dma.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556
  1. /*
  2. * EDMA3 support for DaVinci
  3. *
  4. * Copyright (C) 2006-2009 Texas Instruments.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/kernel.h>
  21. #include <linux/init.h>
  22. #include <linux/module.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/io.h>
  26. #include <linux/slab.h>
  27. #include <mach/edma.h>
  28. /* Offsets matching "struct edmacc_param" */
  29. #define PARM_OPT 0x00
  30. #define PARM_SRC 0x04
  31. #define PARM_A_B_CNT 0x08
  32. #define PARM_DST 0x0c
  33. #define PARM_SRC_DST_BIDX 0x10
  34. #define PARM_LINK_BCNTRLD 0x14
  35. #define PARM_SRC_DST_CIDX 0x18
  36. #define PARM_CCNT 0x1c
  37. #define PARM_SIZE 0x20
  38. /* Offsets for EDMA CC global channel registers and their shadows */
  39. #define SH_ER 0x00 /* 64 bits */
  40. #define SH_ECR 0x08 /* 64 bits */
  41. #define SH_ESR 0x10 /* 64 bits */
  42. #define SH_CER 0x18 /* 64 bits */
  43. #define SH_EER 0x20 /* 64 bits */
  44. #define SH_EECR 0x28 /* 64 bits */
  45. #define SH_EESR 0x30 /* 64 bits */
  46. #define SH_SER 0x38 /* 64 bits */
  47. #define SH_SECR 0x40 /* 64 bits */
  48. #define SH_IER 0x50 /* 64 bits */
  49. #define SH_IECR 0x58 /* 64 bits */
  50. #define SH_IESR 0x60 /* 64 bits */
  51. #define SH_IPR 0x68 /* 64 bits */
  52. #define SH_ICR 0x70 /* 64 bits */
  53. #define SH_IEVAL 0x78
  54. #define SH_QER 0x80
  55. #define SH_QEER 0x84
  56. #define SH_QEECR 0x88
  57. #define SH_QEESR 0x8c
  58. #define SH_QSER 0x90
  59. #define SH_QSECR 0x94
  60. #define SH_SIZE 0x200
  61. /* Offsets for EDMA CC global registers */
  62. #define EDMA_REV 0x0000
  63. #define EDMA_CCCFG 0x0004
  64. #define EDMA_QCHMAP 0x0200 /* 8 registers */
  65. #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
  66. #define EDMA_QDMAQNUM 0x0260
  67. #define EDMA_QUETCMAP 0x0280
  68. #define EDMA_QUEPRI 0x0284
  69. #define EDMA_EMR 0x0300 /* 64 bits */
  70. #define EDMA_EMCR 0x0308 /* 64 bits */
  71. #define EDMA_QEMR 0x0310
  72. #define EDMA_QEMCR 0x0314
  73. #define EDMA_CCERR 0x0318
  74. #define EDMA_CCERRCLR 0x031c
  75. #define EDMA_EEVAL 0x0320
  76. #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
  77. #define EDMA_QRAE 0x0380 /* 4 registers */
  78. #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
  79. #define EDMA_QSTAT 0x0600 /* 2 registers */
  80. #define EDMA_QWMTHRA 0x0620
  81. #define EDMA_QWMTHRB 0x0624
  82. #define EDMA_CCSTAT 0x0640
  83. #define EDMA_M 0x1000 /* global channel registers */
  84. #define EDMA_ECR 0x1008
  85. #define EDMA_ECRH 0x100C
  86. #define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
  87. #define EDMA_PARM 0x4000 /* 128 param entries */
  88. #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
  89. #define EDMA_DCHMAP 0x0100 /* 64 registers */
  90. #define CHMAP_EXIST BIT(24)
  91. #define EDMA_MAX_DMACH 64
  92. #define EDMA_MAX_PARAMENTRY 512
  93. #define EDMA_MAX_CC 2
  94. /*****************************************************************************/
  95. static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
  96. static inline unsigned int edma_read(unsigned ctlr, int offset)
  97. {
  98. return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
  99. }
  100. static inline void edma_write(unsigned ctlr, int offset, int val)
  101. {
  102. __raw_writel(val, edmacc_regs_base[ctlr] + offset);
  103. }
  104. static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
  105. unsigned or)
  106. {
  107. unsigned val = edma_read(ctlr, offset);
  108. val &= and;
  109. val |= or;
  110. edma_write(ctlr, offset, val);
  111. }
  112. static inline void edma_and(unsigned ctlr, int offset, unsigned and)
  113. {
  114. unsigned val = edma_read(ctlr, offset);
  115. val &= and;
  116. edma_write(ctlr, offset, val);
  117. }
  118. static inline void edma_or(unsigned ctlr, int offset, unsigned or)
  119. {
  120. unsigned val = edma_read(ctlr, offset);
  121. val |= or;
  122. edma_write(ctlr, offset, val);
  123. }
  124. static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
  125. {
  126. return edma_read(ctlr, offset + (i << 2));
  127. }
  128. static inline void edma_write_array(unsigned ctlr, int offset, int i,
  129. unsigned val)
  130. {
  131. edma_write(ctlr, offset + (i << 2), val);
  132. }
  133. static inline void edma_modify_array(unsigned ctlr, int offset, int i,
  134. unsigned and, unsigned or)
  135. {
  136. edma_modify(ctlr, offset + (i << 2), and, or);
  137. }
  138. static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
  139. {
  140. edma_or(ctlr, offset + (i << 2), or);
  141. }
  142. static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
  143. unsigned or)
  144. {
  145. edma_or(ctlr, offset + ((i*2 + j) << 2), or);
  146. }
  147. static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
  148. unsigned val)
  149. {
  150. edma_write(ctlr, offset + ((i*2 + j) << 2), val);
  151. }
  152. static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
  153. {
  154. return edma_read(ctlr, EDMA_SHADOW0 + offset);
  155. }
  156. static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
  157. int i)
  158. {
  159. return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
  160. }
  161. static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
  162. {
  163. edma_write(ctlr, EDMA_SHADOW0 + offset, val);
  164. }
  165. static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
  166. unsigned val)
  167. {
  168. edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
  169. }
  170. static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
  171. int param_no)
  172. {
  173. return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
  174. }
  175. static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
  176. unsigned val)
  177. {
  178. edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
  179. }
  180. static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
  181. unsigned and, unsigned or)
  182. {
  183. edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
  184. }
  185. static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
  186. unsigned and)
  187. {
  188. edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
  189. }
  190. static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
  191. unsigned or)
  192. {
  193. edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
  194. }
  195. /*****************************************************************************/
  196. /* actual number of DMA channels and slots on this silicon */
  197. struct edma {
  198. /* how many dma resources of each type */
  199. unsigned num_channels;
  200. unsigned num_region;
  201. unsigned num_slots;
  202. unsigned num_tc;
  203. unsigned num_cc;
  204. enum dma_event_q default_queue;
  205. /* list of channels with no even trigger; terminated by "-1" */
  206. const s8 *noevent;
  207. /* The edma_inuse bit for each PaRAM slot is clear unless the
  208. * channel is in use ... by ARM or DSP, for QDMA, or whatever.
