runtime_pm.txt 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526
  1. Run-time Power Management Framework for I/O Devices
  2. (C) 2009 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc.
  3. 1. Introduction
  4. Support for run-time power management (run-time PM) of I/O devices is provided
  5. at the power management core (PM core) level by means of:
  6. * The power management workqueue pm_wq in which bus types and device drivers can
  7. put their PM-related work items. It is strongly recommended that pm_wq be
  8. used for queuing all work items related to run-time PM, because this allows
  9. them to be synchronized with system-wide power transitions (suspend to RAM,
  10. hibernation and resume from system sleep states). pm_wq is declared in
  11. include/linux/pm_runtime.h and defined in kernel/power/main.c.
  12. * A number of run-time PM fields in the 'power' member of 'struct device' (which
  13. is of the type 'struct dev_pm_info', defined in include/linux/pm.h) that can
  14. be used for synchronizing run-time PM operations with one another.
  15. * Three device run-time PM callbacks in 'struct dev_pm_ops' (defined in
  16. include/linux/pm.h).
  17. * A set of helper functions defined in drivers/base/power/runtime.c that can be
  18. used for carrying out run-time PM operations in such a way that the
  19. synchronization between them is taken care of by the PM core. Bus types and
  20. device drivers are encouraged to use these functions.
  21. The run-time PM callbacks present in 'struct dev_pm_ops', the device run-time PM
  22. fields of 'struct dev_pm_info' and the core helper functions provided for
  23. run-time PM are described below.
  24. 2. Device Run-time PM Callbacks
  25. There are three device run-time PM callbacks defined in 'struct dev_pm_ops':
  26. struct dev_pm_ops {
  27. ...
  28. int (*runtime_suspend)(struct device *dev);
  29. int (*runtime_resume)(struct device *dev);
  30. int (*runtime_idle)(struct device *dev);
  31. ...
  32. };
  33. The ->runtime_suspend(), ->runtime_resume() and ->runtime_idle() callbacks are
  34. executed by the PM core for either the bus type, or device type (if the bus
  35. type's callback is not defined), or device class (if the bus type's and device
  36. type's callbacks are not defined) of given device. The bus type, device type
  37. and device class callbacks are referred to as subsystem-level callbacks in what
  38. follows.
  39. The subsystem-level suspend callback is _entirely_ _responsible_ for handling
  40. the suspend of the device as appropriate, which may, but need not include
  41. executing the device driver's own ->runtime_suspend() callback (from the
  42. PM core's point of view it is not necessary to implement a ->runtime_suspend()
  43. callback in a device driver as long as the subsystem-level suspend callback
  44. knows what to do to handle the device).
  45. * Once the subsystem-level suspend callback has completed successfully
  46. for given device, the PM core regards the device as suspended, which need
  47. not mean that the device has been put into a low power state. It is
  48. supposed to mean, however, that the device will not process data and will
  49. not communicate with the CPU(s) and RAM until the subsystem-level resume
  50. callback is executed for it. The run-time PM status of a device after
  51. successful execution of the subsystem-level suspend callback is 'suspended'.
  52. * If the subsystem-level suspend callback returns -EBUSY or -EAGAIN,
  53. the device's run-time PM status is 'active', which means that the device
  54. _must_ be fully operational afterwards.
  55. * If the subsystem-level suspend callback returns an error code different
  56. from -EBUSY or -EAGAIN, the PM core regards this as a fatal error and will
  57. refuse to run the helper functions described in Section 4 for the device,
  58. until the status of it is directly set either to 'active', or to 'suspended'
  59. (the PM core provides special helper functions for this purpose).
  60. In particular, if the driver requires remote wake-up capability (i.e. hardware
  61. mechanism allowing the device to request a change of its power state, such as
  62. PCI PME) for proper functioning and device_run_wake() returns 'false' for the
  63. device, then ->runtime_suspend() should return -EBUSY. On the other hand, if
  64. device_run_wake() returns 'true' for the device and the device is put into a low
  65. power state during the execution of the subsystem-level suspend callback, it is
  66. expected that remote wake-up will be enabled for the device. Generally, remote
  67. wake-up should be enabled for all input devices put into a low power state at
  68. run time.
