core.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041
  1. /*
  2. * linux/arch/arm/mach-versatile/core.c
  3. *
  4. * Copyright (C) 1999 - 2003 ARM Limited
  5. * Copyright (C) 2000 Deep Blue Solutions Ltd
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/init.h>
  22. #include <linux/device.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/sysdev.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/amba/bus.h>
  28. #include <linux/amba/clcd.h>
  29. #include <linux/amba/pl061.h>
  30. #include <linux/amba/mmci.h>
  31. #include <linux/clocksource.h>
  32. #include <linux/clockchips.h>
  33. #include <linux/cnt32_to_63.h>
  34. #include <linux/io.h>
  35. #include <linux/gfp.h>
  36. #include <asm/clkdev.h>
  37. #include <asm/system.h>
  38. #include <mach/hardware.h>
  39. #include <asm/irq.h>
  40. #include <asm/leds.h>
  41. #include <asm/hardware/arm_timer.h>
  42. #include <asm/hardware/icst307.h>
  43. #include <asm/hardware/vic.h>
  44. #include <asm/mach-types.h>
  45. #include <asm/mach/arch.h>
  46. #include <asm/mach/flash.h>
  47. #include <asm/mach/irq.h>
  48. #include <asm/mach/time.h>
  49. #include <asm/mach/map.h>
  50. #include "core.h"
  51. #include "clock.h"
  52. /*
  53. * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
  54. * is the (PA >> 12).
  55. *
  56. * Setup a VA for the Versatile Vectored Interrupt Controller.
  57. */
  58. #define __io_address(n) __io(IO_ADDRESS(n))
  59. #define VA_VIC_BASE __io_address(VERSATILE_VIC_BASE)
  60. #define VA_SIC_BASE __io_address(VERSATILE_SIC_BASE)
  61. static void sic_mask_irq(unsigned int irq)
  62. {
  63. irq -= IRQ_SIC_START;
  64. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  65. }
  66. static void sic_unmask_irq(unsigned int irq)
  67. {
  68. irq -= IRQ_SIC_START;
  69. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
  70. }
  71. static struct irq_chip sic_chip = {
  72. .name = "SIC",
  73. .ack = sic_mask_irq,
  74. .mask = sic_mask_irq,
  75. .unmask = sic_unmask_irq,
  76. };
  77. static void
  78. sic_handle_irq(unsigned int irq, struct irq_desc *desc)
  79. {
  80. unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
  81. if (status == 0) {
  82. do_bad_IRQ(irq, desc);
  83. return;
  84. }
  85. do {
  86. irq = ffs(status) - 1;
  87. status &= ~(1 << irq);
  88. irq += IRQ_SIC_START;
  89. generic_handle_irq(irq);
  90. } while (status);
  91. }
  92. #if 1
  93. #define IRQ_MMCI0A IRQ_VICSOURCE22
  94. #define IRQ_AACI IRQ_VICSOURCE24
  95. #define IRQ_ETH IRQ_VICSOURCE25
  96. #define PIC_MASK 0xFFD00000
  97. #else
  98. #define IRQ_MMCI0A IRQ_SIC_MMCI0A
  99. #define IRQ_AACI IRQ_SIC_AACI
  100. #define IRQ_ETH IRQ_SIC_ETH
  101. #define PIC_MASK 0
  102. #endif
  103. void __init versatile_init_irq(void)
  104. {
  105. unsigned int i;
  106. vic_init(VA_VIC_BASE, IRQ_VIC_START, ~0, 0);
  107. set_irq_chained_handler(IRQ_VICSOURCE31, sic_handle_irq);
  108. /* Do second interrupt controller */
  109. writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  110. for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
  111. if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
  112. set_irq_chip(i, &sic_chip);
  113. set_irq_handler(i, handle_level_irq);
  114. set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
  115. }
  116. }
  117. /*
  118. * Interrupts on secondary controller from 0 to 8 are routed to
  119. * source 31 on PIC.
  120. * Interrupts from 21 to 31 are routed directly to the VIC on
  121. * the corresponding number on primary controller. This is controlled
  122. * by setting PIC_ENABLEx.
