kvm-ia64.c 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004
  1. /*
  2. * kvm_ia64.c: Basic KVM suppport On Itanium series processors
  3. *
  4. *
  5. * Copyright (C) 2007, Intel Corporation.
  6. * Xiantao Zhang (xiantao.zhang@intel.com)
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms and conditions of the GNU General Public License,
  10. * version 2, as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along with
  18. * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
  19. * Place - Suite 330, Boston, MA 02111-1307 USA.
  20. *
  21. */
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/fs.h>
  26. #include <linux/slab.h>
  27. #include <linux/smp.h>
  28. #include <linux/kvm_host.h>
  29. #include <linux/kvm.h>
  30. #include <linux/bitops.h>
  31. #include <linux/hrtimer.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/iommu.h>
  34. #include <linux/intel-iommu.h>
  35. #include <asm/pgtable.h>
  36. #include <asm/gcc_intrin.h>
  37. #include <asm/pal.h>
  38. #include <asm/cacheflush.h>
  39. #include <asm/div64.h>
  40. #include <asm/tlb.h>
  41. #include <asm/elf.h>
  42. #include <asm/sn/addrs.h>
  43. #include <asm/sn/clksupport.h>
  44. #include <asm/sn/shub_mmr.h>
  45. #include "misc.h"
  46. #include "vti.h"
  47. #include "iodev.h"
  48. #include "ioapic.h"
  49. #include "lapic.h"
  50. #include "irq.h"
  51. static unsigned long kvm_vmm_base;
  52. static unsigned long kvm_vsa_base;
  53. static unsigned long kvm_vm_buffer;
  54. static unsigned long kvm_vm_buffer_size;
  55. unsigned long kvm_vmm_gp;
  56. static long vp_env_info;
  57. static struct kvm_vmm_info *kvm_vmm_info;
  58. static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
  59. struct kvm_stats_debugfs_item debugfs_entries[] = {
  60. { NULL }
  61. };
  62. static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
  63. {
  64. #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
  65. if (vcpu->kvm->arch.is_sn2)
  66. return rtc_time();
  67. else
  68. #endif
  69. return ia64_getreg(_IA64_REG_AR_ITC);
  70. }
  71. static void kvm_flush_icache(unsigned long start, unsigned long len)
  72. {
  73. int l;
  74. for (l = 0; l < (len + 32); l += 32)
  75. ia64_fc((void *)(start + l));
  76. ia64_sync_i();
  77. ia64_srlz_i();
  78. }
  79. static void kvm_flush_tlb_all(void)
  80. {
  81. unsigned long i, j, count0, count1, stride0, stride1, addr;
  82. long flags;
  83. addr = local_cpu_data->ptce_base;
  84. count0 = local_cpu_data->ptce_count[0];
  85. count1 = local_cpu_data->ptce_count[1];
  86. stride0 = local_cpu_data->ptce_stride[0];
  87. stride1 = local_cpu_data->ptce_stride[1];
  88. local_irq_save(flags);
  89. for (i = 0; i < count0; ++i) {
  90. for (j = 0; j < count1; ++j) {
  91. ia64_ptce(addr);
  92. addr += stride1;
  93. }
  94. addr += stride0;
  95. }
  96. local_irq_restore(flags);
  97. ia64_srlz_i(); /* srlz.i implies srlz.d */
  98. }
  99. long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
  100. {
  101. struct ia64_pal_retval iprv;
  102. PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
  103. (u64)opt_handler);
  104. return iprv.status;
  105. }
  106. static DEFINE_SPINLOCK(vp_lock);
  107. int kvm_arch_hardware_enable(void *garbage)
  108. {
  109. long status;
  110. long tmp_base;
  111. unsigned long pte;
  112. unsigned long saved_psr;
  113. int slot;
  114. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
  115. local_irq_save(saved_psr);
  116. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  117. local_irq_restore(saved_psr);
  118. if (slot < 0)
  119. return -EINVAL;
  120. spin_lock(&vp_lock);
  121. status = ia64_pal_vp_init_env(kvm_vsa_base ?
  122. VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
  123. __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
  124. if (status != 0) {
  125. printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
  126. return -EINVAL;
  127. }
  128. if (!kvm_vsa_base) {
  129. kvm_vsa_base = tmp_base;
  130. printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
  131. }
  132. spin_unlock(&vp_lock);
  133. ia64_ptr_entry(0x3, slot);
  134. return 0;
  135. }
  136. void kvm_arch_hardware_disable(void *garbage)
  137. {
  138. long status;
  139. int slot;
  140. unsigned long pte;
  141. unsigned long saved_psr;
  142. unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
  143. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
  144. PAGE_KERNEL));
  145. local_irq_save(saved_psr);
  146. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  147. local_irq_restore(saved_psr);
  148. if (slot < 0)
  149. return;
  150. status = ia64_pal_vp_exit_env(host_iva);
  151. if (status)
  152. printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
  153. status);
  154. ia64_ptr_entry(0x3, slot);
  155. }
  156. void kvm_arch_check_processor_compat(void *rtn)
  157. {
  158. *(int *)rtn = 0;
  159. }
  160. int kvm_dev_ioctl_check_extension(long ext)
  161. {
  162. int r;
  163. switch (ext) {
  164. case KVM_CAP_IRQCHIP:
  165. case KVM_CAP_MP_STATE:
  166. case KVM_CAP_IRQ_INJECT_STATUS:
  167. r = 1;
  168. break;
  169. case KVM_CAP_COALESCED_MMIO:
  170. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  171. break;
  172. case KVM_CAP_IOMMU:
  173. r = iommu_found();
  174. break;
  175. default:
  176. r = 0;
  177. }
  178. return r;
  179. }
  180. static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  181. {
  182. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  183. kvm_run->hw.hardware_exit_reason = 1;
  184. return 0;
  185. }
  186. static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  187. {
  188. struct kvm_mmio_req *p;
  189. struct kvm_io_device *mmio_dev;
  190. int r;
  191. p = kvm_get_vcpu_ioreq(vcpu);
  192. if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
  193. goto mmio;
  194. vcpu->mmio_needed = 1;
  195. vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
  196. vcpu->mmio_size = kvm_run->mmio.len = p->size;
  197. vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
  198. if (vcpu->mmio_is_write)
  199. memcpy(vcpu->mmio_data, &p->data, p->size);
  200. memcpy(kvm_run->mmio.data, &p->data, p->size);
  201. kvm_run->exit_reason = KVM_EXIT_MMIO;
  202. return 0;
  203. mmio:
  204. if (p->dir)
  205. r = kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, p->addr,
  206. p->size, &p->data);
  207. else
  208. r = kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, p->addr,
  209. p->size, &p->data);
  210. if (r)
  211. printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
  212. p->state = STATE_IORESP_READY;
  213. return 1;
  214. }
  215. static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  216. {
  217. struct exit_ctl_data *p;
  218. p = kvm_get_exit_data(vcpu);
  219. if (p->exit_reason == EXIT_REASON_PAL_CALL)
  220. return kvm_pal_emul(vcpu, kvm_run);
  221. else {
  222. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  223. kvm_run->hw.hardware_exit_reason = 2;
  224. return 0;
  225. }
  226. }
  227. static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  228. {
  229. struct exit_ctl_data *p;
  230. p = kvm_get_exit_data(vcpu);
  231. if (p->exit_reason == EXIT_REASON_SAL_CALL) {
  232. kvm_sal_emul(vcpu);
  233. return 1;
  234. } else {
  235. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  236. kvm_run->hw.hardware_exit_reason = 3;
  237. return 0;
  238. }
  239. }
  240. static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
  241. {
  242. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  243. if (!test_and_set_bit(vector, &vpd->irr[0])) {
  244. vcpu->arch.irq_new_pending = 1;
  245. kvm_vcpu_kick(vcpu);
  246. return 1;
  247. }
  248. return 0;
  249. }
  250. /*
  251. * offset: address offset to IPI space.
