acpi-cpufreq.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818
  1. /*
  2. * acpi-cpufreq.c - ACPI Processor P-States Driver
  3. *
  4. * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
  5. * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
  6. * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
  7. * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
  8. *
  9. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or (at
  14. * your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful, but
  17. * WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License along
  22. * with this program; if not, write to the Free Software Foundation, Inc.,
  23. * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  24. *
  25. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  26. */
  27. #include <linux/kernel.h>
  28. #include <linux/module.h>
  29. #include <linux/init.h>
  30. #include <linux/smp.h>
  31. #include <linux/sched.h>
  32. #include <linux/cpufreq.h>
  33. #include <linux/compiler.h>
  34. #include <linux/dmi.h>
  35. #include <linux/slab.h>
  36. #include <trace/events/power.h>
  37. #include <linux/acpi.h>
  38. #include <linux/io.h>
  39. #include <linux/delay.h>
  40. #include <linux/uaccess.h>
  41. #include <acpi/processor.h>
  42. #include <asm/msr.h>
  43. #include <asm/processor.h>
  44. #include <asm/cpufeature.h>
  45. #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, \
  46. "acpi-cpufreq", msg)
  47. MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
  48. MODULE_DESCRIPTION("ACPI Processor P-States Driver");
  49. MODULE_LICENSE("GPL");
  50. enum {
  51. UNDEFINED_CAPABLE = 0,
  52. SYSTEM_INTEL_MSR_CAPABLE,
  53. SYSTEM_IO_CAPABLE,
  54. };
  55. #define INTEL_MSR_RANGE (0xffff)
  56. struct acpi_cpufreq_data {
  57. struct acpi_processor_performance *acpi_data;
  58. struct cpufreq_frequency_table *freq_table;
  59. unsigned int resume;
  60. unsigned int cpu_feature;
  61. };
  62. static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data);
  63. static DEFINE_PER_CPU(struct aperfmperf, acfreq_old_perf);
  64. /* acpi_perf_data is a pointer to percpu data. */
  65. static struct acpi_processor_performance *acpi_perf_data;
  66. static struct cpufreq_driver acpi_cpufreq_driver;
  67. static unsigned int acpi_pstate_strict;
  68. static int check_est_cpu(unsigned int cpuid)
  69. {
  70. struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
  71. return cpu_has(cpu, X86_FEATURE_EST);
  72. }
  73. static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
  74. {
  75. struct acpi_processor_performance *perf;
  76. int i;
  77. perf = data->acpi_data;
  78. for (i = 0; i < perf->state_count; i++) {
  79. if (value == perf->states[i].status)
  80. return data->freq_table[i].frequency;
  81. }
  82. return 0;
  83. }
  84. static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
  85. {
  86. int i;
  87. struct acpi_processor_performance *perf;
  88. msr &= INTEL_MSR_RANGE;
  89. perf = data->acpi_data;
  90. for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
  91. if (msr == perf->states[data->freq_table[i].index].status)
  92. return data->freq_table[i].frequency;
  93. }
  94. return data->freq_table[0].frequency;
  95. }
  96. static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
  97. {
  98. switch (data->cpu_feature) {
  99. case SYSTEM_INTEL_MSR_CAPABLE:
  100. return extract_msr(val, data);
  101. case SYSTEM_IO_CAPABLE:
  102. return extract_io(val, data);
  103. default:
  104. return 0;
  105. }
  106. }
  107. struct msr_addr {
  108. u32 reg;
  109. };
  110. struct io_addr {
  111. u16 port;
  112. u8 bit_width;
  113. };
  114. struct drv_cmd {
  115. unsigned int type;
  116. const struct cpumask *mask;
  117. union {
  118. struct msr_addr msr;
  119. struct io_addr io;
  120. } addr;
  121. u32 val;
  122. };
  123. /* Called via smp_call_function_single(), on the target CPU */
  124. static void do_drv_read(void *_cmd)
  125. {
  126. struct drv_cmd *cmd = _cmd;
  127. u32 h;
  128. switch (cmd->type) {
  129. case SYSTEM_INTEL_MSR_CAPABLE:
  130. rdmsr(cmd->addr.msr.reg, cmd->val, h);
  131. break;