  123. */
  124. writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
  125. }
  126. static struct map_desc versatile_io_desc[] __initdata = {
  127. {
  128. .virtual = IO_ADDRESS(VERSATILE_SYS_BASE),
  129. .pfn = __phys_to_pfn(VERSATILE_SYS_BASE),
  130. .length = SZ_4K,
  131. .type = MT_DEVICE
  132. }, {
  133. .virtual = IO_ADDRESS(VERSATILE_SIC_BASE),
  134. .pfn = __phys_to_pfn(VERSATILE_SIC_BASE),
  135. .length = SZ_4K,
  136. .type = MT_DEVICE
  137. }, {
  138. .virtual = IO_ADDRESS(VERSATILE_VIC_BASE),
  139. .pfn = __phys_to_pfn(VERSATILE_VIC_BASE),
  140. .length = SZ_4K,
  141. .type = MT_DEVICE
  142. }, {
  143. .virtual = IO_ADDRESS(VERSATILE_SCTL_BASE),
  144. .pfn = __phys_to_pfn(VERSATILE_SCTL_BASE),
  145. .length = SZ_4K * 9,
  146. .type = MT_DEVICE
  147. },
  148. #ifdef CONFIG_MACH_VERSATILE_AB
  149. {
  150. .virtual = IO_ADDRESS(VERSATILE_GPIO0_BASE),
  151. .pfn = __phys_to_pfn(VERSATILE_GPIO0_BASE),
  152. .length = SZ_4K,
  153. .type = MT_DEVICE
  154. }, {
  155. .virtual = IO_ADDRESS(VERSATILE_IB2_BASE),
  156. .pfn = __phys_to_pfn(VERSATILE_IB2_BASE),
  157. .length = SZ_64M,
  158. .type = MT_DEVICE
  159. },
  160. #endif
  161. #ifdef CONFIG_DEBUG_LL
  162. {
  163. .virtual = IO_ADDRESS(VERSATILE_UART0_BASE),
  164. .pfn = __phys_to_pfn(VERSATILE_UART0_BASE),
  165. .length = SZ_4K,
  166. .type = MT_DEVICE
  167. },
  168. #endif
  169. #ifdef CONFIG_PCI
  170. {
  171. .virtual = IO_ADDRESS(VERSATILE_PCI_CORE_BASE),
  172. .pfn = __phys_to_pfn(VERSATILE_PCI_CORE_BASE),
  173. .length = SZ_4K,
  174. .type = MT_DEVICE
  175. }, {
  176. .virtual = (unsigned long)VERSATILE_PCI_VIRT_BASE,
  177. .pfn = __phys_to_pfn(VERSATILE_PCI_BASE),
  178. .length = VERSATILE_PCI_BASE_SIZE,
  179. .type = MT_DEVICE
  180. }, {
  181. .virtual = (unsigned long)VERSATILE_PCI_CFG_VIRT_BASE,
  182. .pfn = __phys_to_pfn(VERSATILE_PCI_CFG_BASE),
  183. .length = VERSATILE_PCI_CFG_BASE_SIZE,
  184. .type = MT_DEVICE
  185. },
  186. #if 0
  187. {
  188. .virtual = VERSATILE_PCI_VIRT_MEM_BASE0,
  189. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE0),
  190. .length = SZ_16M,
  191. .type = MT_DEVICE
  192. }, {
  193. .virtual = VERSATILE_PCI_VIRT_MEM_BASE1,
  194. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE1),
  195. .length = SZ_16M,
  196. .type = MT_DEVICE
  197. }, {
  198. .virtual = VERSATILE_PCI_VIRT_MEM_BASE2,
  199. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE2),
  200. .length = SZ_16M,
  201. .type = MT_DEVICE
  202. },
  203. #endif
  204. #endif
  205. };
  206. void __init versatile_map_io(void)
  207. {
  208. iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
  209. }
  210. #define VERSATILE_REFCOUNTER (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_24MHz_OFFSET)
  211. /*
  212. * This is the Versatile sched_clock implementation. This has
  213. * a resolution of 41.7ns, and a maximum value of about 35583 days.
  214. *
  215. * The return value is guaranteed to be monotonic in that range as
  216. * long as there is always less than 89 seconds between successive
  217. * calls to this function.