  252. * value: deliver value.
  253. */
  254. static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
  255. uint64_t vector)
  256. {
  257. switch (dm) {
  258. case SAPIC_FIXED:
  259. break;
  260. case SAPIC_NMI:
  261. vector = 2;
  262. break;
  263. case SAPIC_EXTINT:
  264. vector = 0;
  265. break;
  266. case SAPIC_INIT:
  267. case SAPIC_PMI:
  268. default:
  269. printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
  270. return;
  271. }
  272. __apic_accept_irq(vcpu, vector);
  273. }
  274. static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
  275. unsigned long eid)
  276. {
  277. union ia64_lid lid;
  278. int i;
  279. struct kvm_vcpu *vcpu;
  280. kvm_for_each_vcpu(i, vcpu, kvm) {
  281. lid.val = VCPU_LID(vcpu);
  282. if (lid.id == id && lid.eid == eid)
  283. return vcpu;
  284. }
  285. return NULL;
  286. }
  287. static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  288. {
  289. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  290. struct kvm_vcpu *target_vcpu;
  291. struct kvm_pt_regs *regs;
  292. union ia64_ipi_a addr = p->u.ipi_data.addr;
  293. union ia64_ipi_d data = p->u.ipi_data.data;
  294. target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
  295. if (!target_vcpu)
  296. return handle_vm_error(vcpu, kvm_run);
  297. if (!target_vcpu->arch.launched) {
  298. regs = vcpu_regs(target_vcpu);
  299. regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
  300. regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
  301. target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  302. if (waitqueue_active(&target_vcpu->wq))
  303. wake_up_interruptible(&target_vcpu->wq);
  304. } else {
  305. vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
  306. if (target_vcpu != vcpu)
  307. kvm_vcpu_kick(target_vcpu);
  308. }
  309. return 1;
  310. }
  311. struct call_data {
  312. struct kvm_ptc_g ptc_g_data;
  313. struct kvm_vcpu *vcpu;
  314. };
  315. static void vcpu_global_purge(void *info)
  316. {
  317. struct call_data *p = (struct call_data *)info;
  318. struct kvm_vcpu *vcpu = p->vcpu;
  319. if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  320. return;
  321. set_bit(KVM_REQ_PTC_G, &vcpu->requests);
  322. if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
  323. vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
  324. p->ptc_g_data;
  325. } else {
  326. clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
  327. vcpu->arch.ptc_g_count = 0;
  328. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  329. }
  330. }
  331. static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  332. {
  333. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  334. struct kvm *kvm = vcpu->kvm;
  335. struct call_data call_data;
  336. int i;
  337. struct kvm_vcpu *vcpui;
  338. call_data.ptc_g_data = p->u.ptc_g_data;
  339. kvm_for_each_vcpu(i, vcpui, kvm) {
  340. if (vcpui->arch.mp_state == KVM_MP_STATE_UNINITIALIZED ||
  341. vcpu == vcpui)
  342. continue;
  343. if (waitqueue_active(&vcpui->wq))
  344. wake_up_interruptible(&vcpui->wq);
  345. if (vcpui->cpu != -1) {
  346. call_data.vcpu = vcpui;
  347. smp_call_function_single(vcpui->cpu,
  348. vcpu_global_purge, &call_data, 1);
  349. } else
  350. printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
  351. }
  352. return 1;
  353. }
  354. static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  355. {
  356. return 1;
  357. }
  358. static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
  359. {
  360. unsigned long pte, rtc_phys_addr, map_addr;
  361. int slot;
  362. map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
  363. rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
  364. pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
  365. slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
  366. vcpu->arch.sn_rtc_tr_slot = slot;
  367. if (slot < 0) {
  368. printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
  369. slot = 0;
  370. }
  371. return slot;
  372. }
  373. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  374. {
  375. ktime_t kt;
  376. long itc_diff;
  377. unsigned long vcpu_now_itc;
  378. unsigned long expires;
  379. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  380. unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
  381. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  382. if (irqchip_in_kernel(vcpu->kvm)) {
  383. vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
  384. if (time_after(vcpu_now_itc, vpd->itm)) {
  385. vcpu->arch.timer_check = 1;
  386. return 1;
  387. }
  388. itc_diff = vpd->itm - vcpu_now_itc;
  389. if (itc_diff < 0)
  390. itc_diff = -itc_diff;
  391. expires = div64_u64(itc_diff, cyc_per_usec);
  392. kt = ktime_set(0, 1000 * expires);
  393. vcpu->arch.ht_active = 1;
  394. hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
  395. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  396. kvm_vcpu_block(vcpu);
  397. hrtimer_cancel(p_ht);
  398. vcpu->arch.ht_active = 0;
  399. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
  400. kvm_cpu_has_pending_timer(vcpu))
  401. if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
  402. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  403. if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
  404. return -EINTR;
  405. return 1;
  406. } else {
  407. printk(KERN_ERR"kvm: Unsupported userspace halt!");
  408. return 0;
  409. }
  410. }
  411. static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
  412. struct kvm_run *kvm_run)
  413. {
  414. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  415. return 0;
  416. }
  417. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  418. struct kvm_run *kvm_run)
  419. {
  420. return 1;
  421. }
  422. static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
  423. struct kvm_run *kvm_run)
  424. {
  425. printk("VMM: %s", vcpu->arch.log_buf);
  426. return 1;
  427. }
  428. static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
  429. struct kvm_run *kvm_run) = {
  430. [EXIT_REASON_VM_PANIC] = handle_vm_error,
  431. [EXIT_REASON_MMIO_INSTRUCTION] = handle_mmio,
  432. [EXIT_REASON_PAL_CALL] = handle_pal_call,
  433. [EXIT_REASON_SAL_CALL] = handle_sal_call,
  434. [EXIT_REASON_SWITCH_RR6] = handle_switch_rr6,
  435. [EXIT_REASON_VM_DESTROY] = handle_vm_shutdown,
  436. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  437. [EXIT_REASON_IPI] = handle_ipi,
  438. [EXIT_REASON_PTC_G] = handle_global_purge,
  439. [EXIT_REASON_DEBUG] = handle_vcpu_debug,
  440. };
  441. static const int kvm_vti_max_exit_handlers =
  442. sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
  443. static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
  444. {
  445. struct exit_ctl_data *p_exit_data;
  446. p_exit_data = kvm_get_exit_data(vcpu);
  447. return p_exit_data->exit_reason;
  448. }
  449. /*
  450. * The guest has exited. See if we can fix it or if we need userspace
  451. * assistance.
