irq.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538
  1. /*
  2. * Platform dependent support for SGI SN
  3. *
  4. * This file is subject to the terms and conditions of the GNU General Public
  5. * License. See the file "COPYING" in the main directory of this archive
  6. * for more details.
  7. *
  8. * Copyright (c) 2000-2008 Silicon Graphics, Inc. All Rights Reserved.
  9. */
  10. #include <linux/irq.h>
  11. #include <linux/spinlock.h>
  12. #include <linux/init.h>
  13. #include <linux/rculist.h>
  14. #include <linux/slab.h>
  15. #include <asm/sn/addrs.h>
  16. #include <asm/sn/arch.h>
  17. #include <asm/sn/intr.h>
  18. #include <asm/sn/pcibr_provider.h>
  19. #include <asm/sn/pcibus_provider_defs.h>
  20. #include <asm/sn/pcidev.h>
  21. #include <asm/sn/shub_mmr.h>
  22. #include <asm/sn/sn_sal.h>
  23. #include <asm/sn/sn_feature_sets.h>
  24. static void force_interrupt(int irq);
  25. static void register_intr_pda(struct sn_irq_info *sn_irq_info);
  26. static void unregister_intr_pda(struct sn_irq_info *sn_irq_info);
  27. int sn_force_interrupt_flag = 1;
  28. extern int sn_ioif_inited;
  29. struct list_head **sn_irq_lh;
  30. static DEFINE_SPINLOCK(sn_irq_info_lock); /* non-IRQ lock */
  31. u64 sn_intr_alloc(nasid_t local_nasid, int local_widget,
  32. struct sn_irq_info *sn_irq_info,
  33. int req_irq, nasid_t req_nasid,
  34. int req_slice)
  35. {
  36. struct ia64_sal_retval ret_stuff;
  37. ret_stuff.status = 0;
  38. ret_stuff.v0 = 0;
  39. SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
  40. (u64) SAL_INTR_ALLOC, (u64) local_nasid,
  41. (u64) local_widget, __pa(sn_irq_info), (u64) req_irq,
  42. (u64) req_nasid, (u64) req_slice);
  43. return ret_stuff.status;
  44. }
  45. void sn_intr_free(nasid_t local_nasid, int local_widget,
  46. struct sn_irq_info *sn_irq_info)
  47. {
  48. struct ia64_sal_retval ret_stuff;
  49. ret_stuff.status = 0;
  50. ret_stuff.v0 = 0;
  51. SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
  52. (u64) SAL_INTR_FREE, (u64) local_nasid,
  53. (u64) local_widget, (u64) sn_irq_info->irq_irq,
  54. (u64) sn_irq_info->irq_cookie, 0, 0);
  55. }
  56. u64 sn_intr_redirect(nasid_t local_nasid, int local_widget,
  57. struct sn_irq_info *sn_irq_info,
  58. nasid_t req_nasid, int req_slice)
  59. {
  60. struct ia64_sal_retval ret_stuff;
  61. ret_stuff.status = 0;
  62. ret_stuff.v0 = 0;
  63. SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
  64. (u64) SAL_INTR_REDIRECT, (u64) local_nasid,
  65. (u64) local_widget, __pa(sn_irq_info),
  66. (u64) req_nasid, (u64) req_slice, 0);
  67. return ret_stuff.status;
  68. }
  69. static unsigned int sn_startup_irq(unsigned int irq)
  70. {
  71. return 0;
  72. }
  73. static void sn_shutdown_irq(unsigned int irq)
  74. {
  75. }
  76. extern void ia64_mca_register_cpev(int);
  77. static void sn_disable_irq(unsigned int irq)
  78. {
  79. if (irq == local_vector_to_irq(IA64_CPE_VECTOR))
  80. ia64_mca_register_cpev(0);
  81. }
  82. static void sn_enable_irq(unsigned int irq)
  83. {
  84. if (irq == local_vector_to_irq(IA64_CPE_VECTOR))
  85. ia64_mca_register_cpev(irq);
  86. }
  87. static void sn_ack_irq(unsigned int irq)
  88. {
  89. u64 event_occurred, mask;
  90. irq = irq & 0xff;
  91. event_occurred = HUB_L((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED));
  92. mask = event_occurred & SH_ALL_INT_MASK;
  93. HUB_S((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS), mask);
  94. __set_bit(irq, (volatile void *)pda->sn_in_service_ivecs);
  95. move_native_irq(irq);
  96. }
  97. static void sn_end_irq(unsigned int irq)
  98. {
  99. int ivec;
  100. u64 event_occurred;
  101. ivec = irq & 0xff;
  102. if (ivec == SGI_UART_VECTOR) {
  103. event_occurred = HUB_L((u64*)LOCAL_MMR_ADDR (SH_EVENT_OCCURRED));
  104. /* If the UART bit is set here, we may have received an
  105. * interrupt from the UART that the driver missed. To
  106. * make sure, we IPI ourselves to force us to look again.
