time.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time. (for iSeries, we calibrate the timebase
  21. * against the Titan chip's clock.)
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  27. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. #include <linux/errno.h>
  35. #include <linux/module.h>
  36. #include <linux/sched.h>
  37. #include <linux/kernel.h>
  38. #include <linux/param.h>
  39. #include <linux/string.h>
  40. #include <linux/mm.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/timex.h>
  43. #include <linux/kernel_stat.h>
  44. #include <linux/time.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <linux/delay.h>
  55. #include <linux/perf_event.h>
  56. #include <asm/trace.h>
  57. #include <asm/io.h>
  58. #include <asm/processor.h>
  59. #include <asm/nvram.h>
  60. #include <asm/cache.h>
  61. #include <asm/machdep.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/time.h>
  64. #include <asm/prom.h>
  65. #include <asm/irq.h>
  66. #include <asm/div64.h>
  67. #include <asm/smp.h>
  68. #include <asm/vdso_datapage.h>
  69. #include <asm/firmware.h>
  70. #include <asm/cputime.h>
  71. #ifdef CONFIG_PPC_ISERIES
  72. #include <asm/iseries/it_lp_queue.h>
  73. #include <asm/iseries/hv_call_xm.h>
  74. #endif
  75. /* powerpc clocksource/clockevent code */
  76. #include <linux/clockchips.h>
  77. #include <linux/clocksource.h>
  78. static cycle_t rtc_read(struct clocksource *);
  79. static struct clocksource clocksource_rtc = {
  80. .name = "rtc",
  81. .rating = 400,
  82. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  83. .mask = CLOCKSOURCE_MASK(64),
  84. .shift = 22,
  85. .mult = 0, /* To be filled in */
  86. .read = rtc_read,
  87. };
  88. static cycle_t timebase_read(struct clocksource *);
  89. static struct clocksource clocksource_timebase = {
  90. .name = "timebase",
  91. .rating = 400,
  92. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  93. .mask = CLOCKSOURCE_MASK(64),
  94. .shift = 22,
  95. .mult = 0, /* To be filled in */
  96. .read = timebase_read,
  97. };
  98. #define DECREMENTER_MAX 0x7fffffff
  99. static int decrementer_set_next_event(unsigned long evt,
  100. struct clock_event_device *dev);
  101. static void decrementer_set_mode(enum clock_event_mode mode,
  102. struct clock_event_device *dev);
  103. static struct clock_event_device decrementer_clockevent = {
  104. .name = "decrementer",
  105. .rating = 200,
  106. .shift = 0, /* To be filled in */
  107. .mult = 0, /* To be filled in */
  108. .irq = 0,
  109. .set_next_event = decrementer_set_next_event,
  110. .set_mode = decrementer_set_mode,
  111. .features = CLOCK_EVT_FEAT_ONESHOT,
  112. };
  113. struct decrementer_clock {
  114. struct clock_event_device event;
  115. u64 next_tb;
  116. };
  117. static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
  118. #ifdef CONFIG_PPC_ISERIES
  119. static unsigned long __initdata iSeries_recal_titan;
  120. static signed long __initdata iSeries_recal_tb;
  121. /* Forward declaration is only needed for iSereis compiles */
  122. static void __init clocksource_init(void);
  123. #endif
  124. #define XSEC_PER_SEC (1024*1024)
  125. #ifdef CONFIG_PPC64
  126. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  127. #else
  128. /* compute ((xsec << 12) * max) >> 32 */
  129. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  130. #endif
  131. unsigned long tb_ticks_per_jiffy;
  132. unsigned long tb_ticks_per_usec = 100; /* sane default */
  133. EXPORT_SYMBOL(tb_ticks_per_usec);
  134. unsigned long tb_ticks_per_sec;
  135. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  136. u64 tb_to_xs;
  137. unsigned tb_to_us;
  138. #define TICKLEN_SCALE NTP_SCALE_SHIFT
  139. static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
  140. static u64 ticklen_to_xs; /* 0.64 fraction */
  141. /* If last_tick_len corresponds to about 1/HZ seconds, then
  142. last_tick_len << TICKLEN_SHIFT will be about 2^63. */
  143. #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
  144. DEFINE_SPINLOCK(rtc_lock);
  145. EXPORT_SYMBOL_GPL(rtc_lock);
  146. static u64 tb_to_ns_scale __read_mostly;
  147. static unsigned tb_to_ns_shift __read_mostly;
  148. static unsigned long boot_tb __read_mostly;
  149. extern struct timezone sys_tz;
  150. static long timezone_offset;
  151. unsigned long ppc_proc_freq;
  152. EXPORT_SYMBOL(ppc_proc_freq);
  153. unsigned long ppc_tb_freq;
  154. static u64 tb_last_jiffy __cacheline_aligned_in_smp;
  155. static DEFINE_PER_CPU(u64, last_jiffy);
  156. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  157. /*
  158. * Factors for converting from cputime_t (timebase ticks) to
  159. * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
  160. * These are all stored as 0.64 fixed-point binary fractions.