  452. */
  453. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  454. {
  455. u32 exit_reason = kvm_get_exit_reason(vcpu);
  456. vcpu->arch.last_exit = exit_reason;
  457. if (exit_reason < kvm_vti_max_exit_handlers
  458. && kvm_vti_exit_handlers[exit_reason])
  459. return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
  460. else {
  461. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  462. kvm_run->hw.hardware_exit_reason = exit_reason;
  463. }
  464. return 0;
  465. }
  466. static inline void vti_set_rr6(unsigned long rr6)
  467. {
  468. ia64_set_rr(RR6, rr6);
  469. ia64_srlz_i();
  470. }
  471. static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
  472. {
  473. unsigned long pte;
  474. struct kvm *kvm = vcpu->kvm;
  475. int r;
  476. /*Insert a pair of tr to map vmm*/
  477. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
  478. r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  479. if (r < 0)
  480. goto out;
  481. vcpu->arch.vmm_tr_slot = r;
  482. /*Insert a pairt of tr to map data of vm*/
  483. pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
  484. r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
  485. pte, KVM_VM_DATA_SHIFT);
  486. if (r < 0)
  487. goto out;
  488. vcpu->arch.vm_tr_slot = r;
  489. #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
  490. if (kvm->arch.is_sn2) {
  491. r = kvm_sn2_setup_mappings(vcpu);
  492. if (r < 0)
  493. goto out;
  494. }
  495. #endif
  496. r = 0;
  497. out:
  498. return r;
  499. }
  500. static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
  501. {
  502. struct kvm *kvm = vcpu->kvm;
  503. ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
  504. ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
  505. #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
  506. if (kvm->arch.is_sn2)
  507. ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
  508. #endif
  509. }
  510. static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
  511. {
  512. unsigned long psr;
  513. int r;
  514. int cpu = smp_processor_id();
  515. if (vcpu->arch.last_run_cpu != cpu ||
  516. per_cpu(last_vcpu, cpu) != vcpu) {
  517. per_cpu(last_vcpu, cpu) = vcpu;
  518. vcpu->arch.last_run_cpu = cpu;
  519. kvm_flush_tlb_all();
  520. }
  521. vcpu->arch.host_rr6 = ia64_get_rr(RR6);
  522. vti_set_rr6(vcpu->arch.vmm_rr);
  523. local_irq_save(psr);
  524. r = kvm_insert_vmm_mapping(vcpu);
  525. local_irq_restore(psr);
  526. return r;
  527. }
  528. static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
  529. {
  530. kvm_purge_vmm_mapping(vcpu);
  531. vti_set_rr6(vcpu->arch.host_rr6);
  532. }
  533. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  534. {
  535. union context *host_ctx, *guest_ctx;
  536. int r, idx;
  537. idx = srcu_read_lock(&vcpu->kvm->srcu);
  538. again:
  539. if (signal_pending(current)) {
  540. r = -EINTR;
  541. kvm_run->exit_reason = KVM_EXIT_INTR;
  542. goto out;
  543. }
  544. preempt_disable();
  545. local_irq_disable();
  546. /*Get host and guest context with guest address space.*/
  547. host_ctx = kvm_get_host_context(vcpu);
  548. guest_ctx = kvm_get_guest_context(vcpu);
  549. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  550. r = kvm_vcpu_pre_transition(vcpu);
  551. if (r < 0)
  552. goto vcpu_run_fail;
  553. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  554. kvm_guest_enter();
  555. /*
  556. * Transition to the guest
  557. */
  558. kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
  559. kvm_vcpu_post_transition(vcpu);
  560. vcpu->arch.launched = 1;
  561. set_bit(KVM_REQ_KICK, &vcpu->requests);
  562. local_irq_enable();
  563. /*
  564. * We must have an instruction between local_irq_enable() and
  565. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  566. * the interrupt shadow. The stat.exits increment will do nicely.
  567. * But we need to prevent reordering, hence this barrier():
  568. */
  569. barrier();
  570. kvm_guest_exit();
  571. preempt_enable();
  572. idx = srcu_read_lock(&vcpu->kvm->srcu);
  573. r = kvm_handle_exit(kvm_run, vcpu);
  574. if (r > 0) {
  575. if (!need_resched())
  576. goto again;
  577. }
  578. out:
  579. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  580. if (r > 0) {
  581. kvm_resched(vcpu);
  582. idx = srcu_read_lock(&vcpu->kvm->srcu);
  583. goto again;
  584. }
  585. return r;
  586. vcpu_run_fail:
  587. local_irq_enable();
  588. preempt_enable();
  589. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  590. goto out;
  591. }
  592. static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
  593. {
  594. struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
  595. if (!vcpu->mmio_is_write)
  596. memcpy(&p->data, vcpu->mmio_data, 8);
  597. p->state = STATE_IORESP_READY;
  598. }
  599. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  600. {
  601. int r;
  602. sigset_t sigsaved;
  603. vcpu_load(vcpu);
  604. if (vcpu->sigset_active)
  605. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  606. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  607. kvm_vcpu_block(vcpu);
  608. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  609. r = -EAGAIN;
  610. goto out;
  611. }
  612. if (vcpu->mmio_needed) {
  613. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  614. kvm_set_mmio_data(vcpu);
  615. vcpu->mmio_read_completed = 1;
  616. vcpu->mmio_needed = 0;
  617. }
  618. r = __vcpu_run(vcpu, kvm_run);
  619. out:
  620. if (vcpu->sigset_active)
  621. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  622. vcpu_put(vcpu);
  623. return r;
  624. }
  625. static struct kvm *kvm_alloc_kvm(void)
  626. {
  627. struct kvm *kvm;
  628. uint64_t vm_base;
  629. BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
  630. vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
  631. if (!vm_base)
  632. return ERR_PTR(-ENOMEM);
  633. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  634. kvm = (struct kvm *)(vm_base +
  635. offsetof(struct kvm_vm_data, kvm_vm_struct));
  636. kvm->arch.vm_base = vm_base;
  637. printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
  638. return kvm;
  639. }