  107. */
  108. if (event_occurred & SH_EVENT_OCCURRED_UART_INT_MASK) {
  109. platform_send_ipi(smp_processor_id(), SGI_UART_VECTOR,
  110. IA64_IPI_DM_INT, 0);
  111. }
  112. }
  113. __clear_bit(ivec, (volatile void *)pda->sn_in_service_ivecs);
  114. if (sn_force_interrupt_flag)
  115. force_interrupt(irq);
  116. }
  117. static void sn_irq_info_free(struct rcu_head *head);
  118. struct sn_irq_info *sn_retarget_vector(struct sn_irq_info *sn_irq_info,
  119. nasid_t nasid, int slice)
  120. {
  121. int vector;
  122. int cpuid;
  123. #ifdef CONFIG_SMP
  124. int cpuphys;
  125. #endif
  126. int64_t bridge;
  127. int local_widget, status;
  128. nasid_t local_nasid;
  129. struct sn_irq_info *new_irq_info;
  130. struct sn_pcibus_provider *pci_provider;
  131. bridge = (u64) sn_irq_info->irq_bridge;
  132. if (!bridge) {
  133. return NULL; /* irq is not a device interrupt */
  134. }
  135. local_nasid = NASID_GET(bridge);
  136. if (local_nasid & 1)
  137. local_widget = TIO_SWIN_WIDGETNUM(bridge);
  138. else
  139. local_widget = SWIN_WIDGETNUM(bridge);
  140. vector = sn_irq_info->irq_irq;
  141. /* Make use of SAL_INTR_REDIRECT if PROM supports it */
  142. status = sn_intr_redirect(local_nasid, local_widget, sn_irq_info, nasid, slice);
  143. if (!status) {
  144. new_irq_info = sn_irq_info;
  145. goto finish_up;
  146. }
  147. /*
  148. * PROM does not support SAL_INTR_REDIRECT, or it failed.
  149. * Revert to old method.
  150. */
  151. new_irq_info = kmalloc(sizeof(struct sn_irq_info), GFP_ATOMIC);
  152. if (new_irq_info == NULL)
  153. return NULL;
  154. memcpy(new_irq_info, sn_irq_info, sizeof(struct sn_irq_info));
  155. /* Free the old PROM new_irq_info structure */
  156. sn_intr_free(local_nasid, local_widget, new_irq_info);
  157. unregister_intr_pda(new_irq_info);
  158. /* allocate a new PROM new_irq_info struct */
  159. status = sn_intr_alloc(local_nasid, local_widget,
  160. new_irq_info, vector,
  161. nasid, slice);
  162. /* SAL call failed */
  163. if (status) {
  164. kfree(new_irq_info);
  165. return NULL;
  166. }
  167. register_intr_pda(new_irq_info);
  168. spin_lock(&sn_irq_info_lock);
  169. list_replace_rcu(&sn_irq_info->list, &new_irq_info->list);
  170. spin_unlock(&sn_irq_info_lock);
  171. call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
  172. finish_up:
  173. /* Update kernels new_irq_info with new target info */
  174. cpuid = nasid_slice_to_cpuid(new_irq_info->irq_nasid,
  175. new_irq_info->irq_slice);
  176. new_irq_info->irq_cpuid = cpuid;
  177. pci_provider = sn_pci_provider[new_irq_info->irq_bridge_type];
  178. /*
  179. * If this represents a line interrupt, target it. If it's
  180. * an msi (irq_int_bit < 0), it's already targeted.
