perf_event_amd.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422
  1. #ifdef CONFIG_CPU_SUP_AMD
  2. static DEFINE_RAW_SPINLOCK(amd_nb_lock);
  3. static __initconst u64 amd_hw_cache_event_ids
  4. [PERF_COUNT_HW_CACHE_MAX]
  5. [PERF_COUNT_HW_CACHE_OP_MAX]
  6. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  7. {
  8. [ C(L1D) ] = {
  9. [ C(OP_READ) ] = {
  10. [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
  11. [ C(RESULT_MISS) ] = 0x0041, /* Data Cache Misses */
  12. },
  13. [ C(OP_WRITE) ] = {
  14. [ C(RESULT_ACCESS) ] = 0x0142, /* Data Cache Refills :system */
  15. [ C(RESULT_MISS) ] = 0,
  16. },
  17. [ C(OP_PREFETCH) ] = {
  18. [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
  19. [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
  20. },
  21. },
  22. [ C(L1I ) ] = {
  23. [ C(OP_READ) ] = {
  24. [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
  25. [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
  26. },
  27. [ C(OP_WRITE) ] = {
  28. [ C(RESULT_ACCESS) ] = -1,
  29. [ C(RESULT_MISS) ] = -1,
  30. },
  31. [ C(OP_PREFETCH) ] = {
  32. [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
  33. [ C(RESULT_MISS) ] = 0,
  34. },
  35. },
  36. [ C(LL ) ] = {
  37. [ C(OP_READ) ] = {
  38. [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
  39. [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
  40. },
  41. [ C(OP_WRITE) ] = {
  42. [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
  43. [ C(RESULT_MISS) ] = 0,
  44. },
  45. [ C(OP_PREFETCH) ] = {
  46. [ C(RESULT_ACCESS) ] = 0,
  47. [ C(RESULT_MISS) ] = 0,
  48. },
  49. },
  50. [ C(DTLB) ] = {
  51. [ C(OP_READ) ] = {
  52. [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
  53. [ C(RESULT_MISS) ] = 0x0046, /* L1 DTLB and L2 DLTB Miss */
  54. },
  55. [ C(OP_WRITE) ] = {
  56. [ C(RESULT_ACCESS) ] = 0,
  57. [ C(RESULT_MISS) ] = 0,
  58. },
  59. [ C(OP_PREFETCH) ] = {
  60. [ C(RESULT_ACCESS) ] = 0,
  61. [ C(RESULT_MISS) ] = 0,
  62. },
  63. },
  64. [ C(ITLB) ] = {
  65. [ C(OP_READ) ] = {
  66. [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
  67. [ C(RESULT_MISS) ] = 0x0085, /* Instr. fetch ITLB misses */
  68. },
  69. [ C(OP_WRITE) ] = {
  70. [ C(RESULT_ACCESS) ] = -1,
  71. [ C(RESULT_MISS) ] = -1,
  72. },
  73. [ C(OP_PREFETCH) ] = {
  74. [ C(RESULT_ACCESS) ] = -1,
  75. [ C(RESULT_MISS) ] = -1,
  76. },
  77. },
  78. [ C(BPU ) ] = {
  79. [ C(OP_READ) ] = {
  80. [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
  81. [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
  82. },
  83. [ C(OP_WRITE) ] = {
  84. [ C(RESULT_ACCESS) ] = -1,
  85. [ C(RESULT_MISS) ] = -1,
  86. },
  87. [ C(OP_PREFETCH) ] = {
  88. [ C(RESULT_ACCESS) ] = -1,
  89. [ C(RESULT_MISS) ] = -1,
  90. },
  91. },
  92. };
  93. /*
  94. * AMD Performance Monitor K7 and later.
  95. */
  96. static const u64 amd_perfmon_event_map[] =
  97. {
  98. [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
  99. [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
  100. [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0080,
  101. [PERF_COUNT_HW_CACHE_MISSES] = 0x0081,
  102. [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
  103. [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
  104. };
  105. static u64 amd_pmu_event_map(int hw_event)
  106. {
  107. return amd_perfmon_event_map[hw_event];
  108. }
  109. static u64 amd_pmu_raw_event(u64 hw_event)
  110. {
  111. #define K7_EVNTSEL_EVENT_MASK 0xF000000FFULL
  112. #define K7_EVNTSEL_UNIT_MASK 0x00000FF00ULL
  113. #define K7_EVNTSEL_EDGE_MASK 0x000040000ULL
  114. #define K7_EVNTSEL_INV_MASK 0x000800000ULL
  115. #define K7_EVNTSEL_REG_MASK 0x0FF000000ULL
  116. #define K7_EVNTSEL_MASK \
  117. (K7_EVNTSEL_EVENT_MASK | \
  118. K7_EVNTSEL_UNIT_MASK | \
  119. K7_EVNTSEL_EDGE_MASK | \
  120. K7_EVNTSEL_INV_MASK | \
  121. K7_EVNTSEL_REG_MASK)
  122. return hw_event & K7_EVNTSEL_MASK;
  123. }
  124. /*
  125. * AMD64 events are detected based on their event codes.