  640. struct kvm_io_range {
  641. unsigned long start;
  642. unsigned long size;
  643. unsigned long type;
  644. };
  645. static const struct kvm_io_range io_ranges[] = {
  646. {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
  647. {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
  648. {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
  649. {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
  650. {PIB_START, PIB_SIZE, GPFN_PIB},
  651. };
  652. static void kvm_build_io_pmt(struct kvm *kvm)
  653. {
  654. unsigned long i, j;
  655. /* Mark I/O ranges */
  656. for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
  657. i++) {
  658. for (j = io_ranges[i].start;
  659. j < io_ranges[i].start + io_ranges[i].size;
  660. j += PAGE_SIZE)
  661. kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
  662. io_ranges[i].type, 0);
  663. }
  664. }
  665. /*Use unused rids to virtualize guest rid.*/
  666. #define GUEST_PHYSICAL_RR0 0x1739
  667. #define GUEST_PHYSICAL_RR4 0x2739
  668. #define VMM_INIT_RR 0x1660
  669. static void kvm_init_vm(struct kvm *kvm)
  670. {
  671. BUG_ON(!kvm);
  672. kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
  673. kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
  674. kvm->arch.vmm_init_rr = VMM_INIT_RR;
  675. /*
  676. *Fill P2M entries for MMIO/IO ranges
  677. */
  678. kvm_build_io_pmt(kvm);
  679. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  680. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  681. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  682. }
  683. struct kvm *kvm_arch_create_vm(void)
  684. {
  685. struct kvm *kvm = kvm_alloc_kvm();
  686. if (IS_ERR(kvm))
  687. return ERR_PTR(-ENOMEM);
  688. kvm->arch.is_sn2 = ia64_platform_is("sn2");
  689. kvm_init_vm(kvm);
  690. return kvm;
  691. }
  692. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
  693. struct kvm_irqchip *chip)
  694. {
  695. int r;
  696. r = 0;
  697. switch (chip->chip_id) {
  698. case KVM_IRQCHIP_IOAPIC:
  699. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  700. break;
  701. default:
  702. r = -EINVAL;
  703. break;
  704. }
  705. return r;
  706. }
  707. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  708. {
  709. int r;
  710. r = 0;
  711. switch (chip->chip_id) {
  712. case KVM_IRQCHIP_IOAPIC:
  713. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  714. break;
  715. default:
  716. r = -EINVAL;
  717. break;
  718. }
  719. return r;
  720. }
  721. #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
  722. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  723. {
  724. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  725. int i;
  726. vcpu_load(vcpu);
  727. for (i = 0; i < 16; i++) {
  728. vpd->vgr[i] = regs->vpd.vgr[i];
  729. vpd->vbgr[i] = regs->vpd.vbgr[i];
  730. }
  731. for (i = 0; i < 128; i++)
  732. vpd->vcr[i] = regs->vpd.vcr[i];
  733. vpd->vhpi = regs->vpd.vhpi;
  734. vpd->vnat = regs->vpd.vnat;
  735. vpd->vbnat = regs->vpd.vbnat;
  736. vpd->vpsr = regs->vpd.vpsr;
  737. vpd->vpr = regs->vpd.vpr;
  738. memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
  739. RESTORE_REGS(mp_state);
  740. RESTORE_REGS(vmm_rr);
  741. memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
  742. memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
  743. RESTORE_REGS(itr_regions);
  744. RESTORE_REGS(dtr_regions);
  745. RESTORE_REGS(tc_regions);
  746. RESTORE_REGS(irq_check);
  747. RESTORE_REGS(itc_check);
  748. RESTORE_REGS(timer_check);
  749. RESTORE_REGS(timer_pending);
  750. RESTORE_REGS(last_itc);
  751. for (i = 0; i < 8; i++) {
  752. vcpu->arch.vrr[i] = regs->vrr[i];
  753. vcpu->arch.ibr[i] = regs->ibr[i];
  754. vcpu->arch.dbr[i] = regs->dbr[i];
  755. }
  756. for (i = 0; i < 4; i++)
  757. vcpu->arch.insvc[i] = regs->insvc[i];
  758. RESTORE_REGS(xtp);
  759. RESTORE_REGS(metaphysical_rr0);
  760. RESTORE_REGS(metaphysical_rr4);
  761. RESTORE_REGS(metaphysical_saved_rr0);
  762. RESTORE_REGS(metaphysical_saved_rr4);
  763. RESTORE_REGS(fp_psr);
  764. RESTORE_REGS(saved_gp);
  765. vcpu->arch.irq_new_pending = 1;
  766. vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
  767. set_bit(KVM_REQ_RESUME, &vcpu->requests);
  768. vcpu_put(vcpu);
  769. return 0;
  770. }
  771. long kvm_arch_vm_ioctl(struct file *filp,
  772. unsigned int ioctl, unsigned long arg)
  773. {
  774. struct kvm *kvm = filp->private_data;
  775. void __user *argp = (void __user *)arg;
  776. int r = -ENOTTY;
  777. switch (ioctl) {
  778. case KVM_SET_MEMORY_REGION: {
  779. struct kvm_memory_region kvm_mem;
  780. struct kvm_userspace_memory_region kvm_userspace_mem;
  781. r = -EFAULT;
  782. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  783. goto out;
  784. kvm_userspace_mem.slot = kvm_mem.slot;
  785. kvm_userspace_mem.flags = kvm_mem.flags;
  786. kvm_userspace_mem.guest_phys_addr =
  787. kvm_mem.guest_phys_addr;
  788. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  789. r = kvm_vm_ioctl_set_memory_region(kvm,
  790. &kvm_userspace_mem, 0);
  791. if (r)
  792. goto out;
  793. break;
  794. }
  795. case KVM_CREATE_IRQCHIP:
  796. r = -EFAULT;
  797. r = kvm_ioapic_init(kvm);
  798. if (r)
  799. goto out;
  800. r = kvm_setup_default_irq_routing(kvm);
  801. if (r) {
  802. kvm_ioapic_destroy(kvm);
  803. goto out;
  804. }
  805. break;
  806. case KVM_IRQ_LINE_STATUS:
  807. case KVM_IRQ_LINE: {
  808. struct kvm_irq_level irq_event;
  809. r = -EFAULT;
  810. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  811. goto out;
  812. if (irqchip_in_kernel(kvm)) {
  813. __s32 status;
  814. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  815. irq_event.irq, irq_event.level);
  816. if (ioctl == KVM_IRQ_LINE_STATUS) {
  817. irq_event.status = status;
  818. if (copy_to_user(argp, &irq_event,
  819. sizeof irq_event))
  820. goto out;
  821. }
  822. r = 0;
  823. }
  824. break;
  825. }
  826. case KVM_GET_IRQCHIP: {
  827. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  828. struct kvm_irqchip chip;
  829. r = -EFAULT;
  830. if (copy_from_user(&chip, argp, sizeof chip))
  831. goto out;
  832. r = -ENXIO;