  181. */
  182. if (new_irq_info->irq_int_bit >= 0 &&
  183. pci_provider && pci_provider->target_interrupt)
  184. (pci_provider->target_interrupt)(new_irq_info);
  185. #ifdef CONFIG_SMP
  186. cpuphys = cpu_physical_id(cpuid);
  187. set_irq_affinity_info((vector & 0xff), cpuphys, 0);
  188. #endif
  189. return new_irq_info;
  190. }
  191. static int sn_set_affinity_irq(unsigned int irq, const struct cpumask *mask)
  192. {
  193. struct sn_irq_info *sn_irq_info, *sn_irq_info_safe;
  194. nasid_t nasid;
  195. int slice;
  196. nasid = cpuid_to_nasid(cpumask_first(mask));
  197. slice = cpuid_to_slice(cpumask_first(mask));
  198. list_for_each_entry_safe(sn_irq_info, sn_irq_info_safe,
  199. sn_irq_lh[irq], list)
  200. (void)sn_retarget_vector(sn_irq_info, nasid, slice);
  201. return 0;
  202. }
  203. #ifdef CONFIG_SMP
  204. void sn_set_err_irq_affinity(unsigned int irq)
  205. {
  206. /*
  207. * On systems which support CPU disabling (SHub2), all error interrupts
  208. * are targetted at the boot CPU.
  209. */
  210. if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT))
  211. set_irq_affinity_info(irq, cpu_physical_id(0), 0);
  212. }
  213. #else
  214. void sn_set_err_irq_affinity(unsigned int irq) { }
  215. #endif
  216. static void
  217. sn_mask_irq(unsigned int irq)
  218. {
  219. }
  220. static void
  221. sn_unmask_irq(unsigned int irq)
  222. {
  223. }
  224. struct irq_chip irq_type_sn = {
  225. .name = "SN hub",
  226. .startup = sn_startup_irq,
  227. .shutdown = sn_shutdown_irq,
  228. .enable = sn_enable_irq,
  229. .disable = sn_disable_irq,
  230. .ack = sn_ack_irq,
  231. .end = sn_end_irq,
  232. .mask = sn_mask_irq,
  233. .unmask = sn_unmask_irq,
  234. .set_affinity = sn_set_affinity_irq
  235. };
  236. ia64_vector sn_irq_to_vector(int irq)
  237. {
  238. if (irq >= IA64_NUM_VECTORS)
  239. return 0;
  240. return (ia64_vector)irq;
  241. }
  242. unsigned int sn_local_vector_to_irq(u8 vector)
  243. {
  244. return (CPU_VECTOR_TO_IRQ(smp_processor_id(), vector));
  245. }
  246. void sn_irq_init(void)
  247. {
  248. int i;
  249. struct irq_desc *base_desc = irq_desc;
  250. ia64_first_device_vector = IA64_SN2_FIRST_DEVICE_VECTOR;
  251. ia64_last_device_vector = IA64_SN2_LAST_DEVICE_VECTOR;
  252. for (i = 0; i < NR_IRQS; i++) {
  253. if (base_desc[i].chip == &no_irq_chip) {
  254. base_desc[i].chip = &irq_type_sn;
  255. }
  256. }
  257. }
  258. static void register_intr_pda(struct sn_irq_info *sn_irq_info)
  259. {
  260. int irq = sn_irq_info->irq_irq;