  209. */
  210. DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
  211. /* The edma_unused bit for each channel is clear unless
  212. * it is not being used on this platform. It uses a bit
  213. * of SOC-specific initialization code.
  214. */
  215. DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
  216. unsigned irq_res_start;
  217. unsigned irq_res_end;
  218. struct dma_interrupt_data {
  219. void (*callback)(unsigned channel, unsigned short ch_status,
  220. void *data);
  221. void *data;
  222. } intr_data[EDMA_MAX_DMACH];
  223. };
  224. static struct edma *edma_info[EDMA_MAX_CC];
  225. static int arch_num_cc;
  226. /* dummy param set used to (re)initialize parameter RAM slots */
  227. static const struct edmacc_param dummy_paramset = {
  228. .link_bcntrld = 0xffff,
  229. .ccnt = 1,
  230. };
  231. /*****************************************************************************/
  232. static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
  233. enum dma_event_q queue_no)
  234. {
  235. int bit = (ch_no & 0x7) * 4;
  236. /* default to low priority queue */
  237. if (queue_no == EVENTQ_DEFAULT)
  238. queue_no = edma_info[ctlr]->default_queue;
  239. queue_no &= 7;
  240. edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
  241. ~(0x7 << bit), queue_no << bit);
  242. }
  243. static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
  244. {
  245. int bit = queue_no * 4;
  246. edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
  247. }
  248. static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
  249. int priority)
  250. {
  251. int bit = queue_no * 4;
  252. edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
  253. ((priority & 0x7) << bit));
  254. }
  255. /**
  256. * map_dmach_param - Maps channel number to param entry number
  257. *
  258. * This maps the dma channel number to param entry numberter. In
  259. * other words using the DMA channel mapping registers a param entry
  260. * can be mapped to any channel
  261. *
  262. * Callers are responsible for ensuring the channel mapping logic is
  263. * included in that particular EDMA variant (Eg : dm646x)
  264. *
  265. */
  266. static void __init map_dmach_param(unsigned ctlr)
  267. {
  268. int i;
  269. for (i = 0; i < EDMA_MAX_DMACH; i++)
  270. edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
  271. }
  272. static inline void
  273. setup_dma_interrupt(unsigned lch,
  274. void (*callback)(unsigned channel, u16 ch_status, void *data),
  275. void *data)
  276. {
  277. unsigned ctlr;
  278. ctlr = EDMA_CTLR(lch);
  279. lch = EDMA_CHAN_SLOT(lch);
  280. if (!callback) {
  281. edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
  282. (1 << (lch & 0x1f)));
  283. }
  284. edma_info[ctlr]->intr_data[lch].callback = callback;
  285. edma_info[ctlr]->intr_data[lch].data = data;
  286. if (callback) {
  287. edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
  288. (1 << (lch & 0x1f)));
  289. edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
  290. (1 << (lch & 0x1f)));
  291. }
  292. }
  293. static int irq2ctlr(int irq)
  294. {
  295. if (irq >= edma_info[0]->irq_res_start &&
  296. irq <= edma_info[0]->irq_res_end)
  297. return 0;
  298. else if (irq >= edma_info[1]->irq_res_start &&
  299. irq <= edma_info[1]->irq_res_end)
  300. return 1;
  301. return -1;
  302. }
  303. /******************************************************************************
  304. *
  305. * DMA interrupt handler
  306. *
  307. *****************************************************************************/
  308. static irqreturn_t dma_irq_handler(int irq, void *data)
  309. {
  310. int i;
  311. unsigned ctlr;
  312. unsigned int cnt = 0;
  313. ctlr = irq2ctlr(irq);
  314. dev_dbg(data, "dma_irq_handler\n");
  315. if ((edma_shadow0_read_array(ctlr, SH_IPR, 0) == 0)
  316. && (edma_shadow0_read_array(ctlr, SH_IPR, 1) == 0))
  317. return IRQ_NONE;
  318. while (1) {
  319. int j;
  320. if (edma_shadow0_read_array(ctlr, SH_IPR, 0))
  321. j = 0;
  322. else if (edma_shadow0_read_array(ctlr, SH_IPR, 1))
  323. j = 1;
  324. else
  325. break;
  326. dev_dbg(data, "IPR%d %08x\n", j,
  327. edma_shadow0_read_array(ctlr, SH_IPR, j));
  328. for (i = 0; i < 32; i++) {
  329. int k = (j << 5) + i;
  330. if (edma_shadow0_read_array(ctlr, SH_IPR, j) &
  331. (1 << i)) {
  332. /* Clear the corresponding IPR bits */
  333. edma_shadow0_write_array(ctlr, SH_ICR, j,
  334. (1 << i));
  335. if (edma_info[ctlr]->intr_data[k].callback) {
  336. edma_info[ctlr]->intr_data[k].callback(
  337. k, DMA_COMPLETE,
  338. edma_info[ctlr]->intr_data[k].
  339. data);
  340. }
  341. }
  342. }
  343. cnt++;
  344. if (cnt > 10)
  345. break;
  346. }
  347. edma_shadow0_write(ctlr, SH_IEVAL, 1);
  348. return IRQ_HANDLED;
  349. }
  350. /******************************************************************************
  351. *
  352. * DMA error interrupt handler
  353. *
  354. *****************************************************************************/
  355. static irqreturn_t dma_ccerr_handler(int irq, void *data)
  356. {
  357. int i;
  358. unsigned ctlr;
  359. unsigned int cnt = 0;
  360. ctlr = irq2ctlr(irq);
  361. dev_dbg(data, "dma_ccerr_handler\n");
  362. if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
  363. (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
  364. (edma_read(ctlr, EDMA_QEMR) == 0) &&
  365. (edma_read(ctlr, EDMA_CCERR) == 0))
  366. return IRQ_NONE;
  367. while (1) {
  368. int j = -1;
  369. if (edma_read_array(ctlr, EDMA_EMR, 0))
  370. j = 0;
  371. else if (edma_read_array(ctlr, EDMA_EMR, 1))
  372. j = 1;
  373. if (j >= 0) {
  374. dev_dbg(data, "EMR%d %08x\n", j,
  375. edma_read_array(ctlr, EDMA_EMR, j));
  376. for (i = 0; i < 32; i++) {
  377. int k = (j << 5) + i;
  378. if (edma_read_array(ctlr, EDMA_EMR, j) &
  379. (1 << i)) {
  380. /* Clear the corresponding EMR bits */
  381. edma_write_array(ctlr, EDMA_EMCR, j,
  382. 1 << i);
  383. /* Clear any SER */
  384. edma_shadow0_write_array(ctlr, SH_SECR,
  385. j, (1 << i));
  386. if (edma_info[ctlr]->intr_data[k].