  833. if (!irqchip_in_kernel(kvm))
  834. goto out;
  835. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  836. if (r)
  837. goto out;
  838. r = -EFAULT;
  839. if (copy_to_user(argp, &chip, sizeof chip))
  840. goto out;
  841. r = 0;
  842. break;
  843. }
  844. case KVM_SET_IRQCHIP: {
  845. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  846. struct kvm_irqchip chip;
  847. r = -EFAULT;
  848. if (copy_from_user(&chip, argp, sizeof chip))
  849. goto out;
  850. r = -ENXIO;
  851. if (!irqchip_in_kernel(kvm))
  852. goto out;
  853. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  854. if (r)
  855. goto out;
  856. r = 0;
  857. break;
  858. }
  859. default:
  860. ;
  861. }
  862. out:
  863. return r;
  864. }
  865. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  866. struct kvm_sregs *sregs)
  867. {
  868. return -EINVAL;
  869. }
  870. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  871. struct kvm_sregs *sregs)
  872. {
  873. return -EINVAL;
  874. }
  875. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  876. struct kvm_translation *tr)
  877. {
  878. return -EINVAL;
  879. }
  880. static int kvm_alloc_vmm_area(void)
  881. {
  882. if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
  883. kvm_vmm_base = __get_free_pages(GFP_KERNEL,
  884. get_order(KVM_VMM_SIZE));
  885. if (!kvm_vmm_base)
  886. return -ENOMEM;
  887. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  888. kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
  889. printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
  890. kvm_vmm_base, kvm_vm_buffer);
  891. }
  892. return 0;
  893. }
  894. static void kvm_free_vmm_area(void)
  895. {
  896. if (kvm_vmm_base) {
  897. /*Zero this area before free to avoid bits leak!!*/
  898. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  899. free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
  900. kvm_vmm_base = 0;
  901. kvm_vm_buffer = 0;
  902. kvm_vsa_base = 0;
  903. }
  904. }
  905. static int vti_init_vpd(struct kvm_vcpu *vcpu)
  906. {
  907. int i;
  908. union cpuid3_t cpuid3;
  909. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  910. if (IS_ERR(vpd))
  911. return PTR_ERR(vpd);
  912. /* CPUID init */
  913. for (i = 0; i < 5; i++)
  914. vpd->vcpuid[i] = ia64_get_cpuid(i);
  915. /* Limit the CPUID number to 5 */
  916. cpuid3.value = vpd->vcpuid[3];
  917. cpuid3.number = 4; /* 5 - 1 */
  918. vpd->vcpuid[3] = cpuid3.value;
  919. /*Set vac and vdc fields*/
  920. vpd->vac.a_from_int_cr = 1;
  921. vpd->vac.a_to_int_cr = 1;
  922. vpd->vac.a_from_psr = 1;
  923. vpd->vac.a_from_cpuid = 1;
  924. vpd->vac.a_cover = 1;
  925. vpd->vac.a_bsw = 1;
  926. vpd->vac.a_int = 1;
  927. vpd->vdc.d_vmsw = 1;
  928. /*Set virtual buffer*/
  929. vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
  930. return 0;
  931. }
  932. static int vti_create_vp(struct kvm_vcpu *vcpu)
  933. {
  934. long ret;
  935. struct vpd *vpd = vcpu->arch.vpd;
  936. unsigned long vmm_ivt;
  937. vmm_ivt = kvm_vmm_info->vmm_ivt;
  938. printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
  939. ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
  940. if (ret) {
  941. printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
  942. return -EINVAL;
  943. }
  944. return 0;
  945. }
  946. static void init_ptce_info(struct kvm_vcpu *vcpu)
  947. {
  948. ia64_ptce_info_t ptce = {0};
  949. ia64_get_ptce(&ptce);
  950. vcpu->arch.ptce_base = ptce.base;
  951. vcpu->arch.ptce_count[0] = ptce.count[0];
  952. vcpu->arch.ptce_count[1] = ptce.count[1];
  953. vcpu->arch.ptce_stride[0] = ptce.stride[0];
  954. vcpu->arch.ptce_stride[1] = ptce.stride[1];
  955. }
  956. static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
  957. {
  958. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  959. if (hrtimer_cancel(p_ht))
  960. hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
  961. }
  962. static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
  963. {
  964. struct kvm_vcpu *vcpu;
  965. wait_queue_head_t *q;
  966. vcpu = container_of(data, struct kvm_vcpu, arch.hlt_timer);
  967. q = &vcpu->wq;
  968. if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
  969. goto out;
  970. if (waitqueue_active(q))
  971. wake_up_interruptible(q);
  972. out:
  973. vcpu->arch.timer_fired = 1;
  974. vcpu->arch.timer_check = 1;
  975. return HRTIMER_NORESTART;
  976. }
  977. #define PALE_RESET_ENTRY 0x80000000ffffffb0UL
  978. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  979. {
  980. struct kvm_vcpu *v;
  981. int r;
  982. int i;
  983. long itc_offset;
  984. struct kvm *kvm = vcpu->kvm;
  985. struct kvm_pt_regs *regs = vcpu_regs(vcpu);
  986. union context *p_ctx = &vcpu->arch.guest;
  987. struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
  988. /*Init vcpu context for first run.*/
  989. if (IS_ERR(vmm_vcpu))
  990. return PTR_ERR(vmm_vcpu);
  991. if (kvm_vcpu_is_bsp(vcpu)) {
  992. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  993. /*Set entry address for first run.*/
  994. regs->cr_iip = PALE_RESET_ENTRY;
  995. /*Initialize itc offset for vcpus*/
  996. itc_offset = 0UL - kvm_get_itc(vcpu);
  997. for (i = 0; i < KVM_MAX_VCPUS; i++) {
  998. v = (struct kvm_vcpu *)((char *)vcpu +
  999. sizeof(struct kvm_vcpu_data) * i);
  1000. v->arch.itc_offset = itc_offset;
  1001. v->arch.last_itc = 0;
  1002. }
  1003. } else
  1004. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  1005. r = -ENOMEM;
  1006. vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
  1007. if (!vcpu->arch.apic)
  1008. goto out;
  1009. vcpu->arch.apic->vcpu = vcpu;
  1010. p_ctx->gr[1] = 0;
  1011. p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
  1012. p_ctx->gr[13] = (unsigned long)vmm_vcpu;
  1013. p_ctx->psr = 0x1008522000UL;
  1014. p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
  1015. p_ctx->caller_unat = 0;
  1016. p_ctx->pr = 0x0;
  1017. p_ctx->ar[36] = 0x0; /*unat*/
  1018. p_ctx->ar[19] = 0x0; /*rnat*/
  1019. p_ctx->ar[18] = (unsigned long)vmm_vcpu +
  1020. ((sizeof(struct kvm_vcpu)+15) & ~15);
  1021. p_ctx->ar[64] = 0x0; /*pfs*/
  1022. p_ctx->cr[0] = 0x7e04UL;