  126. */
  127. static inline int amd_is_nb_event(struct hw_perf_event *hwc)
  128. {
  129. return (hwc->config & 0xe0) == 0xe0;
  130. }
  131. static inline int amd_has_nb(struct cpu_hw_events *cpuc)
  132. {
  133. struct amd_nb *nb = cpuc->amd_nb;
  134. return nb && nb->nb_id != -1;
  135. }
  136. static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
  137. struct perf_event *event)
  138. {
  139. struct hw_perf_event *hwc = &event->hw;
  140. struct amd_nb *nb = cpuc->amd_nb;
  141. int i;
  142. /*
  143. * only care about NB events
  144. */
  145. if (!(amd_has_nb(cpuc) && amd_is_nb_event(hwc)))
  146. return;
  147. /*
  148. * need to scan whole list because event may not have
  149. * been assigned during scheduling
  150. *
  151. * no race condition possible because event can only
  152. * be removed on one CPU at a time AND PMU is disabled
  153. * when we come here
  154. */
  155. for (i = 0; i < x86_pmu.num_events; i++) {
  156. if (nb->owners[i] == event) {
  157. cmpxchg(nb->owners+i, event, NULL);
  158. break;
  159. }
  160. }
  161. }
  162. /*
  163. * AMD64 NorthBridge events need special treatment because
  164. * counter access needs to be synchronized across all cores
  165. * of a package. Refer to BKDG section 3.12
  166. *
  167. * NB events are events measuring L3 cache, Hypertransport
  168. * traffic. They are identified by an event code >= 0xe00.
  169. * They measure events on the NorthBride which is shared
  170. * by all cores on a package. NB events are counted on a
  171. * shared set of counters. When a NB event is programmed
  172. * in a counter, the data actually comes from a shared
  173. * counter. Thus, access to those counters needs to be
  174. * synchronized.
  175. *
  176. * We implement the synchronization such that no two cores
  177. * can be measuring NB events using the same counters. Thus,
  178. * we maintain a per-NB allocation table. The available slot
  179. * is propagated using the event_constraint structure.
  180. *
  181. * We provide only one choice for each NB event based on
  182. * the fact that only NB events have restrictions. Consequently,
  183. * if a counter is available, there is a guarantee the NB event
  184. * will be assigned to it. If no slot is available, an empty
  185. * constraint is returned and scheduling will eventually fail
  186. * for this event.
  187. *
  188. * Note that all cores attached the same NB compete for the same
  189. * counters to host NB events, this is why we use atomic ops. Some
  190. * multi-chip CPUs may have more than one NB.
  191. *
  192. * Given that resources are allocated (cmpxchg), they must be
  193. * eventually freed for others to use. This is accomplished by
  194. * calling amd_put_event_constraints().
  195. *
  196. * Non NB events are not impacted by this restriction.
  197. */
  198. static struct event_constraint *
  199. amd_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  200. {
  201. struct hw_perf_event *hwc = &event->hw;
  202. struct amd_nb *nb = cpuc->amd_nb;
  203. struct perf_event *old = NULL;
  204. int max = x86_pmu.num_events;
  205. int i, j, k = -1;
  206. /*
  207. * if not NB event or no NB, then no constraints
  208. */
  209. if (!(amd_has_nb(cpuc) && amd_is_nb_event(hwc)))
  210. return &unconstrained;
  211. /*
  212. * detect if already present, if so reuse
  213. *
  214. * cannot merge with actual allocation
  215. * because of possible holes
  216. *
  217. * event can already be present yet not assigned (in hwc->idx)
  218. * because of successive calls to x86_schedule_events() from
  219. * hw_perf_group_sched_in() without hw_perf_enable()
  220. */
  221. for (i = 0; i < max; i++) {
  222. /*
  223. * keep track of first free slot
  224. */
  225. if (k == -1 && !nb->owners[i])
  226. k = i;
  227. /* already present, reuse */
  228. if (nb->owners[i] == event)
  229. goto done;
  230. }
  231. /*
  232. * not present, so grab a new slot
  233. * starting either at:
  234. */
