tlb_uv.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865
  1. /*
  2. * SGI UltraViolet TLB flush routines.
  3. *
  4. * (c) 2008 Cliff Wickman <cpw@sgi.com>, SGI.
  5. *
  6. * This code is released under the GNU General Public License version 2 or
  7. * later.
  8. */
  9. #include <linux/seq_file.h>
  10. #include <linux/proc_fs.h>
  11. #include <linux/kernel.h>
  12. #include <linux/slab.h>
  13. #include <asm/mmu_context.h>
  14. #include <asm/uv/uv.h>
  15. #include <asm/uv/uv_mmrs.h>
  16. #include <asm/uv/uv_hub.h>
  17. #include <asm/uv/uv_bau.h>
  18. #include <asm/apic.h>
  19. #include <asm/idle.h>
  20. #include <asm/tsc.h>
  21. #include <asm/irq_vectors.h>
  22. static struct bau_control **uv_bau_table_bases __read_mostly;
  23. static int uv_bau_retry_limit __read_mostly;
  24. /* base pnode in this partition */
  25. static int uv_partition_base_pnode __read_mostly;
  26. static unsigned long uv_mmask __read_mostly;
  27. static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
  28. static DEFINE_PER_CPU(struct bau_control, bau_control);
  29. /*
  30. * Determine the first node on a blade.
  31. */
  32. static int __init blade_to_first_node(int blade)
  33. {
  34. int node, b;
  35. for_each_online_node(node) {
  36. b = uv_node_to_blade_id(node);
  37. if (blade == b)
  38. return node;
  39. }
  40. return -1; /* shouldn't happen */
  41. }
  42. /*
  43. * Determine the apicid of the first cpu on a blade.
  44. */
  45. static int __init blade_to_first_apicid(int blade)
  46. {
  47. int cpu;
  48. for_each_present_cpu(cpu)
  49. if (blade == uv_cpu_to_blade_id(cpu))
  50. return per_cpu(x86_cpu_to_apicid, cpu);
  51. return -1;
  52. }
  53. /*
  54. * Free a software acknowledge hardware resource by clearing its Pending
  55. * bit. This will return a reply to the sender.
  56. * If the message has timed out, a reply has already been sent by the
  57. * hardware but the resource has not been released. In that case our
  58. * clear of the Timeout bit (as well) will free the resource. No reply will
  59. * be sent (the hardware will only do one reply per message).
  60. */
  61. static void uv_reply_to_message(int resource,
  62. struct bau_payload_queue_entry *msg,
  63. struct bau_msg_status *msp)
  64. {
  65. unsigned long dw;
  66. dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
  67. msg->replied_to = 1;
  68. msg->sw_ack_vector = 0;
  69. if (msp)
  70. msp->seen_by.bits = 0;
  71. uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
  72. }
  73. /*
  74. * Do all the things a cpu should do for a TLB shootdown message.
  75. * Other cpu's may come here at the same time for this message.
  76. */
  77. static void uv_bau_process_message(struct bau_payload_queue_entry *msg,
  78. int msg_slot, int sw_ack_slot)
  79. {
  80. unsigned long this_cpu_mask;
  81. struct bau_msg_status *msp;
  82. int cpu;
  83. msp = __get_cpu_var(bau_control).msg_statuses + msg_slot;
  84. cpu = uv_blade_processor_id();
  85. msg->number_of_cpus =
  86. uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
  87. this_cpu_mask = 1UL << cpu;
  88. if (msp->seen_by.bits & this_cpu_mask)
  89. return;
  90. atomic_or_long(&msp->seen_by.bits, this_cpu_mask);
  91. if (msg->replied_to == 1)
  92. return;
  93. if (msg->address == TLB_FLUSH_ALL) {
  94. local_flush_tlb();
  95. __get_cpu_var(ptcstats).alltlb++;
  96. } else {
  97. __flush_tlb_one(msg->address);
  98. __get_cpu_var(ptcstats).onetlb++;
  99. }
  100. __get_cpu_var(ptcstats).requestee++;
  101. atomic_inc_short(&msg->acknowledge_count);
  102. if (msg->number_of_cpus == msg->acknowledge_count)
  103. uv_reply_to_message(sw_ack_slot, msg, msp);
  104. }
  105. /*
  106. * Examine the payload queue on one distribution node to see
  107. * which messages have not been seen, and which cpu(s) have not seen them.
