perf_event.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752
  1. /*
  2. * Performance events x86 architecture code
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2009 Jaswinder Singh Rajput
  7. * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  8. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  9. * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
  10. * Copyright (C) 2009 Google, Inc., Stephane Eranian
  11. *
  12. * For licencing details see kernel-base/COPYING
  13. */
  14. #include <linux/perf_event.h>
  15. #include <linux/capability.h>
  16. #include <linux/notifier.h>
  17. #include <linux/hardirq.h>
  18. #include <linux/kprobes.h>
  19. #include <linux/module.h>
  20. #include <linux/kdebug.h>
  21. #include <linux/sched.h>
  22. #include <linux/uaccess.h>
  23. #include <linux/slab.h>
  24. #include <linux/highmem.h>
  25. #include <linux/cpu.h>
  26. #include <linux/bitops.h>
  27. #include <asm/apic.h>
  28. #include <asm/stacktrace.h>
  29. #include <asm/nmi.h>
  30. #include <asm/compat.h>
  31. static u64 perf_event_mask __read_mostly;
  32. /* The maximal number of PEBS events: */
  33. #define MAX_PEBS_EVENTS 4
  34. /* The size of a BTS record in bytes: */
  35. #define BTS_RECORD_SIZE 24
  36. /* The size of a per-cpu BTS buffer in bytes: */
  37. #define BTS_BUFFER_SIZE (BTS_RECORD_SIZE * 2048)
  38. /* The BTS overflow threshold in bytes from the end of the buffer: */
  39. #define BTS_OVFL_TH (BTS_RECORD_SIZE * 128)
  40. /*
  41. * Bits in the debugctlmsr controlling branch tracing.
  42. */
  43. #define X86_DEBUGCTL_TR (1 << 6)
  44. #define X86_DEBUGCTL_BTS (1 << 7)
  45. #define X86_DEBUGCTL_BTINT (1 << 8)
  46. #define X86_DEBUGCTL_BTS_OFF_OS (1 << 9)
  47. #define X86_DEBUGCTL_BTS_OFF_USR (1 << 10)
  48. /*
  49. * A debug store configuration.
  50. *
  51. * We only support architectures that use 64bit fields.
  52. */
  53. struct debug_store {
  54. u64 bts_buffer_base;
  55. u64 bts_index;
  56. u64 bts_absolute_maximum;
  57. u64 bts_interrupt_threshold;
  58. u64 pebs_buffer_base;
  59. u64 pebs_index;
  60. u64 pebs_absolute_maximum;
  61. u64 pebs_interrupt_threshold;
  62. u64 pebs_event_reset[MAX_PEBS_EVENTS];
  63. };
  64. struct event_constraint {
  65. union {
  66. unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  67. u64 idxmsk64;
  68. };
  69. u64 code;
  70. u64 cmask;
  71. int weight;
  72. };
  73. struct amd_nb {
  74. int nb_id; /* NorthBridge id */
  75. int refcnt; /* reference count */
  76. struct perf_event *owners[X86_PMC_IDX_MAX];
  77. struct event_constraint event_constraints[X86_PMC_IDX_MAX];
  78. };
  79. struct cpu_hw_events {
  80. struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
  81. unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  82. unsigned long interrupts;
  83. int enabled;
  84. struct debug_store *ds;
  85. int n_events;
  86. int n_added;
  87. int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
  88. u64 tags[X86_PMC_IDX_MAX];
  89. struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
  90. struct amd_nb *amd_nb;
  91. };
  92. #define __EVENT_CONSTRAINT(c, n, m, w) {\
  93. { .idxmsk64 = (n) }, \
  94. .code = (c), \
  95. .cmask = (m), \
  96. .weight = (w), \
  97. }
  98. #define EVENT_CONSTRAINT(c, n, m) \
  99. __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
  100. #define INTEL_EVENT_CONSTRAINT(c, n) \
  101. EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVTSEL_MASK)
  102. #define FIXED_EVENT_CONSTRAINT(c, n) \
  103. EVENT_CONSTRAINT(c, (1ULL << (32+n)), INTEL_ARCH_FIXED_MASK)
  104. #define EVENT_CONSTRAINT_END \
  105. EVENT_CONSTRAINT(0, 0, 0)
  106. #define for_each_event_constraint(e, c) \
  107. for ((e) = (c); (e)->cmask; (e)++)
  108. /*
  109. * struct x86_pmu - generic x86 pmu
  110. */
  111. struct x86_pmu {
  112. const char *name;
  113. int version;
  114. int (*handle_irq)(struct pt_regs *);
  115. void (*disable_all)(void);
  116. void (*enable_all)(void);
  117. void (*enable)(struct perf_event *);
  118. void (*disable)(struct perf_event *);
  119. unsigned eventsel;
  120. unsigned perfctr;
  121. u64 (*event_map)(int);
  122. u64 (*raw_event)(u64);
  123. int max_events;
  124. int num_events;
  125. int num_events_fixed;
  126. int event_bits;
  127. u64 event_mask;
  128. int apic;
  129. u64 max_period;
  130. u64 intel_ctrl;
  131. void (*enable_bts)(u64 config);
  132. void (*disable_bts)(void);
  133. struct event_constraint *
  134. (*get_event_constraints)(struct cpu_hw_events *cpuc,
  135. struct perf_event *event);
  136. void (*put_event_constraints)(struct cpu_hw_events *cpuc,
  137. struct perf_event *event);
  138. struct event_constraint *event_constraints;
  139. int (*cpu_prepare)(int cpu);
  140. void (*cpu_starting)(int cpu);
  141. void (*cpu_dying)(int cpu);
  142. void (*cpu_dead)(int cpu);
  143. };
  144. static struct x86_pmu x86_pmu __read_mostly;
  145. static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  146. .enabled = 1,
  147. };
  148. static int x86_perf_event_set_period(struct perf_event *event);
  149. /*
  150. * Generalized hw caching related hw_event table, filled
  151. * in on a per model basis. A value of 0 means
  152. * 'not supported', -1 means 'hw_event makes no sense on
  153. * this CPU', any other value means the raw hw_event
  154. * ID.
  155. */
  156. #define C(x) PERF_COUNT_HW_CACHE_##x
  157. static u64 __read_mostly hw_cache_event_ids
  158. [PERF_COUNT_HW_CACHE_MAX]
  159. [PERF_COUNT_HW_CACHE_OP_MAX]
  160. [PERF_COUNT_HW_CACHE_RESULT_MAX];
  161. /*
  162. * Propagate event elapsed time into the generic event.