  161. */
  162. u64 __cputime_jiffies_factor;
  163. EXPORT_SYMBOL(__cputime_jiffies_factor);
  164. u64 __cputime_msec_factor;
  165. EXPORT_SYMBOL(__cputime_msec_factor);
  166. u64 __cputime_sec_factor;
  167. EXPORT_SYMBOL(__cputime_sec_factor);
  168. u64 __cputime_clockt_factor;
  169. EXPORT_SYMBOL(__cputime_clockt_factor);
  170. DEFINE_PER_CPU(unsigned long, cputime_last_delta);
  171. DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
  172. cputime_t cputime_one_jiffy;
  173. static void calc_cputime_factors(void)
  174. {
  175. struct div_result res;
  176. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  177. __cputime_jiffies_factor = res.result_low;
  178. div128_by_32(1000, 0, tb_ticks_per_sec, &res);
  179. __cputime_msec_factor = res.result_low;
  180. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  181. __cputime_sec_factor = res.result_low;
  182. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  183. __cputime_clockt_factor = res.result_low;
  184. }
  185. /*
  186. * Read the PURR on systems that have it, otherwise the timebase.
  187. */
  188. static u64 read_purr(void)
  189. {
  190. if (cpu_has_feature(CPU_FTR_PURR))
  191. return mfspr(SPRN_PURR);
  192. return mftb();
  193. }
  194. /*
  195. * Read the SPURR on systems that have it, otherwise the purr
  196. */
  197. static u64 read_spurr(u64 purr)
  198. {
  199. /*
  200. * cpus without PURR won't have a SPURR
  201. * We already know the former when we use this, so tell gcc
  202. */
  203. if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
  204. return mfspr(SPRN_SPURR);
  205. return purr;
  206. }
  207. /*
  208. * Account time for a transition between system, hard irq
  209. * or soft irq state.
  210. */
  211. void account_system_vtime(struct task_struct *tsk)
  212. {
  213. u64 now, nowscaled, delta, deltascaled, sys_time;
  214. unsigned long flags;
  215. local_irq_save(flags);
  216. now = read_purr();
  217. nowscaled = read_spurr(now);
  218. delta = now - get_paca()->startpurr;
  219. deltascaled = nowscaled - get_paca()->startspurr;
  220. get_paca()->startpurr = now;
  221. get_paca()->startspurr = nowscaled;
  222. if (!in_interrupt()) {
  223. /* deltascaled includes both user and system time.
  224. * Hence scale it based on the purr ratio to estimate
  225. * the system time */
  226. sys_time = get_paca()->system_time;
  227. if (get_paca()->user_time)
  228. deltascaled = deltascaled * sys_time /
  229. (sys_time + get_paca()->user_time);
  230. delta += sys_time;
  231. get_paca()->system_time = 0;
  232. }
  233. if (in_irq() || idle_task(smp_processor_id()) != tsk)
  234. account_system_time(tsk, 0, delta, deltascaled);
  235. else
  236. account_idle_time(delta);
  237. __get_cpu_var(cputime_last_delta) = delta;
  238. __get_cpu_var(cputime_scaled_last_delta) = deltascaled;
  239. local_irq_restore(flags);
  240. }
  241. EXPORT_SYMBOL_GPL(account_system_vtime);
  242. /*
  243. * Transfer the user and system times accumulated in the paca
  244. * by the exception entry and exit code to the generic process
  245. * user and system time records.
  246. * Must be called with interrupts disabled.
  247. */
  248. void account_process_tick(struct task_struct *tsk, int user_tick)
  249. {
  250. cputime_t utime, utimescaled;
  251. utime = get_paca()->user_time;
  252. get_paca()->user_time = 0;
  253. utimescaled = cputime_to_scaled(utime);
  254. account_user_time(tsk, utime, utimescaled);
  255. }
  256. /*
  257. * Stuff for accounting stolen time.
  258. */
  259. struct cpu_purr_data {
  260. int initialized; /* thread is running */
  261. u64 tb; /* last TB value read */
  262. u64 purr; /* last PURR value read */
  263. u64 spurr; /* last SPURR value read */
  264. };
  265. /*
  266. * Each entry in the cpu_purr_data array is manipulated only by its
  267. * "owner" cpu -- usually in the timer interrupt but also occasionally
  268. * in process context for cpu online. As long as cpus do not touch
  269. * each others' cpu_purr_data, disabling local interrupts is
  270. * sufficient to serialize accesses.