  387. callback) {
  388. edma_info[ctlr]->intr_data[k].
  389. callback(k,
  390. DMA_CC_ERROR,
  391. edma_info[ctlr]->intr_data
  392. [k].data);
  393. }
  394. }
  395. }
  396. } else if (edma_read(ctlr, EDMA_QEMR)) {
  397. dev_dbg(data, "QEMR %02x\n",
  398. edma_read(ctlr, EDMA_QEMR));
  399. for (i = 0; i < 8; i++) {
  400. if (edma_read(ctlr, EDMA_QEMR) & (1 << i)) {
  401. /* Clear the corresponding IPR bits */
  402. edma_write(ctlr, EDMA_QEMCR, 1 << i);
  403. edma_shadow0_write(ctlr, SH_QSECR,
  404. (1 << i));
  405. /* NOTE: not reported!! */
  406. }
  407. }
  408. } else if (edma_read(ctlr, EDMA_CCERR)) {
  409. dev_dbg(data, "CCERR %08x\n",
  410. edma_read(ctlr, EDMA_CCERR));
  411. /* FIXME: CCERR.BIT(16) ignored! much better
  412. * to just write CCERRCLR with CCERR value...
  413. */
  414. for (i = 0; i < 8; i++) {
  415. if (edma_read(ctlr, EDMA_CCERR) & (1 << i)) {
  416. /* Clear the corresponding IPR bits */
  417. edma_write(ctlr, EDMA_CCERRCLR, 1 << i);
  418. /* NOTE: not reported!! */
  419. }
  420. }
  421. }
  422. if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0)
  423. && (edma_read_array(ctlr, EDMA_EMR, 1) == 0)
  424. && (edma_read(ctlr, EDMA_QEMR) == 0)
  425. && (edma_read(ctlr, EDMA_CCERR) == 0)) {
  426. break;
  427. }
  428. cnt++;
  429. if (cnt > 10)
  430. break;
  431. }
  432. edma_write(ctlr, EDMA_EEVAL, 1);
  433. return IRQ_HANDLED;
  434. }
  435. /******************************************************************************
  436. *
  437. * Transfer controller error interrupt handlers
  438. *
  439. *****************************************************************************/
  440. #define tc_errs_handled false /* disabled as long as they're NOPs */
  441. static irqreturn_t dma_tc0err_handler(int irq, void *data)
  442. {
  443. dev_dbg(data, "dma_tc0err_handler\n");
  444. return IRQ_HANDLED;
  445. }
  446. static irqreturn_t dma_tc1err_handler(int irq, void *data)
  447. {
  448. dev_dbg(data, "dma_tc1err_handler\n");
  449. return IRQ_HANDLED;
  450. }
  451. static int reserve_contiguous_slots(int ctlr, unsigned int id,
  452. unsigned int num_slots,
  453. unsigned int start_slot)
  454. {
  455. int i, j;
  456. unsigned int count = num_slots;
  457. int stop_slot = start_slot;
  458. DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
  459. for (i = start_slot; i < edma_info[ctlr]->num_slots; ++i) {
  460. j = EDMA_CHAN_SLOT(i);
  461. if (!test_and_set_bit(j, edma_info[ctlr]->edma_inuse)) {
  462. /* Record our current beginning slot */
  463. if (count == num_slots)
  464. stop_slot = i;
  465. count--;
  466. set_bit(j, tmp_inuse);
  467. if (count == 0)
  468. break;
  469. } else {
  470. clear_bit(j, tmp_inuse);
  471. if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
  472. stop_slot = i;
  473. break;
  474. } else
  475. count = num_slots;
  476. }
  477. }
  478. /*
  479. * We have to clear any bits that we set
  480. * if we run out parameter RAM slots, i.e we do find a set
  481. * of contiguous parameter RAM slots but do not find the exact number
  482. * requested as we may reach the total number of parameter RAM slots
  483. */
  484. if (i == edma_info[ctlr]->num_slots)
  485. stop_slot = i;
  486. for (j = start_slot; j < stop_slot; j++)
  487. if (test_bit(j, tmp_inuse))
  488. clear_bit(j, edma_info[ctlr]->edma_inuse);
  489. if (count)
  490. return -EBUSY;
  491. for (j = i - num_slots + 1; j <= i; ++j)
  492. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
  493. &dummy_paramset, PARM_SIZE);
  494. return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
  495. }
  496. static int prepare_unused_channel_list(struct device *dev, void *data)
  497. {
  498. struct platform_device *pdev = to_platform_device(dev);
  499. int i, ctlr;
  500. for (i = 0; i < pdev->num_resources; i++) {
  501. if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
  502. (int)pdev->resource[i].start >= 0) {
  503. ctlr = EDMA_CTLR(pdev->resource[i].start);
  504. clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
  505. edma_info[ctlr]->edma_unused);
  506. }
  507. }
  508. return 0;
  509. }
  510. /*-----------------------------------------------------------------------*/
  511. static bool unused_chan_list_done;
  512. /* Resource alloc/free: dma channels, parameter RAM slots */
  513. /**
  514. * edma_alloc_channel - allocate DMA channel and paired parameter RAM
  515. * @channel: specific channel to allocate; negative for "any unmapped channel"
  516. * @callback: optional; to be issued on DMA completion or errors
  517. * @data: passed to callback
  518. * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
  519. * Controller (TC) executes requests using this channel. Use
  520. * EVENTQ_DEFAULT unless you really need a high priority queue.
  521. *
  522. * This allocates a DMA channel and its associated parameter RAM slot.
  523. * The parameter RAM is initialized to hold a dummy transfer.
  524. *
  525. * Normal use is to pass a specific channel number as @channel, to make
  526. * use of hardware events mapped to that channel. When the channel will
  527. * be used only for software triggering or event chaining, channels not
  528. * mapped to hardware events (or mapped to unused events) are preferable.
  529. *
  530. * DMA transfers start from a channel using edma_start(), or by
  531. * chaining. When the transfer described in that channel's parameter RAM
  532. * slot completes, that slot's data may be reloaded through a link.
  533. *
  534. * DMA errors are only reported to the @callback associated with the
  535. * channel driving that transfer, but transfer completion callbacks can
  536. * be sent to another channel under control of the TCC field in
  537. * the option word of the transfer's parameter RAM set. Drivers must not
  538. * use DMA transfer completion callbacks for channels they did not allocate.
  539. * (The same applies to TCC codes used in transfer chaining.)
  540. *
  541. * Returns the number of the channel, else negative errno.
