smp.c 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364
  1. /*
  2. * arch/sh/kernel/smp.c
  3. *
  4. * SMP support for the SuperH processors.
  5. *
  6. * Copyright (C) 2002 - 2008 Paul Mundt
  7. * Copyright (C) 2006 - 2007 Akio Idehara
  8. *
  9. * This file is subject to the terms and conditions of the GNU General Public
  10. * License. See the file "COPYING" in the main directory of this archive
  11. * for more details.
  12. */
  13. #include <linux/err.h>
  14. #include <linux/cache.h>
  15. #include <linux/cpumask.h>
  16. #include <linux/delay.h>
  17. #include <linux/init.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/mm.h>
  20. #include <linux/module.h>
  21. #include <linux/cpu.h>
  22. #include <linux/interrupt.h>
  23. #include <asm/atomic.h>
  24. #include <asm/processor.h>
  25. #include <asm/system.h>
  26. #include <asm/mmu_context.h>
  27. #include <asm/smp.h>
  28. #include <asm/cacheflush.h>
  29. #include <asm/sections.h>
  30. int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
  31. int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
  32. static inline void __init smp_store_cpu_info(unsigned int cpu)
  33. {
  34. struct sh_cpuinfo *c = cpu_data + cpu;
  35. memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo));
  36. c->loops_per_jiffy = loops_per_jiffy;
  37. }
  38. void __init smp_prepare_cpus(unsigned int max_cpus)
  39. {
  40. unsigned int cpu = smp_processor_id();
  41. init_new_context(current, &init_mm);
  42. current_thread_info()->cpu = cpu;
  43. plat_prepare_cpus(max_cpus);
  44. #ifndef CONFIG_HOTPLUG_CPU
  45. init_cpu_present(&cpu_possible_map);
  46. #endif
  47. }
  48. void __devinit smp_prepare_boot_cpu(void)
  49. {
  50. unsigned int cpu = smp_processor_id();
  51. __cpu_number_map[0] = cpu;
  52. __cpu_logical_map[0] = cpu;
  53. set_cpu_online(cpu, true);
  54. set_cpu_possible(cpu, true);
  55. }
  56. asmlinkage void __cpuinit start_secondary(void)
  57. {
  58. unsigned int cpu;
  59. struct mm_struct *mm = &init_mm;
  60. enable_mmu();
  61. atomic_inc(&mm->mm_count);
  62. atomic_inc(&mm->mm_users);
  63. current->active_mm = mm;
  64. BUG_ON(current->mm);
  65. enter_lazy_tlb(mm, current);
  66. per_cpu_trap_init();
  67. preempt_disable();
  68. notify_cpu_starting(smp_processor_id());
  69. local_irq_enable();
  70. cpu = smp_processor_id();
  71. /* Enable local timers */
  72. local_timer_setup(cpu);
  73. calibrate_delay();
  74. smp_store_cpu_info(cpu);
  75. cpu_set(cpu, cpu_online_map);
  76. cpu_idle();
  77. }
  78. extern struct {
  79. unsigned long sp;
  80. unsigned long bss_start;
  81. unsigned long bss_end;
  82. void *start_kernel_fn;
  83. void *cpu_init_fn;
  84. void *thread_info;
  85. } stack_start;
  86. int __cpuinit __cpu_up(unsigned int cpu)
  87. {
  88. struct task_struct *tsk;
  89. unsigned long timeout;
  90. tsk = fork_idle(cpu);
  91. if (IS_ERR(tsk)) {
  92. printk(KERN_ERR "Failed forking idle task for cpu %d\n", cpu);
  93. return PTR_ERR(tsk);
  94. }
  95. /* Fill in data in head.S for secondary cpus */
  96. stack_start.sp = tsk->thread.sp;
  97. stack_start.thread_info = tsk->stack;
  98. stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
  99. stack_start.start_kernel_fn = start_secondary;
  100. flush_icache_range((unsigned long)&stack_start,
  101. (unsigned long)&stack_start + sizeof(stack_start));
  102. wmb();
  103. plat_start_cpu(cpu, (unsigned long)_stext);
  104. timeout = jiffies + HZ;
  105. while (time_before(jiffies, timeout)) {
  106. if (cpu_online(cpu))
  107. break;
  108. udelay(10);
  109. }
  110. if (cpu_online(cpu))
  111. return 0;
  112. return -ENOENT;
  113. }
  114. void __init smp_cpus_done(unsigned int max_cpus)
  115. {
  116. unsigned long bogosum = 0;
  117. int cpu;
  118. for_each_online_cpu(cpu)
  119. bogosum += cpu_data[cpu].loops_per_jiffy;
  120. printk(KERN_INFO "SMP: Total of %d processors activated "
  121. "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
  122. bogosum / (500000/HZ),
  123. (bogosum / (5000/HZ)) % 100);
  124. }
  125. void smp_send_reschedule(int cpu)
  126. {
  127. plat_send_ipi(cpu, SMP_MSG_RESCHEDULE);
  128. }
  129. void smp_send_stop(void)
  130. {
  131. smp_call_function(stop_this_cpu, 0, 0);
  132. }
  133. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  134. {
  135. int cpu;
  136. for_each_cpu(cpu, mask)
  137. plat_send_ipi(cpu, SMP_MSG_FUNCTION);
  138. }
  139. void arch_send_call_function_single_ipi(int cpu)
  140. {
  141. plat_send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
  142. }
  143. void smp_timer_broadcast(const struct cpumask *mask)
  144. {
  145. int cpu;
  146. for_each_cpu(cpu, mask)
  147. plat_send_ipi(cpu, SMP_MSG_TIMER);
  148. }
  149. static void ipi_timer(void)
  150. {
  151. irq_enter();