  271. */
  272. static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
  273. static void snapshot_tb_and_purr(void *data)
  274. {
  275. unsigned long flags;
  276. struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
  277. local_irq_save(flags);
  278. p->tb = get_tb_or_rtc();
  279. p->purr = mfspr(SPRN_PURR);
  280. wmb();
  281. p->initialized = 1;
  282. local_irq_restore(flags);
  283. }
  284. /*
  285. * Called during boot when all cpus have come up.
  286. */
  287. void snapshot_timebases(void)
  288. {
  289. if (!cpu_has_feature(CPU_FTR_PURR))
  290. return;
  291. on_each_cpu(snapshot_tb_and_purr, NULL, 1);
  292. }
  293. /*
  294. * Must be called with interrupts disabled.
  295. */
  296. void calculate_steal_time(void)
  297. {
  298. u64 tb, purr;
  299. s64 stolen;
  300. struct cpu_purr_data *pme;
  301. pme = &__get_cpu_var(cpu_purr_data);
  302. if (!pme->initialized)
  303. return; /* !CPU_FTR_PURR or early in early boot */
  304. tb = mftb();
  305. purr = mfspr(SPRN_PURR);
  306. stolen = (tb - pme->tb) - (purr - pme->purr);
  307. if (stolen > 0) {
  308. if (idle_task(smp_processor_id()) != current)
  309. account_steal_time(stolen);
  310. else
  311. account_idle_time(stolen);
  312. }
  313. pme->tb = tb;
  314. pme->purr = purr;
  315. }
  316. #ifdef CONFIG_PPC_SPLPAR
  317. /*
  318. * Must be called before the cpu is added to the online map when
  319. * a cpu is being brought up at runtime.
  320. */
  321. static void snapshot_purr(void)
  322. {
  323. struct cpu_purr_data *pme;
  324. unsigned long flags;
  325. if (!cpu_has_feature(CPU_FTR_PURR))
  326. return;
  327. local_irq_save(flags);
  328. pme = &__get_cpu_var(cpu_purr_data);
  329. pme->tb = mftb();
  330. pme->purr = mfspr(SPRN_PURR);
  331. pme->initialized = 1;
  332. local_irq_restore(flags);
  333. }
  334. #endif /* CONFIG_PPC_SPLPAR */
  335. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
  336. #define calc_cputime_factors()
  337. #define calculate_steal_time() do { } while (0)
  338. #endif
  339. #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
  340. #define snapshot_purr() do { } while (0)
  341. #endif
  342. /*
  343. * Called when a cpu comes up after the system has finished booting,
  344. * i.e. as a result of a hotplug cpu action.
  345. */
  346. void snapshot_timebase(void)
  347. {
  348. __get_cpu_var(last_jiffy) = get_tb_or_rtc();
  349. snapshot_purr();
  350. }
  351. void __delay(unsigned long loops)
  352. {
  353. unsigned long start;
  354. int diff;
  355. if (__USE_RTC()) {
  356. start = get_rtcl();
  357. do {
  358. /* the RTCL register wraps at 1000000000 */
  359. diff = get_rtcl() - start;
  360. if (diff < 0)
  361. diff += 1000000000;
  362. } while (diff < loops);
  363. } else {
  364. start = get_tbl();
  365. while (get_tbl() - start < loops)
  366. HMT_low();
  367. HMT_medium();
  368. }
  369. }
  370. EXPORT_SYMBOL(__delay);
  371. void udelay(unsigned long usecs)
  372. {
  373. __delay(tb_ticks_per_usec * usecs);
  374. }
  375. EXPORT_SYMBOL(udelay);
  376. static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
  377. u64 new_tb_to_xs)
  378. {
  379. /*
  380. * tb_update_count is used to allow the userspace gettimeofday code
  381. * to assure itself that it sees a consistent view of the tb_to_xs and
  382. * stamp_xsec variables. It reads the tb_update_count, then reads
  383. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  384. * the two values of tb_update_count match and are even then the
  385. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  386. * loops back and reads them again until this criteria is met.
  387. * We expect the caller to have done the first increment of
  388. * vdso_data->tb_update_count already.
  389. */
  390. vdso_data->tb_orig_stamp = new_tb_stamp;
  391. vdso_data->stamp_xsec = new_stamp_xsec;
  392. vdso_data->tb_to_xs = new_tb_to_xs;
  393. vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
  394. vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
  395. vdso_data->stamp_xtime = xtime;
  396. smp_wmb();
  397. ++(vdso_data->tb_update_count);
  398. }
  399. #ifdef CONFIG_SMP
  400. unsigned long profile_pc(struct pt_regs *regs)
  401. {
  402. unsigned long pc = instruction_pointer(regs);
  403. if (in_lock_functions(pc))
  404. return regs->link;
  405. return pc;
  406. }
  407. EXPORT_SYMBOL(profile_pc);
  408. #endif
  409. #ifdef CONFIG_PPC_ISERIES
  410. /*
  411. * This function recalibrates the timebase based on the 49-bit time-of-day
  412. * value in the Titan chip. The Titan is much more accurate than the value
  413. * returned by the service processor for the timebase frequency.