  218. */
  219. unsigned long long sched_clock(void)
  220. {
  221. unsigned long long v = cnt32_to_63(readl(VERSATILE_REFCOUNTER));
  222. /* the <<1 gets rid of the cnt_32_to_63 top bit saving on a bic insn */
  223. v *= 125<<1;
  224. do_div(v, 3<<1);
  225. return v;
  226. }
  227. #define VERSATILE_FLASHCTRL (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
  228. static int versatile_flash_init(void)
  229. {
  230. u32 val;
  231. val = __raw_readl(VERSATILE_FLASHCTRL);
  232. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  233. __raw_writel(val, VERSATILE_FLASHCTRL);
  234. return 0;
  235. }
  236. static void versatile_flash_exit(void)
  237. {
  238. u32 val;
  239. val = __raw_readl(VERSATILE_FLASHCTRL);
  240. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  241. __raw_writel(val, VERSATILE_FLASHCTRL);
  242. }
  243. static void versatile_flash_set_vpp(int on)
  244. {
  245. u32 val;
  246. val = __raw_readl(VERSATILE_FLASHCTRL);
  247. if (on)
  248. val |= VERSATILE_FLASHPROG_FLVPPEN;
  249. else
  250. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  251. __raw_writel(val, VERSATILE_FLASHCTRL);
  252. }
  253. static struct flash_platform_data versatile_flash_data = {
  254. .map_name = "cfi_probe",
  255. .width = 4,
  256. .init = versatile_flash_init,
  257. .exit = versatile_flash_exit,
  258. .set_vpp = versatile_flash_set_vpp,
  259. };
  260. static struct resource versatile_flash_resource = {
  261. .start = VERSATILE_FLASH_BASE,
  262. .end = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE - 1,
  263. .flags = IORESOURCE_MEM,
  264. };
  265. static struct platform_device versatile_flash_device = {
  266. .name = "armflash",
  267. .id = 0,
  268. .dev = {
  269. .platform_data = &versatile_flash_data,
  270. },
  271. .num_resources = 1,
  272. .resource = &versatile_flash_resource,
  273. };
  274. static struct resource smc91x_resources[] = {
  275. [0] = {
  276. .start = VERSATILE_ETH_BASE,
  277. .end = VERSATILE_ETH_BASE + SZ_64K - 1,
  278. .flags = IORESOURCE_MEM,
  279. },
  280. [1] = {
  281. .start = IRQ_ETH,
  282. .end = IRQ_ETH,
  283. .flags = IORESOURCE_IRQ,
  284. },
  285. };
  286. static struct platform_device smc91x_device = {
  287. .name = "smc91x",
  288. .id = 0,
  289. .num_resources = ARRAY_SIZE(smc91x_resources),
  290. .resource = smc91x_resources,
  291. };
  292. static struct resource versatile_i2c_resource = {
  293. .start = VERSATILE_I2C_BASE,
  294. .end = VERSATILE_I2C_BASE + SZ_4K - 1,
  295. .flags = IORESOURCE_MEM,
  296. };
  297. static struct platform_device versatile_i2c_device = {
  298. .name = "versatile-i2c",
  299. .id = 0,
  300. .num_resources = 1,
  301. .resource = &versatile_i2c_resource,
  302. };
  303. static struct i2c_board_info versatile_i2c_board_info[] = {
  304. {
  305. I2C_BOARD_INFO("ds1338", 0xd0 >> 1),
  306. },
  307. };
  308. static int __init versatile_i2c_init(void)
  309. {
  310. return i2c_register_board_info(0, versatile_i2c_board_info,
  311. ARRAY_SIZE(versatile_i2c_board_info));
  312. }
  313. arch_initcall(versatile_i2c_init);
  314. #define VERSATILE_SYSMCI (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
  315. unsigned int mmc_status(struct device *dev)
  316. {
  317. struct amba_device *adev = container_of(dev, struct amba_device, dev);
  318. u32 mask;
  319. if (adev->res.start == VERSATILE_MMCI0_BASE)
  320. mask = 1;
  321. else
  322. mask = 2;
  323. return readl(VERSATILE_SYSMCI) & mask;
  324. }
  325. static struct mmci_platform_data mmc0_plat_data = {
  326. .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
  327. .status = mmc_status,
  328. .gpio_wp = -1,
  329. .gpio_cd = -1,
  330. };
  331. /*
  332. * Clock handling
  333. */
  334. static const struct icst307_params versatile_oscvco_params = {
  335. .ref = 24000,
  336. .vco_max = 200000,
  337. .vd_min = 4 + 8,
  338. .vd_max = 511 + 8,
  339. .rd_min = 1 + 2,
  340. .rd_max = 127 + 2,
  341. };
  342. static void versatile_oscvco_set(struct clk *clk, struct icst307_vco vco)
  343. {
  344. void __iomem *sys = __io_address(VERSATILE_SYS_BASE);
  345. void __iomem *sys_lock = sys + VERSATILE_SYS_LOCK_OFFSET;
  346. u32 val;
  347. val = readl(sys + clk->oscoff) & ~0x7ffff;
  348. val |= vco.v | (vco.r << 9) | (vco.s << 16);
  349. writel(0xa05f, sys_lock);
  350. writel(val, sys + clk->oscoff);
  351. writel(0, sys_lock);
  352. }
  353. static struct clk osc4_clk = {
  354. .params = &versatile_oscvco_params,
  355. .oscoff = VERSATILE_SYS_OSCCLCD_OFFSET,
  356. .setvco = versatile_oscvco_set,
  357. };
  358. /*
  359. * These are fixed clocks.