  132. case SYSTEM_IO_CAPABLE:
  133. acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
  134. &cmd->val,
  135. (u32)cmd->addr.io.bit_width);
  136. break;
  137. default:
  138. break;
  139. }
  140. }
  141. /* Called via smp_call_function_many(), on the target CPUs */
  142. static void do_drv_write(void *_cmd)
  143. {
  144. struct drv_cmd *cmd = _cmd;
  145. u32 lo, hi;
  146. switch (cmd->type) {
  147. case SYSTEM_INTEL_MSR_CAPABLE:
  148. rdmsr(cmd->addr.msr.reg, lo, hi);
  149. lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
  150. wrmsr(cmd->addr.msr.reg, lo, hi);
  151. break;
  152. case SYSTEM_IO_CAPABLE:
  153. acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
  154. cmd->val,
  155. (u32)cmd->addr.io.bit_width);
  156. break;
  157. default:
  158. break;
  159. }
  160. }
  161. static void drv_read(struct drv_cmd *cmd)
  162. {
  163. int err;
  164. cmd->val = 0;
  165. err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
  166. WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */
  167. }
  168. static void drv_write(struct drv_cmd *cmd)
  169. {
  170. int this_cpu;
  171. this_cpu = get_cpu();
  172. if (cpumask_test_cpu(this_cpu, cmd->mask))
  173. do_drv_write(cmd);
  174. smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
  175. put_cpu();
  176. }
  177. static u32 get_cur_val(const struct cpumask *mask)
  178. {
  179. struct acpi_processor_performance *perf;
  180. struct drv_cmd cmd;
  181. if (unlikely(cpumask_empty(mask)))
  182. return 0;
  183. switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) {
  184. case SYSTEM_INTEL_MSR_CAPABLE:
  185. cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
  186. cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
  187. break;
  188. case SYSTEM_IO_CAPABLE:
  189. cmd.type = SYSTEM_IO_CAPABLE;
  190. perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data;
  191. cmd.addr.io.port = perf->control_register.address;
  192. cmd.addr.io.bit_width = perf->control_register.bit_width;
  193. break;
  194. default:
  195. return 0;
  196. }
  197. cmd.mask = mask;
  198. drv_read(&cmd);
  199. dprintk("get_cur_val = %u\n", cmd.val);
  200. return cmd.val;
  201. }
  202. /* Called via smp_call_function_single(), on the target CPU */
  203. static void read_measured_perf_ctrs(void *_cur)
  204. {
  205. struct aperfmperf *am = _cur;
  206. get_aperfmperf(am);
  207. }
  208. /*
  209. * Return the measured active (C0) frequency on this CPU since last call
  210. * to this function.
  211. * Input: cpu number
  212. * Return: Average CPU frequency in terms of max frequency (zero on error)
  213. *
  214. * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
  215. * over a period of time, while CPU is in C0 state.
  216. * IA32_MPERF counts at the rate of max advertised frequency
  217. * IA32_APERF counts at the rate of actual CPU frequency
  218. * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
  219. * no meaning should be associated with absolute values of these MSRs.
  220. */
  221. static unsigned int get_measured_perf(struct cpufreq_policy *policy,
  222. unsigned int cpu)
  223. {
  224. struct aperfmperf perf;
  225. unsigned long ratio;
  226. unsigned int retval;
  227. if (smp_call_function_single(cpu, read_measured_perf_ctrs, &perf, 1))
  228. return 0;
  229. ratio = calc_aperfmperf_ratio(&per_cpu(acfreq_old_perf, cpu), &perf);
  230. per_cpu(acfreq_old_perf, cpu) = perf;
  231. retval = (policy->cpuinfo.max_freq * ratio) >> APERFMPERF_SHIFT;
  232. return retval;
  233. }
  234. static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
  235. {
  236. struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu);
  237. unsigned int freq;
  238. unsigned int cached_freq;
  239. dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
  240. if (unlikely(data == NULL ||
  241. data->acpi_data == NULL || data->freq_table == NULL)) {
  242. return 0;
  243. }
  244. cached_freq = data->freq_table[data->acpi_data->state].frequency;
  245. freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
  246. if (freq != cached_freq) {
  247. /*
  248. * The dreaded BIOS frequency change behind our back.