  414. */
  415. static int __init iSeries_tb_recal(void)
  416. {
  417. struct div_result divres;
  418. unsigned long titan, tb;
  419. /* Make sure we only run on iSeries */
  420. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  421. return -ENODEV;
  422. tb = get_tb();
  423. titan = HvCallXm_loadTod();
  424. if ( iSeries_recal_titan ) {
  425. unsigned long tb_ticks = tb - iSeries_recal_tb;
  426. unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
  427. unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
  428. unsigned long new_tb_ticks_per_jiffy =
  429. DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
  430. long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
  431. char sign = '+';
  432. /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
  433. new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
  434. if ( tick_diff < 0 ) {
  435. tick_diff = -tick_diff;
  436. sign = '-';
  437. }
  438. if ( tick_diff ) {
  439. if ( tick_diff < tb_ticks_per_jiffy/25 ) {
  440. printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
  441. new_tb_ticks_per_jiffy, sign, tick_diff );
  442. tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
  443. tb_ticks_per_sec = new_tb_ticks_per_sec;
  444. calc_cputime_factors();
  445. div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
  446. tb_to_xs = divres.result_low;
  447. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  448. vdso_data->tb_to_xs = tb_to_xs;
  449. setup_cputime_one_jiffy();
  450. }
  451. else {
  452. printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
  453. " new tb_ticks_per_jiffy = %lu\n"
  454. " old tb_ticks_per_jiffy = %lu\n",
  455. new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
  456. }
  457. }
  458. }
  459. iSeries_recal_titan = titan;
  460. iSeries_recal_tb = tb;
  461. /* Called here as now we know accurate values for the timebase */
  462. clocksource_init();
  463. return 0;
  464. }
  465. late_initcall(iSeries_tb_recal);
  466. /* Called from platform early init */
  467. void __init iSeries_time_init_early(void)
  468. {
  469. iSeries_recal_tb = get_tb();
  470. iSeries_recal_titan = HvCallXm_loadTod();
  471. }
  472. #endif /* CONFIG_PPC_ISERIES */
  473. #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_PPC32)
  474. DEFINE_PER_CPU(u8, perf_event_pending);
  475. void set_perf_event_pending(void)
  476. {
  477. get_cpu_var(perf_event_pending) = 1;
  478. set_dec(1);
  479. put_cpu_var(perf_event_pending);
  480. }
  481. #define test_perf_event_pending() __get_cpu_var(perf_event_pending)
  482. #define clear_perf_event_pending() __get_cpu_var(perf_event_pending) = 0
  483. #else /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
  484. #define test_perf_event_pending() 0
  485. #define clear_perf_event_pending()
  486. #endif /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
  487. /*
  488. * For iSeries shared processors, we have to let the hypervisor
  489. * set the hardware decrementer. We set a virtual decrementer
  490. * in the lppaca and call the hypervisor if the virtual
  491. * decrementer is less than the current value in the hardware
  492. * decrementer. (almost always the new decrementer value will
  493. * be greater than the current hardware decementer so the hypervisor
  494. * call will not be needed)
  495. */
  496. /*
  497. * timer_interrupt - gets called when the decrementer overflows,
  498. * with interrupts disabled.
  499. */
  500. void timer_interrupt(struct pt_regs * regs)
  501. {
  502. struct pt_regs *old_regs;
  503. struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
  504. struct clock_event_device *evt = &decrementer->event;
  505. u64 now;
  506. trace_timer_interrupt_entry(regs);
  507. __get_cpu_var(irq_stat).timer_irqs++;
  508. /* Ensure a positive value is written to the decrementer, or else
  509. * some CPUs will continuue to take decrementer exceptions */
  510. set_dec(DECREMENTER_MAX);
  511. #ifdef CONFIG_PPC32
  512. if (test_perf_event_pending()) {
  513. clear_perf_event_pending();
  514. perf_event_do_pending();
  515. }
  516. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  517. do_IRQ(regs);
  518. #endif
  519. now = get_tb_or_rtc();
  520. if (now < decrementer->next_tb) {
  521. /* not time for this event yet */
  522. now = decrementer->next_tb - now;
  523. if (now <= DECREMENTER_MAX)
  524. set_dec((int)now);
  525. trace_timer_interrupt_exit(regs);
  526. return;
  527. }
  528. old_regs = set_irq_regs(regs);
  529. irq_enter();
  530. calculate_steal_time();
  531. #ifdef CONFIG_PPC_ISERIES
  532. if (firmware_has_feature(FW_FEATURE_ISERIES))
  533. get_lppaca()->int_dword.fields.decr_int = 0;
  534. #endif
  535. if (evt->event_handler)
  536. evt->event_handler(evt);
  537. #ifdef CONFIG_PPC_ISERIES
  538. if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
  539. process_hvlpevents();
  540. #endif
  541. #ifdef CONFIG_PPC64
  542. /* collect purr register values often, for accurate calculations */
  543. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  544. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  545. cu->current_tb = mfspr(SPRN_PURR);
  546. }
  547. #endif
  548. irq_exit();
  549. set_irq_regs(old_regs);
  550. trace_timer_interrupt_exit(regs);
  551. }
  552. void wakeup_decrementer(void)
  553. {
  554. unsigned long ticks;
  555. /*
  556. * The timebase gets saved on sleep and restored on wakeup,
  557. * so all we need to do is to reset the decrementer.
