pci.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794
  1. /*
  2. * pci.c - Low-Level PCI Access in IA-64
  3. *
  4. * Derived from bios32.c of i386 tree.
  5. *
  6. * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
  7. * David Mosberger-Tang <davidm@hpl.hp.com>
  8. * Bjorn Helgaas <bjorn.helgaas@hp.com>
  9. * Copyright (C) 2004 Silicon Graphics, Inc.
  10. *
  11. * Note: Above list of copyright holders is incomplete...
  12. */
  13. #include <linux/acpi.h>
  14. #include <linux/types.h>
  15. #include <linux/kernel.h>
  16. #include <linux/pci.h>
  17. #include <linux/init.h>
  18. #include <linux/ioport.h>
  19. #include <linux/slab.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/bootmem.h>
  22. #include <asm/machvec.h>
  23. #include <asm/page.h>
  24. #include <asm/system.h>
  25. #include <asm/io.h>
  26. #include <asm/sal.h>
  27. #include <asm/smp.h>
  28. #include <asm/irq.h>
  29. #include <asm/hw_irq.h>
  30. /*
  31. * Low-level SAL-based PCI configuration access functions. Note that SAL
  32. * calls are already serialized (via sal_lock), so we don't need another
  33. * synchronization mechanism here.
  34. */
  35. #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
  36. (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
  37. /* SAL 3.2 adds support for extended config space. */
  38. #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
  39. (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
  40. int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
  41. int reg, int len, u32 *value)
  42. {
  43. u64 addr, data = 0;
  44. int mode, result;
  45. if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
  46. return -EINVAL;
  47. if ((seg | reg) <= 255) {
  48. addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
  49. mode = 0;
  50. } else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
  51. addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
  52. mode = 1;
  53. } else {
  54. return -EINVAL;
  55. }
  56. result = ia64_sal_pci_config_read(addr, mode, len, &data);
  57. if (result != 0)
  58. return -EINVAL;
  59. *value = (u32) data;
  60. return 0;
  61. }
  62. int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
  63. int reg, int len, u32 value)
  64. {
  65. u64 addr;
  66. int mode, result;
  67. if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
  68. return -EINVAL;
  69. if ((seg | reg) <= 255) {
  70. addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
  71. mode = 0;
  72. } else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
  73. addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
  74. mode = 1;
  75. } else {
  76. return -EINVAL;
  77. }
  78. result = ia64_sal_pci_config_write(addr, mode, len, value);
  79. if (result != 0)
  80. return -EINVAL;
  81. return 0;
  82. }
  83. static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
  84. int size, u32 *value)
  85. {
  86. return raw_pci_read(pci_domain_nr(bus), bus->number,
  87. devfn, where, size, value);
  88. }
  89. static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
  90. int size, u32 value)
  91. {
  92. return raw_pci_write(pci_domain_nr(bus), bus->number,
  93. devfn, where, size, value);
  94. }
  95. struct pci_ops pci_root_ops = {
  96. .read = pci_read,
  97. .write = pci_write,
  98. };
  99. /* Called by ACPI when it finds a new root bus. */
  100. static struct pci_controller * __devinit
  101. alloc_pci_controller (int seg)
  102. {
  103. struct pci_controller *controller;
  104. controller = kzalloc(sizeof(*controller), GFP_KERNEL);
  105. if (!controller)
  106. return NULL;
  107. controller->segment = seg;
  108. controller->node = -1;
  109. return controller;
  110. }
  111. struct pci_root_info {
  112. struct acpi_device *bridge;
  113. struct pci_controller *controller;
  114. char *name;
  115. };
  116. static unsigned int
  117. new_space (u64 phys_base, int sparse)
  118. {
  119. u64 mmio_base;
  120. int i;
  121. if (phys_base == 0)
  122. return 0; /* legacy I/O port space */
  123. mmio_base = (u64) ioremap(phys_base, 0);
  124. for (i = 0; i < num_io_spaces; i++)
  125. if (io_space[i].mmio_base == mmio_base &&
  126. io_space[i].sparse == sparse)
  127. return i;
  128. if (num_io_spaces == MAX_IO_SPACES) {
  129. printk(KERN_ERR "PCI: Too many IO port spaces "
  130. "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
  131. return ~0;
  132. }
  133. i = num_io_spaces++;
  134. io_space[i].mmio_base = mmio_base;
  135. io_space[i].sparse = sparse;
  136. return i;
  137. }
  138. static u64 __devinit
  139. add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr)
  140. {
  141. struct resource *resource;
  142. char *name;
  143. unsigned long base, min, max, base_port;
  144. unsigned int sparse = 0, space_nr, len;
  145. resource = kzalloc(sizeof(*resource), GFP_KERNEL);
  146. if (!resource) {
  147. printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
  148. info->name);
  149. goto out;
  150. }
  151. len = strlen(info->name) + 32;
  152. name = kzalloc(len, GFP_KERNEL);
  153. if (!name) {
  154. printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
  155. info->name);
  156. goto free_resource;
  157. }
  158. min = addr->minimum;
  159. max = min + addr->address_length - 1;
  160. if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
  161. sparse = 1;
  162. space_nr = new_space(addr->translation_offset, sparse);
  163. if (space_nr == ~0)
  164. goto free_name;
  165. base = __pa(io_space[space_nr].mmio_base);
  166. base_port = IO_SPACE_BASE(space_nr);
  167. snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
  168. base_port + min, base_port + max);
  169. /*
  170. * The SDM guarantees the legacy 0-64K space is sparse, but if the
  171. * mapping is done by the processor (not the bridge), ACPI may not
  172. * mark it as sparse.