  542. */
  543. int edma_alloc_channel(int channel,
  544. void (*callback)(unsigned channel, u16 ch_status, void *data),
  545. void *data,
  546. enum dma_event_q eventq_no)
  547. {
  548. unsigned i, done = 0, ctlr = 0;
  549. int ret = 0;
  550. if (!unused_chan_list_done) {
  551. /*
  552. * Scan all the platform devices to find out the EDMA channels
  553. * used and clear them in the unused list, making the rest
  554. * available for ARM usage.
  555. */
  556. ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
  557. prepare_unused_channel_list);
  558. if (ret < 0)
  559. return ret;
  560. unused_chan_list_done = true;
  561. }
  562. if (channel >= 0) {
  563. ctlr = EDMA_CTLR(channel);
  564. channel = EDMA_CHAN_SLOT(channel);
  565. }
  566. if (channel < 0) {
  567. for (i = 0; i < arch_num_cc; i++) {
  568. channel = 0;
  569. for (;;) {
  570. channel = find_next_bit(edma_info[i]->
  571. edma_unused,
  572. edma_info[i]->num_channels,
  573. channel);
  574. if (channel == edma_info[i]->num_channels)
  575. break;
  576. if (!test_and_set_bit(channel,
  577. edma_info[i]->edma_inuse)) {
  578. done = 1;
  579. ctlr = i;
  580. break;
  581. }
  582. channel++;
  583. }
  584. if (done)
  585. break;
  586. }
  587. if (!done)
  588. return -ENOMEM;
  589. } else if (channel >= edma_info[ctlr]->num_channels) {
  590. return -EINVAL;
  591. } else if (test_and_set_bit(channel, edma_info[ctlr]->edma_inuse)) {
  592. return -EBUSY;
  593. }
  594. /* ensure access through shadow region 0 */
  595. edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, 1 << (channel & 0x1f));
  596. /* ensure no events are pending */
  597. edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
  598. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
  599. &dummy_paramset, PARM_SIZE);
  600. if (callback)
  601. setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
  602. callback, data);
  603. map_dmach_queue(ctlr, channel, eventq_no);
  604. return EDMA_CTLR_CHAN(ctlr, channel);
  605. }
  606. EXPORT_SYMBOL(edma_alloc_channel);
  607. /**
  608. * edma_free_channel - deallocate DMA channel
  609. * @channel: dma channel returned from edma_alloc_channel()
  610. *
  611. * This deallocates the DMA channel and associated parameter RAM slot
  612. * allocated by edma_alloc_channel().
  613. *
  614. * Callers are responsible for ensuring the channel is inactive, and
  615. * will not be reactivated by linking, chaining, or software calls to
  616. * edma_start().
  617. */
  618. void edma_free_channel(unsigned channel)
  619. {
  620. unsigned ctlr;
  621. ctlr = EDMA_CTLR(channel);
  622. channel = EDMA_CHAN_SLOT(channel);
  623. if (channel >= edma_info[ctlr]->num_channels)
  624. return;
  625. setup_dma_interrupt(channel, NULL, NULL);
  626. /* REVISIT should probably take out of shadow region 0 */
  627. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
  628. &dummy_paramset, PARM_SIZE);
  629. clear_bit(channel, edma_info[ctlr]->edma_inuse);
  630. }
  631. EXPORT_SYMBOL(edma_free_channel);
  632. /**
  633. * edma_alloc_slot - allocate DMA parameter RAM
  634. * @slot: specific slot to allocate; negative for "any unused slot"
  635. *
  636. * This allocates a parameter RAM slot, initializing it to hold a
  637. * dummy transfer. Slots allocated using this routine have not been
  638. * mapped to a hardware DMA channel, and will normally be used by
  639. * linking to them from a slot associated with a DMA channel.
  640. *
  641. * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
  642. * slots may be allocated on behalf of DSP firmware.
  643. *
  644. * Returns the number of the slot, else negative errno.
  645. */
  646. int edma_alloc_slot(unsigned ctlr, int slot)
  647. {
  648. if (slot >= 0)
  649. slot = EDMA_CHAN_SLOT(slot);
  650. if (slot < 0) {
  651. slot = edma_info[ctlr]->num_channels;
  652. for (;;) {
  653. slot = find_next_zero_bit(edma_info[ctlr]->edma_inuse,
  654. edma_info[ctlr]->num_slots, slot);
  655. if (slot == edma_info[ctlr]->num_slots)
  656. return -ENOMEM;
  657. if (!test_and_set_bit(slot,
  658. edma_info[ctlr]->edma_inuse))
  659. break;
  660. }
  661. } else if (slot < edma_info[ctlr]->num_channels ||
  662. slot >= edma_info[ctlr]->num_slots) {
  663. return -EINVAL;
  664. } else if (test_and_set_bit(slot, edma_info[ctlr]->edma_inuse)) {
  665. return -EBUSY;
  666. }
  667. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
  668. &dummy_paramset, PARM_SIZE);
  669. return EDMA_CTLR_CHAN(ctlr, slot);
  670. }
  671. EXPORT_SYMBOL(edma_alloc_slot);
  672. /**
  673. * edma_free_slot - deallocate DMA parameter RAM
  674. * @slot: parameter RAM slot returned from edma_alloc_slot()
  675. *
  676. * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
  677. * Callers are responsible for ensuring the slot is inactive, and will
  678. * not be activated.
  679. */
  680. void edma_free_slot(unsigned slot)
  681. {
  682. unsigned ctlr;
  683. ctlr = EDMA_CTLR(slot);
  684. slot = EDMA_CHAN_SLOT(slot);
  685. if (slot < edma_info[ctlr]->num_channels ||
  686. slot >= edma_info[ctlr]->num_slots)
  687. return;
  688. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
  689. &dummy_paramset, PARM_SIZE);
  690. clear_bit(slot, edma_info[ctlr]->edma_inuse);
  691. }
  692. EXPORT_SYMBOL(edma_free_slot);
  693. /**
  694. * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
  695. * The API will return the starting point of a set of
  696. * contiguous parameter RAM slots that have been requested
  697. *
  698. * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
  699. * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
  700. * @count: number of contiguous Paramter RAM slots
  701. * @slot - the start value of Parameter RAM slot that should be passed if id
  702. * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
  703. *
  704. * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
  705. * contiguous Parameter RAM slots from parameter RAM 64 in the case of
  706. * DaVinci SOCs and 32 in the case of DA8xx SOCs.
  707. *
  708. * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
  709. * set of contiguous parameter RAM slots from the "slot" that is passed as an
  710. * argument to the API.
