoul(buf, 0, &num))
  283. return -EINVAL;
  284. mutex_lock(&isolated_cpus_lock);
  285. acpi_pad_idle_cpus(num);
  286. mutex_unlock(&isolated_cpus_lock);
  287. return count;
  288. }
  289. static ssize_t acpi_pad_idlecpus_show(struct device *dev,
  290. struct device_attribute *attr, char *buf)
  291. {
  292. return cpumask_scnprintf(buf, PAGE_SIZE,
  293. to_cpumask(pad_busy_cpus_bits));
  294. }
  295. static DEVICE_ATTR(idlecpus, S_IRUGO|S_IWUSR,
  296. acpi_pad_idlecpus_show,
  297. acpi_pad_idlecpus_store);
  298. static int acpi_pad_add_sysfs(struct acpi_device *device)
  299. {
  300. int result;
  301. result = device_create_file(&device->dev, &dev_attr_idlecpus);
  302. if (result)
  303. return -ENODEV;
  304. result = device_create_file(&device->dev, &dev_attr_idlepct);
  305. if (result) {
  306. device_remove_file(&device->dev, &dev_attr_idlecpus);
  307. return -ENODEV;
  308. }
  309. result = device_create_file(&device->dev, &dev_attr_rrtime);
  310. if (result) {
  311. device_remove_file(&device->dev, &dev_attr_idlecpus);
  312. device_remove_file(&device->dev, &dev_attr_idlepct);
  313. return -ENODEV;
  314. }
  315. return 0;
  316. }
  317. static void acpi_pad_remove_sysfs(struct acpi_device *device)
  318. {
  319. device_remove_file(&device->dev, &dev_attr_idlecpus);
  320. device_remove_file(&device->dev, &dev_attr_idlepct);
  321. device_remove_file(&device->dev, &dev_attr_rrtime);
  322. }
  323. /* Query firmware how many CPUs should be idle */
  324. static int acpi_pad_pur(acpi_handle handle, int *num_cpus)
  325. {
  326. struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
  327. union acpi_object *package;
  328. int rev, num, ret = -EINVAL;
  329. if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
  330. return -EINVAL;
  331. if (!buffer.length || !buffer.pointer)
  332. return -EINVAL;
  333. package = buffer.pointer;
  334. if (package->type != ACPI_TYPE_PACKAGE || package->package.count != 2)
  335. goto out;
  336. rev = package->package.elements[0].integer.value;
  337. num = package->package.elements[1].integer.value;
  338. if (rev != 1 || num < 0)
  339. goto out;
  340. *num_cpus = num;
  341. ret = 0;
  342. out:
  343. kfree(buffer.pointer);
  344. return ret;
  345. }
  346. /* Notify firmware how many CPUs are idle */
  347. static void acpi_pad_ost(acpi_handle handle, int stat,
  348. uint32_t idle_cpus)
  349. {
  350. union acpi_object params[3] = {
  351. {.type = ACPI_TYPE_INTEGER,},
  352. {.type = ACPI_TYPE_INTEGER,},
  353. {.type = ACPI_TYPE_BUFFER,},
  354. };
  355. struct acpi_object_list arg_list = {3, params};
  356. params[0].integer.value = ACPI_PROCESSOR_AGGREGATOR_NOTIFY;
  357. params[1].integer.value = stat;
  358. params[2].buffer.length = 4;
  359. params[2].buffer.pointer = (void *)&idle_cpus;
  360. acpi_evaluate_object(handle, "_OST", &arg_list, NULL);
  361. }
  362. static void acpi_pad_handle_notify(acpi_handle handle)
  363. {
  364. int num_cpus;
  365. uint32_t idle_cpus;
  366. mutex_lock(&isolated_cpus_lock);
  367. if (acpi_pad_pur(handle, &num_cpus)) {
  368. mutex_unlock(&isolated_cpus_lock);
  369. return;
  370. }
  371. acpi_pad_idle_cpus(num_cpus);
  372. idle_cpus = acpi_pad_idle_cpus_num();
  373. acpi_pad_ost(handle, 0, idle_cpus);
  374. mutex_unlock(&isolated_cpus_lock);
  375. }
  376. static void acpi_pad_notify(acpi_handle handle, u32 event,
  377. void *data)
  378. {
  379. struct acpi_device *device = data;
  380. switch (event) {
  381. case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
  382. acpi_pad_handle_notify(handle);
  383. acpi_bus_generate_proc_event(device, event, 0);
  384. acpi_bus_generate_netlink_event(device->pnp.device_class,
  385. dev_name(&device->dev), event, 0);
  386. break;
  387. default:
  388. printk(KERN_WARNING"Unsupported event [0x%x]\n", event);
  389. break;
  390. }
  391. }
  392. static int acpi_pad_add(struct acpi_device *device)
  393. {
  394. acpi_status status;
  395. strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
  396. strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
  397. if (acpi_pad_add_sysfs(device))
  398. return -ENODEV;
  399. status = acpi_install_notify_handler(device->handle,
  400. ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
  401. if (ACPI_FAILURE(status)) {
  402. acpi_pad_remove_sysfs(device);
  403. return -ENODEV;
  404. }
  405. return 0;
  406. }
  407. static int acpi_pad_remove(struct acpi_device *device,
  408. int type)
  409. {
  410. mutex_lock(&isolated_cpus_lock);
  411. acpi_pad_idle_cpus(0);
  412. mutex_unlock(&isolated_cpus_lock);
  413. acpi_remove_notify_handler(device->handle,
  414. ACPI_DEVICE_NOTIFY, acpi_pad_notify);
  415. acpi_pad_remove_sysfs(device);
  416. return 0;
  417. }
  418. static const struct acpi_device_id pad_device_ids[] = {
  419. {"ACPI000C", 0},
  420. {"", 0},
  421. };
  422. MODULE_DEVICE_TABLE(acpi, pad_device_ids);
  423. static struct acpi_driver acpi_pad_driver = {
  424. .name = "processor_aggregator",
  425. .class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
  426. .ids = pad_device_ids,
  427. .ops = {
  428. .add = acpi_pad_add,
  429. .remove = acpi_pad_remove,
  430. },
  431. };
  432. static int __init acpi_pad_init(void)
  433. {
  434. power_saving_mwait_init();
  435. if (power_saving_mwait_eax == 0)
  436. return -EINVAL;
  437. return acpi_bus_register_driver(&acpi_pad_driver);
  438. }
  439. static void __exit acpi_pad_exit(void)
  440. {
  441. acpi_bus_unregister_driver(&acpi_pad_driver);
  442. }
  443. module_init(acpi_pad_init);
  444. module_exit(acpi_pad_exit);
  445. MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
  446. MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
  447. MODULE_LICENSE("GPL");