  173. */
  174. if (space_nr == 0)
  175. sparse = 1;
  176. resource->name = name;
  177. resource->flags = IORESOURCE_MEM;
  178. resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
  179. resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
  180. insert_resource(&iomem_resource, resource);
  181. return base_port;
  182. free_name:
  183. kfree(name);
  184. free_resource:
  185. kfree(resource);
  186. out:
  187. return ~0;
  188. }
  189. static acpi_status __devinit resource_to_window(struct acpi_resource *resource,
  190. struct acpi_resource_address64 *addr)
  191. {
  192. acpi_status status;
  193. /*
  194. * We're only interested in _CRS descriptors that are
  195. * - address space descriptors for memory or I/O space
  196. * - non-zero size
  197. * - producers, i.e., the address space is routed downstream,
  198. * not consumed by the bridge itself
  199. */
  200. status = acpi_resource_to_address64(resource, addr);
  201. if (ACPI_SUCCESS(status) &&
  202. (addr->resource_type == ACPI_MEMORY_RANGE ||
  203. addr->resource_type == ACPI_IO_RANGE) &&
  204. addr->address_length &&
  205. addr->producer_consumer == ACPI_PRODUCER)
  206. return AE_OK;
  207. return AE_ERROR;
  208. }
  209. static acpi_status __devinit
  210. count_window (struct acpi_resource *resource, void *data)
  211. {
  212. unsigned int *windows = (unsigned int *) data;
  213. struct acpi_resource_address64 addr;
  214. acpi_status status;
  215. status = resource_to_window(resource, &addr);
  216. if (ACPI_SUCCESS(status))
  217. (*windows)++;
  218. return AE_OK;
  219. }
  220. static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
  221. {
  222. struct pci_root_info *info = data;
  223. struct pci_window *window;
  224. struct acpi_resource_address64 addr;
  225. acpi_status status;
  226. unsigned long flags, offset = 0;
  227. struct resource *root;
  228. /* Return AE_OK for non-window resources to keep scanning for more */
  229. status = resource_to_window(res, &addr);
  230. if (!ACPI_SUCCESS(status))
  231. return AE_OK;
  232. if (addr.resource_type == ACPI_MEMORY_RANGE) {
  233. flags = IORESOURCE_MEM;
  234. root = &iomem_resource;
  235. offset = addr.translation_offset;
  236. } else if (addr.resource_type == ACPI_IO_RANGE) {
  237. flags = IORESOURCE_IO;
  238. root = &ioport_resource;
  239. offset = add_io_space(info, &addr);
  240. if (offset == ~0)
  241. return AE_OK;
  242. } else
  243. return AE_OK;
  244. window = &info->controller->window[info->controller->windows++];
  245. window->resource.name = info->name;
  246. window->resource.flags = flags;
  247. window->resource.start = addr.minimum + offset;
  248. window->resource.end = window->resource.start + addr.address_length - 1;
  249. window->resource.child = NULL;
  250. window->offset = offset;
  251. if (insert_resource(root, &window->resource)) {
  252. dev_err(&info->bridge->dev,
  253. "can't allocate host bridge window %pR\n",
  254. &window->resource);
  255. } else {
  256. if (offset)
  257. dev_info(&info->bridge->dev, "host bridge window %pR "
  258. "(PCI address [%#llx-%#llx])\n",
  259. &window->resource,
  260. window->resource.start - offset,
  261. window->resource.end - offset);
  262. else
  263. dev_info(&info->bridge->dev,
  264. "host bridge window %pR\n",
  265. &window->resource);
  266. }
  267. return AE_OK;
  268. }
  269. static void __devinit
  270. pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl)
  271. {
  272. int i;
  273. pci_bus_remove_resources(bus);
  274. for (i = 0; i < ctrl->windows; i++) {
  275. struct resource *res = &ctrl->window[i].resource;
  276. /* HP's firmware has a hack to work around a Windows bug.