  711. *
  712. * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
  713. * starts looking for a set of contiguous parameter RAMs from the "slot"
  714. * that is passed as an argument to the API. On failure the API will try to
  715. * find a set of contiguous Parameter RAM slots from the remaining Parameter
  716. * RAM slots
  717. */
  718. int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
  719. {
  720. /*
  721. * The start slot requested should be greater than
  722. * the number of channels and lesser than the total number
  723. * of slots
  724. */
  725. if ((id != EDMA_CONT_PARAMS_ANY) &&
  726. (slot < edma_info[ctlr]->num_channels ||
  727. slot >= edma_info[ctlr]->num_slots))
  728. return -EINVAL;
  729. /*
  730. * The number of parameter RAM slots requested cannot be less than 1
  731. * and cannot be more than the number of slots minus the number of
  732. * channels
  733. */
  734. if (count < 1 || count >
  735. (edma_info[ctlr]->num_slots - edma_info[ctlr]->num_channels))
  736. return -EINVAL;
  737. switch (id) {
  738. case EDMA_CONT_PARAMS_ANY:
  739. return reserve_contiguous_slots(ctlr, id, count,
  740. edma_info[ctlr]->num_channels);
  741. case EDMA_CONT_PARAMS_FIXED_EXACT:
  742. case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
  743. return reserve_contiguous_slots(ctlr, id, count, slot);
  744. default:
  745. return -EINVAL;
  746. }
  747. }
  748. EXPORT_SYMBOL(edma_alloc_cont_slots);
  749. /**
  750. * edma_free_cont_slots - deallocate DMA parameter RAM slots
  751. * @slot: first parameter RAM of a set of parameter RAM slots to be freed
  752. * @count: the number of contiguous parameter RAM slots to be freed
  753. *
  754. * This deallocates the parameter RAM slots allocated by
  755. * edma_alloc_cont_slots.
  756. * Callers/applications need to keep track of sets of contiguous
  757. * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
  758. * API.
  759. * Callers are responsible for ensuring the slots are inactive, and will
  760. * not be activated.
  761. */
  762. int edma_free_cont_slots(unsigned slot, int count)
  763. {
  764. unsigned ctlr, slot_to_free;
  765. int i;
  766. ctlr = EDMA_CTLR(slot);
  767. slot = EDMA_CHAN_SLOT(slot);
  768. if (slot < edma_info[ctlr]->num_channels ||
  769. slot >= edma_info[ctlr]->num_slots ||
  770. count < 1)
  771. return -EINVAL;
  772. for (i = slot; i < slot + count; ++i) {
  773. ctlr = EDMA_CTLR(i);
  774. slot_to_free = EDMA_CHAN_SLOT(i);
  775. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
  776. &dummy_paramset, PARM_SIZE);
  777. clear_bit(slot_to_free, edma_info[ctlr]->edma_inuse);
  778. }
  779. return 0;
  780. }
  781. EXPORT_SYMBOL(edma_free_cont_slots);
  782. /*-----------------------------------------------------------------------*/
  783. /* Parameter RAM operations (i) -- read/write partial slots */
  784. /**
  785. * edma_set_src - set initial DMA source address in parameter RAM slot
  786. * @slot: parameter RAM slot being configured
  787. * @src_port: physical address of source (memory, controller FIFO, etc)
  788. * @addressMode: INCR, except in very rare cases
  789. * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
  790. * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
  791. *
  792. * Note that the source address is modified during the DMA transfer
  793. * according to edma_set_src_index().
  794. */
  795. void edma_set_src(unsigned slot, dma_addr_t src_port,
  796. enum address_mode mode, enum fifo_width width)
  797. {
  798. unsigned ctlr;
  799. ctlr = EDMA_CTLR(slot);
  800. slot = EDMA_CHAN_SLOT(slot);
  801. if (slot < edma_info[ctlr]->num_slots) {
  802. unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
  803. if (mode) {
  804. /* set SAM and program FWID */
  805. i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
  806. } else {
  807. /* clear SAM */
  808. i &= ~SAM;
  809. }
  810. edma_parm_write(ctlr, PARM_OPT, slot, i);
  811. /* set the source port address
  812. in source register of param structure */
  813. edma_parm_write(ctlr, PARM_SRC, slot, src_port);
  814. }
  815. }
  816. EXPORT_SYMBOL(edma_set_src);
  817. /**
  818. * edma_set_dest - set initial DMA destination address in parameter RAM slot
  819. * @slot: parameter RAM slot being configured
  820. * @dest_port: physical address of destination (memory, controller FIFO, etc)
  821. * @addressMode: INCR, except in very rare cases
  822. * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
  823. * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
  824. *
  825. * Note that the destination address is modified during the DMA transfer
  826. * according to edma_set_dest_index().
  827. */
  828. void edma_set_dest(unsigned slot, dma_addr_t dest_port,
  829. enum address_mode mode, enum fifo_width width)
  830. {
  831. unsigned ctlr;
  832. ctlr = EDMA_CTLR(slot);
  833. slot = EDMA_CHAN_SLOT(slot);
  834. if (slot < edma_info[ctlr]->num_slots) {
  835. unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
  836. if (mode) {
  837. /* set DAM and program FWID */
  838. i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
  839. } else {
  840. /* clear DAM */
  841. i &= ~DAM;
  842. }
  843. edma_parm_write(ctlr, PARM_OPT, slot, i);
  844. /* set the destination port address
  845. in dest register of param structure */
  846. edma_parm_write(ctlr, PARM_DST, slot, dest_port);
  847. }
  848. }
  849. EXPORT_SYMBOL(edma_set_dest);
  850. /**
  851. * edma_get_position - returns the current transfer points
  852. * @slot: parameter RAM slot being examined
  853. * @src: pointer to source port position
  854. * @dst: pointer to destination port position
  855. *
  856. * Returns current source and destination addresses for a particular
  857. * parameter RAM slot. Its channel should not be active when this is called.
  858. */
  859. void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
  860. {
  861. struct edmacc_param temp;
  862. unsigned ctlr;
  863. ctlr = EDMA_CTLR(slot);
  864. slot = EDMA_CHAN_SLOT(slot);
  865. edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
  866. if (src != NULL)
  867. *src = temp.src;
  868. if (dst != NULL)
  869. *dst = temp.dst;
  870. }
  871. EXPORT_SYMBOL(edma_get_position);
  872. /**
  873. * edma_set_src_index - configure DMA source address indexing
  874. * @slot: parameter RAM slot being configured
  875. * @src_bidx: byte offset between source arrays in a frame
  876. * @src_cidx: byte offset between source frames in a block
  877. *
  878. * Offsets are specified to support either contiguous or discontiguous
  879. * memory transfers, or repeated access to a hardware register, as needed.
  880. * When accessing hardware registers, both offsets are normally zero.