  108. *
  109. * Returns the number of cpu's that have not responded.
  110. */
  111. static int uv_examine_destination(struct bau_control *bau_tablesp, int sender)
  112. {
  113. struct bau_payload_queue_entry *msg;
  114. struct bau_msg_status *msp;
  115. int count = 0;
  116. int i;
  117. int j;
  118. for (msg = bau_tablesp->va_queue_first, i = 0; i < DEST_Q_SIZE;
  119. msg++, i++) {
  120. if ((msg->sending_cpu == sender) && (!msg->replied_to)) {
  121. msp = bau_tablesp->msg_statuses + i;
  122. printk(KERN_DEBUG
  123. "blade %d: address:%#lx %d of %d, not cpu(s): ",
  124. i, msg->address, msg->acknowledge_count,
  125. msg->number_of_cpus);
  126. for (j = 0; j < msg->number_of_cpus; j++) {
  127. if (!((1L << j) & msp->seen_by.bits)) {
  128. count++;
  129. printk("%d ", j);
  130. }
  131. }
  132. printk("\n");
  133. }
  134. }
  135. return count;
  136. }
  137. /*
  138. * Examine the payload queue on all the distribution nodes to see
  139. * which messages have not been seen, and which cpu(s) have not seen them.
  140. *
  141. * Returns the number of cpu's that have not responded.
  142. */
  143. static int uv_examine_destinations(struct bau_target_nodemask *distribution)
  144. {
  145. int sender;
  146. int i;
  147. int count = 0;
  148. sender = smp_processor_id();
  149. for (i = 0; i < sizeof(struct bau_target_nodemask) * BITSPERBYTE; i++) {
  150. if (!bau_node_isset(i, distribution))
  151. continue;
  152. count += uv_examine_destination(uv_bau_table_bases[i], sender);
  153. }
  154. return count;
  155. }
  156. /*
  157. * wait for completion of a broadcast message
  158. *
  159. * return COMPLETE, RETRY or GIVEUP
  160. */
  161. static int uv_wait_completion(struct bau_desc *bau_desc,
  162. unsigned long mmr_offset, int right_shift)
  163. {
  164. int exams = 0;
  165. long destination_timeouts = 0;
  166. long source_timeouts = 0;
  167. unsigned long descriptor_status;
  168. while ((descriptor_status = (((unsigned long)
  169. uv_read_local_mmr(mmr_offset) >>
  170. right_shift) & UV_ACT_STATUS_MASK)) !=
  171. DESC_STATUS_IDLE) {
  172. if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
  173. source_timeouts++;
  174. if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
  175. source_timeouts = 0;
  176. __get_cpu_var(ptcstats).s_retry++;
  177. return FLUSH_RETRY;
  178. }
  179. /*
  180. * spin here looking for progress at the destinations
  181. */
  182. if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
  183. destination_timeouts++;
  184. if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
  185. /*
  186. * returns number of cpus not responding
  187. */
  188. if (uv_examine_destinations
  189. (&bau_desc->distribution) == 0) {
  190. __get_cpu_var(ptcstats).d_retry++;
  191. return FLUSH_RETRY;
  192. }
  193. exams++;
  194. if (exams >= uv_bau_retry_limit) {
  195. printk(KERN_DEBUG
  196. "uv_flush_tlb_others");
  197. printk("giving up on cpu %d\n",
  198. smp_processor_id());
  199. return FLUSH_GIVEUP;
  200. }
  201. /*
  202. * delays can hang the simulator
  203. udelay(1000);
  204. */
  205. destination_timeouts = 0;
  206. }
  207. }
  208. cpu_relax();
  209. }
  210. return FLUSH_COMPLETE;
  211. }
  212. /**
  213. * uv_flush_send_and_wait
  214. *
  215. * Send a broadcast and wait for a broadcast message to complete.
  216. *
  217. * The flush_mask contains the cpus the broadcast was sent to.
  218. *
  219. * Returns NULL if all remote flushing was done. The mask is zeroed.
  220. * Returns @flush_mask if some remote flushing remains to be done. The
  221. * mask will have some bits still set.