  360. */
  361. static struct clk ref24_clk = {
  362. .rate = 24000000,
  363. };
  364. static struct clk_lookup lookups[] = {
  365. { /* UART0 */
  366. .dev_id = "dev:f1",
  367. .clk = &ref24_clk,
  368. }, { /* UART1 */
  369. .dev_id = "dev:f2",
  370. .clk = &ref24_clk,
  371. }, { /* UART2 */
  372. .dev_id = "dev:f3",
  373. .clk = &ref24_clk,
  374. }, { /* UART3 */
  375. .dev_id = "fpga:09",
  376. .clk = &ref24_clk,
  377. }, { /* KMI0 */
  378. .dev_id = "fpga:06",
  379. .clk = &ref24_clk,
  380. }, { /* KMI1 */
  381. .dev_id = "fpga:07",
  382. .clk = &ref24_clk,
  383. }, { /* MMC0 */
  384. .dev_id = "fpga:05",
  385. .clk = &ref24_clk,
  386. }, { /* MMC1 */
  387. .dev_id = "fpga:0b",
  388. .clk = &ref24_clk,
  389. }, { /* CLCD */
  390. .dev_id = "dev:20",
  391. .clk = &osc4_clk,
  392. }
  393. };
  394. /*
  395. * CLCD support.
  396. */
  397. #define SYS_CLCD_MODE_MASK (3 << 0)
  398. #define SYS_CLCD_MODE_888 (0 << 0)
  399. #define SYS_CLCD_MODE_5551 (1 << 0)
  400. #define SYS_CLCD_MODE_565_RLSB (2 << 0)
  401. #define SYS_CLCD_MODE_565_BLSB (3 << 0)
  402. #define SYS_CLCD_NLCDIOON (1 << 2)
  403. #define SYS_CLCD_VDDPOSSWITCH (1 << 3)
  404. #define SYS_CLCD_PWR3V5SWITCH (1 << 4)
  405. #define SYS_CLCD_ID_MASK (0x1f << 8)
  406. #define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
  407. #define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
  408. #define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
  409. #define SYS_CLCD_ID_SANYO_2_5 (0x07 << 8)
  410. #define SYS_CLCD_ID_VGA (0x1f << 8)
  411. static struct clcd_panel vga = {
  412. .mode = {
  413. .name = "VGA",
  414. .refresh = 60,
  415. .xres = 640,
  416. .yres = 480,
  417. .pixclock = 39721,
  418. .left_margin = 40,
  419. .right_margin = 24,
  420. .upper_margin = 32,
  421. .lower_margin = 11,
  422. .hsync_len = 96,
  423. .vsync_len = 2,
  424. .sync = 0,
  425. .vmode = FB_VMODE_NONINTERLACED,
  426. },
  427. .width = -1,
  428. .height = -1,
  429. .tim2 = TIM2_BCD | TIM2_IPC,
  430. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  431. .bpp = 16,
  432. };
  433. static struct clcd_panel sanyo_3_8_in = {
  434. .mode = {
  435. .name = "Sanyo QVGA",
  436. .refresh = 116,
  437. .xres = 320,
  438. .yres = 240,
  439. .pixclock = 100000,
  440. .left_margin = 6,
  441. .right_margin = 6,
  442. .upper_margin = 5,
  443. .lower_margin = 5,
  444. .hsync_len = 6,
  445. .vsync_len = 6,
  446. .sync = 0,
  447. .vmode = FB_VMODE_NONINTERLACED,
  448. },
  449. .width = -1,
  450. .height = -1,
  451. .tim2 = TIM2_BCD,
  452. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  453. .bpp = 16,
  454. };
  455. static struct clcd_panel sanyo_2_5_in = {
  456. .mode = {
  457. .name = "Sanyo QVGA Portrait",
  458. .refresh = 116,
  459. .xres = 240,
  460. .yres = 320,
  461. .pixclock = 100000,
  462. .left_margin = 20,
  463. .right_margin = 10,
  464. .upper_margin = 2,
  465. .lower_margin = 2,
  466. .hsync_len = 10,
  467. .vsync_len = 2,
  468. .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
  469. .vmode = FB_VMODE_NONINTERLACED,
  470. },
  471. .width = -1,
  472. .height = -1,
  473. .tim2 = TIM2_IVS | TIM2_IHS | TIM2_IPC,
  474. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  475. .bpp = 16,
  476. };
  477. static struct clcd_panel epson_2_2_in = {
  478. .mode = {
  479. .name = "Epson QCIF",
  480. .refresh = 390,
  481. .xres = 176,
  482. .yres = 220,
  483. .pixclock = 62500,
  484. .left_margin = 3,
  485. .right_margin = 2,
  486. .upper_margin = 1,
  487. .lower_margin = 0,
  488. .hsync_len = 3,
  489. .vsync_len = 2,
  490. .sync = 0,
  491. .vmode = FB_VMODE_NONINTERLACED,
  492. },
  493. .width = -1,
  494. .height = -1,
  495. .tim2 = TIM2_BCD | TIM2_IPC,
  496. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  497. .bpp = 16,
  498. };
  499. /*
  500. * Detect which LCD panel is connected, and return the appropriate
  501. * clcd_panel structure. Note: we do not have any information on
  502. * the required timings for the 8.4in panel, so we presently assume
  503. * VGA timings.