  249. * Force set the frequency on next target call.
  250. */
  251. data->resume = 1;
  252. }
  253. dprintk("cur freq = %u\n", freq);
  254. return freq;
  255. }
  256. static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
  257. struct acpi_cpufreq_data *data)
  258. {
  259. unsigned int cur_freq;
  260. unsigned int i;
  261. for (i = 0; i < 100; i++) {
  262. cur_freq = extract_freq(get_cur_val(mask), data);
  263. if (cur_freq == freq)
  264. return 1;
  265. udelay(10);
  266. }
  267. return 0;
  268. }
  269. static int acpi_cpufreq_target(struct cpufreq_policy *policy,
  270. unsigned int target_freq, unsigned int relation)
  271. {
  272. struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
  273. struct acpi_processor_performance *perf;
  274. struct cpufreq_freqs freqs;
  275. struct drv_cmd cmd;
  276. unsigned int next_state = 0; /* Index into freq_table */
  277. unsigned int next_perf_state = 0; /* Index into perf table */
  278. unsigned int i;
  279. int result = 0;
  280. dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
  281. if (unlikely(data == NULL ||
  282. data->acpi_data == NULL || data->freq_table == NULL)) {
  283. return -ENODEV;
  284. }
  285. perf = data->acpi_data;
  286. result = cpufreq_frequency_table_target(policy,
  287. data->freq_table,
  288. target_freq,
  289. relation, &next_state);
  290. if (unlikely(result)) {
  291. result = -ENODEV;
  292. goto out;
  293. }
  294. next_perf_state = data->freq_table[next_state].index;
  295. if (perf->state == next_perf_state) {
  296. if (unlikely(data->resume)) {
  297. dprintk("Called after resume, resetting to P%d\n",
  298. next_perf_state);
  299. data->resume = 0;
  300. } else {
  301. dprintk("Already at target state (P%d)\n",
  302. next_perf_state);
  303. goto out;
  304. }
  305. }
  306. trace_power_frequency(POWER_PSTATE, data->freq_table[next_state].frequency);
  307. switch (data->cpu_feature) {
  308. case SYSTEM_INTEL_MSR_CAPABLE:
  309. cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
  310. cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
  311. cmd.val = (u32) perf->states[next_perf_state].control;
  312. break;
  313. case SYSTEM_IO_CAPABLE:
  314. cmd.type = SYSTEM_IO_CAPABLE;
  315. cmd.addr.io.port = perf->control_register.address;
  316. cmd.addr.io.bit_width = perf->control_register.bit_width;
  317. cmd.val = (u32) perf->states[next_perf_state].control;
  318. break;
  319. default:
  320. result = -ENODEV;
  321. goto out;
  322. }
  323. /* cpufreq holds the hotplug lock, so we are safe from here on */
  324. if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
  325. cmd.mask = policy->cpus;
  326. else
  327. cmd.mask = cpumask_of(policy->cpu);
  328. freqs.old = perf->states[perf->state].core_frequency * 1000;
  329. freqs.new = data->freq_table[next_state].frequency;
  330. for_each_cpu(i, cmd.mask) {
  331. freqs.cpu = i;
  332. cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
  333. }
  334. drv_write(&cmd);
  335. if (acpi_pstate_strict) {
  336. if (!check_freqs(cmd.mask, freqs.new, data)) {
  337. dprintk("acpi_cpufreq_target failed (%d)\n",
  338. policy->cpu);
  339. result = -EAGAIN;
  340. goto out;
  341. }
  342. }
  343. for_each_cpu(i, cmd.mask) {
  344. freqs.cpu = i;
  345. cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
  346. }
  347. perf->state = next_perf_state;
  348. out:
  349. return result;
  350. }
  351. static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
  352. {
  353. struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
  354. dprintk("acpi_cpufreq_verify\n");
  355. return cpufreq_frequency_table_verify(policy, data->freq_table);
  356. }
  357. static unsigned long
  358. acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
  359. {
  360. struct acpi_processor_performance *perf = data->acpi_data;
  361. if (cpu_khz) {
  362. /* search the closest match to cpu_khz */
  363. unsigned int i;
  364. unsigned long freq;
  365. unsigned long freqn = perf->states[0].core_frequency * 1000;
  366. for (i = 0; i < (perf->state_count-1); i++) {
  367. freq = freqn;
  368. freqn = perf->states[i+1].core_frequency * 1000;
  369. if ((2 * cpu_khz) > (freqn + freq)) {
  370. perf->state = i;
  371. return freq;
  372. }
  373. }
  374. perf->state = perf->state_count-1;
  375. return freqn;
  376. } else {
  377. /* assume CPU is at P0... */
  378. perf->state = 0;