  261. int cpu = sn_irq_info->irq_cpuid;
  262. if (pdacpu(cpu)->sn_last_irq < irq) {
  263. pdacpu(cpu)->sn_last_irq = irq;
  264. }
  265. if (pdacpu(cpu)->sn_first_irq == 0 || pdacpu(cpu)->sn_first_irq > irq)
  266. pdacpu(cpu)->sn_first_irq = irq;
  267. }
  268. static void unregister_intr_pda(struct sn_irq_info *sn_irq_info)
  269. {
  270. int irq = sn_irq_info->irq_irq;
  271. int cpu = sn_irq_info->irq_cpuid;
  272. struct sn_irq_info *tmp_irq_info;
  273. int i, foundmatch;
  274. rcu_read_lock();
  275. if (pdacpu(cpu)->sn_last_irq == irq) {
  276. foundmatch = 0;
  277. for (i = pdacpu(cpu)->sn_last_irq - 1;
  278. i && !foundmatch; i--) {
  279. list_for_each_entry_rcu(tmp_irq_info,
  280. sn_irq_lh[i],
  281. list) {
  282. if (tmp_irq_info->irq_cpuid == cpu) {
  283. foundmatch = 1;
  284. break;
  285. }
  286. }
  287. }
  288. pdacpu(cpu)->sn_last_irq = i;
  289. }
  290. if (pdacpu(cpu)->sn_first_irq == irq) {
  291. foundmatch = 0;
  292. for (i = pdacpu(cpu)->sn_first_irq + 1;
  293. i < NR_IRQS && !foundmatch; i++) {
  294. list_for_each_entry_rcu(tmp_irq_info,
  295. sn_irq_lh[i],
  296. list) {
  297. if (tmp_irq_info->irq_cpuid == cpu) {
  298. foundmatch = 1;
  299. break;
  300. }
  301. }
  302. }
  303. pdacpu(cpu)->sn_first_irq = ((i == NR_IRQS) ? 0 : i);
  304. }
  305. rcu_read_unlock();
  306. }
  307. static void sn_irq_info_free(struct rcu_head *head)
  308. {
  309. struct sn_irq_info *sn_irq_info;
  310. sn_irq_info = container_of(head, struct sn_irq_info, rcu);
  311. kfree(sn_irq_info);
  312. }
  313. void sn_irq_fixup(struct pci_dev *pci_dev, struct sn_irq_info *sn_irq_info)
  314. {
  315. nasid_t nasid = sn_irq_info->irq_nasid;
  316. int slice = sn_irq_info->irq_slice;
  317. int cpu = nasid_slice_to_cpuid(nasid, slice);
  318. #ifdef CONFIG_SMP
  319. int cpuphys;
  320. struct irq_desc *desc;
  321. #endif
  322. pci_dev_get(pci_dev);
  323. sn_irq_info->irq_cpuid = cpu;
  324. sn_irq_info->irq_pciioinfo = SN_PCIDEV_INFO(pci_dev);
  325. /* link it into the sn_irq[irq] list */
  326. spin_lock(&sn_irq_info_lock);
  327. list_add_rcu(&sn_irq_info->list, sn_irq_lh[sn_irq_info->irq_irq]);
  328. reserve_irq_vector(sn_irq_info->irq_irq);
  329. spin_unlock(&sn_irq_info_lock);
  330. register_intr_pda(sn_irq_info);
  331. #ifdef CONFIG_SMP
  332. cpuphys = cpu_physical_id(cpu);
  333. set_irq_affinity_info(sn_irq_info->irq_irq, cpuphys, 0);
  334. desc = irq_to_desc(sn_irq_info->irq_irq);
  335. /*
  336. * Affinity was set by the PROM, prevent it from
  337. * being reset by the request_irq() path.