  69. The subsystem-level resume callback is _entirely_ _responsible_ for handling the
  70. resume of the device as appropriate, which may, but need not include executing
  71. the device driver's own ->runtime_resume() callback (from the PM core's point of
  72. view it is not necessary to implement a ->runtime_resume() callback in a device
  73. driver as long as the subsystem-level resume callback knows what to do to handle
  74. the device).
  75. * Once the subsystem-level resume callback has completed successfully, the PM
  76. core regards the device as fully operational, which means that the device
  77. _must_ be able to complete I/O operations as needed. The run-time PM status
  78. of the device is then 'active'.
  79. * If the subsystem-level resume callback returns an error code, the PM core
  80. regards this as a fatal error and will refuse to run the helper functions
  81. described in Section 4 for the device, until its status is directly set
  82. either to 'active' or to 'suspended' (the PM core provides special helper
  83. functions for this purpose).
  84. The subsystem-level idle callback is executed by the PM core whenever the device
  85. appears to be idle, which is indicated to the PM core by two counters, the
  86. device's usage counter and the counter of 'active' children of the device.
  87. * If any of these counters is decreased using a helper function provided by
  88. the PM core and it turns out to be equal to zero, the other counter is
  89. checked. If that counter also is equal to zero, the PM core executes the
  90. subsystem-level idle callback with the device as an argument.
  91. The action performed by a subsystem-level idle callback is totally dependent on
  92. the subsystem in question, but the expected and recommended action is to check
  93. if the device can be suspended (i.e. if all of the conditions necessary for
  94. suspending the device are satisfied) and to queue up a suspend request for the
  95. device in that case. The value returned by this callback is ignored by the PM
  96. core.
  97. The helper functions provided by the PM core, described in Section 4, guarantee
  98. that the following constraints are met with respect to the bus type's run-time
  99. PM callbacks:
  100. (1) The callbacks are mutually exclusive (e.g. it is forbidden to execute
  101. ->runtime_suspend() in parallel with ->runtime_resume() or with another
  102. instance of ->runtime_suspend() for the same device) with the exception that
  103. ->runtime_suspend() or ->runtime_resume() can be executed in parallel with
  104. ->runtime_idle() (although ->runtime_idle() will not be started while any
  105. of the other callbacks is being executed for the same device).
  106. (2) ->runtime_idle() and ->runtime_suspend() can only be executed for 'active'
  107. devices (i.e. the PM core will only execute ->runtime_idle() or
  108. ->runtime_suspend() for the devices the run-time PM status of which is
  109. 'active').
  110. (3) ->runtime_idle() and ->runtime_suspend() can only be executed for a device
  111. the usage counter of which is equal to zero _and_ either the counter of
  112. 'active' children of which is equal to zero, or the 'power.ignore_children'
  113. flag of which is set.
  114. (4) ->runtime_resume() can only be executed for 'suspended' devices (i.e. the
  115. PM core will only execute ->runtime_resume() for the devices the run-time
  116. PM status of which is 'suspended').
  117. Additionally, the helper functions provided by the PM core obey the following
  118. rules:
  119. * If ->runtime_suspend() is about to be executed or there's a pending request
  120. to execute it, ->runtime_idle() will not be executed for the same device.
  121. * A request to execute or to schedule the execution of ->runtime_suspend()
  122. will cancel any pending requests to execute ->runtime_idle() for the same
  123. device.
  124. * If ->runtime_resume() is about to be executed or there's a pending request
  125. to execute it, the other callbacks will not be executed for the same device.
  126. * A request to execute ->runtime_resume() will cancel any pending or
  127. scheduled requests to execute the other callbacks for the same device.