  163. * Can only be executed on the CPU where the event is active.
  164. * Returns the delta events processed.
  165. */
  166. static u64
  167. x86_perf_event_update(struct perf_event *event)
  168. {
  169. struct hw_perf_event *hwc = &event->hw;
  170. int shift = 64 - x86_pmu.event_bits;
  171. u64 prev_raw_count, new_raw_count;
  172. int idx = hwc->idx;
  173. s64 delta;
  174. if (idx == X86_PMC_IDX_FIXED_BTS)
  175. return 0;
  176. /*
  177. * Careful: an NMI might modify the previous event value.
  178. *
  179. * Our tactic to handle this is to first atomically read and
  180. * exchange a new raw count - then add that new-prev delta
  181. * count to the generic event atomically:
  182. */
  183. again:
  184. prev_raw_count = atomic64_read(&hwc->prev_count);
  185. rdmsrl(hwc->event_base + idx, new_raw_count);
  186. if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
  187. new_raw_count) != prev_raw_count)
  188. goto again;
  189. /*
  190. * Now we have the new raw value and have updated the prev
  191. * timestamp already. We can now calculate the elapsed delta
  192. * (event-)time and add that to the generic event.
  193. *
  194. * Careful, not all hw sign-extends above the physical width
  195. * of the count.
  196. */
  197. delta = (new_raw_count << shift) - (prev_raw_count << shift);
  198. delta >>= shift;
  199. atomic64_add(delta, &event->count);
  200. atomic64_sub(delta, &hwc->period_left);
  201. return new_raw_count;
  202. }
  203. static atomic_t active_events;
  204. static DEFINE_MUTEX(pmc_reserve_mutex);
  205. static bool reserve_pmc_hardware(void)
  206. {
  207. #ifdef CONFIG_X86_LOCAL_APIC
  208. int i;
  209. if (nmi_watchdog == NMI_LOCAL_APIC)
  210. disable_lapic_nmi_watchdog();
  211. for (i = 0; i < x86_pmu.num_events; i++) {
  212. if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
  213. goto perfctr_fail;
  214. }
  215. for (i = 0; i < x86_pmu.num_events; i++) {
  216. if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
  217. goto eventsel_fail;
  218. }
  219. #endif
  220. return true;
  221. #ifdef CONFIG_X86_LOCAL_APIC
  222. eventsel_fail:
  223. for (i--; i >= 0; i--)
  224. release_evntsel_nmi(x86_pmu.eventsel + i);
  225. i = x86_pmu.num_events;
  226. perfctr_fail:
  227. for (i--; i >= 0; i--)
  228. release_perfctr_nmi(x86_pmu.perfctr + i);
  229. if (nmi_watchdog == NMI_LOCAL_APIC)
  230. enable_lapic_nmi_watchdog();
  231. return false;
  232. #endif
  233. }
  234. static void release_pmc_hardware(void)
  235. {
  236. #ifdef CONFIG_X86_LOCAL_APIC
  237. int i;
  238. for (i = 0; i < x86_pmu.num_events; i++) {
  239. release_perfctr_nmi(x86_pmu.perfctr + i);
  240. release_evntsel_nmi(x86_pmu.eventsel + i);
  241. }
  242. if (nmi_watchdog == NMI_LOCAL_APIC)
  243. enable_lapic_nmi_watchdog();
  244. #endif
  245. }
  246. static inline bool bts_available(void)
  247. {
  248. return x86_pmu.enable_bts != NULL;
  249. }
  250. static void init_debug_store_on_cpu(int cpu)
  251. {
  252. struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
  253. if (!ds)
  254. return;
  255. wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
  256. (u32)((u64)(unsigned long)ds),
  257. (u32)((u64)(unsigned long)ds >> 32));
  258. }
  259. static void fini_debug_store_on_cpu(int cpu)
  260. {
  261. if (!per_cpu(cpu_hw_events, cpu).ds)
  262. return;
  263. wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
  264. }
  265. static void release_bts_hardware(void)
  266. {
  267. int cpu;
  268. if (!bts_available())
  269. return;
  270. get_online_cpus();
  271. for_each_online_cpu(cpu)
  272. fini_debug_store_on_cpu(cpu);
  273. for_each_possible_cpu(cpu) {
  274. struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
  275. if (!ds)
  276. continue;
  277. per_cpu(cpu_hw_events, cpu).ds = NULL;
  278. kfree((void *)(unsigned long)ds->bts_buffer_base);
  279. kfree(ds);
  280. }
  281. put_online_cpus();
  282. }
  283. static int reserve_bts_hardware(void)
  284. {
  285. int cpu, err = 0;
  286. if (!bts_available())
  287. return 0;
  288. get_online_cpus();
  289. for_each_possible_cpu(cpu) {
  290. struct debug_store *ds;
  291. void *buffer;
  292. err = -ENOMEM;
  293. buffer = kzalloc(BTS_BUFFER_SIZE, GFP_KERNEL);
  294. if (unlikely(!buffer))
  295. break;
  296. ds = kzalloc(sizeof(*ds), GFP_KERNEL);
  297. if (unlikely(!ds)) {
  298. kfree(buffer);
  299. break;
  300. }
  301. ds->bts_buffer_base = (u64)(unsigned long)buffer;
  302. ds->bts_index = ds->bts_buffer_base;
  303. ds->bts_absolute_maximum =
  304. ds->bts_buffer_base + BTS_BUFFER_SIZE;
  305. ds->bts_interrupt_threshold =
  306. ds->bts_absolute_maximum - BTS_OVFL_TH;
  307. per_cpu(cpu_hw_events, cpu).ds = ds;
  308. err = 0;
  309. }
  310. if (err)
  311. release_bts_hardware();
  312. else {
  313. for_each_online_cpu(cpu)
  314. init_debug_store_on_cpu(cpu);
  315. }
  316. put_online_cpus();
  317. return err;
  318. }
  319. static void hw_perf_event_destroy(struct perf_event *event)
  320. {
  321. if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
  322. release_pmc_hardware();
  323. release_bts_hardware();
  324. mutex_unlock(&pmc_reserve_mutex);
  325. }
  326. }
  327. static inline int x86_pmu_initialized(void)
  328. {
  329. return x86_pmu.handle_irq != NULL;
  330. }
  331. static inline int
  332. set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
  333. {
  334. unsigned int cache_type, cache_op, cache_result;
  335. u64 config, val;
  336. config = attr->config;
  337. cache_type = (config >> 0) & 0xff;
  338. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  339. return -EINVAL;
  340. cache_op = (config >> 8) & 0xff;
  341. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  342. return -EINVAL;
  343. cache_result = (config >> 16) & 0xff;
  344. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  345. return -EINVAL;