  277. * Ignore these tiny memory ranges */
  278. if ((res->flags & IORESOURCE_MEM) &&
  279. (res->end - res->start < 16))
  280. continue;
  281. pci_bus_add_resource(bus, res, 0);
  282. }
  283. }
  284. struct pci_bus * __devinit
  285. pci_acpi_scan_root(struct acpi_device *device, int domain, int bus)
  286. {
  287. struct pci_controller *controller;
  288. unsigned int windows = 0;
  289. struct pci_bus *pbus;
  290. char *name;
  291. int pxm;
  292. controller = alloc_pci_controller(domain);
  293. if (!controller)
  294. goto out1;
  295. controller->acpi_handle = device->handle;
  296. pxm = acpi_get_pxm(controller->acpi_handle);
  297. #ifdef CONFIG_NUMA
  298. if (pxm >= 0)
  299. controller->node = pxm_to_node(pxm);
  300. #endif
  301. acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
  302. &windows);
  303. if (windows) {
  304. struct pci_root_info info;
  305. controller->window =
  306. kmalloc_node(sizeof(*controller->window) * windows,
  307. GFP_KERNEL, controller->node);
  308. if (!controller->window)
  309. goto out2;
  310. name = kmalloc(16, GFP_KERNEL);
  311. if (!name)
  312. goto out3;
  313. sprintf(name, "PCI Bus %04x:%02x", domain, bus);
  314. info.bridge = device;
  315. info.controller = controller;
  316. info.name = name;
  317. acpi_walk_resources(device->handle, METHOD_NAME__CRS,
  318. add_window, &info);
  319. }
  320. /*
  321. * See arch/x86/pci/acpi.c.
  322. * The desired pci bus might already be scanned in a quirk. We
  323. * should handle the case here, but it appears that IA64 hasn't
  324. * such quirk. So we just ignore the case now.
  325. */
  326. pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller);
  327. return pbus;
  328. out3:
  329. kfree(controller->window);
  330. out2:
  331. kfree(controller);
  332. out1:
  333. return NULL;
  334. }
  335. void pcibios_resource_to_bus(struct pci_dev *dev,
  336. struct pci_bus_region *region, struct resource *res)
  337. {
  338. struct pci_controller *controller = PCI_CONTROLLER(dev);
  339. unsigned long offset = 0;
  340. int i;
  341. for (i = 0; i < controller->windows; i++) {
  342. struct pci_window *window = &controller->window[i];
  343. if (!(window->resource.flags & res->flags))
  344. continue;
  345. if (window->resource.start > res->start)
  346. continue;
  347. if (window->resource.end < res->end)
  348. continue;
  349. offset = window->offset;
  350. break;
  351. }
  352. region->start = res->start - offset;
  353. region->end = res->end - offset;
  354. }
  355. EXPORT_SYMBOL(pcibios_resource_to_bus);
  356. void pcibios_bus_to_resource(struct pci_dev *dev,
  357. struct resource *res, struct pci_bus_region *region)
  358. {
  359. struct pci_controller *controller = PCI_CONTROLLER(dev);
  360. unsigned long offset = 0;
  361. int i;
  362. for (i = 0; i < controller->windows; i++) {
  363. struct pci_window *window = &controller->window[i];
  364. if (!(window->resource.flags & res->flags))
  365. continue;
  366. if (window->resource.start - window->offset > region->start)
  367. continue;
  368. if (window->resource.end - window->offset < region->end)
  369. continue;
  370. offset = window->offset;
  371. break;
  372. }
  373. res->start = region->start + offset;
  374. res->end = region->end + offset;
  375. }
  376. EXPORT_SYMBOL(pcibios_bus_to_resource);
  377. static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
  378. {
  379. unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
  380. struct resource *devr = &dev->resource[idx], *busr;
  381. if (!dev->bus)
  382. return 0;
  383. pci_bus_for_each_resource(dev->bus, busr, i) {
  384. if (!busr || ((busr->flags ^ devr->flags) & type_mask))
  385. continue;
  386. if ((devr->start) && (devr->start >= busr->start) &&
  387. (devr->end <= busr->end))
  388. return 1;
  389. }
  390. return 0;
  391. }
  392. static void __devinit
  393. pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
  394. {
  395. struct pci_bus_region region;
  396. int i;
  397. for (i = start; i < limit; i++) {
  398. if (!dev->resource[i].flags)
  399. continue;
  400. region.start = dev->resource[i].start;
  401. region.end = dev->resource[i].end;
  402. pcibios_bus_to_resource(dev, &dev->resource[i], &region);
  403. if ((is_valid_resource(dev, i)))
  404. pci_claim_resource(dev, i);
  405. }
  406. }
  407. void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
  408. {
  409. pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
  410. }
  411. EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
  412. static void __devinit pcibios_fixup_bridge_resources(struct pci_dev *dev)
  413. {
  414. pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
  415. }
  416. /*
  417. * Called after each bus is probed, but before its children are examined.