  128. 3. Run-time PM Device Fields
  129. The following device run-time PM fields are present in 'struct dev_pm_info', as
  130. defined in include/linux/pm.h:
  131. struct timer_list suspend_timer;
  132. - timer used for scheduling (delayed) suspend request
  133. unsigned long timer_expires;
  134. - timer expiration time, in jiffies (if this is different from zero, the
  135. timer is running and will expire at that time, otherwise the timer is not
  136. running)
  137. struct work_struct work;
  138. - work structure used for queuing up requests (i.e. work items in pm_wq)
  139. wait_queue_head_t wait_queue;
  140. - wait queue used if any of the helper functions needs to wait for another
  141. one to complete
  142. spinlock_t lock;
  143. - lock used for synchronisation
  144. atomic_t usage_count;
  145. - the usage counter of the device
  146. atomic_t child_count;
  147. - the count of 'active' children of the device
  148. unsigned int ignore_children;
  149. - if set, the value of child_count is ignored (but still updated)
  150. unsigned int disable_depth;
  151. - used for disabling the helper funcions (they work normally if this is
  152. equal to zero); the initial value of it is 1 (i.e. run-time PM is
  153. initially disabled for all devices)
  154. unsigned int runtime_error;
  155. - if set, there was a fatal error (one of the callbacks returned error code
  156. as described in Section 2), so the helper funtions will not work until
  157. this flag is cleared; this is the error code returned by the failing
  158. callback
  159. unsigned int idle_notification;
  160. - if set, ->runtime_idle() is being executed
  161. unsigned int request_pending;
  162. - if set, there's a pending request (i.e. a work item queued up into pm_wq)
  163. enum rpm_request request;
  164. - type of request that's pending (valid if request_pending is set)
  165. unsigned int deferred_resume;
  166. - set if ->runtime_resume() is about to be run while ->runtime_suspend() is
  167. being executed for that device and it is not practical to wait for the
  168. suspend to complete; means "start a resume as soon as you've suspended"
  169. unsigned int run_wake;
  170. - set if the device is capable of generating run-time wake-up events
  171. enum rpm_status runtime_status;
  172. - the run-time PM status of the device; this field's initial value is
  173. RPM_SUSPENDED, which means that each device is initially regarded by the
  174. PM core as 'suspended', regardless of its real hardware status
  175. unsigned int runtime_auto;
  176. - if set, indicates that the user space has allowed the device driver to
  177. power manage the device at run time via the /sys/devices/.../power/control
  178. interface; it may only be modified with the help of the pm_runtime_allow()
  179. and pm_runtime_forbid() helper functions
  180. All of the above fields are members of the 'power' member of 'struct device'.
  181. 4. Run-time PM Device Helper Functions
  182. The following run-time PM helper functions are defined in
  183. drivers/base/power/runtime.c and include/linux/pm_runtime.h:
  184. void pm_runtime_init(struct device *dev);
  185. - initialize the device run-time PM fields in 'struct dev_pm_info'
  186. void pm_runtime_remove(struct device *dev);
  187. - make sure that the run-time PM of the device will be disabled after
  188. removing the device from device hierarchy
  189. int pm_runtime_idle(struct device *dev);
  190. - execute the subsystem-level idle callback for the device; returns 0 on
  191. success or error code on failure, where -EINPROGRESS means that
  192. ->runtime_idle() is already being executed
  193. int pm_runtime_suspend(struct device *dev);
  194. - execute the subsystem-level suspend callback for the device; returns 0 on
  195. success, 1 if the device's run-time PM status was already 'suspended', or
  196. error code on failure, where -EAGAIN or -EBUSY means it is safe to attempt
  197. to suspend the device again in future
  198. int pm_runtime_resume(struct device *dev);
  199. - execute the subsystem-level resume callback for the device; returns 0 on
  200. success, 1 if the device's run-time PM status was already 'active' or
  201. error code on failure, where -EAGAIN means it may be safe to attempt to
  202. resume the device again in future, but 'power.runtime_error' should be
  203. checked additionally
  204. int pm_request_idle(struct device *dev);
  205. - submit a request to execute the subsystem-level idle callback for the
  206. device (the request is represented by a work item in pm_wq); returns 0 on
  207. success or error code if the request has not been queued up
  208. int pm_schedule_suspend(struct device *dev, unsigned int delay);
  209. - schedule the execution of the subsystem-level suspend callback for the