  346. val = hw_cache_event_ids[cache_type][cache_op][cache_result];
  347. if (val == 0)
  348. return -ENOENT;
  349. if (val == -1)
  350. return -EINVAL;
  351. hwc->config |= val;
  352. return 0;
  353. }
  354. /*
  355. * Setup the hardware configuration for a given attr_type
  356. */
  357. static int __hw_perf_event_init(struct perf_event *event)
  358. {
  359. struct perf_event_attr *attr = &event->attr;
  360. struct hw_perf_event *hwc = &event->hw;
  361. u64 config;
  362. int err;
  363. if (!x86_pmu_initialized())
  364. return -ENODEV;
  365. err = 0;
  366. if (!atomic_inc_not_zero(&active_events)) {
  367. mutex_lock(&pmc_reserve_mutex);
  368. if (atomic_read(&active_events) == 0) {
  369. if (!reserve_pmc_hardware())
  370. err = -EBUSY;
  371. else
  372. err = reserve_bts_hardware();
  373. }
  374. if (!err)
  375. atomic_inc(&active_events);
  376. mutex_unlock(&pmc_reserve_mutex);
  377. }
  378. if (err)
  379. return err;
  380. event->destroy = hw_perf_event_destroy;
  381. /*
  382. * Generate PMC IRQs:
  383. * (keep 'enabled' bit clear for now)
  384. */
  385. hwc->config = ARCH_PERFMON_EVENTSEL_INT;
  386. hwc->idx = -1;
  387. hwc->last_cpu = -1;
  388. hwc->last_tag = ~0ULL;
  389. /*
  390. * Count user and OS events unless requested not to.
  391. */
  392. if (!attr->exclude_user)
  393. hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
  394. if (!attr->exclude_kernel)
  395. hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
  396. if (!hwc->sample_period) {
  397. hwc->sample_period = x86_pmu.max_period;
  398. hwc->last_period = hwc->sample_period;
  399. atomic64_set(&hwc->period_left, hwc->sample_period);
  400. } else {
  401. /*
  402. * If we have a PMU initialized but no APIC
  403. * interrupts, we cannot sample hardware
  404. * events (user-space has to fall back and
  405. * sample via a hrtimer based software event):
  406. */
  407. if (!x86_pmu.apic)
  408. return -EOPNOTSUPP;
  409. }
  410. /*
  411. * Raw hw_event type provide the config in the hw_event structure
  412. */
  413. if (attr->type == PERF_TYPE_RAW) {
  414. hwc->config |= x86_pmu.raw_event(attr->config);
  415. if ((hwc->config & ARCH_PERFMON_EVENTSEL_ANY) &&
  416. perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  417. return -EACCES;
  418. return 0;
  419. }
  420. if (attr->type == PERF_TYPE_HW_CACHE)
  421. return set_ext_hw_attr(hwc, attr);
  422. if (attr->config >= x86_pmu.max_events)
  423. return -EINVAL;
  424. /*
  425. * The generic map:
  426. */
  427. config = x86_pmu.event_map(attr->config);
  428. if (config == 0)
  429. return -ENOENT;
  430. if (config == -1LL)
  431. return -EINVAL;
  432. /*
  433. * Branch tracing:
  434. */
  435. if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
  436. (hwc->sample_period == 1)) {
  437. /* BTS is not supported by this architecture. */
  438. if (!bts_available())
  439. return -EOPNOTSUPP;
  440. /* BTS is currently only allowed for user-mode. */
  441. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  442. return -EOPNOTSUPP;
  443. }
  444. hwc->config |= config;
  445. return 0;
  446. }
  447. static void x86_pmu_disable_all(void)
  448. {
  449. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  450. int idx;
  451. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  452. u64 val;
  453. if (!test_bit(idx, cpuc->active_mask))
  454. continue;
  455. rdmsrl(x86_pmu.eventsel + idx, val);
  456. if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
  457. continue;
  458. val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  459. wrmsrl(x86_pmu.eventsel + idx, val);
  460. }
  461. }
  462. void hw_perf_disable(void)
  463. {
  464. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  465. if (!x86_pmu_initialized())
  466. return;
  467. if (!cpuc->enabled)
  468. return;
  469. cpuc->n_added = 0;
  470. cpuc->enabled = 0;
  471. barrier();
  472. x86_pmu.disable_all();
  473. }
  474. static void x86_pmu_enable_all(void)
  475. {
  476. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  477. int idx;
  478. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  479. struct perf_event *event = cpuc->events[idx];
  480. u64 val;
  481. if (!test_bit(idx, cpuc->active_mask))
  482. continue;
  483. val = event->hw.config;
  484. val |= ARCH_PERFMON_EVENTSEL_ENABLE;
  485. wrmsrl(x86_pmu.eventsel + idx, val);
  486. }
  487. }
  488. static const struct pmu pmu;
  489. static inline int is_x86_event(struct perf_event *event)
  490. {
  491. return event->pmu == &pmu;
  492. }
  493. static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
  494. {
  495. struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
  496. unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  497. int i, j, w, wmax, num = 0;
  498. struct hw_perf_event *hwc;
  499. bitmap_zero(used_mask, X86_PMC_IDX_MAX);
  500. for (i = 0; i < n; i++) {
  501. c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
  502. constraints[i] = c;
  503. }
  504. /*
  505. * fastpath, try to reuse previous register
  506. */
  507. for (i = 0; i < n; i++) {
  508. hwc = &cpuc->event_list[i]->hw;
  509. c = constraints[i];
  510. /* never assigned */
  511. if (hwc->idx == -1)
  512. break;
  513. /* constraint still honored */
  514. if (!test_bit(hwc->idx, c->idxmsk))
  515. break;
  516. /* not already used */
  517. if (test_bit(hwc->idx, used_mask))
  518. break;
  519. __set_bit(hwc->idx, used_mask);
  520. if (assign)
  521. assign[i] = hwc->idx;
  522. }
  523. if (i == n)
  524. goto done;
  525. /*
  526. * begin slow path
  527. */
  528. bitmap_zero(used_mask, X86_PMC_IDX_MAX);
  529. /*
  530. * weight = number of possible counters
  531. *
  532. * 1 = most constrained, only works on one counter
  533. * wmax = least constrained, works on any counter
  534. *
  535. * assign events to counters starting with most
  536. * constrained events.