  1023. p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
  1024. p_ctx->cr[8] = 0x3c;
  1025. /*Initilize region register*/
  1026. p_ctx->rr[0] = 0x30;
  1027. p_ctx->rr[1] = 0x30;
  1028. p_ctx->rr[2] = 0x30;
  1029. p_ctx->rr[3] = 0x30;
  1030. p_ctx->rr[4] = 0x30;
  1031. p_ctx->rr[5] = 0x30;
  1032. p_ctx->rr[7] = 0x30;
  1033. /*Initilize branch register 0*/
  1034. p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
  1035. vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
  1036. vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
  1037. vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
  1038. hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  1039. vcpu->arch.hlt_timer.function = hlt_timer_fn;
  1040. vcpu->arch.last_run_cpu = -1;
  1041. vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
  1042. vcpu->arch.vsa_base = kvm_vsa_base;
  1043. vcpu->arch.__gp = kvm_vmm_gp;
  1044. vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
  1045. vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
  1046. vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
  1047. init_ptce_info(vcpu);
  1048. r = 0;
  1049. out:
  1050. return r;
  1051. }
  1052. static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
  1053. {
  1054. unsigned long psr;
  1055. int r;
  1056. local_irq_save(psr);
  1057. r = kvm_insert_vmm_mapping(vcpu);
  1058. local_irq_restore(psr);
  1059. if (r)
  1060. goto fail;
  1061. r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
  1062. if (r)
  1063. goto fail;
  1064. r = vti_init_vpd(vcpu);
  1065. if (r) {
  1066. printk(KERN_DEBUG"kvm: vpd init error!!\n");
  1067. goto uninit;
  1068. }
  1069. r = vti_create_vp(vcpu);
  1070. if (r)
  1071. goto uninit;
  1072. kvm_purge_vmm_mapping(vcpu);
  1073. return 0;
  1074. uninit:
  1075. kvm_vcpu_uninit(vcpu);
  1076. fail:
  1077. return r;
  1078. }
  1079. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  1080. unsigned int id)
  1081. {
  1082. struct kvm_vcpu *vcpu;
  1083. unsigned long vm_base = kvm->arch.vm_base;
  1084. int r;
  1085. int cpu;
  1086. BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
  1087. r = -EINVAL;
  1088. if (id >= KVM_MAX_VCPUS) {
  1089. printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
  1090. KVM_MAX_VCPUS);
  1091. goto fail;
  1092. }
  1093. r = -ENOMEM;
  1094. if (!vm_base) {
  1095. printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
  1096. goto fail;
  1097. }
  1098. vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
  1099. vcpu_data[id].vcpu_struct));
  1100. vcpu->kvm = kvm;
  1101. cpu = get_cpu();
  1102. r = vti_vcpu_setup(vcpu, id);
  1103. put_cpu();
  1104. if (r) {
  1105. printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
  1106. goto fail;
  1107. }
  1108. return vcpu;
  1109. fail:
  1110. return ERR_PTR(r);
  1111. }
  1112. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  1113. {
  1114. return 0;
  1115. }
  1116. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1117. {
  1118. return -EINVAL;
  1119. }
  1120. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1121. {
  1122. return -EINVAL;
  1123. }
  1124. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  1125. struct kvm_guest_debug *dbg)
  1126. {
  1127. return -EINVAL;
  1128. }
  1129. static void free_kvm(struct kvm *kvm)
  1130. {
  1131. unsigned long vm_base = kvm->arch.vm_base;
  1132. if (vm_base) {
  1133. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  1134. free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
  1135. }
  1136. }
  1137. static void kvm_release_vm_pages(struct kvm *kvm)
  1138. {
  1139. struct kvm_memslots *slots;
  1140. struct kvm_memory_slot *memslot;
  1141. int i, j;
  1142. unsigned long base_gfn;
  1143. slots = rcu_dereference(kvm->memslots);
  1144. for (i = 0; i < slots->nmemslots; i++) {
  1145. memslot = &slots->memslots[i];
  1146. base_gfn = memslot->base_gfn;
  1147. for (j = 0; j < memslot->npages; j++) {
  1148. if (memslot->rmap[j])
  1149. put_page((struct page *)memslot->rmap[j]);
  1150. }
  1151. }
  1152. }
  1153. void kvm_arch_sync_events(struct kvm *kvm)
  1154. {
  1155. }
  1156. void kvm_arch_destroy_vm(struct kvm *kvm)
  1157. {
  1158. kvm_iommu_unmap_guest(kvm);
  1159. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1160. kvm_free_all_assigned_devices(kvm);
  1161. #endif
  1162. kfree(kvm->arch.vioapic);
  1163. kvm_release_vm_pages(kvm);
  1164. kvm_free_physmem(kvm);
  1165. cleanup_srcu_struct(&kvm->srcu);
  1166. free_kvm(kvm);
  1167. }
  1168. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1169. {
  1170. }
  1171. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1172. {
  1173. if (cpu != vcpu->cpu) {
  1174. vcpu->cpu = cpu;
  1175. if (vcpu->arch.ht_active)
  1176. kvm_migrate_hlt_timer(vcpu);
  1177. }
  1178. }
  1179. #define SAVE_REGS(_x) regs->_x = vcpu->arch._x
  1180. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1181. {
  1182. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1183. int i;
  1184. vcpu_load(vcpu);
  1185. for (i = 0; i < 16; i++) {
  1186. regs->vpd.vgr[i] = vpd->vgr[i];
  1187. regs->vpd.vbgr[i] = vpd->vbgr[i];
  1188. }
  1189. for (i = 0; i < 128; i++)
  1190. regs->vpd.vcr[i] = vpd->vcr[i];
  1191. regs->vpd.vhpi = vpd->vhpi;
  1192. regs->vpd.vnat = vpd->vnat;
  1193. regs->vpd.vbnat = vpd->vbnat;
  1194. regs->vpd.vpsr = vpd->vpsr;
  1195. regs->vpd.vpr = vpd->vpr;
  1196. memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
  1197. SAVE_REGS(mp_state);
  1198. SAVE_REGS(vmm_rr);
  1199. memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
  1200. memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
  1201. SAVE_REGS(itr_regions);
  1202. SAVE_REGS(dtr_regions);
  1203. SAVE_REGS(tc_regions);
  1204. SAVE_REGS(irq_check);
  1205. SAVE_REGS(itc_check);
  1206. SAVE_REGS(timer_check);
  1207. SAVE_REGS(timer_pending);
  1208. SAVE_REGS(last_itc);
  1209. for (i = 0; i < 8; i++) {
  1210. regs->vrr[i] = vcpu->arch.vrr[i];
  1211. regs->ibr[i] = vcpu->arch.ibr[i];
  1212. regs->dbr[i] = vcpu->arch.dbr[i];
  1213. }
  1214. for (i = 0; i < 4; i++)
  1215. regs->insvc[i] = vcpu->arch.insvc[i];