  504. */
  505. static struct clcd_panel *versatile_clcd_panel(void)
  506. {
  507. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  508. struct clcd_panel *panel = &vga;
  509. u32 val;
  510. val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
  511. if (val == SYS_CLCD_ID_SANYO_3_8)
  512. panel = &sanyo_3_8_in;
  513. else if (val == SYS_CLCD_ID_SANYO_2_5)
  514. panel = &sanyo_2_5_in;
  515. else if (val == SYS_CLCD_ID_EPSON_2_2)
  516. panel = &epson_2_2_in;
  517. else if (val == SYS_CLCD_ID_VGA)
  518. panel = &vga;
  519. else {
  520. printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
  521. val);
  522. panel = &vga;
  523. }
  524. return panel;
  525. }
  526. /*
  527. * Disable all display connectors on the interface module.
  528. */
  529. static void versatile_clcd_disable(struct clcd_fb *fb)
  530. {
  531. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  532. u32 val;
  533. val = readl(sys_clcd);
  534. val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  535. writel(val, sys_clcd);
  536. #ifdef CONFIG_MACH_VERSATILE_AB
  537. /*
  538. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
  539. */
  540. if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
  541. void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
  542. unsigned long ctrl;
  543. ctrl = readl(versatile_ib2_ctrl);
  544. ctrl &= ~0x01;
  545. writel(ctrl, versatile_ib2_ctrl);
  546. }
  547. #endif
  548. }
  549. /*
  550. * Enable the relevant connector on the interface module.
  551. */
  552. static void versatile_clcd_enable(struct clcd_fb *fb)
  553. {
  554. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  555. u32 val;
  556. val = readl(sys_clcd);
  557. val &= ~SYS_CLCD_MODE_MASK;
  558. switch (fb->fb.var.green.length) {
  559. case 5:
  560. val |= SYS_CLCD_MODE_5551;
  561. break;
  562. case 6:
  563. val |= SYS_CLCD_MODE_565_RLSB;
  564. break;
  565. case 8:
  566. val |= SYS_CLCD_MODE_888;
  567. break;
  568. }
  569. /*
  570. * Set the MUX
  571. */
  572. writel(val, sys_clcd);
  573. /*
  574. * And now enable the PSUs
  575. */
  576. val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  577. writel(val, sys_clcd);
  578. #ifdef CONFIG_MACH_VERSATILE_AB
  579. /*
  580. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
  581. */
  582. if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
  583. void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
  584. unsigned long ctrl;
  585. ctrl = readl(versatile_ib2_ctrl);
  586. ctrl |= 0x01;
  587. writel(ctrl, versatile_ib2_ctrl);
  588. }
  589. #endif
  590. }
  591. static unsigned long framesize = SZ_1M;
  592. static int versatile_clcd_setup(struct clcd_fb *fb)
  593. {
  594. dma_addr_t dma;
  595. fb->panel = versatile_clcd_panel();
  596. fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
  597. &dma, GFP_KERNEL);
  598. if (!fb->fb.screen_base) {
  599. printk(KERN_ERR "CLCD: unable to map framebuffer\n");
  600. return -ENOMEM;
  601. }
  602. fb->fb.fix.smem_start = dma;
  603. fb->fb.fix.smem_len = framesize;
  604. return 0;
  605. }
  606. static int versatile_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
  607. {
  608. return dma_mmap_writecombine(&fb->dev->dev, vma,
  609. fb->fb.screen_base,
  610. fb->fb.fix.smem_start,
  611. fb->fb.fix.smem_len);
  612. }
  613. static void versatile_clcd_remove(struct clcd_fb *fb)
  614. {
  615. dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
  616. fb->fb.screen_base, fb->fb.fix.smem_start);
  617. }
  618. static struct clcd_board clcd_plat_data = {