  222. */
  223. const struct cpumask *uv_flush_send_and_wait(int cpu, int this_pnode,
  224. struct bau_desc *bau_desc,
  225. struct cpumask *flush_mask)
  226. {
  227. int completion_status = 0;
  228. int right_shift;
  229. int tries = 0;
  230. int pnode;
  231. int bit;
  232. unsigned long mmr_offset;
  233. unsigned long index;
  234. cycles_t time1;
  235. cycles_t time2;
  236. if (cpu < UV_CPUS_PER_ACT_STATUS) {
  237. mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
  238. right_shift = cpu * UV_ACT_STATUS_SIZE;
  239. } else {
  240. mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
  241. right_shift =
  242. ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
  243. }
  244. time1 = get_cycles();
  245. do {
  246. tries++;
  247. index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
  248. cpu;
  249. uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
  250. completion_status = uv_wait_completion(bau_desc, mmr_offset,
  251. right_shift);
  252. } while (completion_status == FLUSH_RETRY);
  253. time2 = get_cycles();
  254. __get_cpu_var(ptcstats).sflush += (time2 - time1);
  255. if (tries > 1)
  256. __get_cpu_var(ptcstats).retriesok++;
  257. if (completion_status == FLUSH_GIVEUP) {
  258. /*
  259. * Cause the caller to do an IPI-style TLB shootdown on
  260. * the cpu's, all of which are still in the mask.
  261. */
  262. __get_cpu_var(ptcstats).ptc_i++;
  263. return flush_mask;
  264. }
  265. /*
  266. * Success, so clear the remote cpu's from the mask so we don't
  267. * use the IPI method of shootdown on them.
  268. */
  269. for_each_cpu(bit, flush_mask) {
  270. pnode = uv_cpu_to_pnode(bit);
  271. if (pnode == this_pnode)
  272. continue;
  273. cpumask_clear_cpu(bit, flush_mask);
  274. }
  275. if (!cpumask_empty(flush_mask))
  276. return flush_mask;
  277. return NULL;
  278. }
  279. static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
  280. /**
  281. * uv_flush_tlb_others - globally purge translation cache of a virtual
  282. * address or all TLB's
  283. * @cpumask: mask of all cpu's in which the address is to be removed
  284. * @mm: mm_struct containing virtual address range
  285. * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
  286. * @cpu: the current cpu
  287. *
  288. * This is the entry point for initiating any UV global TLB shootdown.
  289. *
  290. * Purges the translation caches of all specified processors of the given
  291. * virtual address, or purges all TLB's on specified processors.
  292. *
  293. * The caller has derived the cpumask from the mm_struct. This function
  294. * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
  295. *
  296. * The cpumask is converted into a nodemask of the nodes containing
  297. * the cpus.
  298. *
  299. * Note that this function should be called with preemption disabled.
  300. *
  301. * Returns NULL if all remote flushing was done.
  302. * Returns pointer to cpumask if some remote flushing remains to be
  303. * done. The returned pointer is valid till preemption is re-enabled.
  304. */
  305. const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
  306. struct mm_struct *mm,
  307. unsigned long va, unsigned int cpu)
  308. {
  309. struct cpumask *flush_mask = __get_cpu_var(uv_flush_tlb_mask);
  310. int i;
  311. int bit;
  312. int pnode;
  313. int uv_cpu;
  314. int this_pnode;
  315. int locals = 0;
  316. struct bau_desc *bau_desc;
  317. cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
  318. uv_cpu = uv_blade_processor_id();
  319. this_pnode = uv_hub_info->pnode;
  320. bau_desc = __get_cpu_var(bau_control).descriptor_base;
  321. bau_desc += UV_ITEMS_PER_DESCRIPTOR * uv_cpu;
  322. bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
  323. i = 0;
  324. for_each_cpu(bit, flush_mask) {
  325. pnode = uv_cpu_to_pnode(bit);
  326. BUG_ON(pnode > (UV_DISTRIBUTION_SIZE - 1));
  327. if (pnode == this_pnode) {
  328. locals++;
  329. continue;
  330. }
  331. bau_node_set(pnode - uv_partition_base_pnode,
  332. &bau_desc->distribution);
  333. i++;
  334. }
  335. if (i == 0) {
  336. /*
  337. * no off_node flushing; return status for local node
  338. */
  339. if (locals)
  340. return flush_mask;
  341. else
  342. return NULL;
  343. }
  344. __get_cpu_var(ptcstats).requestor++;
  345. __get_cpu_var(ptcstats).ntargeted += i;
  346. bau_desc->payload.address = va;
  347. bau_desc->payload.sending_cpu = cpu;
  348. return uv_flush_send_and_wait(uv_cpu, this_pnode, bau_desc, flush_mask);
  349. }
  350. /*
  351. * The BAU message interrupt comes here. (registered by set_intr_gate)
  352. * See entry_64.S
  353. *
  354. * We received a broadcast assist message.