  537. */
  538. wmax = x86_pmu.num_events;
  539. /*
  540. * when fixed event counters are present,
  541. * wmax is incremented by 1 to account
  542. * for one more choice
  543. */
  544. if (x86_pmu.num_events_fixed)
  545. wmax++;
  546. for (w = 1, num = n; num && w <= wmax; w++) {
  547. /* for each event */
  548. for (i = 0; num && i < n; i++) {
  549. c = constraints[i];
  550. hwc = &cpuc->event_list[i]->hw;
  551. if (c->weight != w)
  552. continue;
  553. for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
  554. if (!test_bit(j, used_mask))
  555. break;
  556. }
  557. if (j == X86_PMC_IDX_MAX)
  558. break;
  559. __set_bit(j, used_mask);
  560. if (assign)
  561. assign[i] = j;
  562. num--;
  563. }
  564. }
  565. done:
  566. /*
  567. * scheduling failed or is just a simulation,
  568. * free resources if necessary
  569. */
  570. if (!assign || num) {
  571. for (i = 0; i < n; i++) {
  572. if (x86_pmu.put_event_constraints)
  573. x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
  574. }
  575. }
  576. return num ? -ENOSPC : 0;
  577. }
  578. /*
  579. * dogrp: true if must collect siblings events (group)
  580. * returns total number of events and error code
  581. */
  582. static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
  583. {
  584. struct perf_event *event;
  585. int n, max_count;
  586. max_count = x86_pmu.num_events + x86_pmu.num_events_fixed;
  587. /* current number of events already accepted */
  588. n = cpuc->n_events;
  589. if (is_x86_event(leader)) {
  590. if (n >= max_count)
  591. return -ENOSPC;
  592. cpuc->event_list[n] = leader;
  593. n++;
  594. }
  595. if (!dogrp)
  596. return n;
  597. list_for_each_entry(event, &leader->sibling_list, group_entry) {
  598. if (!is_x86_event(event) ||
  599. event->state <= PERF_EVENT_STATE_OFF)
  600. continue;
  601. if (n >= max_count)
  602. return -ENOSPC;
  603. cpuc->event_list[n] = event;
  604. n++;
  605. }
  606. return n;
  607. }
  608. static inline void x86_assign_hw_event(struct perf_event *event,
  609. struct cpu_hw_events *cpuc, int i)
  610. {
  611. struct hw_perf_event *hwc = &event->hw;
  612. hwc->idx = cpuc->assign[i];
  613. hwc->last_cpu = smp_processor_id();
  614. hwc->last_tag = ++cpuc->tags[i];
  615. if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
  616. hwc->config_base = 0;
  617. hwc->event_base = 0;
  618. } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
  619. hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
  620. /*
  621. * We set it so that event_base + idx in wrmsr/rdmsr maps to
  622. * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
  623. */
  624. hwc->event_base =
  625. MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
  626. } else {
  627. hwc->config_base = x86_pmu.eventsel;
  628. hwc->event_base = x86_pmu.perfctr;
  629. }
  630. }
  631. static inline int match_prev_assignment(struct hw_perf_event *hwc,
  632. struct cpu_hw_events *cpuc,
  633. int i)
  634. {
  635. return hwc->idx == cpuc->assign[i] &&
  636. hwc->last_cpu == smp_processor_id() &&
  637. hwc->last_tag == cpuc->tags[i];
  638. }
  639. static int x86_pmu_start(struct perf_event *event);
  640. static void x86_pmu_stop(struct perf_event *event);
  641. void hw_perf_enable(void)
  642. {
  643. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  644. struct perf_event *event;
  645. struct hw_perf_event *hwc;
  646. int i;
  647. if (!x86_pmu_initialized())
  648. return;
  649. if (cpuc->enabled)
  650. return;
  651. if (cpuc->n_added) {
  652. int n_running = cpuc->n_events - cpuc->n_added;
  653. /*
  654. * apply assignment obtained either from
  655. * hw_perf_group_sched_in() or x86_pmu_enable()
  656. *
  657. * step1: save events moving to new counters
  658. * step2: reprogram moved events into new counters
  659. */
  660. for (i = 0; i < n_running; i++) {
  661. event = cpuc->event_list[i];
  662. hwc = &event->hw;
  663. /*
  664. * we can avoid reprogramming counter if:
  665. * - assigned same counter as last time
  666. * - running on same CPU as last time
  667. * - no other event has used the counter since
  668. */
  669. if (hwc->idx == -1 ||
  670. match_prev_assignment(hwc, cpuc, i))
  671. continue;
  672. x86_pmu_stop(event);
  673. }
  674. for (i = 0; i < cpuc->n_events; i++) {
  675. event = cpuc->event_list[i];
  676. hwc = &event->hw;
  677. if (!match_prev_assignment(hwc, cpuc, i))
  678. x86_assign_hw_event(event, cpuc, i);
  679. else if (i < n_running)
  680. continue;
  681. x86_pmu_start(event);
  682. }
  683. cpuc->n_added = 0;
  684. perf_events_lapic_init();
  685. }
  686. cpuc->enabled = 1;
  687. barrier();
  688. x86_pmu.enable_all();
  689. }
  690. static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc)
  691. {
  692. (void)checking_wrmsrl(hwc->config_base + hwc->idx,
  693. hwc->config | ARCH_PERFMON_EVENTSEL_ENABLE);
  694. }
  695. static inline void x86_pmu_disable_event(struct perf_event *event)
  696. {
  697. struct hw_perf_event *hwc = &event->hw;
  698. (void)checking_wrmsrl(hwc->config_base + hwc->idx, hwc->config);
  699. }
  700. static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
  701. /*
  702. * Set the next IRQ period, based on the hwc->period_left value.