  881. */
  882. void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
  883. {
  884. unsigned ctlr;
  885. ctlr = EDMA_CTLR(slot);
  886. slot = EDMA_CHAN_SLOT(slot);
  887. if (slot < edma_info[ctlr]->num_slots) {
  888. edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
  889. 0xffff0000, src_bidx);
  890. edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
  891. 0xffff0000, src_cidx);
  892. }
  893. }
  894. EXPORT_SYMBOL(edma_set_src_index);
  895. /**
  896. * edma_set_dest_index - configure DMA destination address indexing
  897. * @slot: parameter RAM slot being configured
  898. * @dest_bidx: byte offset between destination arrays in a frame
  899. * @dest_cidx: byte offset between destination frames in a block
  900. *
  901. * Offsets are specified to support either contiguous or discontiguous
  902. * memory transfers, or repeated access to a hardware register, as needed.
  903. * When accessing hardware registers, both offsets are normally zero.
  904. */
  905. void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
  906. {
  907. unsigned ctlr;
  908. ctlr = EDMA_CTLR(slot);
  909. slot = EDMA_CHAN_SLOT(slot);
  910. if (slot < edma_info[ctlr]->num_slots) {
  911. edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
  912. 0x0000ffff, dest_bidx << 16);
  913. edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
  914. 0x0000ffff, dest_cidx << 16);
  915. }
  916. }
  917. EXPORT_SYMBOL(edma_set_dest_index);
  918. /**
  919. * edma_set_transfer_params - configure DMA transfer parameters
  920. * @slot: parameter RAM slot being configured
  921. * @acnt: how many bytes per array (at least one)
  922. * @bcnt: how many arrays per frame (at least one)
  923. * @ccnt: how many frames per block (at least one)
  924. * @bcnt_rld: used only for A-Synchronized transfers; this specifies
  925. * the value to reload into bcnt when it decrements to zero
  926. * @sync_mode: ASYNC or ABSYNC
  927. *
  928. * See the EDMA3 documentation to understand how to configure and link
  929. * transfers using the fields in PaRAM slots. If you are not doing it
  930. * all at once with edma_write_slot(), you will use this routine
  931. * plus two calls each for source and destination, setting the initial
  932. * address and saying how to index that address.
  933. *
  934. * An example of an A-Synchronized transfer is a serial link using a
  935. * single word shift register. In that case, @acnt would be equal to
  936. * that word size; the serial controller issues a DMA synchronization
  937. * event to transfer each word, and memory access by the DMA transfer
  938. * controller will be word-at-a-time.
  939. *
  940. * An example of an AB-Synchronized transfer is a device using a FIFO.
  941. * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
  942. * The controller with the FIFO issues DMA synchronization events when
  943. * the FIFO threshold is reached, and the DMA transfer controller will
  944. * transfer one frame to (or from) the FIFO. It will probably use
  945. * efficient burst modes to access memory.
  946. */
  947. void edma_set_transfer_params(unsigned slot,
  948. u16 acnt, u16 bcnt, u16 ccnt,
  949. u16 bcnt_rld, enum sync_dimension sync_mode)
  950. {
  951. unsigned ctlr;
  952. ctlr = EDMA_CTLR(slot);
  953. slot = EDMA_CHAN_SLOT(slot);
  954. if (slot < edma_info[ctlr]->num_slots) {
  955. edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
  956. 0x0000ffff, bcnt_rld << 16);
  957. if (sync_mode == ASYNC)
  958. edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
  959. else
  960. edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
  961. /* Set the acount, bcount, ccount registers */
  962. edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
  963. edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
  964. }
  965. }
  966. EXPORT_SYMBOL(edma_set_transfer_params);
  967. /**
  968. * edma_link - link one parameter RAM slot to another
  969. * @from: parameter RAM slot originating the link
  970. * @to: parameter RAM slot which is the link target
  971. *
  972. * The originating slot should not be part of any active DMA transfer.
  973. */
  974. void edma_link(unsigned from, unsigned to)
  975. {
  976. unsigned ctlr_from, ctlr_to;
  977. ctlr_from = EDMA_CTLR(from);
  978. from = EDMA_CHAN_SLOT(from);
  979. ctlr_to = EDMA_CTLR(to);
  980. to = EDMA_CHAN_SLOT(to);
  981. if (from >= edma_info[ctlr_from]->num_slots)
  982. return;
  983. if (to >= edma_info[ctlr_to]->num_slots)
  984. return;
  985. edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
  986. PARM_OFFSET(to));
  987. }
  988. EXPORT_SYMBOL(edma_link);
  989. /**
  990. * edma_unlink - cut link from one parameter RAM slot
  991. * @from: parameter RAM slot originating the link
  992. *
  993. * The originating slot should not be part of any active DMA transfer.
  994. * Its link is set to 0xffff.
  995. */
  996. void edma_unlink(unsigned from)
  997. {
  998. unsigned ctlr;
  999. ctlr = EDMA_CTLR(from);
  1000. from = EDMA_CHAN_SLOT(from);
  1001. if (from >= edma_info[ctlr]->num_slots)
  1002. return;
  1003. edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
  1004. }
  1005. EXPORT_SYMBOL(edma_unlink);
  1006. /*-----------------------------------------------------------------------*/
  1007. /* Parameter RAM operations (ii) -- read/write whole parameter sets */
  1008. /**
  1009. * edma_write_slot - write parameter RAM data for slot
  1010. * @slot: number of parameter RAM slot being modified
  1011. * @param: data to be written into parameter RAM slot
  1012. *
  1013. * Use this to assign all parameters of a transfer at once. This
  1014. * allows more efficient setup of transfers than issuing multiple
  1015. * calls to set up those parameters in small pieces, and provides
  1016. * complete control over all transfer options.
  1017. */
  1018. void edma_write_slot(unsigned slot, const struct edmacc_param *param)
  1019. {
  1020. unsigned ctlr;
  1021. ctlr = EDMA_CTLR(slot);
  1022. slot = EDMA_CHAN_SLOT(slot);
  1023. if (slot >= edma_info[ctlr]->num_slots)
  1024. return;
  1025. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
  1026. PARM_SIZE);
  1027. }
  1028. EXPORT_SYMBOL(edma_write_slot);
  1029. /**
  1030. * edma_read_slot - read parameter RAM data from slot
  1031. * @slot: number of parameter RAM slot being copied
  1032. * @param: where to store copy of parameter RAM data
  1033. *
  1034. * Use this to read data from a parameter RAM slot, perhaps to
  1035. * save them as a template for later reuse.