  619. .name = "Versatile",
  620. .check = clcdfb_check,
  621. .decode = clcdfb_decode,
  622. .disable = versatile_clcd_disable,
  623. .enable = versatile_clcd_enable,
  624. .setup = versatile_clcd_setup,
  625. .mmap = versatile_clcd_mmap,
  626. .remove = versatile_clcd_remove,
  627. };
  628. static struct pl061_platform_data gpio0_plat_data = {
  629. .gpio_base = 0,
  630. .irq_base = IRQ_GPIO0_START,
  631. };
  632. static struct pl061_platform_data gpio1_plat_data = {
  633. .gpio_base = 8,
  634. .irq_base = IRQ_GPIO1_START,
  635. };
  636. #define AACI_IRQ { IRQ_AACI, NO_IRQ }
  637. #define AACI_DMA { 0x80, 0x81 }
  638. #define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
  639. #define MMCI0_DMA { 0x84, 0 }
  640. #define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
  641. #define KMI0_DMA { 0, 0 }
  642. #define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
  643. #define KMI1_DMA { 0, 0 }
  644. /*
  645. * These devices are connected directly to the multi-layer AHB switch
  646. */
  647. #define SMC_IRQ { NO_IRQ, NO_IRQ }
  648. #define SMC_DMA { 0, 0 }
  649. #define MPMC_IRQ { NO_IRQ, NO_IRQ }
  650. #define MPMC_DMA { 0, 0 }
  651. #define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
  652. #define CLCD_DMA { 0, 0 }
  653. #define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
  654. #define DMAC_DMA { 0, 0 }
  655. /*
  656. * These devices are connected via the core APB bridge
  657. */
  658. #define SCTL_IRQ { NO_IRQ, NO_IRQ }
  659. #define SCTL_DMA { 0, 0 }
  660. #define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
  661. #define WATCHDOG_DMA { 0, 0 }
  662. #define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
  663. #define GPIO0_DMA { 0, 0 }
  664. #define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
  665. #define GPIO1_DMA { 0, 0 }
  666. #define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
  667. #define RTC_DMA { 0, 0 }
  668. /*
  669. * These devices are connected via the DMA APB bridge
  670. */
  671. #define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
  672. #define SCI_DMA { 7, 6 }
  673. #define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
  674. #define UART0_DMA { 15, 14 }
  675. #define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
  676. #define UART1_DMA { 13, 12 }
  677. #define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
  678. #define UART2_DMA { 11, 10 }
  679. #define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
  680. #define SSP_DMA { 9, 8 }
  681. /* FPGA Primecells */
  682. AMBA_DEVICE(aaci, "fpga:04", AACI, NULL);
  683. AMBA_DEVICE(mmc0, "fpga:05", MMCI0, &mmc0_plat_data);
  684. AMBA_DEVICE(kmi0, "fpga:06", KMI0, NULL);
  685. AMBA_DEVICE(kmi1, "fpga:07", KMI1, NULL);
  686. /* DevChip Primecells */
  687. AMBA_DEVICE(smc, "dev:00", SMC, NULL);
  688. AMBA_DEVICE(mpmc, "dev:10", MPMC, NULL);
  689. AMBA_DEVICE(clcd, "dev:20", CLCD, &clcd_plat_data);
  690. AMBA_DEVICE(dmac, "dev:30", DMAC, NULL);
  691. AMBA_DEVICE(sctl, "dev:e0", SCTL, NULL);
  692. AMBA_DEVICE(wdog, "dev:e1", WATCHDOG, NULL);
  693. AMBA_DEVICE(gpio0, "dev:e4", GPIO0, &gpio0_plat_data);
  694. AMBA_DEVICE(gpio1, "dev:e5", GPIO1, &gpio1_plat_data);
  695. AMBA_DEVICE(rtc, "dev:e8", RTC, NULL);
  696. AMBA_DEVICE(sci0, "dev:f0", SCI, NULL);
  697. AMBA_DEVICE(uart0, "dev:f1", UART0, NULL);
  698. AMBA_DEVICE(uart1, "dev:f2", UART1, NULL);
  699. AMBA_DEVICE(uart2, "dev:f3", UART2, NULL);
  700. AMBA_DEVICE(ssp0, "dev:f4", SSP, NULL);
  701. static struct amba_device *amba_devs[] __initdata = {
  702. &dmac_device,