  703. * To be called with the event disabled in hw:
  704. */
  705. static int
  706. x86_perf_event_set_period(struct perf_event *event)
  707. {
  708. struct hw_perf_event *hwc = &event->hw;
  709. s64 left = atomic64_read(&hwc->period_left);
  710. s64 period = hwc->sample_period;
  711. int err, ret = 0, idx = hwc->idx;
  712. if (idx == X86_PMC_IDX_FIXED_BTS)
  713. return 0;
  714. /*
  715. * If we are way outside a reasonable range then just skip forward:
  716. */
  717. if (unlikely(left <= -period)) {
  718. left = period;
  719. atomic64_set(&hwc->period_left, left);
  720. hwc->last_period = period;
  721. ret = 1;
  722. }
  723. if (unlikely(left <= 0)) {
  724. left += period;
  725. atomic64_set(&hwc->period_left, left);
  726. hwc->last_period = period;
  727. ret = 1;
  728. }
  729. /*
  730. * Quirk: certain CPUs dont like it if just 1 hw_event is left:
  731. */
  732. if (unlikely(left < 2))
  733. left = 2;
  734. if (left > x86_pmu.max_period)
  735. left = x86_pmu.max_period;
  736. per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
  737. /*
  738. * The hw event starts counting from this event offset,
  739. * mark it to be able to extra future deltas:
  740. */
  741. atomic64_set(&hwc->prev_count, (u64)-left);
  742. err = checking_wrmsrl(hwc->event_base + idx,
  743. (u64)(-left) & x86_pmu.event_mask);
  744. perf_event_update_userpage(event);
  745. return ret;
  746. }
  747. static void x86_pmu_enable_event(struct perf_event *event)
  748. {
  749. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  750. if (cpuc->enabled)
  751. __x86_pmu_enable_event(&event->hw);
  752. }
  753. /*
  754. * activate a single event
  755. *
  756. * The event is added to the group of enabled events
  757. * but only if it can be scehduled with existing events.
  758. *
  759. * Called with PMU disabled. If successful and return value 1,
  760. * then guaranteed to call perf_enable() and hw_perf_enable()
  761. */
  762. static int x86_pmu_enable(struct perf_event *event)
  763. {
  764. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  765. struct hw_perf_event *hwc;
  766. int assign[X86_PMC_IDX_MAX];
  767. int n, n0, ret;
  768. hwc = &event->hw;
  769. n0 = cpuc->n_events;
  770. n = collect_events(cpuc, event, false);
  771. if (n < 0)
  772. return n;
  773. ret = x86_schedule_events(cpuc, n, assign);
  774. if (ret)
  775. return ret;
  776. /*
  777. * copy new assignment, now we know it is possible
  778. * will be used by hw_perf_enable()
  779. */
  780. memcpy(cpuc->assign, assign, n*sizeof(int));
  781. cpuc->n_events = n;
  782. cpuc->n_added += n - n0;
  783. return 0;
  784. }
  785. static int x86_pmu_start(struct perf_event *event)
  786. {
  787. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  788. int idx = event->hw.idx;
  789. if (idx == -1)
  790. return -EAGAIN;
  791. x86_perf_event_set_period(event);
  792. cpuc->events[idx] = event;
  793. __set_bit(idx, cpuc->active_mask);
  794. x86_pmu.enable(event);
  795. perf_event_update_userpage(event);
  796. return 0;
  797. }
  798. static void x86_pmu_unthrottle(struct perf_event *event)
  799. {
  800. int ret = x86_pmu_start(event);
  801. WARN_ON_ONCE(ret);
  802. }
  803. void perf_event_print_debug(void)
  804. {
  805. u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
  806. struct cpu_hw_events *cpuc;
  807. unsigned long flags;
  808. int cpu, idx;
  809. if (!x86_pmu.num_events)
  810. return;
  811. local_irq_save(flags);
  812. cpu = smp_processor_id();
  813. cpuc = &per_cpu(cpu_hw_events, cpu);
  814. if (x86_pmu.version >= 2) {
  815. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
  816. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  817. rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
  818. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
  819. pr_info("\n");
  820. pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
  821. pr_info("CPU#%d: status: %016llx\n", cpu, status);
  822. pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
  823. pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
  824. }
  825. pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
  826. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  827. rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
  828. rdmsrl(x86_pmu.perfctr + idx, pmc_count);
  829. prev_left = per_cpu(pmc_prev_left[idx], cpu);
  830. pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
  831. cpu, idx, pmc_ctrl);
  832. pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
  833. cpu, idx, pmc_count);
  834. pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
  835. cpu, idx, prev_left);
  836. }
  837. for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
  838. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
  839. pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
  840. cpu, idx, pmc_count);
  841. }
  842. local_irq_restore(flags);
  843. }
  844. static void x86_pmu_stop(struct perf_event *event)
  845. {
  846. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  847. struct hw_perf_event *hwc = &event->hw;
  848. int idx = hwc->idx;
  849. if (!__test_and_clear_bit(idx, cpuc->active_mask))
  850. return;
  851. x86_pmu.disable(event);
  852. /*
  853. * Drain the remaining delta count out of a event
  854. * that we are disabling:
  855. */
  856. x86_perf_event_update(event);
  857. cpuc->events[idx] = NULL;
  858. }
  859. static void x86_pmu_disable(struct perf_event *event)
  860. {