  210. device in future, where 'delay' is the time to wait before queuing up a
  211. suspend work item in pm_wq, in milliseconds (if 'delay' is zero, the work
  212. item is queued up immediately); returns 0 on success, 1 if the device's PM
  213. run-time status was already 'suspended', or error code if the request
  214. hasn't been scheduled (or queued up if 'delay' is 0); if the execution of
  215. ->runtime_suspend() is already scheduled and not yet expired, the new
  216. value of 'delay' will be used as the time to wait
  217. int pm_request_resume(struct device *dev);
  218. - submit a request to execute the subsystem-level resume callback for the
  219. device (the request is represented by a work item in pm_wq); returns 0 on
  220. success, 1 if the device's run-time PM status was already 'active', or
  221. error code if the request hasn't been queued up
  222. void pm_runtime_get_noresume(struct device *dev);
  223. - increment the device's usage counter
  224. int pm_runtime_get(struct device *dev);
  225. - increment the device's usage counter, run pm_request_resume(dev) and
  226. return its result
  227. int pm_runtime_get_sync(struct device *dev);
  228. - increment the device's usage counter, run pm_runtime_resume(dev) and
  229. return its result
  230. void pm_runtime_put_noidle(struct device *dev);
  231. - decrement the device's usage counter
  232. int pm_runtime_put(struct device *dev);
  233. - decrement the device's usage counter, run pm_request_idle(dev) and return
  234. its result
  235. int pm_runtime_put_sync(struct device *dev);
  236. - decrement the device's usage counter, run pm_runtime_idle(dev) and return
  237. its result
  238. void pm_runtime_enable(struct device *dev);
  239. - enable the run-time PM helper functions to run the device bus type's
  240. run-time PM callbacks described in Section 2
  241. int pm_runtime_disable(struct device *dev);
  242. - prevent the run-time PM helper functions from running subsystem-level
  243. run-time PM callbacks for the device, make sure that all of the pending
  244. run-time PM operations on the device are either completed or canceled;
  245. returns 1 if there was a resume request pending and it was necessary to
  246. execute the subsystem-level resume callback for the device to satisfy that
  247. request, otherwise 0 is returned
  248. void pm_suspend_ignore_children(struct device *dev, bool enable);
  249. - set/unset the power.ignore_children flag of the device
  250. int pm_runtime_set_active(struct device *dev);
  251. - clear the device's 'power.runtime_error' flag, set the device's run-time
  252. PM status to 'active' and update its parent's counter of 'active'
  253. children as appropriate (it is only valid to use this function if
  254. 'power.runtime_error' is set or 'power.disable_depth' is greater than
  255. zero); it will fail and return error code if the device has a parent
  256. which is not active and the 'power.ignore_children' flag of which is unset
  257. void pm_runtime_set_suspended(struct device *dev);
  258. - clear the device's 'power.runtime_error' flag, set the device's run-time
  259. PM status to 'suspended' and update its parent's counter of 'active'
  260. children as appropriate (it is only valid to use this function if
  261. 'power.runtime_error' is set or 'power.disable_depth' is greater than
  262. zero)
  263. bool pm_runtime_suspended(struct device *dev);
  264. - return true if the device's runtime PM status is 'suspended', or false
  265. otherwise
  266. void pm_runtime_allow(struct device *dev);
  267. - set the power.runtime_auto flag for the device and decrease its usage
  268. counter (used by the /sys/devices/.../power/control interface to
  269. effectively allow the device to be power managed at run time)
  270. void pm_runtime_forbid(struct device *dev);
  271. - unset the power.runtime_auto flag for the device and increase its usage
  272. counter (used by the /sys/devices/.../power/control interface to
  273. effectively prevent the device from being power managed at run time)
  274. It is safe to execute the following helper functions from interrupt context:
  275. pm_request_idle()
  276. pm_schedule_suspend()
  277. pm_request_resume()
  278. pm_runtime_get_noresume()
  279. pm_runtime_get()
  280. pm_runtime_put_noidle()
  281. pm_runtime_put()
  282. pm_suspend_ignore_children()
  283. pm_runtime_set_active()
  284. pm_runtime_set_suspended()
  285. pm_runtime_enable()
  286. 5. Run-time PM Initialization, Device Probing and Removal
  287. Initially, the run-time PM is disabled for all devices, which means that the
  288. majority of the run-time PM helper funtions described in Section 4 will return
  289. -EAGAIN until pm_runtime_enable() is called for the device.