  1216. regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
  1217. SAVE_REGS(xtp);
  1218. SAVE_REGS(metaphysical_rr0);
  1219. SAVE_REGS(metaphysical_rr4);
  1220. SAVE_REGS(metaphysical_saved_rr0);
  1221. SAVE_REGS(metaphysical_saved_rr4);
  1222. SAVE_REGS(fp_psr);
  1223. SAVE_REGS(saved_gp);
  1224. vcpu_put(vcpu);
  1225. return 0;
  1226. }
  1227. int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
  1228. struct kvm_ia64_vcpu_stack *stack)
  1229. {
  1230. memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
  1231. return 0;
  1232. }
  1233. int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
  1234. struct kvm_ia64_vcpu_stack *stack)
  1235. {
  1236. memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
  1237. sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
  1238. vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
  1239. return 0;
  1240. }
  1241. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  1242. {
  1243. hrtimer_cancel(&vcpu->arch.hlt_timer);
  1244. kfree(vcpu->arch.apic);
  1245. }
  1246. long kvm_arch_vcpu_ioctl(struct file *filp,
  1247. unsigned int ioctl, unsigned long arg)
  1248. {
  1249. struct kvm_vcpu *vcpu = filp->private_data;
  1250. void __user *argp = (void __user *)arg;
  1251. struct kvm_ia64_vcpu_stack *stack = NULL;
  1252. long r;
  1253. switch (ioctl) {
  1254. case KVM_IA64_VCPU_GET_STACK: {
  1255. struct kvm_ia64_vcpu_stack __user *user_stack;
  1256. void __user *first_p = argp;
  1257. r = -EFAULT;
  1258. if (copy_from_user(&user_stack, first_p, sizeof(void *)))
  1259. goto out;
  1260. if (!access_ok(VERIFY_WRITE, user_stack,
  1261. sizeof(struct kvm_ia64_vcpu_stack))) {
  1262. printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
  1263. "Illegal user destination address for stack\n");
  1264. goto out;
  1265. }
  1266. stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
  1267. if (!stack) {
  1268. r = -ENOMEM;
  1269. goto out;
  1270. }
  1271. r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
  1272. if (r)
  1273. goto out;
  1274. if (copy_to_user(user_stack, stack,
  1275. sizeof(struct kvm_ia64_vcpu_stack)))
  1276. goto out;
  1277. break;
  1278. }
  1279. case KVM_IA64_VCPU_SET_STACK: {
  1280. struct kvm_ia64_vcpu_stack __user *user_stack;
  1281. void __user *first_p = argp;
  1282. r = -EFAULT;
  1283. if (copy_from_user(&user_stack, first_p, sizeof(void *)))
  1284. goto out;
  1285. if (!access_ok(VERIFY_READ, user_stack,
  1286. sizeof(struct kvm_ia64_vcpu_stack))) {
  1287. printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
  1288. "Illegal user address for stack\n");
  1289. goto out;
  1290. }
  1291. stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
  1292. if (!stack) {
  1293. r = -ENOMEM;
  1294. goto out;
  1295. }
  1296. if (copy_from_user(stack, user_stack,
  1297. sizeof(struct kvm_ia64_vcpu_stack)))
  1298. goto out;
  1299. r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
  1300. break;
  1301. }
  1302. default:
  1303. r = -EINVAL;
  1304. }
  1305. out:
  1306. kfree(stack);
  1307. return r;
  1308. }
  1309. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  1310. struct kvm_memory_slot *memslot,
  1311. struct kvm_memory_slot old,
  1312. struct kvm_userspace_memory_region *mem,
  1313. int user_alloc)
  1314. {
  1315. unsigned long i;
  1316. unsigned long pfn;
  1317. int npages = memslot->npages;
  1318. unsigned long base_gfn = memslot->base_gfn;
  1319. if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
  1320. return -ENOMEM;
  1321. for (i = 0; i < npages; i++) {
  1322. pfn = gfn_to_pfn(kvm, base_gfn + i);
  1323. if (!kvm_is_mmio_pfn(pfn)) {
  1324. kvm_set_pmt_entry(kvm, base_gfn + i,
  1325. pfn << PAGE_SHIFT,
  1326. _PAGE_AR_RWX | _PAGE_MA_WB);
  1327. memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
  1328. } else {
  1329. kvm_set_pmt_entry(kvm, base_gfn + i,
  1330. GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
  1331. _PAGE_MA_UC);
  1332. memslot->rmap[i] = 0;
  1333. }
  1334. }
  1335. return 0;
  1336. }
  1337. void kvm_arch_commit_memory_region(struct kvm *kvm,
  1338. struct kvm_userspace_memory_region *mem,
  1339. struct kvm_memory_slot old,
  1340. int user_alloc)
  1341. {
  1342. return;
  1343. }
  1344. void kvm_arch_flush_shadow(struct kvm *kvm)
  1345. {
  1346. kvm_flush_remote_tlbs(kvm);
  1347. }
  1348. long kvm_arch_dev_ioctl(struct file *filp,
  1349. unsigned int ioctl, unsigned long arg)
  1350. {
  1351. return -EINVAL;
  1352. }
  1353. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  1354. {
  1355. kvm_vcpu_uninit(vcpu);
  1356. }
  1357. static int vti_cpu_has_kvm_support(void)
  1358. {
  1359. long avail = 1, status = 1, control = 1;
  1360. long ret;
  1361. ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
  1362. if (ret)
  1363. goto out;
  1364. if (!(avail & PAL_PROC_VM_BIT))
  1365. goto out;
  1366. printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
  1367. ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
  1368. if (ret)
  1369. goto out;
  1370. printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
  1371. if (!(vp_env_info & VP_OPCODE)) {
  1372. printk(KERN_WARNING"kvm: No opcode ability on hardware, "
  1373. "vm_env_info:0x%lx\n", vp_env_info);
  1374. }
  1375. return 1;
  1376. out:
  1377. return 0;
  1378. }
  1379. /*
  1380. * On SN2, the ITC isn't stable, so copy in fast path code to use the
  1381. * SN2 RTC, replacing the ITC based default verion.
  1382. */
  1383. static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
  1384. struct module *module)
  1385. {
  1386. unsigned long new_ar, new_ar_sn2;
  1387. unsigned long module_base;
  1388. if (!ia64_platform_is("sn2"))
  1389. return;
  1390. module_base = (unsigned long)module->module_core;
  1391. new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
  1392. new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
  1393. printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
  1394. "as source\n");
  1395. /*
  1396. * Copy the SN2 version of mov_ar into place. They are both
  1397. * the same size, so 6 bundles is sufficient (6 * 0x10).