  355. *
  356. * Interrupts may have been disabled; this interrupt could represent
  357. * the receipt of several messages.
  358. *
  359. * All cores/threads on this node get this interrupt.
  360. * The last one to see it does the s/w ack.
  361. * (the resource will not be freed until noninterruptable cpus see this
  362. * interrupt; hardware will timeout the s/w ack and reply ERROR)
  363. */
  364. void uv_bau_message_interrupt(struct pt_regs *regs)
  365. {
  366. struct bau_payload_queue_entry *va_queue_first;
  367. struct bau_payload_queue_entry *va_queue_last;
  368. struct bau_payload_queue_entry *msg;
  369. struct pt_regs *old_regs = set_irq_regs(regs);
  370. cycles_t time1;
  371. cycles_t time2;
  372. int msg_slot;
  373. int sw_ack_slot;
  374. int fw;
  375. int count = 0;
  376. unsigned long local_pnode;
  377. ack_APIC_irq();
  378. exit_idle();
  379. irq_enter();
  380. time1 = get_cycles();
  381. local_pnode = uv_blade_to_pnode(uv_numa_blade_id());
  382. va_queue_first = __get_cpu_var(bau_control).va_queue_first;
  383. va_queue_last = __get_cpu_var(bau_control).va_queue_last;
  384. msg = __get_cpu_var(bau_control).bau_msg_head;
  385. while (msg->sw_ack_vector) {
  386. count++;
  387. fw = msg->sw_ack_vector;
  388. msg_slot = msg - va_queue_first;
  389. sw_ack_slot = ffs(fw) - 1;
  390. uv_bau_process_message(msg, msg_slot, sw_ack_slot);
  391. msg++;
  392. if (msg > va_queue_last)
  393. msg = va_queue_first;
  394. __get_cpu_var(bau_control).bau_msg_head = msg;
  395. }
  396. if (!count)
  397. __get_cpu_var(ptcstats).nomsg++;
  398. else if (count > 1)
  399. __get_cpu_var(ptcstats).multmsg++;
  400. time2 = get_cycles();
  401. __get_cpu_var(ptcstats).dflush += (time2 - time1);
  402. irq_exit();
  403. set_irq_regs(old_regs);
  404. }
  405. /*
  406. * uv_enable_timeouts
  407. *
  408. * Each target blade (i.e. blades that have cpu's) needs to have
  409. * shootdown message timeouts enabled. The timeout does not cause
  410. * an interrupt, but causes an error message to be returned to
  411. * the sender.
  412. */
  413. static void uv_enable_timeouts(void)
  414. {
  415. int blade;
  416. int nblades;
  417. int pnode;
  418. unsigned long mmr_image;
  419. nblades = uv_num_possible_blades();
  420. for (blade = 0; blade < nblades; blade++) {
  421. if (!uv_blade_nr_possible_cpus(blade))
  422. continue;
  423. pnode = uv_blade_to_pnode(blade);
  424. mmr_image =
  425. uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL);
  426. /*
  427. * Set the timeout period and then lock it in, in three
  428. * steps; captures and locks in the period.
  429. *
  430. * To program the period, the SOFT_ACK_MODE must be off.
  431. */
  432. mmr_image &= ~((unsigned long)1 <<
  433. UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT);
  434. uv_write_global_mmr64
  435. (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
  436. /*
  437. * Set the 4-bit period.
  438. */
  439. mmr_image &= ~((unsigned long)0xf <<
  440. UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT);
  441. mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD <<
  442. UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT);
  443. uv_write_global_mmr64
  444. (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
  445. /*
  446. * Subsequent reversals of the timebase bit (3) cause an
  447. * immediate timeout of one or all INTD resources as
  448. * indicated in bits 2:0 (7 causes all of them to timeout).