  290. In addition to that, the initial run-time PM status of all devices is
  291. 'suspended', but it need not reflect the actual physical state of the device.
  292. Thus, if the device is initially active (i.e. it is able to process I/O), its
  293. run-time PM status must be changed to 'active', with the help of
  294. pm_runtime_set_active(), before pm_runtime_enable() is called for the device.
  295. However, if the device has a parent and the parent's run-time PM is enabled,
  296. calling pm_runtime_set_active() for the device will affect the parent, unless
  297. the parent's 'power.ignore_children' flag is set. Namely, in that case the
  298. parent won't be able to suspend at run time, using the PM core's helper
  299. functions, as long as the child's status is 'active', even if the child's
  300. run-time PM is still disabled (i.e. pm_runtime_enable() hasn't been called for
  301. the child yet or pm_runtime_disable() has been called for it). For this reason,
  302. once pm_runtime_set_active() has been called for the device, pm_runtime_enable()
  303. should be called for it too as soon as reasonably possible or its run-time PM
  304. status should be changed back to 'suspended' with the help of
  305. pm_runtime_set_suspended().
  306. If the default initial run-time PM status of the device (i.e. 'suspended')
  307. reflects the actual state of the device, its bus type's or its driver's
  308. ->probe() callback will likely need to wake it up using one of the PM core's
  309. helper functions described in Section 4. In that case, pm_runtime_resume()
  310. should be used. Of course, for this purpose the device's run-time PM has to be
  311. enabled earlier by calling pm_runtime_enable().
  312. If the device bus type's or driver's ->probe() or ->remove() callback runs
  313. pm_runtime_suspend() or pm_runtime_idle() or their asynchronous counterparts,
  314. they will fail returning -EAGAIN, because the device's usage counter is
  315. incremented by the core before executing ->probe() and ->remove(). Still, it
  316. may be desirable to suspend the device as soon as ->probe() or ->remove() has
  317. finished, so the PM core uses pm_runtime_idle_sync() to invoke the
  318. subsystem-level idle callback for the device at that time.
  319. The user space can effectively disallow the driver of the device to power manage
  320. it at run time by changing the value of its /sys/devices/.../power/control
  321. attribute to "on", which causes pm_runtime_forbid() to be called. In principle,
  322. this mechanism may also be used by the driver to effectively turn off the
  323. run-time power management of the device until the user space turns it on.
  324. Namely, during the initialization the driver can make sure that the run-time PM
  325. status of the device is 'active' and call pm_runtime_forbid(). It should be
  326. noted, however, that if the user space has already intentionally changed the
  327. value of /sys/devices/.../power/control to "auto" to allow the driver to power
  328. manage the device at run time, the driver may confuse it by using
  329. pm_runtime_forbid() this way.
  330. 6. Run-time PM and System Sleep
  331. Run-time PM and system sleep (i.e., system suspend and hibernation, also known
  332. as suspend-to-RAM and suspend-to-disk) interact with each other in a couple of
  333. ways. If a device is active when a system sleep starts, everything is
  334. straightforward. But what should happen if the device is already suspended?
  335. The device may have different wake-up settings for run-time PM and system sleep.
  336. For example, remote wake-up may be enabled for run-time suspend but disallowed
  337. for system sleep (device_may_wakeup(dev) returns 'false'). When this happens,
  338. the subsystem-level system suspend callback is responsible for changing the
  339. device's wake-up setting (it may leave that to the device driver's system
  340. suspend routine). It may be necessary to resume the device and suspend it again
  341. in order to do so. The same is true if the driver uses different power levels
  342. or other settings for run-time suspend and system sleep.