  558. */
  559. ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
  560. if (ticks < tb_ticks_per_jiffy)
  561. ticks = tb_ticks_per_jiffy - ticks;
  562. else
  563. ticks = 1;
  564. set_dec(ticks);
  565. }
  566. #ifdef CONFIG_SUSPEND
  567. void generic_suspend_disable_irqs(void)
  568. {
  569. preempt_disable();
  570. /* Disable the decrementer, so that it doesn't interfere
  571. * with suspending.
  572. */
  573. set_dec(0x7fffffff);
  574. local_irq_disable();
  575. set_dec(0x7fffffff);
  576. }
  577. void generic_suspend_enable_irqs(void)
  578. {
  579. wakeup_decrementer();
  580. local_irq_enable();
  581. preempt_enable();
  582. }
  583. /* Overrides the weak version in kernel/power/main.c */
  584. void arch_suspend_disable_irqs(void)
  585. {
  586. if (ppc_md.suspend_disable_irqs)
  587. ppc_md.suspend_disable_irqs();
  588. generic_suspend_disable_irqs();
  589. }
  590. /* Overrides the weak version in kernel/power/main.c */
  591. void arch_suspend_enable_irqs(void)
  592. {
  593. generic_suspend_enable_irqs();
  594. if (ppc_md.suspend_enable_irqs)
  595. ppc_md.suspend_enable_irqs();
  596. }
  597. #endif
  598. #ifdef CONFIG_SMP
  599. void __init smp_space_timers(unsigned int max_cpus)
  600. {
  601. int i;
  602. u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
  603. /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
  604. previous_tb -= tb_ticks_per_jiffy;
  605. for_each_possible_cpu(i) {
  606. if (i == boot_cpuid)
  607. continue;
  608. per_cpu(last_jiffy, i) = previous_tb;
  609. }
  610. }
  611. #endif
  612. /*
  613. * Scheduler clock - returns current time in nanosec units.
  614. *
  615. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  616. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  617. * are 64-bit unsigned numbers.
  618. */
  619. unsigned long long sched_clock(void)
  620. {
  621. if (__USE_RTC())
  622. return get_rtc();
  623. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  624. }
  625. static int __init get_freq(char *name, int cells, unsigned long *val)
  626. {
  627. struct device_node *cpu;
  628. const unsigned int *fp;
  629. int found = 0;
  630. /* The cpu node should have timebase and clock frequency properties */
  631. cpu = of_find_node_by_type(NULL, "cpu");
  632. if (cpu) {
  633. fp = of_get_property(cpu, name, NULL);
  634. if (fp) {
  635. found = 1;
  636. *val = of_read_ulong(fp, cells);
  637. }
  638. of_node_put(cpu);
  639. }
  640. return found;
  641. }
  642. /* should become __cpuinit when secondary_cpu_time_init also is */
  643. void start_cpu_decrementer(void)
  644. {
  645. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  646. /* Clear any pending timer interrupts */
  647. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  648. /* Enable decrementer interrupt */
  649. mtspr(SPRN_TCR, TCR_DIE);
  650. #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
  651. }
  652. void __init generic_calibrate_decr(void)
  653. {
  654. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  655. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  656. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  657. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  658. "(not found)\n");
  659. }
  660. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  661. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  662. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  663. printk(KERN_ERR "WARNING: Estimating processor frequency "
  664. "(not found)\n");
  665. }
  666. }
  667. int update_persistent_clock(struct timespec now)
  668. {
  669. struct rtc_time tm;
  670. if (!ppc_md.set_rtc_time)
  671. return 0;
  672. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  673. tm.tm_year -= 1900;
  674. tm.tm_mon -= 1;
  675. return ppc_md.set_rtc_time(&tm);
  676. }
  677. static void __read_persistent_clock(struct timespec *ts)
  678. {
  679. struct rtc_time tm;
  680. static int first = 1;
  681. ts->tv_nsec = 0;
  682. /* XXX this is a litle fragile but will work okay in the short term */
  683. if (first) {
  684. first = 0;
  685. if (ppc_md.time_init)
  686. timezone_offset = ppc_md.time_init();
  687. /* get_boot_time() isn't guaranteed to be safe to call late */
  688. if (ppc_md.get_boot_time) {
  689. ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
  690. return;
  691. }
  692. }
  693. if (!ppc_md.get_rtc_time) {
  694. ts->tv_sec = 0;
  695. return;
  696. }