  338. */
  339. desc->status |= IRQ_AFFINITY_SET;
  340. #endif
  341. }
  342. void sn_irq_unfixup(struct pci_dev *pci_dev)
  343. {
  344. struct sn_irq_info *sn_irq_info;
  345. /* Only cleanup IRQ stuff if this device has a host bus context */
  346. if (!SN_PCIDEV_BUSSOFT(pci_dev))
  347. return;
  348. sn_irq_info = SN_PCIDEV_INFO(pci_dev)->pdi_sn_irq_info;
  349. if (!sn_irq_info)
  350. return;
  351. if (!sn_irq_info->irq_irq) {
  352. kfree(sn_irq_info);
  353. return;
  354. }
  355. unregister_intr_pda(sn_irq_info);
  356. spin_lock(&sn_irq_info_lock);
  357. list_del_rcu(&sn_irq_info->list);
  358. spin_unlock(&sn_irq_info_lock);
  359. if (list_empty(sn_irq_lh[sn_irq_info->irq_irq]))
  360. free_irq_vector(sn_irq_info->irq_irq);
  361. call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
  362. pci_dev_put(pci_dev);
  363. }
  364. static inline void
  365. sn_call_force_intr_provider(struct sn_irq_info *sn_irq_info)
  366. {
  367. struct sn_pcibus_provider *pci_provider;
  368. pci_provider = sn_pci_provider[sn_irq_info->irq_bridge_type];
  369. /* Don't force an interrupt if the irq has been disabled */
  370. if (!(irq_desc[sn_irq_info->irq_irq].status & IRQ_DISABLED) &&
  371. pci_provider && pci_provider->force_interrupt)
  372. (*pci_provider->force_interrupt)(sn_irq_info);
  373. }
  374. static void force_interrupt(int irq)
  375. {
  376. struct sn_irq_info *sn_irq_info;
  377. if (!sn_ioif_inited)
  378. return;
  379. rcu_read_lock();
  380. list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[irq], list)
  381. sn_call_force_intr_provider(sn_irq_info);
  382. rcu_read_unlock();
  383. }
  384. /*
  385. * Check for lost interrupts. If the PIC int_status reg. says that
  386. * an interrupt has been sent, but not handled, and the interrupt
  387. * is not pending in either the cpu irr regs or in the soft irr regs,
  388. * and the interrupt is not in service, then the interrupt may have
  389. * been lost. Force an interrupt on that pin. It is possible that
  390. * the interrupt is in flight, so we may generate a spurious interrupt,
  391. * but we should never miss a real lost interrupt.
  392. */
  393. static void sn_check_intr(int irq, struct sn_irq_info *sn_irq_info)
  394. {
  395. u64 regval;
  396. struct pcidev_info *pcidev_info;
  397. struct pcibus_info *pcibus_info;
  398. /*
  399. * Bridge types attached to TIO (anything but PIC) do not need this WAR
  400. * since they do not target Shub II interrupt registers. If that
  401. * ever changes, this check needs to accomodate.
  402. */
  403. if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_PIC)
  404. return;
  405. pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
  406. if (!pcidev_info)
  407. return;
  408. pcibus_info =
  409. (struct pcibus_info *)pcidev_info->pdi_host_pcidev_info->
  410. pdi_pcibus_info;
  411. regval = pcireg_intr_status_get(pcibus_info);
  412. if (!ia64_get_irr(irq_to_vector(irq))) {
  413. if (!test_bit(irq, pda->sn_in_service_ivecs)) {
  414. regval &= 0xff;
  415. if (sn_irq_info->irq_int_bit & regval &
  416. sn_irq_info->irq_last_intr) {
  417. regval &= ~(sn_irq_info->irq_int_bit & regval);
  418. sn_call_force_intr_provider(sn_irq_info);
  419. }
  420. }
  421. }
  422. sn_irq_info->irq_last_intr = regval;
  423. }
  424. void sn_lb_int_war_check(void)
  425. {
  426. struct sn_irq_info *sn_irq_info;
  427. int i;
  428. if (!sn_ioif_inited || pda->sn_first_irq == 0)
  429. return;
  430. rcu_read_lock();
  431. for (i = pda->sn_first_irq; i <= pda->sn_last_irq; i++) {
  432. list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[i], list) {
  433. sn_check_intr(i, sn_irq_info);
  434. }
  435. }
  436. rcu_read_unlock();
  437. }
  438. void __init sn_irq_lh_init(void)
  439. {
  440. int i;
  441. sn_irq_lh = kmalloc(sizeof(struct list_head *) * NR_IRQS, GFP_KERNEL);
  442. if (!sn_irq_lh)
  443. panic("SN PCI INIT: Failed to allocate memory for PCI init\n");
  444. for (i = 0; i < NR_IRQS; i++) {
  445. sn_irq_lh[i] = kmalloc(sizeof(struct list_head), GFP_KERNEL);
  446. if (!sn_irq_lh[i])
  447. panic("SN PCI INIT: Failed IRQ memory allocation\n");
  448. INIT_LIST_HEAD(sn_irq_lh[i]);
  449. }
  450. }