  703. &uart0_device,
  704. &uart1_device,
  705. &uart2_device,
  706. &smc_device,
  707. &mpmc_device,
  708. &clcd_device,
  709. &sctl_device,
  710. &wdog_device,
  711. &gpio0_device,
  712. &gpio1_device,
  713. &rtc_device,
  714. &sci0_device,
  715. &ssp0_device,
  716. &aaci_device,
  717. &mmc0_device,
  718. &kmi0_device,
  719. &kmi1_device,
  720. };
  721. #ifdef CONFIG_LEDS
  722. #define VA_LEDS_BASE (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
  723. static void versatile_leds_event(led_event_t ledevt)
  724. {
  725. unsigned long flags;
  726. u32 val;
  727. local_irq_save(flags);
  728. val = readl(VA_LEDS_BASE);
  729. switch (ledevt) {
  730. case led_idle_start:
  731. val = val & ~VERSATILE_SYS_LED0;
  732. break;
  733. case led_idle_end:
  734. val = val | VERSATILE_SYS_LED0;
  735. break;
  736. case led_timer:
  737. val = val ^ VERSATILE_SYS_LED1;
  738. break;
  739. case led_halted:
  740. val = 0;
  741. break;
  742. default:
  743. break;
  744. }
  745. writel(val, VA_LEDS_BASE);
  746. local_irq_restore(flags);
  747. }
  748. #endif /* CONFIG_LEDS */
  749. void __init versatile_init(void)
  750. {
  751. int i;
  752. clkdev_add_table(lookups, ARRAY_SIZE(lookups));
  753. platform_device_register(&versatile_flash_device);
  754. platform_device_register(&versatile_i2c_device);
  755. platform_device_register(&smc91x_device);
  756. for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
  757. struct amba_device *d = amba_devs[i];
  758. amba_device_register(d, &iomem_resource);
  759. }
  760. #ifdef CONFIG_LEDS
  761. leds_event = versatile_leds_event;
  762. #endif
  763. }
  764. /*
  765. * Where is the timer (VA)?
  766. */
  767. #define TIMER0_VA_BASE __io_address(VERSATILE_TIMER0_1_BASE)
  768. #define TIMER1_VA_BASE (__io_address(VERSATILE_TIMER0_1_BASE) + 0x20)
  769. #define TIMER2_VA_BASE __io_address(VERSATILE_TIMER2_3_BASE)
  770. #define TIMER3_VA_BASE (__io_address(VERSATILE_TIMER2_3_BASE) + 0x20)
  771. #define VA_IC_BASE __io_address(VERSATILE_VIC_BASE)
  772. /*
  773. * How long is the timer interval?
  774. */
  775. #define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
  776. #if TIMER_INTERVAL >= 0x100000
  777. #define TIMER_RELOAD (TIMER_INTERVAL >> 8)
  778. #define TIMER_DIVISOR (TIMER_CTRL_DIV256)
  779. #define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
  780. #elif TIMER_INTERVAL >= 0x10000
  781. #define TIMER_RELOAD (TIMER_INTERVAL >> 4) /* Divide by 16 */
  782. #define TIMER_DIVISOR (TIMER_CTRL_DIV16)
  783. #define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
  784. #else
  785. #define TIMER_RELOAD (TIMER_INTERVAL)
  786. #define TIMER_DIVISOR (TIMER_CTRL_DIV1)
  787. #define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
  788. #endif
  789. static void timer_set_mode(enum clock_event_mode mode,
  790. struct clock_event_device *clk)
  791. {
  792. unsigned long ctrl;
  793. switch(mode) {
  794. case CLOCK_EVT_MODE_PERIODIC:
  795. writel(TIMER_RELOAD, TIMER0_VA_BASE + TIMER_LOAD);
  796. ctrl = TIMER_CTRL_PERIODIC;
  797. ctrl |= TIMER_CTRL_32BIT | TIMER_CTRL_IE | TIMER_CTRL_ENABLE;
  798. break;
  799. case CLOCK_EVT_MODE_ONESHOT:
  800. /* period set, and timer enabled in 'next_event' hook */
  801. ctrl = TIMER_CTRL_ONESHOT;
  802. ctrl |= TIMER_CTRL_32BIT | TIMER_CTRL_IE;
  803. break;
  804. case CLOCK_EVT_MODE_UNUSED:
  805. case CLOCK_EVT_MODE_SHUTDOWN:
  806. default:
  807. ctrl = 0;
  808. }
  809. writel(ctrl, TIMER0_VA_BASE + TIMER_CTRL);
  810. }
  811. static int timer_set_next_event(unsigned long evt,