  1036. */
  1037. void edma_read_slot(unsigned slot, struct edmacc_param *param)
  1038. {
  1039. unsigned ctlr;
  1040. ctlr = EDMA_CTLR(slot);
  1041. slot = EDMA_CHAN_SLOT(slot);
  1042. if (slot >= edma_info[ctlr]->num_slots)
  1043. return;
  1044. memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
  1045. PARM_SIZE);
  1046. }
  1047. EXPORT_SYMBOL(edma_read_slot);
  1048. /*-----------------------------------------------------------------------*/
  1049. /* Various EDMA channel control operations */
  1050. /**
  1051. * edma_pause - pause dma on a channel
  1052. * @channel: on which edma_start() has been called
  1053. *
  1054. * This temporarily disables EDMA hardware events on the specified channel,
  1055. * preventing them from triggering new transfers on its behalf
  1056. */
  1057. void edma_pause(unsigned channel)
  1058. {
  1059. unsigned ctlr;
  1060. ctlr = EDMA_CTLR(channel);
  1061. channel = EDMA_CHAN_SLOT(channel);
  1062. if (channel < edma_info[ctlr]->num_channels) {
  1063. unsigned int mask = (1 << (channel & 0x1f));
  1064. edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
  1065. }
  1066. }
  1067. EXPORT_SYMBOL(edma_pause);
  1068. /**
  1069. * edma_resume - resumes dma on a paused channel
  1070. * @channel: on which edma_pause() has been called
  1071. *
  1072. * This re-enables EDMA hardware events on the specified channel.
  1073. */
  1074. void edma_resume(unsigned channel)
  1075. {
  1076. unsigned ctlr;
  1077. ctlr = EDMA_CTLR(channel);
  1078. channel = EDMA_CHAN_SLOT(channel);
  1079. if (channel < edma_info[ctlr]->num_channels) {
  1080. unsigned int mask = (1 << (channel & 0x1f));
  1081. edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
  1082. }
  1083. }
  1084. EXPORT_SYMBOL(edma_resume);
  1085. /**
  1086. * edma_start - start dma on a channel
  1087. * @channel: channel being activated
  1088. *
  1089. * Channels with event associations will be triggered by their hardware
  1090. * events, and channels without such associations will be triggered by
  1091. * software. (At this writing there is no interface for using software
  1092. * triggers except with channels that don't support hardware triggers.)
  1093. *
  1094. * Returns zero on success, else negative errno.
  1095. */
  1096. int edma_start(unsigned channel)
  1097. {
  1098. unsigned ctlr;
  1099. ctlr = EDMA_CTLR(channel);
  1100. channel = EDMA_CHAN_SLOT(channel);
  1101. if (channel < edma_info[ctlr]->num_channels) {
  1102. int j = channel >> 5;
  1103. unsigned int mask = (1 << (channel & 0x1f));
  1104. /* EDMA channels without event association */
  1105. if (test_bit(channel, edma_info[ctlr]->edma_unused)) {
  1106. pr_debug("EDMA: ESR%d %08x\n", j,
  1107. edma_shadow0_read_array(ctlr, SH_ESR, j));
  1108. edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
  1109. return 0;
  1110. }
  1111. /* EDMA channel with event association */
  1112. pr_debug("EDMA: ER%d %08x\n", j,
  1113. edma_shadow0_read_array(ctlr, SH_ER, j));
  1114. /* Clear any pending event or error */
  1115. edma_write_array(ctlr, EDMA_ECR, j, mask);
  1116. edma_write_array(ctlr, EDMA_EMCR, j, mask);
  1117. /* Clear any SER */
  1118. edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
  1119. edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
  1120. pr_debug("EDMA: EER%d %08x\n", j,
  1121. edma_shadow0_read_array(ctlr, SH_EER, j));
  1122. return 0;
  1123. }
  1124. return -EINVAL;
  1125. }
  1126. EXPORT_SYMBOL(edma_start);
  1127. /**
  1128. * edma_stop - stops dma on the channel passed
  1129. * @channel: channel being deactivated
  1130. *
  1131. * When @lch is a channel, any active transfer is paused and
  1132. * all pending hardware events are cleared. The current transfer
  1133. * may not be resumed, and the channel's Parameter RAM should be
  1134. * reinitialized before being reused.
  1135. */
  1136. void edma_stop(unsigned channel)
  1137. {
  1138. unsigned ctlr;
  1139. ctlr = EDMA_CTLR(channel);
  1140. channel = EDMA_CHAN_SLOT(channel);
  1141. if (channel < edma_info[ctlr]->num_channels) {
  1142. int j = channel >> 5;
  1143. unsigned int mask = (1 << (channel & 0x1f));
  1144. edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
  1145. edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
  1146. edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
  1147. edma_write_array(ctlr, EDMA_EMCR, j, mask);
  1148. pr_debug("EDMA: EER%d %08x\n", j,
  1149. edma_shadow0_read_array(ctlr, SH_EER, j));
  1150. /* REVISIT: consider guarding against inappropriate event
  1151. * chaining by overwriting with dummy_paramset.
  1152. */
  1153. }
  1154. }
  1155. EXPORT_SYMBOL(edma_stop);
  1156. /******************************************************************************
  1157. *
  1158. * It cleans ParamEntry qand bring back EDMA to initial state if media has
  1159. * been removed before EDMA has finished.It is usedful for removable media.
  1160. * Arguments:
  1161. * ch_no - channel no
  1162. *
  1163. * Return: zero on success, or corresponding error no on failure
  1164. *
  1165. * FIXME this should not be needed ... edma_stop() should suffice.