  343. During system resume, devices generally should be brought back to full power,
  344. even if they were suspended before the system sleep began. There are several
  345. reasons for this, including:
  346. * The device might need to switch power levels, wake-up settings, etc.
  347. * Remote wake-up events might have been lost by the firmware.
  348. * The device's children may need the device to be at full power in order
  349. to resume themselves.
  350. * The driver's idea of the device state may not agree with the device's
  351. physical state. This can happen during resume from hibernation.
  352. * The device might need to be reset.
  353. * Even though the device was suspended, if its usage counter was > 0 then most
  354. likely it would need a run-time resume in the near future anyway.
  355. * Always going back to full power is simplest.
  356. If the device was suspended before the sleep began, then its run-time PM status
  357. will have to be updated to reflect the actual post-system sleep status. The way
  358. to do this is:
  359. pm_runtime_disable(dev);
  360. pm_runtime_set_active(dev);
  361. pm_runtime_enable(dev);
  362. The PM core always increments the run-time usage counter before calling the
  363. ->prepare() callback and decrements it after calling the ->complete() callback.
  364. Hence disabling run-time PM temporarily like this will not cause any run-time
  365. suspend callbacks to be lost.
  366. 7. Generic subsystem callbacks
  367. Subsystems may wish to conserve code space by using the set of generic power
  368. management callbacks provided by the PM core, defined in
  369. driver/base/power/generic_ops.c:
  370. int pm_generic_runtime_idle(struct device *dev);
  371. - invoke the ->runtime_idle() callback provided by the driver of this
  372. device, if defined, and call pm_runtime_suspend() for this device if the
  373. return value is 0 or the callback is not defined
  374. int pm_generic_runtime_suspend(struct device *dev);
  375. - invoke the ->runtime_suspend() callback provided by the driver of this
  376. device and return its result, or return -EINVAL if not defined
  377. int pm_generic_runtime_resume(struct device *dev);
  378. - invoke the ->runtime_resume() callback provided by the driver of this
  379. device and return its result, or return -EINVAL if not defined
  380. int pm_generic_suspend(struct device *dev);
  381. - if the device has not been suspended at run time, invoke the ->suspend()
  382. callback provided by its driver and return its result, or return 0 if not
  383. defined
  384. int pm_generic_resume(struct device *dev);
  385. - invoke the ->resume() callback provided by the driver of this device and,
  386. if successful, change the device's runtime PM status to 'active'
  387. int pm_generic_freeze(struct device *dev);
  388. - if the device has not been suspended at run time, invoke the ->freeze()
  389. callback provided by its driver and return its result, or return 0 if not
  390. defined
  391. int pm_generic_thaw(struct device *dev);
  392. - if the device has not been suspended at run time, invoke the ->thaw()
  393. callback provided by its driver and return its result, or return 0 if not
  394. defined
  395. int pm_generic_poweroff(struct device *dev);
  396. - if the device has not been suspended at run time, invoke the ->poweroff()
  397. callback provided by its driver and return its result, or return 0 if not
  398. defined
  399. int pm_generic_restore(struct device *dev);
  400. - invoke the ->restore() callback provided by the driver of this device and,
  401. if successful, change the device's runtime PM status to 'active'
  402. These functions can be assigned to the ->runtime_idle(), ->runtime_suspend(),
  403. ->runtime_resume(), ->suspend(), ->resume(), ->freeze(), ->thaw(), ->poweroff(),
  404. or ->restore() callback pointers in the subsystem-level dev_pm_ops structures.
  405. If a subsystem wishes to use all of them at the same time, it can simply assign
  406. the GENERIC_SUBSYS_PM_OPS macro, defined in include/linux/pm.h, to its
  407. dev_pm_ops structure pointer.
  408. Device drivers that wish to use the same function as a system suspend, freeze,
  409. poweroff and run-time suspend callback, and similarly for system resume, thaw,
  410. restore, and run-time resume, can achieve this with the help of the
  411. UNIVERSAL_DEV_PM_OPS macro defined in include/linux/pm.h (possibly setting its
  412. last argument to NULL).