  152. local_timer_interrupt();
  153. irq_exit();
  154. }
  155. void smp_message_recv(unsigned int msg)
  156. {
  157. switch (msg) {
  158. case SMP_MSG_FUNCTION:
  159. generic_smp_call_function_interrupt();
  160. break;
  161. case SMP_MSG_RESCHEDULE:
  162. break;
  163. case SMP_MSG_FUNCTION_SINGLE:
  164. generic_smp_call_function_single_interrupt();
  165. break;
  166. case SMP_MSG_TIMER:
  167. ipi_timer();
  168. break;
  169. default:
  170. printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
  171. smp_processor_id(), __func__, msg);
  172. break;
  173. }
  174. }
  175. /* Not really SMP stuff ... */
  176. int setup_profiling_timer(unsigned int multiplier)
  177. {
  178. return 0;
  179. }
  180. static void flush_tlb_all_ipi(void *info)
  181. {
  182. local_flush_tlb_all();
  183. }
  184. void flush_tlb_all(void)
  185. {
  186. on_each_cpu(flush_tlb_all_ipi, 0, 1);
  187. }
  188. static void flush_tlb_mm_ipi(void *mm)
  189. {
  190. local_flush_tlb_mm((struct mm_struct *)mm);
  191. }
  192. /*
  193. * The following tlb flush calls are invoked when old translations are
  194. * being torn down, or pte attributes are changing. For single threaded
  195. * address spaces, a new context is obtained on the current cpu, and tlb
  196. * context on other cpus are invalidated to force a new context allocation
  197. * at switch_mm time, should the mm ever be used on other cpus. For
  198. * multithreaded address spaces, intercpu interrupts have to be sent.
  199. * Another case where intercpu interrupts are required is when the target
  200. * mm might be active on another cpu (eg debuggers doing the flushes on
  201. * behalf of debugees, kswapd stealing pages from another process etc).
  202. * Kanoj 07/00.
  203. */
  204. void flush_tlb_mm(struct mm_struct *mm)
  205. {
  206. preempt_disable();
  207. if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
  208. smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
  209. } else {
  210. int i;
  211. for (i = 0; i < num_online_cpus(); i++)
  212. if (smp_processor_id() != i)
  213. cpu_context(i, mm) = 0;
  214. }
  215. local_flush_tlb_mm(mm);
  216. preempt_enable();
  217. }
  218. struct flush_tlb_data {
  219. struct vm_area_struct *vma;
  220. unsigned long addr1;
  221. unsigned long addr2;
  222. };
  223. static void flush_tlb_range_ipi(void *info)
  224. {
  225. struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
  226. local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
  227. }
  228. void flush_tlb_range(struct vm_area_struct *vma,
  229. unsigned long start, unsigned long end)
  230. {
  231. struct mm_struct *mm = vma->vm_mm;
  232. preempt_disable();
  233. if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
  234. struct flush_tlb_data fd;
  235. fd.vma = vma;
  236. fd.addr1 = start;
  237. fd.addr2 = end;
  238. smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
  239. } else {
  240. int i;
  241. for (i = 0; i < num_online_cpus(); i++)
  242. if (smp_processor_id() != i)
  243. cpu_context(i, mm) = 0;
  244. }
  245. local_flush_tlb_range(vma, start, end);
  246. preempt_enable();
  247. }
  248. static void flush_tlb_kernel_range_ipi(void *info)
  249. {
  250. struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
  251. local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
  252. }
  253. void flush_tlb_kernel_range(unsigned long start, unsigned long end)
  254. {
  255. struct flush_tlb_data fd;
  256. fd.addr1 = start;
  257. fd.addr2 = end;
  258. on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
  259. }
  260. static void flush_tlb_page_ipi(void *info)
  261. {
  262. struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
  263. local_flush_tlb_page(fd->vma, fd->addr1);
  264. }
  265. void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
  266. {
  267. preempt_disable();
  268. if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
  269. (current->mm != vma->vm_mm)) {
  270. struct flush_tlb_data fd;
  271. fd.vma = vma;
  272. fd.addr1 = page;
  273. smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
  274. } else {
  275. int i;
  276. for (i = 0; i < num_online_cpus(); i++)
  277. if (smp_processor_id() != i)
  278. cpu_context(i, vma->vm_mm) = 0;
  279. }
  280. local_flush_tlb_page(vma, page);
  281. preempt_enable();
  282. }
  283. static void flush_tlb_one_ipi(void *info)
  284. {
  285. struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
  286. local_flush_tlb_one(fd->addr1, fd->addr2);
  287. }
  288. void flush_tlb_one(unsigned long asid, unsigned long vaddr)
  289. {
  290. struct flush_tlb_data fd;
  291. fd.addr1 = asid;
  292. fd.addr2 = vaddr;
  293. smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
  294. local_flush_tlb_one(asid, vaddr);
  295. }