  449. */
  450. mmr_image |= ((unsigned long)1 <<
  451. UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT);
  452. uv_write_global_mmr64
  453. (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
  454. }
  455. }
  456. static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
  457. {
  458. if (*offset < num_possible_cpus())
  459. return offset;
  460. return NULL;
  461. }
  462. static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
  463. {
  464. (*offset)++;
  465. if (*offset < num_possible_cpus())
  466. return offset;
  467. return NULL;
  468. }
  469. static void uv_ptc_seq_stop(struct seq_file *file, void *data)
  470. {
  471. }
  472. /*
  473. * Display the statistics thru /proc
  474. * data points to the cpu number
  475. */
  476. static int uv_ptc_seq_show(struct seq_file *file, void *data)
  477. {
  478. struct ptc_stats *stat;
  479. int cpu;
  480. cpu = *(loff_t *)data;
  481. if (!cpu) {
  482. seq_printf(file,
  483. "# cpu requestor requestee one all sretry dretry ptc_i ");
  484. seq_printf(file,
  485. "sw_ack sflush dflush sok dnomsg dmult starget\n");
  486. }
  487. if (cpu < num_possible_cpus() && cpu_online(cpu)) {
  488. stat = &per_cpu(ptcstats, cpu);
  489. seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ",
  490. cpu, stat->requestor,
  491. stat->requestee, stat->onetlb, stat->alltlb,
  492. stat->s_retry, stat->d_retry, stat->ptc_i);
  493. seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n",
  494. uv_read_global_mmr64(uv_cpu_to_pnode(cpu),
  495. UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
  496. stat->sflush, stat->dflush,
  497. stat->retriesok, stat->nomsg,
  498. stat->multmsg, stat->ntargeted);
  499. }
  500. return 0;
  501. }
  502. /*
  503. * 0: display meaning of the statistics
  504. * >0: retry limit
  505. */
  506. static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
  507. size_t count, loff_t *data)
  508. {
  509. long newmode;
  510. char optstr[64];
  511. if (count == 0 || count > sizeof(optstr))
  512. return -EINVAL;
  513. if (copy_from_user(optstr, user, count))
  514. return -EFAULT;
  515. optstr[count - 1] = '\0';
  516. if (strict_strtoul(optstr, 10, &newmode) < 0) {
  517. printk(KERN_DEBUG "%s is invalid\n", optstr);
  518. return -EINVAL;
  519. }
  520. if (newmode == 0) {
  521. printk(KERN_DEBUG "# cpu: cpu number\n");
  522. printk(KERN_DEBUG
  523. "requestor: times this cpu was the flush requestor\n");
  524. printk(KERN_DEBUG
  525. "requestee: times this cpu was requested to flush its TLBs\n");
  526. printk(KERN_DEBUG
  527. "one: times requested to flush a single address\n");
  528. printk(KERN_DEBUG
  529. "all: times requested to flush all TLB's\n");
  530. printk(KERN_DEBUG
  531. "sretry: number of retries of source-side timeouts\n");
  532. printk(KERN_DEBUG
  533. "dretry: number of retries of destination-side timeouts\n");
  534. printk(KERN_DEBUG
  535. "ptc_i: times UV fell through to IPI-style flushes\n");
  536. printk(KERN_DEBUG
  537. "sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
  538. printk(KERN_DEBUG
  539. "sflush_us: cycles spent in uv_flush_tlb_others()\n");
  540. printk(KERN_DEBUG
  541. "dflush_us: cycles spent in handling flush requests\n");
  542. printk(KERN_DEBUG "sok: successes on retry\n");
  543. printk(KERN_DEBUG "dnomsg: interrupts with no message\n");
  544. printk(KERN_DEBUG
  545. "dmult: interrupts with multiple messages\n");
  546. printk(KERN_DEBUG "starget: nodes targeted\n");
  547. } else {
  548. uv_bau_retry_limit = newmode;
  549. printk(KERN_DEBUG "timeout retry limit:%d\n",
  550. uv_bau_retry_limit);
  551. }
  552. return count;
  553. }
  554. static const struct seq_operations uv_ptc_seq_ops = {
  555. .start = uv_ptc_seq_start,