  861. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  862. int i;
  863. x86_pmu_stop(event);
  864. for (i = 0; i < cpuc->n_events; i++) {
  865. if (event == cpuc->event_list[i]) {
  866. if (x86_pmu.put_event_constraints)
  867. x86_pmu.put_event_constraints(cpuc, event);
  868. while (++i < cpuc->n_events)
  869. cpuc->event_list[i-1] = cpuc->event_list[i];
  870. --cpuc->n_events;
  871. break;
  872. }
  873. }
  874. perf_event_update_userpage(event);
  875. }
  876. static int x86_pmu_handle_irq(struct pt_regs *regs)
  877. {
  878. struct perf_sample_data data;
  879. struct cpu_hw_events *cpuc;
  880. struct perf_event *event;
  881. struct hw_perf_event *hwc;
  882. int idx, handled = 0;
  883. u64 val;
  884. perf_sample_data_init(&data, 0);
  885. cpuc = &__get_cpu_var(cpu_hw_events);
  886. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  887. if (!test_bit(idx, cpuc->active_mask))
  888. continue;
  889. event = cpuc->events[idx];
  890. hwc = &event->hw;
  891. val = x86_perf_event_update(event);
  892. if (val & (1ULL << (x86_pmu.event_bits - 1)))
  893. continue;
  894. /*
  895. * event overflow
  896. */
  897. handled = 1;
  898. data.period = event->hw.last_period;
  899. if (!x86_perf_event_set_period(event))
  900. continue;
  901. if (perf_event_overflow(event, 1, &data, regs))
  902. x86_pmu_stop(event);
  903. }
  904. if (handled)
  905. inc_irq_stat(apic_perf_irqs);
  906. return handled;
  907. }
  908. void smp_perf_pending_interrupt(struct pt_regs *regs)
  909. {
  910. irq_enter();
  911. ack_APIC_irq();
  912. inc_irq_stat(apic_pending_irqs);
  913. perf_event_do_pending();
  914. irq_exit();
  915. }
  916. void set_perf_event_pending(void)
  917. {
  918. #ifdef CONFIG_X86_LOCAL_APIC
  919. if (!x86_pmu.apic || !x86_pmu_initialized())
  920. return;
  921. apic->send_IPI_self(LOCAL_PENDING_VECTOR);
  922. #endif
  923. }
  924. void perf_events_lapic_init(void)
  925. {
  926. #ifdef CONFIG_X86_LOCAL_APIC
  927. if (!x86_pmu.apic || !x86_pmu_initialized())
  928. return;
  929. /*
  930. * Always use NMI for PMU
  931. */
  932. apic_write(APIC_LVTPC, APIC_DM_NMI);
  933. #endif
  934. }
  935. static int __kprobes
  936. perf_event_nmi_handler(struct notifier_block *self,
  937. unsigned long cmd, void *__args)
  938. {
  939. struct die_args *args = __args;
  940. struct pt_regs *regs;
  941. if (!atomic_read(&active_events))
  942. return NOTIFY_DONE;
  943. switch (cmd) {
  944. case DIE_NMI:
  945. case DIE_NMI_IPI:
  946. break;
  947. default:
  948. return NOTIFY_DONE;
  949. }
  950. regs = args->regs;
  951. #ifdef CONFIG_X86_LOCAL_APIC
  952. apic_write(APIC_LVTPC, APIC_DM_NMI);
  953. #endif
  954. /*
  955. * Can't rely on the handled return value to say it was our NMI, two
  956. * events could trigger 'simultaneously' raising two back-to-back NMIs.
  957. *
  958. * If the first NMI handles both, the latter will be empty and daze
  959. * the CPU.
  960. */
  961. x86_pmu.handle_irq(regs);
  962. return NOTIFY_STOP;
  963. }
  964. static __read_mostly struct notifier_block perf_event_nmi_notifier = {
  965. .notifier_call = perf_event_nmi_handler,
  966. .next = NULL,
  967. .priority = 1
  968. };
  969. static struct event_constraint unconstrained;
  970. static struct event_constraint emptyconstraint;
  971. static struct event_constraint *
  972. x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  973. {
  974. struct event_constraint *c;
  975. if (x86_pmu.event_constraints) {
  976. for_each_event_constraint(c, x86_pmu.event_constraints) {
  977. if ((event->hw.config & c->cmask) == c->code)
  978. return c;
  979. }
  980. }
  981. return &unconstrained;
  982. }
  983. static int x86_event_sched_in(struct perf_event *event,
  984. struct perf_cpu_context *cpuctx)
  985. {
  986. int ret = 0;
  987. event->state = PERF_EVENT_STATE_ACTIVE;
  988. event->oncpu = smp_processor_id();
  989. event->tstamp_running += event->ctx->time - event->tstamp_stopped;
  990. if (!is_x86_event(event))
  991. ret = event->pmu->enable(event);
  992. if (!ret && !is_software_event(event))
  993. cpuctx->active_oncpu++;
  994. if (!ret && event->attr.exclusive)
  995. cpuctx->exclusive = 1;
  996. return ret;
  997. }
  998. static void x86_event_sched_out(struct perf_event *event,
  999. struct perf_cpu_context *cpuctx)
  1000. {
  1001. event->state = PERF_EVENT_STATE_INACTIVE;
  1002. event->oncpu = -1;
  1003. if (!is_x86_event(event))
  1004. event->pmu->disable(event);
  1005. event->tstamp_running -= event->ctx->time - event->tstamp_stopped;
  1006. if (!is_software_event(event))
  1007. cpuctx->active_oncpu--;
  1008. if (event->attr.exclusive || !cpuctx->active_oncpu)
  1009. cpuctx->exclusive = 0;
  1010. }
  1011. /*
  1012. * Called to enable a whole group of events.
  1013. * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
  1014. * Assumes the caller has disabled interrupts and has
  1015. * frozen the PMU with hw_perf_save_disable.
  1016. *
  1017. * called with PMU disabled. If successful and return value 1,
  1018. * then guaranteed to call perf_enable() and hw_perf_enable()
  1019. */
  1020. int hw_perf_group_sched_in(struct perf_event *leader,
  1021. struct perf_cpu_context *cpuctx,
  1022. struct perf_event_context *ctx)
  1023. {
  1024. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  1025. struct perf_event *sub;
  1026. int assign[X86_PMC_IDX_MAX];
  1027. int n0, n1, ret;
  1028. /* n0 = total number of events */
  1029. n0 = collect_events(cpuc, leader, true);