  379. return perf->states[0].core_frequency * 1000;
  380. }
  381. }
  382. static void free_acpi_perf_data(void)
  383. {
  384. unsigned int i;
  385. /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
  386. for_each_possible_cpu(i)
  387. free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
  388. ->shared_cpu_map);
  389. free_percpu(acpi_perf_data);
  390. }
  391. /*
  392. * acpi_cpufreq_early_init - initialize ACPI P-States library
  393. *
  394. * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
  395. * in order to determine correct frequency and voltage pairings. We can
  396. * do _PDC and _PSD and find out the processor dependency for the
  397. * actual init that will happen later...
  398. */
  399. static int __init acpi_cpufreq_early_init(void)
  400. {
  401. unsigned int i;
  402. dprintk("acpi_cpufreq_early_init\n");
  403. acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
  404. if (!acpi_perf_data) {
  405. dprintk("Memory allocation error for acpi_perf_data.\n");
  406. return -ENOMEM;
  407. }
  408. for_each_possible_cpu(i) {
  409. if (!zalloc_cpumask_var_node(
  410. &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
  411. GFP_KERNEL, cpu_to_node(i))) {
  412. /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
  413. free_acpi_perf_data();
  414. return -ENOMEM;
  415. }
  416. }
  417. /* Do initialization in ACPI core */
  418. acpi_processor_preregister_performance(acpi_perf_data);
  419. return 0;
  420. }
  421. #ifdef CONFIG_SMP
  422. /*
  423. * Some BIOSes do SW_ANY coordination internally, either set it up in hw
  424. * or do it in BIOS firmware and won't inform about it to OS. If not
  425. * detected, this has a side effect of making CPU run at a different speed
  426. * than OS intended it to run at. Detect it and handle it cleanly.
  427. */
  428. static int bios_with_sw_any_bug;
  429. static int sw_any_bug_found(const struct dmi_system_id *d)
  430. {
  431. bios_with_sw_any_bug = 1;
  432. return 0;
  433. }
  434. static const struct dmi_system_id sw_any_bug_dmi_table[] = {
  435. {
  436. .callback = sw_any_bug_found,
  437. .ident = "Supermicro Server X6DLP",
  438. .matches = {
  439. DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
  440. DMI_MATCH(DMI_BIOS_VERSION, "080010"),
  441. DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
  442. },
  443. },
  444. { }
  445. };
  446. static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
  447. {
  448. /* Intel Xeon Processor 7100 Series Specification Update
  449. * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
  450. * AL30: A Machine Check Exception (MCE) Occurring during an
  451. * Enhanced Intel SpeedStep Technology Ratio Change May Cause
  452. * Both Processor Cores to Lock Up. */
  453. if (c->x86_vendor == X86_VENDOR_INTEL) {
  454. if ((c->x86 == 15) &&
  455. (c->x86_model == 6) &&
  456. (c->x86_mask == 8)) {
  457. printk(KERN_INFO "acpi-cpufreq: Intel(R) "
  458. "Xeon(R) 7100 Errata AL30, processors may "
  459. "lock up on frequency changes: disabling "
  460. "acpi-cpufreq.\n");
  461. return -ENODEV;
  462. }
  463. }
  464. return 0;
  465. }
  466. #endif
  467. static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
  468. {
  469. unsigned int i;
  470. unsigned int valid_states = 0;
  471. unsigned int cpu = policy->cpu;
  472. struct acpi_cpufreq_data *data;
  473. unsigned int result = 0;
  474. struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
  475. struct acpi_processor_performance *perf;
  476. #ifdef CONFIG_SMP
  477. static int blacklisted;
  478. #endif
  479. dprintk("acpi_cpufreq_cpu_init\n");
  480. #ifdef CONFIG_SMP
  481. if (blacklisted)
  482. return blacklisted;
  483. blacklisted = acpi_cpufreq_blacklist(c);
  484. if (blacklisted)
  485. return blacklisted;
  486. #endif
  487. data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
  488. if (!data)
  489. return -ENOMEM;
  490. data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
  491. per_cpu(acfreq_data, cpu) = data;
  492. if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
  493. acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
  494. result = acpi_processor_register_performance(data->acpi_data, cpu);
  495. if (result)
  496. goto err_free;
  497. perf = data->acpi_data;
  498. policy->shared_type = perf->shared_type;
  499. /*
  500. * Will let policy->cpus know about dependency only when software
  501. * coordination is required.