  556. .next = uv_ptc_seq_next,
  557. .stop = uv_ptc_seq_stop,
  558. .show = uv_ptc_seq_show
  559. };
  560. static int uv_ptc_proc_open(struct inode *inode, struct file *file)
  561. {
  562. return seq_open(file, &uv_ptc_seq_ops);
  563. }
  564. static const struct file_operations proc_uv_ptc_operations = {
  565. .open = uv_ptc_proc_open,
  566. .read = seq_read,
  567. .write = uv_ptc_proc_write,
  568. .llseek = seq_lseek,
  569. .release = seq_release,
  570. };
  571. static int __init uv_ptc_init(void)
  572. {
  573. struct proc_dir_entry *proc_uv_ptc;
  574. if (!is_uv_system())
  575. return 0;
  576. proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
  577. &proc_uv_ptc_operations);
  578. if (!proc_uv_ptc) {
  579. printk(KERN_ERR "unable to create %s proc entry\n",
  580. UV_PTC_BASENAME);
  581. return -EINVAL;
  582. }
  583. return 0;
  584. }
  585. /*
  586. * begin the initialization of the per-blade control structures
  587. */
  588. static struct bau_control * __init uv_table_bases_init(int blade, int node)
  589. {
  590. int i;
  591. struct bau_msg_status *msp;
  592. struct bau_control *bau_tabp;
  593. bau_tabp =
  594. kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node);
  595. BUG_ON(!bau_tabp);
  596. bau_tabp->msg_statuses =
  597. kmalloc_node(sizeof(struct bau_msg_status) *
  598. DEST_Q_SIZE, GFP_KERNEL, node);
  599. BUG_ON(!bau_tabp->msg_statuses);
  600. for (i = 0, msp = bau_tabp->msg_statuses; i < DEST_Q_SIZE; i++, msp++)
  601. bau_cpubits_clear(&msp->seen_by, (int)
  602. uv_blade_nr_possible_cpus(blade));
  603. uv_bau_table_bases[blade] = bau_tabp;
  604. return bau_tabp;
  605. }
  606. /*
  607. * finish the initialization of the per-blade control structures
  608. */
  609. static void __init
  610. uv_table_bases_finish(int blade,
  611. struct bau_control *bau_tablesp,
  612. struct bau_desc *adp)
  613. {
  614. struct bau_control *bcp;
  615. int cpu;
  616. for_each_present_cpu(cpu) {
  617. if (blade != uv_cpu_to_blade_id(cpu))
  618. continue;
  619. bcp = (struct bau_control *)&per_cpu(bau_control, cpu);
  620. bcp->bau_msg_head = bau_tablesp->va_queue_first;
  621. bcp->va_queue_first = bau_tablesp->va_queue_first;
  622. bcp->va_queue_last = bau_tablesp->va_queue_last;
  623. bcp->msg_statuses = bau_tablesp->msg_statuses;
  624. bcp->descriptor_base = adp;
  625. }
  626. }
  627. /*
  628. * initialize the sending side's sending buffers
  629. */
  630. static struct bau_desc * __init
  631. uv_activation_descriptor_init(int node, int pnode)
  632. {
  633. int i;
  634. unsigned long pa;
  635. unsigned long m;
  636. unsigned long n;
  637. struct bau_desc *adp;
  638. struct bau_desc *ad2;
  639. /*
  640. * each bau_desc is 64 bytes; there are 8 (UV_ITEMS_PER_DESCRIPTOR)
  641. * per cpu; and up to 32 (UV_ADP_SIZE) cpu's per blade
  642. */
  643. adp = (struct bau_desc *)kmalloc_node(sizeof(struct bau_desc)*
  644. UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR, GFP_KERNEL, node);
  645. BUG_ON(!adp);
  646. pa = uv_gpa(adp); /* need the real nasid*/
  647. n = uv_gpa_to_pnode(pa);
  648. m = pa & uv_mmask;
  649. uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE,
  650. (n << UV_DESC_BASE_PNODE_SHIFT | m));
  651. /*
  652. * initializing all 8 (UV_ITEMS_PER_DESCRIPTOR) descriptors for each
  653. * cpu even though we only use the first one; one descriptor can
  654. * describe a broadcast to 256 nodes.
  655. */
  656. for (i = 0, ad2 = adp; i < (UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR);
  657. i++, ad2++) {
  658. memset(ad2, 0, sizeof(struct bau_desc));
  659. ad2->header.sw_ack_flag = 1;
  660. /*
  661. * base_dest_nodeid is the first node in the partition, so
  662. * the bit map will indicate partition-relative node numbers.