  418. */
  419. void __devinit
  420. pcibios_fixup_bus (struct pci_bus *b)
  421. {
  422. struct pci_dev *dev;
  423. if (b->self) {
  424. pci_read_bridge_bases(b);
  425. pcibios_fixup_bridge_resources(b->self);
  426. } else {
  427. pcibios_setup_root_windows(b, b->sysdata);
  428. }
  429. list_for_each_entry(dev, &b->devices, bus_list)
  430. pcibios_fixup_device_resources(dev);
  431. platform_pci_fixup_bus(b);
  432. return;
  433. }
  434. void __devinit
  435. pcibios_update_irq (struct pci_dev *dev, int irq)
  436. {
  437. pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
  438. /* ??? FIXME -- record old value for shutdown. */
  439. }
  440. int
  441. pcibios_enable_device (struct pci_dev *dev, int mask)
  442. {
  443. int ret;
  444. ret = pci_enable_resources(dev, mask);
  445. if (ret < 0)
  446. return ret;
  447. if (!dev->msi_enabled)
  448. return acpi_pci_irq_enable(dev);
  449. return 0;
  450. }
  451. void
  452. pcibios_disable_device (struct pci_dev *dev)
  453. {
  454. BUG_ON(atomic_read(&dev->enable_cnt));
  455. if (!dev->msi_enabled)
  456. acpi_pci_irq_disable(dev);
  457. }
  458. resource_size_t
  459. pcibios_align_resource (void *data, const struct resource *res,
  460. resource_size_t size, resource_size_t align)
  461. {
  462. return res->start;
  463. }
  464. /*
  465. * PCI BIOS setup, always defaults to SAL interface
  466. */
  467. char * __init
  468. pcibios_setup (char *str)
  469. {
  470. return str;
  471. }
  472. int
  473. pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
  474. enum pci_mmap_state mmap_state, int write_combine)
  475. {
  476. unsigned long size = vma->vm_end - vma->vm_start;
  477. pgprot_t prot;
  478. /*
  479. * I/O space cannot be accessed via normal processor loads and
  480. * stores on this platform.
  481. */
  482. if (mmap_state == pci_mmap_io)
  483. /*
  484. * XXX we could relax this for I/O spaces for which ACPI
  485. * indicates that the space is 1-to-1 mapped. But at the
  486. * moment, we don't support multiple PCI address spaces and
  487. * the legacy I/O space is not 1-to-1 mapped, so this is moot.
  488. */
  489. return -EINVAL;
  490. if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
  491. return -EINVAL;
  492. prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
  493. vma->vm_page_prot);
  494. /*
  495. * If the user requested WC, the kernel uses UC or WC for this region,
  496. * and the chipset supports WC, we can use WC. Otherwise, we have to
  497. * use the same attribute the kernel uses.
  498. */
  499. if (write_combine &&
  500. ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
  501. (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
  502. efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
  503. vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
  504. else
  505. vma->vm_page_prot = prot;
  506. if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
  507. vma->vm_end - vma->vm_start, vma->vm_page_prot))
  508. return -EAGAIN;
  509. return 0;
  510. }
  511. /**
  512. * ia64_pci_get_legacy_mem - generic legacy mem routine
  513. * @bus: bus to get legacy memory base address for
  514. *
  515. * Find the base of legacy memory for @bus. This is typically the first
  516. * megabyte of bus address space for @bus or is simply 0 on platforms whose
  517. * chipsets support legacy I/O and memory routing. Returns the base address
  518. * or an error pointer if an error occurred.
  519. *
  520. * This is the ia64 generic version of this routine. Other platforms
  521. * are free to override it with a machine vector.
  522. */
  523. char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
  524. {
  525. return (char *)__IA64_UNCACHED_OFFSET;
  526. }
  527. /**
  528. * pci_mmap_legacy_page_range - map legacy memory space to userland
  529. * @bus: bus whose legacy space we're mapping
  530. * @vma: vma passed in by mmap
  531. *
  532. * Map legacy memory space for this device back to userspace using a machine
  533. * vector to get the base address.