  812. struct clock_event_device *unused)
  813. {
  814. unsigned long ctrl = readl(TIMER0_VA_BASE + TIMER_CTRL);
  815. writel(evt, TIMER0_VA_BASE + TIMER_LOAD);
  816. writel(ctrl | TIMER_CTRL_ENABLE, TIMER0_VA_BASE + TIMER_CTRL);
  817. return 0;
  818. }
  819. static struct clock_event_device timer0_clockevent = {
  820. .name = "timer0",
  821. .shift = 32,
  822. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  823. .set_mode = timer_set_mode,
  824. .set_next_event = timer_set_next_event,
  825. };
  826. /*
  827. * IRQ handler for the timer
  828. */
  829. static irqreturn_t versatile_timer_interrupt(int irq, void *dev_id)
  830. {
  831. struct clock_event_device *evt = &timer0_clockevent;
  832. writel(1, TIMER0_VA_BASE + TIMER_INTCLR);
  833. evt->event_handler(evt);
  834. return IRQ_HANDLED;
  835. }
  836. static struct irqaction versatile_timer_irq = {
  837. .name = "Versatile Timer Tick",
  838. .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
  839. .handler = versatile_timer_interrupt,
  840. };
  841. static cycle_t versatile_get_cycles(struct clocksource *cs)
  842. {
  843. return ~readl(TIMER3_VA_BASE + TIMER_VALUE);
  844. }
  845. static struct clocksource clocksource_versatile = {
  846. .name = "timer3",
  847. .rating = 200,
  848. .read = versatile_get_cycles,
  849. .mask = CLOCKSOURCE_MASK(32),
  850. .shift = 20,
  851. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  852. };
  853. static int __init versatile_clocksource_init(void)
  854. {
  855. /* setup timer3 as free-running clocksource */
  856. writel(0, TIMER3_VA_BASE + TIMER_CTRL);
  857. writel(0xffffffff, TIMER3_VA_BASE + TIMER_LOAD);
  858. writel(0xffffffff, TIMER3_VA_BASE + TIMER_VALUE);
  859. writel(TIMER_CTRL_32BIT | TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC,
  860. TIMER3_VA_BASE + TIMER_CTRL);
  861. clocksource_versatile.mult =
  862. clocksource_khz2mult(1000, clocksource_versatile.shift);
  863. clocksource_register(&clocksource_versatile);
  864. return 0;
  865. }
  866. /*
  867. * Set up timer interrupt, and return the current time in seconds.
  868. */
  869. static void __init versatile_timer_init(void)
  870. {
  871. u32 val;
  872. /*
  873. * set clock frequency:
  874. * VERSATILE_REFCLK is 32KHz
  875. * VERSATILE_TIMCLK is 1MHz
  876. */
  877. val = readl(__io_address(VERSATILE_SCTL_BASE));
  878. writel((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) |
  879. (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
  880. (VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) |
  881. (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel) | val,
  882. __io_address(VERSATILE_SCTL_BASE));
  883. /*
  884. * Initialise to a known state (all timers off)
  885. */
  886. writel(0, TIMER0_VA_BASE + TIMER_CTRL);
  887. writel(0, TIMER1_VA_BASE + TIMER_CTRL);
  888. writel(0, TIMER2_VA_BASE + TIMER_CTRL);
  889. writel(0, TIMER3_VA_BASE + TIMER_CTRL);
  890. /*
  891. * Make irqs happen for the system timer
  892. */
  893. setup_irq(IRQ_TIMERINT0_1, &versatile_timer_irq);
  894. versatile_clocksource_init();
  895. timer0_clockevent.mult =
  896. div_sc(1000000, NSEC_PER_SEC, timer0_clockevent.shift);
  897. timer0_clockevent.max_delta_ns =
  898. clockevent_delta2ns(0xffffffff, &timer0_clockevent);
  899. timer0_clockevent.min_delta_ns =
  900. clockevent_delta2ns(0xf, &timer0_clockevent);
  901. timer0_clockevent.cpumask = cpumask_of(0);
  902. clockevents_register_device(&timer0_clockevent);
  903. }
  904. struct sys_timer versatile_timer = {
  905. .init = versatile_timer_init,
  906. };