  663. * note that base_dest_nodeid is actually a nasid.
  664. */
  665. ad2->header.base_dest_nodeid = uv_partition_base_pnode << 1;
  666. ad2->header.dest_subnodeid = 0x10; /* the LB */
  667. ad2->header.command = UV_NET_ENDPOINT_INTD;
  668. ad2->header.int_both = 1;
  669. /*
  670. * all others need to be set to zero:
  671. * fairness chaining multilevel count replied_to
  672. */
  673. }
  674. return adp;
  675. }
  676. /*
  677. * initialize the destination side's receiving buffers
  678. */
  679. static struct bau_payload_queue_entry * __init
  680. uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp)
  681. {
  682. struct bau_payload_queue_entry *pqp;
  683. unsigned long pa;
  684. int pn;
  685. char *cp;
  686. pqp = (struct bau_payload_queue_entry *) kmalloc_node(
  687. (DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry),
  688. GFP_KERNEL, node);
  689. BUG_ON(!pqp);
  690. cp = (char *)pqp + 31;
  691. pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
  692. bau_tablesp->va_queue_first = pqp;
  693. /*
  694. * need the pnode of where the memory was really allocated
  695. */
  696. pa = uv_gpa(pqp);
  697. pn = uv_gpa_to_pnode(pa);
  698. uv_write_global_mmr64(pnode,
  699. UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
  700. ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) |
  701. uv_physnodeaddr(pqp));
  702. uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
  703. uv_physnodeaddr(pqp));
  704. bau_tablesp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
  705. uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
  706. (unsigned long)
  707. uv_physnodeaddr(bau_tablesp->va_queue_last));
  708. memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
  709. return pqp;
  710. }
  711. /*
  712. * Initialization of each UV blade's structures
  713. */
  714. static int __init uv_init_blade(int blade)
  715. {
  716. int node;
  717. int pnode;
  718. unsigned long pa;
  719. unsigned long apicid;
  720. struct bau_desc *adp;
  721. struct bau_payload_queue_entry *pqp;
  722. struct bau_control *bau_tablesp;
  723. node = blade_to_first_node(blade);
  724. bau_tablesp = uv_table_bases_init(blade, node);
  725. pnode = uv_blade_to_pnode(blade);
  726. adp = uv_activation_descriptor_init(node, pnode);
  727. pqp = uv_payload_queue_init(node, pnode, bau_tablesp);
  728. uv_table_bases_finish(blade, bau_tablesp, adp);
  729. /*
  730. * the below initialization can't be in firmware because the
  731. * messaging IRQ will be determined by the OS
  732. */
  733. apicid = blade_to_first_apicid(blade);
  734. pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
  735. uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
  736. ((apicid << 32) | UV_BAU_MESSAGE));
  737. return 0;
  738. }
  739. /*
  740. * Initialization of BAU-related structures
  741. */
  742. static int __init uv_bau_init(void)
  743. {
  744. int blade;
  745. int nblades;
  746. int cur_cpu;
  747. if (!is_uv_system())
  748. return 0;
  749. for_each_possible_cpu(cur_cpu)
  750. zalloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask, cur_cpu),
  751. GFP_KERNEL, cpu_to_node(cur_cpu));
  752. uv_bau_retry_limit = 1;
  753. uv_mmask = (1UL << uv_hub_info->m_val) - 1;
  754. nblades = uv_num_possible_blades();
  755. uv_bau_table_bases = (struct bau_control **)
  756. kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
  757. BUG_ON(!uv_bau_table_bases);
  758. uv_partition_base_pnode = 0x7fffffff;
  759. for (blade = 0; blade < nblades; blade++)
  760. if (uv_blade_nr_possible_cpus(blade) &&
  761. (uv_blade_to_pnode(blade) < uv_partition_base_pnode))
  762. uv_partition_base_pnode = uv_blade_to_pnode(blade);
  763. for (blade = 0; blade < nblades; blade++)
  764. if (uv_blade_nr_possible_cpus(blade))
  765. uv_init_blade(blade);
  766. alloc_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
  767. uv_enable_timeouts();
  768. return 0;
  769. }
  770. __initcall(uv_bau_init);
  771. __initcall(uv_ptc_init);