  1030. if (n0 < 0)
  1031. return n0;
  1032. ret = x86_schedule_events(cpuc, n0, assign);
  1033. if (ret)
  1034. return ret;
  1035. ret = x86_event_sched_in(leader, cpuctx);
  1036. if (ret)
  1037. return ret;
  1038. n1 = 1;
  1039. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  1040. if (sub->state > PERF_EVENT_STATE_OFF) {
  1041. ret = x86_event_sched_in(sub, cpuctx);
  1042. if (ret)
  1043. goto undo;
  1044. ++n1;
  1045. }
  1046. }
  1047. /*
  1048. * copy new assignment, now we know it is possible
  1049. * will be used by hw_perf_enable()
  1050. */
  1051. memcpy(cpuc->assign, assign, n0*sizeof(int));
  1052. cpuc->n_events = n0;
  1053. cpuc->n_added += n1;
  1054. ctx->nr_active += n1;
  1055. /*
  1056. * 1 means successful and events are active
  1057. * This is not quite true because we defer
  1058. * actual activation until hw_perf_enable() but
  1059. * this way we* ensure caller won't try to enable
  1060. * individual events
  1061. */
  1062. return 1;
  1063. undo:
  1064. x86_event_sched_out(leader, cpuctx);
  1065. n0 = 1;
  1066. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  1067. if (sub->state == PERF_EVENT_STATE_ACTIVE) {
  1068. x86_event_sched_out(sub, cpuctx);
  1069. if (++n0 == n1)
  1070. break;
  1071. }
  1072. }
  1073. return ret;
  1074. }
  1075. #include "perf_event_amd.c"
  1076. #include "perf_event_p6.c"
  1077. #include "perf_event_intel.c"
  1078. static int __cpuinit
  1079. x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
  1080. {
  1081. unsigned int cpu = (long)hcpu;
  1082. int ret = NOTIFY_OK;
  1083. switch (action & ~CPU_TASKS_FROZEN) {
  1084. case CPU_UP_PREPARE:
  1085. if (x86_pmu.cpu_prepare)
  1086. ret = x86_pmu.cpu_prepare(cpu);
  1087. break;
  1088. case CPU_STARTING:
  1089. if (x86_pmu.cpu_starting)
  1090. x86_pmu.cpu_starting(cpu);
  1091. break;
  1092. case CPU_DYING:
  1093. if (x86_pmu.cpu_dying)
  1094. x86_pmu.cpu_dying(cpu);
  1095. break;
  1096. case CPU_UP_CANCELED:
  1097. case CPU_DEAD:
  1098. if (x86_pmu.cpu_dead)
  1099. x86_pmu.cpu_dead(cpu);
  1100. break;
  1101. default:
  1102. break;
  1103. }
  1104. return ret;
  1105. }
  1106. static void __init pmu_check_apic(void)
  1107. {
  1108. if (cpu_has_apic)
  1109. return;
  1110. x86_pmu.apic = 0;
  1111. pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
  1112. pr_info("no hardware sampling interrupt available.\n");
  1113. }
  1114. void __init init_hw_perf_events(void)
  1115. {
  1116. struct event_constraint *c;
  1117. int err;
  1118. pr_info("Performance Events: ");
  1119. switch (boot_cpu_data.x86_vendor) {
  1120. case X86_VENDOR_INTEL:
  1121. err = intel_pmu_init();
  1122. break;
  1123. case X86_VENDOR_AMD:
  1124. err = amd_pmu_init();
  1125. break;
  1126. default:
  1127. return;
  1128. }
  1129. if (err != 0) {
  1130. pr_cont("no PMU driver, software events only.\n");
  1131. return;
  1132. }
  1133. pmu_check_apic();
  1134. pr_cont("%s PMU driver.\n", x86_pmu.name);
  1135. if (x86_pmu.num_events > X86_PMC_MAX_GENERIC) {
  1136. WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
  1137. x86_pmu.num_events, X86_PMC_MAX_GENERIC);
  1138. x86_pmu.num_events = X86_PMC_MAX_GENERIC;
  1139. }
  1140. perf_event_mask = (1 << x86_pmu.num_events) - 1;
  1141. perf_max_events = x86_pmu.num_events;
  1142. if (x86_pmu.num_events_fixed > X86_PMC_MAX_FIXED) {
  1143. WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
  1144. x86_pmu.num_events_fixed, X86_PMC_MAX_FIXED);
  1145. x86_pmu.num_events_fixed = X86_PMC_MAX_FIXED;
  1146. }
  1147. perf_event_mask |=
  1148. ((1LL << x86_pmu.num_events_fixed)-1) << X86_PMC_IDX_FIXED;
  1149. x86_pmu.intel_ctrl = perf_event_mask;
  1150. perf_events_lapic_init();
  1151. register_die_notifier(&perf_event_nmi_notifier);
  1152. unconstrained = (struct event_constraint)
  1153. __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_events) - 1,
  1154. 0, x86_pmu.num_events);
  1155. if (x86_pmu.event_constraints) {
  1156. for_each_event_constraint(c, x86_pmu.event_constraints) {
  1157. if (c->cmask != INTEL_ARCH_FIXED_MASK)
  1158. continue;
  1159. c->idxmsk64 |= (1ULL << x86_pmu.num_events) - 1;
  1160. c->weight += x86_pmu.num_events;
  1161. }
  1162. }
  1163. pr_info("... version: %d\n", x86_pmu.version);
  1164. pr_info("... bit width: %d\n", x86_pmu.event_bits);
  1165. pr_info("... generic registers: %d\n", x86_pmu.num_events);
  1166. pr_info("... value mask: %016Lx\n", x86_pmu.event_mask);
  1167. pr_info("... max period: %016Lx\n", x86_pmu.max_period);
  1168. pr_info("... fixed-purpose events: %d\n", x86_pmu.num_events_fixed);
  1169. pr_info("... event mask: %016Lx\n", perf_event_mask);
  1170. perf_cpu_notifier(x86_pmu_notifier);
  1171. }
  1172. static inline void x86_pmu_read(struct perf_event *event)
  1173. {
  1174. x86_perf_event_update(event);
  1175. }
  1176. static const struct pmu pmu = {
  1177. .enable = x86_pmu_enable,
  1178. .disable = x86_pmu_disable,
  1179. .start = x86_pmu_start,
  1180. .stop = x86_pmu_stop,
  1181. .read = x86_pmu_read,
  1182. .unthrottle = x86_pmu_unthrottle,
  1183. };
  1184. /*
  1185. * validate a single event group
  1186. *
  1187. * validation include:
  1188. * - check events are compatible which each other
  1189. * - events do not compete for the same counter
  1190. * - number of events <= number of counters
  1191. *
  1192. * validation ensures the group can be loaded onto the
  1193. * PMU if it was the only group available.