  697. ppc_md.get_rtc_time(&tm);
  698. ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  699. tm.tm_hour, tm.tm_min, tm.tm_sec);
  700. }
  701. void read_persistent_clock(struct timespec *ts)
  702. {
  703. __read_persistent_clock(ts);
  704. /* Sanitize it in case real time clock is set below EPOCH */
  705. if (ts->tv_sec < 0) {
  706. ts->tv_sec = 0;
  707. ts->tv_nsec = 0;
  708. }
  709. }
  710. /* clocksource code */
  711. static cycle_t rtc_read(struct clocksource *cs)
  712. {
  713. return (cycle_t)get_rtc();
  714. }
  715. static cycle_t timebase_read(struct clocksource *cs)
  716. {
  717. return (cycle_t)get_tb();
  718. }
  719. void update_vsyscall(struct timespec *wall_time, struct clocksource *clock,
  720. u32 mult)
  721. {
  722. u64 t2x, stamp_xsec;
  723. if (clock != &clocksource_timebase)
  724. return;
  725. /* Make userspace gettimeofday spin until we're done. */
  726. ++vdso_data->tb_update_count;
  727. smp_mb();
  728. /* XXX this assumes clock->shift == 22 */
  729. /* 4611686018 ~= 2^(20+64-22) / 1e9 */
  730. t2x = (u64) mult * 4611686018ULL;
  731. stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
  732. do_div(stamp_xsec, 1000000000);
  733. stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
  734. update_gtod(clock->cycle_last, stamp_xsec, t2x);
  735. }
  736. void update_vsyscall_tz(void)
  737. {
  738. /* Make userspace gettimeofday spin until we're done. */
  739. ++vdso_data->tb_update_count;
  740. smp_mb();
  741. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  742. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  743. smp_mb();
  744. ++vdso_data->tb_update_count;
  745. }
  746. static void __init clocksource_init(void)
  747. {
  748. struct clocksource *clock;
  749. if (__USE_RTC())
  750. clock = &clocksource_rtc;
  751. else
  752. clock = &clocksource_timebase;
  753. clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
  754. if (clocksource_register(clock)) {
  755. printk(KERN_ERR "clocksource: %s is already registered\n",
  756. clock->name);
  757. return;
  758. }
  759. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  760. clock->name, clock->mult, clock->shift);
  761. }
  762. static int decrementer_set_next_event(unsigned long evt,
  763. struct clock_event_device *dev)
  764. {
  765. __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
  766. set_dec(evt);
  767. return 0;
  768. }
  769. static void decrementer_set_mode(enum clock_event_mode mode,
  770. struct clock_event_device *dev)
  771. {
  772. if (mode != CLOCK_EVT_MODE_ONESHOT)
  773. decrementer_set_next_event(DECREMENTER_MAX, dev);
  774. }
  775. static inline uint64_t div_sc64(unsigned long ticks, unsigned long nsec,
  776. int shift)
  777. {
  778. uint64_t tmp = ((uint64_t)ticks) << shift;
  779. do_div(tmp, nsec);
  780. return tmp;
  781. }
  782. static void __init setup_clockevent_multiplier(unsigned long hz)
  783. {
  784. u64 mult, shift = 32;
  785. while (1) {
  786. mult = div_sc64(hz, NSEC_PER_SEC, shift);
  787. if (mult && (mult >> 32UL) == 0UL)
  788. break;
  789. shift--;
  790. }
  791. decrementer_clockevent.shift = shift;
  792. decrementer_clockevent.mult = mult;
  793. }
  794. static void register_decrementer_clockevent(int cpu)
  795. {
  796. struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
  797. *dec = decrementer_clockevent;
  798. dec->cpumask = cpumask_of(cpu);
  799. printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
  800. dec->name, dec->mult, dec->shift, cpu);
  801. clockevents_register_device(dec);
  802. }
  803. static void __init init_decrementer_clockevent(void)
  804. {
  805. int cpu = smp_processor_id();
  806. setup_clockevent_multiplier(ppc_tb_freq);
  807. decrementer_clockevent.max_delta_ns =
  808. clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
  809. decrementer_clockevent.min_delta_ns =
  810. clockevent_delta2ns(2, &decrementer_clockevent);
  811. register_decrementer_clockevent(cpu);
  812. }
  813. void secondary_cpu_time_init(void)
  814. {
  815. /* Start the decrementer on CPUs that have manual control
  816. * such as BookE
  817. */
  818. start_cpu_decrementer();
  819. /* FIME: Should make unrelatred change to move snapshot_timebase
  820. * call here ! */
  821. register_decrementer_clockevent(smp_processor_id());
  822. }
  823. /* This function is only called on the boot processor */
  824. void __init time_init(void)
  825. {
  826. unsigned long flags;