  1166. *
  1167. *****************************************************************************/
  1168. void edma_clean_channel(unsigned channel)
  1169. {
  1170. unsigned ctlr;
  1171. ctlr = EDMA_CTLR(channel);
  1172. channel = EDMA_CHAN_SLOT(channel);
  1173. if (channel < edma_info[ctlr]->num_channels) {
  1174. int j = (channel >> 5);
  1175. unsigned int mask = 1 << (channel & 0x1f);
  1176. pr_debug("EDMA: EMR%d %08x\n", j,
  1177. edma_read_array(ctlr, EDMA_EMR, j));
  1178. edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
  1179. /* Clear the corresponding EMR bits */
  1180. edma_write_array(ctlr, EDMA_EMCR, j, mask);
  1181. /* Clear any SER */
  1182. edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
  1183. edma_write(ctlr, EDMA_CCERRCLR, (1 << 16) | 0x3);
  1184. }
  1185. }
  1186. EXPORT_SYMBOL(edma_clean_channel);
  1187. /*
  1188. * edma_clear_event - clear an outstanding event on the DMA channel
  1189. * Arguments:
  1190. * channel - channel number
  1191. */
  1192. void edma_clear_event(unsigned channel)
  1193. {
  1194. unsigned ctlr;
  1195. ctlr = EDMA_CTLR(channel);
  1196. channel = EDMA_CHAN_SLOT(channel);
  1197. if (channel >= edma_info[ctlr]->num_channels)
  1198. return;
  1199. if (channel < 32)
  1200. edma_write(ctlr, EDMA_ECR, 1 << channel);
  1201. else
  1202. edma_write(ctlr, EDMA_ECRH, 1 << (channel - 32));
  1203. }
  1204. EXPORT_SYMBOL(edma_clear_event);
  1205. /*-----------------------------------------------------------------------*/
  1206. static int __init edma_probe(struct platform_device *pdev)
  1207. {
  1208. struct edma_soc_info *info = pdev->dev.platform_data;
  1209. const s8 (*queue_priority_mapping)[2];
  1210. const s8 (*queue_tc_mapping)[2];
  1211. int i, j, found = 0;
  1212. int status = -1;
  1213. int irq[EDMA_MAX_CC] = {0, 0};
  1214. int err_irq[EDMA_MAX_CC] = {0, 0};
  1215. struct resource *r[EDMA_MAX_CC] = {NULL};
  1216. resource_size_t len[EDMA_MAX_CC];
  1217. char res_name[10];
  1218. char irq_name[10];
  1219. if (!info)
  1220. return -ENODEV;
  1221. for (j = 0; j < EDMA_MAX_CC; j++) {
  1222. sprintf(res_name, "edma_cc%d", j);
  1223. r[j] = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  1224. res_name);
  1225. if (!r[j]) {
  1226. if (found)
  1227. break;
  1228. else
  1229. return -ENODEV;
  1230. } else
  1231. found = 1;
  1232. len[j] = resource_size(r[j]);
  1233. r[j] = request_mem_region(r[j]->start, len[j],
  1234. dev_name(&pdev->dev));
  1235. if (!r[j]) {
  1236. status = -EBUSY;
  1237. goto fail1;
  1238. }
  1239. edmacc_regs_base[j] = ioremap(r[j]->start, len[j]);
  1240. if (!edmacc_regs_base[j]) {
  1241. status = -EBUSY;
  1242. goto fail1;
  1243. }
  1244. edma_info[j] = kmalloc(sizeof(struct edma), GFP_KERNEL);
  1245. if (!edma_info[j]) {
  1246. status = -ENOMEM;
  1247. goto fail1;
  1248. }
  1249. memset(edma_info[j], 0, sizeof(struct edma));
  1250. edma_info[j]->num_channels = min_t(unsigned, info[j].n_channel,
  1251. EDMA_MAX_DMACH);
  1252. edma_info[j]->num_slots = min_t(unsigned, info[j].n_slot,
  1253. EDMA_MAX_PARAMENTRY);
  1254. edma_info[j]->num_cc = min_t(unsigned, info[j].n_cc,
  1255. EDMA_MAX_CC);
  1256. edma_info[j]->default_queue = info[j].default_queue;
  1257. if (!edma_info[j]->default_queue)
  1258. edma_info[j]->default_queue = EVENTQ_1;
  1259. dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
  1260. edmacc_regs_base[j]);
  1261. for (i = 0; i < edma_info[j]->num_slots; i++)
  1262. memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
  1263. &dummy_paramset, PARM_SIZE);
  1264. /* Mark all channels as unused */
  1265. memset(edma_info[j]->edma_unused, 0xff,
  1266. sizeof(edma_info[j]->edma_unused));
  1267. sprintf(irq_name, "edma%d", j);
  1268. irq[j] = platform_get_irq_byname(pdev, irq_name);
  1269. edma_info[j]->irq_res_start = irq[j];
  1270. status = request_irq(irq[j], dma_irq_handler, 0, "edma",
  1271. &pdev->dev);
  1272. if (status < 0) {
  1273. dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
  1274. irq[j], status);
  1275. goto fail;
  1276. }
  1277. sprintf(irq_name, "edma%d_err", j);
  1278. err_irq[j] = platform_get_irq_byname(pdev, irq_name);
  1279. edma_info[j]->irq_res_end = err_irq[j];
  1280. status = request_irq(err_irq[j], dma_ccerr_handler, 0,
  1281. "edma_error", &pdev->dev);
  1282. if (status < 0) {
  1283. dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
  1284. err_irq[j], status);
  1285. goto fail;
  1286. }
  1287. /* Everything lives on transfer controller 1 until otherwise
  1288. * specified. This way, long transfers on the low priority queue
  1289. * started by the codec engine will not cause audio defects.
  1290. */
  1291. for (i = 0; i < edma_info[j]->num_channels; i++)
  1292. map_dmach_queue(j, i, EVENTQ_1);
  1293. queue_tc_mapping = info[j].queue_tc_mapping;
  1294. queue_priority_mapping = info[j].queue_priority_mapping;
  1295. /* Event queue to TC mapping */
  1296. for (i = 0; queue_tc_mapping[i][0] != -1; i++)
  1297. map_queue_tc(j, queue_tc_mapping[i][0],
  1298. queue_tc_mapping[i][1]);
  1299. /* Event queue priority mapping */
  1300. for (i = 0; queue_priority_mapping[i][0] != -1; i++)
  1301. assign_priority_to_queue(j,
  1302. queue_priority_mapping[i][0],
  1303. queue_priority_mapping[i][1]);
  1304. /* Map the channel to param entry if channel mapping logic
  1305. * exist
  1306. */
  1307. if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
  1308. map_dmach_param(j);
  1309. for (i = 0; i < info[j].n_region; i++) {
  1310. edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
  1311. edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
  1312. edma_write_array(j, EDMA_QRAE, i, 0x0);
  1313. }
  1314. arch_num_cc++;
  1315. }
  1316. if (tc_errs_handled) {
  1317. status = request_irq(IRQ_TCERRINT0, dma_tc0err_handler, 0,
  1318. "edma_tc0", &pdev->dev);
  1319. if (status < 0) {
  1320. dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
  1321. IRQ_TCERRINT0, status);
  1322. return status;
  1323. }
  1324. status = request_irq(IRQ_TCERRINT, dma_tc1err_handler, 0,
  1325. "edma_tc1", &pdev->dev);
  1326. if (status < 0) {
  1327. dev_dbg(&pdev->dev, "request_irq %d --> %d\n",
  1328. IRQ_TCERRINT, status);
  1329. return status;
  1330. }
  1331. }
  1332. return 0;
  1333. fail:
  1334. for (i = 0; i < EDMA_MAX_CC; i++) {
  1335. if (err_irq[i])
  1336. free_irq(err_irq[i], &pdev->dev);
  1337. if (irq[i])
  1338. free_irq(irq[i], &pdev->dev);
  1339. }
  1340. fail1:
  1341. for (i = 0; i < EDMA_MAX_CC; i++) {
  1342. if (r[i])
  1343. release_mem_region(r[i]->start, len[i]);
  1344. if (edmacc_regs_base[i])
  1345. iounmap(edmacc_regs_base[i]);
  1346. kfree(edma_info[i]);
  1347. }
  1348. return status;
  1349. }
  1350. static struct platform_driver edma_driver = {
  1351. .driver.name = "edma",
  1352. };
  1353. static int __init edma_init(void)
  1354. {
  1355. return platform_driver_probe(&edma_driver, edma_probe);
  1356. }
  1357. arch_initcall(edma_init);