  1194. */
  1195. static int validate_group(struct perf_event *event)
  1196. {
  1197. struct perf_event *leader = event->group_leader;
  1198. struct cpu_hw_events *fake_cpuc;
  1199. int ret, n;
  1200. ret = -ENOMEM;
  1201. fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
  1202. if (!fake_cpuc)
  1203. goto out;
  1204. /*
  1205. * the event is not yet connected with its
  1206. * siblings therefore we must first collect
  1207. * existing siblings, then add the new event
  1208. * before we can simulate the scheduling
  1209. */
  1210. ret = -ENOSPC;
  1211. n = collect_events(fake_cpuc, leader, true);
  1212. if (n < 0)
  1213. goto out_free;
  1214. fake_cpuc->n_events = n;
  1215. n = collect_events(fake_cpuc, event, false);
  1216. if (n < 0)
  1217. goto out_free;
  1218. fake_cpuc->n_events = n;
  1219. ret = x86_schedule_events(fake_cpuc, n, NULL);
  1220. out_free:
  1221. kfree(fake_cpuc);
  1222. out:
  1223. return ret;
  1224. }
  1225. const struct pmu *hw_perf_event_init(struct perf_event *event)
  1226. {
  1227. const struct pmu *tmp;
  1228. int err;
  1229. err = __hw_perf_event_init(event);
  1230. if (!err) {
  1231. /*
  1232. * we temporarily connect event to its pmu
  1233. * such that validate_group() can classify
  1234. * it as an x86 event using is_x86_event()
  1235. */
  1236. tmp = event->pmu;
  1237. event->pmu = &pmu;
  1238. if (event->group_leader != event)
  1239. err = validate_group(event);
  1240. event->pmu = tmp;
  1241. }
  1242. if (err) {
  1243. if (event->destroy)
  1244. event->destroy(event);
  1245. return ERR_PTR(err);
  1246. }
  1247. return &pmu;
  1248. }
  1249. /*
  1250. * callchain support
  1251. */
  1252. static inline
  1253. void callchain_store(struct perf_callchain_entry *entry, u64 ip)
  1254. {
  1255. if (entry->nr < PERF_MAX_STACK_DEPTH)
  1256. entry->ip[entry->nr++] = ip;
  1257. }
  1258. static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
  1259. static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
  1260. static void
  1261. backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
  1262. {
  1263. /* Ignore warnings */
  1264. }
  1265. static void backtrace_warning(void *data, char *msg)
  1266. {
  1267. /* Ignore warnings */
  1268. }
  1269. static int backtrace_stack(void *data, char *name)
  1270. {
  1271. return 0;
  1272. }
  1273. static void backtrace_address(void *data, unsigned long addr, int reliable)
  1274. {
  1275. struct perf_callchain_entry *entry = data;
  1276. if (reliable)
  1277. callchain_store(entry, addr);
  1278. }
  1279. static const struct stacktrace_ops backtrace_ops = {
  1280. .warning = backtrace_warning,
  1281. .warning_symbol = backtrace_warning_symbol,
  1282. .stack = backtrace_stack,
  1283. .address = backtrace_address,
  1284. .walk_stack = print_context_stack_bp,
  1285. };
  1286. #include "../dumpstack.h"
  1287. static void
  1288. perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1289. {
  1290. callchain_store(entry, PERF_CONTEXT_KERNEL);
  1291. callchain_store(entry, regs->ip);
  1292. dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
  1293. }
  1294. /*
  1295. * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
  1296. */
  1297. static unsigned long
  1298. copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
  1299. {
  1300. unsigned long offset, addr = (unsigned long)from;
  1301. int type = in_nmi() ? KM_NMI : KM_IRQ0;
  1302. unsigned long size, len = 0;
  1303. struct page *page;
  1304. void *map;
  1305. int ret;
  1306. do {
  1307. ret = __get_user_pages_fast(addr, 1, 0, &page);
  1308. if (!ret)
  1309. break;
  1310. offset = addr & (PAGE_SIZE - 1);
  1311. size = min(PAGE_SIZE - offset, n - len);
  1312. map = kmap_atomic(page, type);
  1313. memcpy(to, map+offset, size);
  1314. kunmap_atomic(map, type);
  1315. put_page(page);
  1316. len += size;
  1317. to += size;
  1318. addr += size;
  1319. } while (len < n);
  1320. return len;
  1321. }
  1322. #ifdef CONFIG_COMPAT
  1323. static inline int
  1324. perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1325. {
  1326. /* 32-bit process in 64-bit kernel. */
  1327. struct stack_frame_ia32 frame;
  1328. const void __user *fp;
  1329. if (!test_thread_flag(TIF_IA32))
  1330. return 0;
  1331. fp = compat_ptr(regs->bp);
  1332. while (entry->nr < PERF_MAX_STACK_DEPTH) {
  1333. unsigned long bytes;
  1334. frame.next_frame = 0;
  1335. frame.return_address = 0;
  1336. bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
  1337. if (bytes != sizeof(frame))
  1338. break;
  1339. if (fp < compat_ptr(regs->sp))
  1340. break;
  1341. callchain_store(entry, frame.return_address);
  1342. fp = compat_ptr(frame.next_frame);
  1343. }
  1344. return 1;
  1345. }
  1346. #else
  1347. static inline int
  1348. perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1349. {
  1350. return 0;
  1351. }
  1352. #endif
  1353. static void
  1354. perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1355. {
  1356. struct stack_frame frame;
  1357. const void __user *fp;
  1358. if (!user_mode(regs))
  1359. regs = task_pt_regs(current);
  1360. fp = (void __user *)regs->bp;
  1361. callchain_store(entry, PERF_CONTEXT_USER);
  1362. callchain_store(entry, regs->ip);
  1363. if (perf_callchain_user32(regs, entry))
  1364. return;
  1365. while (entry->nr < PERF_MAX_STACK_DEPTH) {
  1366. unsigned long bytes;
  1367. frame.next_frame = NULL;
  1368. frame.return_address = 0;
  1369. bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
  1370. if (bytes != sizeof(frame))
  1371. break;
  1372. if ((unsigned long)fp < regs->sp)
  1373. break;
  1374. callchain_store(entry, frame.return_address);
  1375. fp = frame.next_frame;
  1376. }
  1377. }
  1378. static void
  1379. perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1380. {
  1381. int is_user;
  1382. if (!regs)
  1383. return;
  1384. is_user = user_mode(regs);
  1385. if (is_user && current->state != TASK_RUNNING)
  1386. return;
  1387. if (!is_user)
  1388. perf_callchain_kernel(regs, entry);
  1389. if (current->mm)
  1390. perf_callchain_user(regs, entry);
  1391. }
  1392. struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
  1393. {
  1394. struct perf_callchain_entry *entry;
  1395. if (in_nmi())
  1396. entry = &__get_cpu_var(pmc_nmi_entry);
  1397. else
  1398. entry = &__get_cpu_var(pmc_irq_entry);
  1399. entry->nr = 0;
  1400. perf_do_callchain(regs, entry);
  1401. return entry;
  1402. }
  1403. void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
  1404. {
  1405. regs->ip = ip;
  1406. /*
  1407. * perf_arch_fetch_caller_regs adds another call, we need to increment
  1408. * the skip level
  1409. */
  1410. regs->bp = rewind_frame_pointer(skip + 1);
  1411. regs->cs = __KERNEL_CS;
  1412. local_save_flags(regs->flags);
  1413. }