  827. struct div_result res;
  828. u64 scale, x;
  829. unsigned shift;
  830. if (__USE_RTC()) {
  831. /* 601 processor: dec counts down by 128 every 128ns */
  832. ppc_tb_freq = 1000000000;
  833. tb_last_jiffy = get_rtcl();
  834. } else {
  835. /* Normal PowerPC with timebase register */
  836. ppc_md.calibrate_decr();
  837. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  838. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  839. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  840. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  841. tb_last_jiffy = get_tb();
  842. }
  843. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  844. tb_ticks_per_sec = ppc_tb_freq;
  845. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  846. tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
  847. calc_cputime_factors();
  848. setup_cputime_one_jiffy();
  849. /*
  850. * Calculate the length of each tick in ns. It will not be
  851. * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
  852. * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
  853. * rounded up.
  854. */
  855. x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
  856. do_div(x, ppc_tb_freq);
  857. tick_nsec = x;
  858. last_tick_len = x << TICKLEN_SCALE;
  859. /*
  860. * Compute ticklen_to_xs, which is a factor which gets multiplied
  861. * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
  862. * It is computed as:
  863. * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
  864. * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
  865. * which turns out to be N = 51 - SHIFT_HZ.
  866. * This gives the result as a 0.64 fixed-point fraction.
  867. * That value is reduced by an offset amounting to 1 xsec per
  868. * 2^31 timebase ticks to avoid problems with time going backwards
  869. * by 1 xsec when we do timer_recalc_offset due to losing the
  870. * fractional xsec. That offset is equal to ppc_tb_freq/2^51
  871. * since there are 2^20 xsec in a second.
  872. */
  873. div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
  874. tb_ticks_per_jiffy << SHIFT_HZ, &res);
  875. div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
  876. ticklen_to_xs = res.result_low;
  877. /* Compute tb_to_xs from tick_nsec */
  878. tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
  879. /*
  880. * Compute scale factor for sched_clock.
  881. * The calibrate_decr() function has set tb_ticks_per_sec,
  882. * which is the timebase frequency.
  883. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  884. * the 128-bit result as a 64.64 fixed-point number.
  885. * We then shift that number right until it is less than 1.0,
  886. * giving us the scale factor and shift count to use in
  887. * sched_clock().
  888. */
  889. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  890. scale = res.result_low;
  891. for (shift = 0; res.result_high != 0; ++shift) {
  892. scale = (scale >> 1) | (res.result_high << 63);
  893. res.result_high >>= 1;
  894. }
  895. tb_to_ns_scale = scale;
  896. tb_to_ns_shift = shift;
  897. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  898. boot_tb = get_tb_or_rtc();
  899. write_seqlock_irqsave(&xtime_lock, flags);
  900. /* If platform provided a timezone (pmac), we correct the time */
  901. if (timezone_offset) {
  902. sys_tz.tz_minuteswest = -timezone_offset / 60;
  903. sys_tz.tz_dsttime = 0;
  904. }
  905. vdso_data->tb_orig_stamp = tb_last_jiffy;
  906. vdso_data->tb_update_count = 0;
  907. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  908. vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
  909. vdso_data->tb_to_xs = tb_to_xs;
  910. write_sequnlock_irqrestore(&xtime_lock, flags);
  911. /* Start the decrementer on CPUs that have manual control
  912. * such as BookE
  913. */
  914. start_cpu_decrementer();
  915. /* Register the clocksource, if we're not running on iSeries */
  916. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  917. clocksource_init();
  918. init_decrementer_clockevent();
  919. }
  920. #define FEBRUARY 2
  921. #define STARTOFTIME 1970
  922. #define SECDAY 86400L
  923. #define SECYR (SECDAY * 365)
  924. #define leapyear(year) ((year) % 4 == 0 && \
  925. ((year) % 100 != 0 || (year) % 400 == 0))
  926. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  927. #define days_in_month(a) (month_days[(a) - 1])
  928. static int month_days[12] = {
  929. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  930. };