  1398. */
  1399. memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
  1400. }
  1401. static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
  1402. struct module *module)
  1403. {
  1404. unsigned long module_base;
  1405. unsigned long vmm_size;
  1406. unsigned long vmm_offset, func_offset, fdesc_offset;
  1407. struct fdesc *p_fdesc;
  1408. BUG_ON(!module);
  1409. if (!kvm_vmm_base) {
  1410. printk("kvm: kvm area hasn't been initilized yet!!\n");
  1411. return -EFAULT;
  1412. }
  1413. /*Calculate new position of relocated vmm module.*/
  1414. module_base = (unsigned long)module->module_core;
  1415. vmm_size = module->core_size;
  1416. if (unlikely(vmm_size > KVM_VMM_SIZE))
  1417. return -EFAULT;
  1418. memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
  1419. kvm_patch_vmm(vmm_info, module);
  1420. kvm_flush_icache(kvm_vmm_base, vmm_size);
  1421. /*Recalculate kvm_vmm_info based on new VMM*/
  1422. vmm_offset = vmm_info->vmm_ivt - module_base;
  1423. kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
  1424. printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
  1425. kvm_vmm_info->vmm_ivt);
  1426. fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
  1427. kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
  1428. fdesc_offset);
  1429. func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
  1430. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1431. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1432. p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
  1433. printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
  1434. KVM_VMM_BASE+func_offset);
  1435. fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
  1436. kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
  1437. fdesc_offset);
  1438. func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
  1439. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1440. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1441. p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
  1442. kvm_vmm_gp = p_fdesc->gp;
  1443. printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
  1444. kvm_vmm_info->vmm_entry);
  1445. printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
  1446. KVM_VMM_BASE + func_offset);
  1447. return 0;
  1448. }
  1449. int kvm_arch_init(void *opaque)
  1450. {
  1451. int r;
  1452. struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
  1453. if (!vti_cpu_has_kvm_support()) {
  1454. printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
  1455. r = -EOPNOTSUPP;
  1456. goto out;
  1457. }
  1458. if (kvm_vmm_info) {
  1459. printk(KERN_ERR "kvm: Already loaded VMM module!\n");
  1460. r = -EEXIST;
  1461. goto out;
  1462. }
  1463. r = -ENOMEM;
  1464. kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
  1465. if (!kvm_vmm_info)
  1466. goto out;
  1467. if (kvm_alloc_vmm_area())
  1468. goto out_free0;
  1469. r = kvm_relocate_vmm(vmm_info, vmm_info->module);
  1470. if (r)
  1471. goto out_free1;
  1472. return 0;
  1473. out_free1:
  1474. kvm_free_vmm_area();
  1475. out_free0:
  1476. kfree(kvm_vmm_info);
  1477. out:
  1478. return r;
  1479. }
  1480. void kvm_arch_exit(void)
  1481. {
  1482. kvm_free_vmm_area();
  1483. kfree(kvm_vmm_info);
  1484. kvm_vmm_info = NULL;
  1485. }
  1486. static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
  1487. struct kvm_dirty_log *log)
  1488. {
  1489. struct kvm_memory_slot *memslot;
  1490. int r, i;
  1491. long base;
  1492. unsigned long n;
  1493. unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
  1494. offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
  1495. r = -EINVAL;
  1496. if (log->slot >= KVM_MEMORY_SLOTS)
  1497. goto out;
  1498. memslot = &kvm->memslots->memslots[log->slot];
  1499. r = -ENOENT;
  1500. if (!memslot->dirty_bitmap)
  1501. goto out;
  1502. n = kvm_dirty_bitmap_bytes(memslot);
  1503. base = memslot->base_gfn / BITS_PER_LONG;
  1504. for (i = 0; i < n/sizeof(long); ++i) {
  1505. memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
  1506. dirty_bitmap[base + i] = 0;
  1507. }
  1508. r = 0;
  1509. out:
  1510. return r;
  1511. }
  1512. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1513. struct kvm_dirty_log *log)
  1514. {
  1515. int r;
  1516. unsigned long n;
  1517. struct kvm_memory_slot *memslot;
  1518. int is_dirty = 0;
  1519. mutex_lock(&kvm->slots_lock);
  1520. spin_lock(&kvm->arch.dirty_log_lock);
  1521. r = kvm_ia64_sync_dirty_log(kvm, log);
  1522. if (r)
  1523. goto out;
  1524. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1525. if (r)
  1526. goto out;
  1527. /* If nothing is dirty, don't bother messing with page tables. */
  1528. if (is_dirty) {
  1529. kvm_flush_remote_tlbs(kvm);
  1530. memslot = &kvm->memslots->memslots[log->slot];
  1531. n = kvm_dirty_bitmap_bytes(memslot);
  1532. memset(memslot->dirty_bitmap, 0, n);
  1533. }
  1534. r = 0;
  1535. out:
  1536. mutex_unlock(&kvm->slots_lock);
  1537. spin_unlock(&kvm->arch.dirty_log_lock);
  1538. return r;
  1539. }
  1540. int kvm_arch_hardware_setup(void)
  1541. {
  1542. return 0;
  1543. }
  1544. void kvm_arch_hardware_unsetup(void)
  1545. {
  1546. }
  1547. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  1548. {
  1549. int me;
  1550. int cpu = vcpu->cpu;
  1551. if (waitqueue_active(&vcpu->wq))
  1552. wake_up_interruptible(&vcpu->wq);
  1553. me = get_cpu();
  1554. if (cpu != me && (unsigned) cpu < nr_cpu_ids && cpu_online(cpu))
  1555. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  1556. smp_send_reschedule(cpu);
  1557. put_cpu();
  1558. }
  1559. int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
  1560. {
  1561. return __apic_accept_irq(vcpu, irq->vector);
  1562. }
  1563. int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
  1564. {
  1565. return apic->vcpu->vcpu_id == dest;
  1566. }
  1567. int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
  1568. {
  1569. return 0;
  1570. }
  1571. int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
  1572. {
  1573. return vcpu1->arch.xtp - vcpu2->arch.xtp;
  1574. }
  1575. int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
  1576. int short_hand, int dest, int dest_mode)
  1577. {
  1578. struct kvm_lapic *target = vcpu->arch.apic;
  1579. return (dest_mode == 0) ?
  1580. kvm_apic_match_physical_addr(target, dest) :
  1581. kvm_apic_match_logical_addr(target, dest);
  1582. }
  1583. static int find_highest_bits(int *dat)
  1584. {
  1585. u32 bits, bitnum;
  1586. int i;
  1587. /* loop for all 256 bits */
  1588. for (i = 7; i >= 0 ; i--) {
  1589. bits = dat[i];
  1590. if (bits) {
  1591. bitnum = fls(bits);
  1592. return i * 32 + bitnum - 1;
  1593. }
  1594. }
  1595. return -1;
  1596. }
  1597. int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
  1598. {
  1599. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1600. if (vpd->irr[0] & (1UL << NMI_VECTOR))
  1601. return NMI_VECTOR;
  1602. if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
  1603. return ExtINT_VECTOR;
  1604. return find_highest_bits((int *)&vpd->irr[0]);
  1605. }
  1606. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  1607. {
  1608. return vcpu->arch.timer_fired;
  1609. }
  1610. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1611. {
  1612. return gfn;
  1613. }
  1614. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  1615. {
  1616. return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) ||
  1617. (kvm_highest_pending_irq(vcpu) != -1);
  1618. }
  1619. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  1620. struct kvm_mp_state *mp_state)
  1621. {
  1622. vcpu_load(vcpu);
  1623. mp_state->mp_state = vcpu->arch.mp_state;
  1624. vcpu_put(vcpu);
  1625. return 0;
  1626. }
  1627. static int vcpu_reset(struct kvm_vcpu *vcpu)
  1628. {
  1629. int r;
  1630. long psr;
  1631. local_irq_save(psr);
  1632. r = kvm_insert_vmm_mapping(vcpu);
  1633. local_irq_restore(psr);
  1634. if (r)
  1635. goto fail;
  1636. vcpu->arch.launched = 0;
  1637. kvm_arch_vcpu_uninit(vcpu);
  1638. r = kvm_arch_vcpu_init(vcpu);
  1639. if (r)
  1640. goto fail;
  1641. kvm_purge_vmm_mapping(vcpu);
  1642. r = 0;
  1643. fail:
  1644. return r;
  1645. }
  1646. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  1647. struct kvm_mp_state *mp_state)
  1648. {
  1649. int r = 0;
  1650. vcpu_load(vcpu);
  1651. vcpu->arch.mp_state = mp_state->mp_state;
  1652. if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
  1653. r = vcpu_reset(vcpu);
  1654. vcpu_put(vcpu);
  1655. return r;
  1656. }