  235. if (hwc->idx != -1) {
  236. /* previous assignment */
  237. i = hwc->idx;
  238. } else if (k != -1) {
  239. /* start from free slot found */
  240. i = k;
  241. } else {
  242. /*
  243. * event not found, no slot found in
  244. * first pass, try again from the
  245. * beginning
  246. */
  247. i = 0;
  248. }
  249. j = i;
  250. do {
  251. old = cmpxchg(nb->owners+i, NULL, event);
  252. if (!old)
  253. break;
  254. if (++i == max)
  255. i = 0;
  256. } while (i != j);
  257. done:
  258. if (!old)
  259. return &nb->event_constraints[i];
  260. return &emptyconstraint;
  261. }
  262. static struct amd_nb *amd_alloc_nb(int cpu, int nb_id)
  263. {
  264. struct amd_nb *nb;
  265. int i;
  266. nb = kmalloc(sizeof(struct amd_nb), GFP_KERNEL);
  267. if (!nb)
  268. return NULL;
  269. memset(nb, 0, sizeof(*nb));
  270. nb->nb_id = nb_id;
  271. /*
  272. * initialize all possible NB constraints
  273. */
  274. for (i = 0; i < x86_pmu.num_events; i++) {
  275. __set_bit(i, nb->event_constraints[i].idxmsk);
  276. nb->event_constraints[i].weight = 1;
  277. }
  278. return nb;
  279. }
  280. static int amd_pmu_cpu_prepare(int cpu)
  281. {
  282. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  283. WARN_ON_ONCE(cpuc->amd_nb);
  284. if (boot_cpu_data.x86_max_cores < 2)
  285. return NOTIFY_OK;
  286. cpuc->amd_nb = amd_alloc_nb(cpu, -1);
  287. if (!cpuc->amd_nb)
  288. return NOTIFY_BAD;
  289. return NOTIFY_OK;
  290. }
  291. static void amd_pmu_cpu_starting(int cpu)
  292. {
  293. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  294. struct amd_nb *nb;
  295. int i, nb_id;
  296. if (boot_cpu_data.x86_max_cores < 2)
  297. return;
  298. nb_id = amd_get_nb_id(cpu);
  299. WARN_ON_ONCE(nb_id == BAD_APICID);
  300. raw_spin_lock(&amd_nb_lock);
  301. for_each_online_cpu(i) {
  302. nb = per_cpu(cpu_hw_events, i).amd_nb;
  303. if (WARN_ON_ONCE(!nb))
  304. continue;
  305. if (nb->nb_id == nb_id) {
  306. kfree(cpuc->amd_nb);
  307. cpuc->amd_nb = nb;
  308. break;
  309. }
  310. }
  311. cpuc->amd_nb->nb_id = nb_id;
  312. cpuc->amd_nb->refcnt++;
  313. raw_spin_unlock(&amd_nb_lock);
  314. }
  315. static void amd_pmu_cpu_dead(int cpu)
  316. {
  317. struct cpu_hw_events *cpuhw;
  318. if (boot_cpu_data.x86_max_cores < 2)
  319. return;
  320. cpuhw = &per_cpu(cpu_hw_events, cpu);
  321. raw_spin_lock(&amd_nb_lock);
  322. if (cpuhw->amd_nb) {
  323. struct amd_nb *nb = cpuhw->amd_nb;
  324. if (nb->nb_id == -1 || --nb->refcnt == 0)
  325. kfree(nb);
  326. cpuhw->amd_nb = NULL;
  327. }
  328. raw_spin_unlock(&amd_nb_lock);
  329. }
  330. static __initconst struct x86_pmu amd_pmu = {
  331. .name = "AMD",
  332. .handle_irq = x86_pmu_handle_irq,
  333. .disable_all = x86_pmu_disable_all,
  334. .enable_all = x86_pmu_enable_all,
  335. .enable = x86_pmu_enable_event,
  336. .disable = x86_pmu_disable_event,
  337. .eventsel = MSR_K7_EVNTSEL0,
  338. .perfctr = MSR_K7_PERFCTR0,
  339. .event_map = amd_pmu_event_map,
  340. .raw_event = amd_pmu_raw_event,
  341. .max_events = ARRAY_SIZE(amd_perfmon_event_map),
  342. .num_events = 4,
  343. .event_bits = 48,
  344. .event_mask = (1ULL << 48) - 1,
  345. .apic = 1,
  346. /* use highest bit to detect overflow */
  347. .max_period = (1ULL << 47) - 1,
  348. .get_event_constraints = amd_get_event_constraints,
  349. .put_event_constraints = amd_put_event_constraints,
  350. .cpu_prepare = amd_pmu_cpu_prepare,
  351. .cpu_starting = amd_pmu_cpu_starting,
  352. .cpu_dead = amd_pmu_cpu_dead,
  353. };
  354. static __init int amd_pmu_init(void)
  355. {
  356. /* Performance-monitoring supported from K7 and later: */
  357. if (boot_cpu_data.x86 < 6)
  358. return -ENODEV;
  359. x86_pmu = amd_pmu;
  360. /* Events are common for all AMDs */
  361. memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
  362. sizeof(hw_cache_event_ids));
  363. return 0;
  364. }
  365. #else /* CONFIG_CPU_SUP_AMD */
  366. static int amd_pmu_init(void)
  367. {
  368. return 0;
  369. }
  370. #endif