  502. */
  503. if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
  504. policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
  505. cpumask_copy(policy->cpus, perf->shared_cpu_map);
  506. }
  507. cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
  508. #ifdef CONFIG_SMP
  509. dmi_check_system(sw_any_bug_dmi_table);
  510. if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
  511. policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
  512. cpumask_copy(policy->cpus, cpu_core_mask(cpu));
  513. }
  514. #endif
  515. /* capability check */
  516. if (perf->state_count <= 1) {
  517. dprintk("No P-States\n");
  518. result = -ENODEV;
  519. goto err_unreg;
  520. }
  521. if (perf->control_register.space_id != perf->status_register.space_id) {
  522. result = -ENODEV;
  523. goto err_unreg;
  524. }
  525. switch (perf->control_register.space_id) {
  526. case ACPI_ADR_SPACE_SYSTEM_IO:
  527. dprintk("SYSTEM IO addr space\n");
  528. data->cpu_feature = SYSTEM_IO_CAPABLE;
  529. break;
  530. case ACPI_ADR_SPACE_FIXED_HARDWARE:
  531. dprintk("HARDWARE addr space\n");
  532. if (!check_est_cpu(cpu)) {
  533. result = -ENODEV;
  534. goto err_unreg;
  535. }
  536. data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
  537. break;
  538. default:
  539. dprintk("Unknown addr space %d\n",
  540. (u32) (perf->control_register.space_id));
  541. result = -ENODEV;
  542. goto err_unreg;
  543. }
  544. data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
  545. (perf->state_count+1), GFP_KERNEL);
  546. if (!data->freq_table) {
  547. result = -ENOMEM;
  548. goto err_unreg;
  549. }
  550. /* detect transition latency */
  551. policy->cpuinfo.transition_latency = 0;
  552. for (i = 0; i < perf->state_count; i++) {
  553. if ((perf->states[i].transition_latency * 1000) >
  554. policy->cpuinfo.transition_latency)
  555. policy->cpuinfo.transition_latency =
  556. perf->states[i].transition_latency * 1000;
  557. }
  558. /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
  559. if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
  560. policy->cpuinfo.transition_latency > 20 * 1000) {
  561. policy->cpuinfo.transition_latency = 20 * 1000;
  562. printk_once(KERN_INFO
  563. "P-state transition latency capped at 20 uS\n");
  564. }
  565. /* table init */
  566. for (i = 0; i < perf->state_count; i++) {
  567. if (i > 0 && perf->states[i].core_frequency >=
  568. data->freq_table[valid_states-1].frequency / 1000)
  569. continue;
  570. data->freq_table[valid_states].index = i;
  571. data->freq_table[valid_states].frequency =
  572. perf->states[i].core_frequency * 1000;
  573. valid_states++;
  574. }
  575. data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
  576. perf->state = 0;
  577. result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
  578. if (result)
  579. goto err_freqfree;
  580. if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
  581. printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
  582. switch (perf->control_register.space_id) {
  583. case ACPI_ADR_SPACE_SYSTEM_IO:
  584. /* Current speed is unknown and not detectable by IO port */
  585. policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
  586. break;
  587. case ACPI_ADR_SPACE_FIXED_HARDWARE:
  588. acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
  589. policy->cur = get_cur_freq_on_cpu(cpu);
  590. break;
  591. default:
  592. break;
  593. }
  594. /* notify BIOS that we exist */
  595. acpi_processor_notify_smm(THIS_MODULE);
  596. /* Check for APERF/MPERF support in hardware */
  597. if (cpu_has(c, X86_FEATURE_APERFMPERF))
  598. acpi_cpufreq_driver.getavg = get_measured_perf;
  599. dprintk("CPU%u - ACPI performance management activated.\n", cpu);
  600. for (i = 0; i < perf->state_count; i++)
  601. dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
  602. (i == perf->state ? '*' : ' '), i,
  603. (u32) perf->states[i].core_frequency,
  604. (u32) perf->states[i].power,
  605. (u32) perf->states[i].transition_latency);
  606. cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
  607. /*
  608. * the first call to ->target() should result in us actually
  609. * writing something to the appropriate registers.
  610. */
  611. data->resume = 1;
  612. return result;
  613. err_freqfree:
  614. kfree(data->freq_table);
  615. err_unreg:
  616. acpi_processor_unregister_performance(perf, cpu);
  617. err_free:
  618. kfree(data);
  619. per_cpu(acfreq_data, cpu) = NULL;
  620. return result;
  621. }
  622. static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
  623. {
  624. struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
  625. dprintk("acpi_cpufreq_cpu_exit\n");
  626. if (data) {
  627. cpufreq_frequency_table_put_attr(policy->cpu);
  628. per_cpu(acfreq_data, policy->cpu) = NULL;
  629. acpi_processor_unregister_performance(data->acpi_data,
  630. policy->cpu);
  631. kfree(data);
  632. }
  633. return 0;
  634. }
  635. static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
  636. {
  637. struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
  638. dprintk("acpi_cpufreq_resume\n");
  639. data->resume = 1;
  640. return 0;
  641. }
  642. static struct freq_attr *acpi_cpufreq_attr[] = {
  643. &cpufreq_freq_attr_scaling_available_freqs,
  644. NULL,
  645. };
  646. static struct cpufreq_driver acpi_cpufreq_driver = {
  647. .verify = acpi_cpufreq_verify,
  648. .target = acpi_cpufreq_target,
  649. .bios_limit = acpi_processor_get_bios_limit,
  650. .init = acpi_cpufreq_cpu_init,
  651. .exit = acpi_cpufreq_cpu_exit,
  652. .resume = acpi_cpufreq_resume,
  653. .name = "acpi-cpufreq",
  654. .owner = THIS_MODULE,
  655. .attr = acpi_cpufreq_attr,
  656. };
  657. static int __init acpi_cpufreq_init(void)
  658. {
  659. int ret;
  660. if (acpi_disabled)
  661. return 0;
  662. dprintk("acpi_cpufreq_init\n");
  663. ret = acpi_cpufreq_early_init();
  664. if (ret)
  665. return ret;
  666. ret = cpufreq_register_driver(&acpi_cpufreq_driver);
  667. if (ret)
  668. free_acpi_perf_data();
  669. return ret;
  670. }
  671. static void __exit acpi_cpufreq_exit(void)
  672. {
  673. dprintk("acpi_cpufreq_exit\n");
  674. cpufreq_unregister_driver(&acpi_cpufreq_driver);
  675. free_percpu(acpi_perf_data);
  676. }
  677. module_param(acpi_pstate_strict, uint, 0644);
  678. MODULE_PARM_DESC(acpi_pstate_strict,
  679. "value 0 or non-zero. non-zero -> strict ACPI checks are "
  680. "performed during frequency changes.");
  681. late_initcall(acpi_cpufreq_init);
  682. module_exit(acpi_cpufreq_exit);
  683. MODULE_ALIAS("acpi");