  534. */
  535. int
  536. pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
  537. enum pci_mmap_state mmap_state)
  538. {
  539. unsigned long size = vma->vm_end - vma->vm_start;
  540. pgprot_t prot;
  541. char *addr;
  542. /* We only support mmap'ing of legacy memory space */
  543. if (mmap_state != pci_mmap_mem)
  544. return -ENOSYS;
  545. /*
  546. * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt
  547. * for more details.
  548. */
  549. if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
  550. return -EINVAL;
  551. prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
  552. vma->vm_page_prot);
  553. addr = pci_get_legacy_mem(bus);
  554. if (IS_ERR(addr))
  555. return PTR_ERR(addr);
  556. vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
  557. vma->vm_page_prot = prot;
  558. if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
  559. size, vma->vm_page_prot))
  560. return -EAGAIN;
  561. return 0;
  562. }
  563. /**
  564. * ia64_pci_legacy_read - read from legacy I/O space
  565. * @bus: bus to read
  566. * @port: legacy port value
  567. * @val: caller allocated storage for returned value
  568. * @size: number of bytes to read
  569. *
  570. * Simply reads @size bytes from @port and puts the result in @val.
  571. *
  572. * Again, this (and the write routine) are generic versions that can be
  573. * overridden by the platform. This is necessary on platforms that don't
  574. * support legacy I/O routing or that hard fail on legacy I/O timeouts.
  575. */
  576. int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
  577. {
  578. int ret = size;
  579. switch (size) {
  580. case 1:
  581. *val = inb(port);
  582. break;
  583. case 2:
  584. *val = inw(port);
  585. break;
  586. case 4:
  587. *val = inl(port);
  588. break;
  589. default:
  590. ret = -EINVAL;
  591. break;
  592. }
  593. return ret;
  594. }
  595. /**
  596. * ia64_pci_legacy_write - perform a legacy I/O write
  597. * @bus: bus pointer
  598. * @port: port to write
  599. * @val: value to write
  600. * @size: number of bytes to write from @val
  601. *
  602. * Simply writes @size bytes of @val to @port.
  603. */
  604. int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
  605. {
  606. int ret = size;
  607. switch (size) {
  608. case 1:
  609. outb(val, port);
  610. break;
  611. case 2:
  612. outw(val, port);
  613. break;
  614. case 4:
  615. outl(val, port);
  616. break;
  617. default:
  618. ret = -EINVAL;
  619. break;
  620. }
  621. return ret;
  622. }
  623. /**
  624. * set_pci_cacheline_size - determine cacheline size for PCI devices
  625. *
  626. * We want to use the line-size of the outer-most cache. We assume
  627. * that this line-size is the same for all CPUs.
  628. *
  629. * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
  630. */
  631. static void __init set_pci_dfl_cacheline_size(void)
  632. {
  633. unsigned long levels, unique_caches;
  634. long status;
  635. pal_cache_config_info_t cci;
  636. status = ia64_pal_cache_summary(&levels, &unique_caches);
  637. if (status != 0) {
  638. printk(KERN_ERR "%s: ia64_pal_cache_summary() failed "
  639. "(status=%ld)\n", __func__, status);
  640. return;
  641. }
  642. status = ia64_pal_cache_config_info(levels - 1,
  643. /* cache_type (data_or_unified)= */ 2, &cci);
  644. if (status != 0) {
  645. printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed "
  646. "(status=%ld)\n", __func__, status);
  647. return;
  648. }
  649. pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
  650. }
  651. u64 ia64_dma_get_required_mask(struct device *dev)
  652. {
  653. u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
  654. u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
  655. u64 mask;
  656. if (!high_totalram) {
  657. /* convert to mask just covering totalram */
  658. low_totalram = (1 << (fls(low_totalram) - 1));
  659. low_totalram += low_totalram - 1;
  660. mask = low_totalram;
  661. } else {
  662. high_totalram = (1 << (fls(high_totalram) - 1));
  663. high_totalram += high_totalram - 1;
  664. mask = (((u64)high_totalram) << 32) + 0xffffffff;
  665. }
  666. return mask;
  667. }
  668. EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
  669. u64 dma_get_required_mask(struct device *dev)
  670. {
  671. return platform_dma_get_required_mask(dev);
  672. }
  673. EXPORT_SYMBOL_GPL(dma_get_required_mask);
  674. static int __init pcibios_init(void)
  675. {
  676. set_pci_dfl_cacheline_size();
  677. return 0;
  678. }
  679. subsys_initcall(pcibios_init);