  931. /*
  932. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  933. */
  934. void GregorianDay(struct rtc_time * tm)
  935. {
  936. int leapsToDate;
  937. int lastYear;
  938. int day;
  939. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  940. lastYear = tm->tm_year - 1;
  941. /*
  942. * Number of leap corrections to apply up to end of last year
  943. */
  944. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  945. /*
  946. * This year is a leap year if it is divisible by 4 except when it is
  947. * divisible by 100 unless it is divisible by 400
  948. *
  949. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  950. */
  951. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  952. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  953. tm->tm_mday;
  954. tm->tm_wday = day % 7;
  955. }
  956. void to_tm(int tim, struct rtc_time * tm)
  957. {
  958. register int i;
  959. register long hms, day;
  960. day = tim / SECDAY;
  961. hms = tim % SECDAY;
  962. /* Hours, minutes, seconds are easy */
  963. tm->tm_hour = hms / 3600;
  964. tm->tm_min = (hms % 3600) / 60;
  965. tm->tm_sec = (hms % 3600) % 60;
  966. /* Number of years in days */
  967. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  968. day -= days_in_year(i);
  969. tm->tm_year = i;
  970. /* Number of months in days left */
  971. if (leapyear(tm->tm_year))
  972. days_in_month(FEBRUARY) = 29;
  973. for (i = 1; day >= days_in_month(i); i++)
  974. day -= days_in_month(i);
  975. days_in_month(FEBRUARY) = 28;
  976. tm->tm_mon = i;
  977. /* Days are what is left over (+1) from all that. */
  978. tm->tm_mday = day + 1;
  979. /*
  980. * Determine the day of week
  981. */
  982. GregorianDay(tm);
  983. }
  984. /* Auxiliary function to compute scaling factors */
  985. /* Actually the choice of a timebase running at 1/4 the of the bus
  986. * frequency giving resolution of a few tens of nanoseconds is quite nice.
  987. * It makes this computation very precise (27-28 bits typically) which
  988. * is optimistic considering the stability of most processor clock
  989. * oscillators and the precision with which the timebase frequency
  990. * is measured but does not harm.
  991. */
  992. unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
  993. {
  994. unsigned mlt=0, tmp, err;
  995. /* No concern for performance, it's done once: use a stupid
  996. * but safe and compact method to find the multiplier.
  997. */
  998. for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
  999. if (mulhwu(inscale, mlt|tmp) < outscale)
  1000. mlt |= tmp;
  1001. }
  1002. /* We might still be off by 1 for the best approximation.
  1003. * A side effect of this is that if outscale is too large
  1004. * the returned value will be zero.
  1005. * Many corner cases have been checked and seem to work,
  1006. * some might have been forgotten in the test however.
  1007. */
  1008. err = inscale * (mlt+1);
  1009. if (err <= inscale/2)
  1010. mlt++;
  1011. return mlt;
  1012. }
  1013. /*
  1014. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  1015. * result.
  1016. */
  1017. void div128_by_32(u64 dividend_high, u64 dividend_low,
  1018. unsigned divisor, struct div_result *dr)
  1019. {
  1020. unsigned long a, b, c, d;
  1021. unsigned long w, x, y, z;
  1022. u64 ra, rb, rc;
  1023. a = dividend_high >> 32;
  1024. b = dividend_high & 0xffffffff;
  1025. c = dividend_low >> 32;
  1026. d = dividend_low & 0xffffffff;
  1027. w = a / divisor;
  1028. ra = ((u64)(a - (w * divisor)) << 32) + b;
  1029. rb = ((u64) do_div(ra, divisor) << 32) + c;
  1030. x = ra;
  1031. rc = ((u64) do_div(rb, divisor) << 32) + d;
  1032. y = rb;
  1033. do_div(rc, divisor);
  1034. z = rc;
  1035. dr->result_high = ((u64)w << 32) + x;
  1036. dr->result_low = ((u64)y << 32) + z;
  1037. }
  1038. /* We don't need to calibrate delay, we use the CPU timebase for that */
  1039. void calibrate_delay(void)
  1040. {
  1041. /* Some generic code (such as spinlock debug) use loops_per_jiffy
  1042. * as the number of __delay(1) in a jiffy, so make it so
  1043. */
  1044. loops_per_jiffy = tb_ticks_per_jiffy;
  1045. }
  1046. static int __init rtc_init(void)
  1047. {
  1048. struct platform_device *pdev;
  1049. if (!ppc_md.get_rtc_time)
  1050. return -ENODEV;
  1051. pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
  1052. if (IS_ERR(pdev))
  1053. return PTR_ERR(pdev);
  1054. return 0;
  1055. }
  1056. module_init(rtc_init);