ctatc.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606
  1. /**
  2. * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
  3. *
  4. * This source file is released under GPL v2 license (no other versions).
  5. * See the COPYING file included in the main directory of this source
  6. * distribution for the license terms and conditions.
  7. *
  8. * @File ctatc.c
  9. *
  10. * @Brief
  11. * This file contains the implementation of the device resource management
  12. * object.
  13. *
  14. * @Author Liu Chun
  15. * @Date Mar 28 2008
  16. */
  17. #include "ctatc.h"
  18. #include "ctpcm.h"
  19. #include "ctmixer.h"
  20. #include "cthardware.h"
  21. #include "ctsrc.h"
  22. #include "ctamixer.h"
  23. #include "ctdaio.h"
  24. #include <linux/delay.h>
  25. #include <sound/pcm.h>
  26. #include <sound/control.h>
  27. #include <sound/asoundef.h>
  28. #define MONO_SUM_SCALE 0x19a8 /* 2^(-0.5) in 14-bit floating format */
  29. #define DAIONUM 7
  30. #define MAX_MULTI_CHN 8
  31. #define IEC958_DEFAULT_CON ((IEC958_AES0_NONAUDIO \
  32. | IEC958_AES0_CON_NOT_COPYRIGHT) \
  33. | ((IEC958_AES1_CON_MIXER \
  34. | IEC958_AES1_CON_ORIGINAL) << 8) \
  35. | (0x10 << 16) \
  36. | ((IEC958_AES3_CON_FS_48000) << 24))
  37. static const struct ct_atc_chip_sub_details atc_sub_details[NUM_CTCARDS] = {
  38. [CTSB0760] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_SB0760,
  39. .nm_model = "SB076x"},
  40. [CTHENDRIX] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_HENDRIX,
  41. .nm_model = "Hendrix"},
  42. [CTSB08801] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_SB08801,
  43. .nm_model = "SB0880"},
  44. [CTSB08802] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_SB08802,
  45. .nm_model = "SB0880"},
  46. [CTSB08803] = {.subsys = PCI_SUBDEVICE_ID_CREATIVE_SB08803,
  47. .nm_model = "SB0880"}
  48. };
  49. static struct ct_atc_chip_details atc_chip_details[] = {
  50. {.vendor = PCI_VENDOR_ID_CREATIVE,
  51. .device = PCI_DEVICE_ID_CREATIVE_20K1,
  52. .sub_details = NULL,
  53. .nm_card = "X-Fi 20k1"},
  54. {.vendor = PCI_VENDOR_ID_CREATIVE,
  55. .device = PCI_DEVICE_ID_CREATIVE_20K2,
  56. .sub_details = atc_sub_details,
  57. .nm_card = "X-Fi 20k2"},
  58. {} /* terminator */
  59. };
  60. static struct {
  61. int (*create)(struct ct_atc *atc,
  62. enum CTALSADEVS device, const char *device_name);
  63. int (*destroy)(void *alsa_dev);
  64. const char *public_name;
  65. } alsa_dev_funcs[NUM_CTALSADEVS] = {
  66. [FRONT] = { .create = ct_alsa_pcm_create,
  67. .destroy = NULL,
  68. .public_name = "Front/WaveIn"},
  69. [REAR] = { .create = ct_alsa_pcm_create,
  70. .destroy = NULL,
  71. .public_name = "Rear"},
  72. [CLFE] = { .create = ct_alsa_pcm_create,
  73. .destroy = NULL,
  74. .public_name = "Center/LFE"},
  75. [SURROUND] = { .create = ct_alsa_pcm_create,
  76. .destroy = NULL,
  77. .public_name = "Surround"},
  78. [IEC958] = { .create = ct_alsa_pcm_create,
  79. .destroy = NULL,
  80. .public_name = "IEC958 Non-audio"},
  81. [MIXER] = { .create = ct_alsa_mix_create,
  82. .destroy = NULL,
  83. .public_name = "Mixer"}
  84. };
  85. typedef int (*create_t)(void *, void **);
  86. typedef int (*destroy_t)(void *);
  87. static struct {
  88. int (*create)(void *hw, void **rmgr);
  89. int (*destroy)(void *mgr);
  90. } rsc_mgr_funcs[NUM_RSCTYP] = {
  91. [SRC] = { .create = (create_t)src_mgr_create,
  92. .destroy = (destroy_t)src_mgr_destroy },
  93. [SRCIMP] = { .create = (create_t)srcimp_mgr_create,
  94. .destroy = (destroy_t)srcimp_mgr_destroy },
  95. [AMIXER] = { .create = (create_t)amixer_mgr_create,
  96. .destroy = (destroy_t)amixer_mgr_destroy },
  97. [SUM] = { .create = (create_t)sum_mgr_create,
  98. .destroy = (destroy_t)sum_mgr_destroy },
  99. [DAIO] = { .create = (create_t)daio_mgr_create,
  100. .destroy = (destroy_t)daio_mgr_destroy }
  101. };
  102. static int
  103. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm);
  104. /* *
  105. * Only mono and interleaved modes are supported now.
  106. * Always allocates a contiguous channel block.
  107. * */
  108. static int ct_map_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  109. {
  110. unsigned long flags;
  111. struct snd_pcm_runtime *runtime;
  112. struct ct_vm *vm;
  113. if (NULL == apcm->substream)
  114. return 0;
  115. runtime = apcm->substream->runtime;
  116. vm = atc->vm;
  117. spin_lock_irqsave(&atc->vm_lock, flags);
  118. apcm->vm_block = vm->map(vm, runtime->dma_area, runtime->dma_bytes);
  119. spin_unlock_irqrestore(&atc->vm_lock, flags);
  120. if (NULL == apcm->vm_block)
  121. return -ENOENT;
  122. return 0;
  123. }
  124. static void ct_unmap_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  125. {
  126. unsigned long flags;
  127. struct ct_vm *vm;
  128. if (NULL == apcm->vm_block)
  129. return;
  130. vm = atc->vm;
  131. spin_lock_irqsave(&atc->vm_lock, flags);
  132. vm->unmap(vm, apcm->vm_block);
  133. spin_unlock_irqrestore(&atc->vm_lock, flags);
  134. apcm->vm_block = NULL;
  135. }
  136. static unsigned long atc_get_ptp_phys(struct ct_atc *atc, int index)
  137. {
  138. struct ct_vm *vm;
  139. void *kvirt_addr;
  140. unsigned long phys_addr;
  141. unsigned long flags;
  142. spin_lock_irqsave(&atc->vm_lock, flags);
  143. vm = atc->vm;
  144. kvirt_addr = vm->get_ptp_virt(vm, index);
  145. if (kvirt_addr == NULL)
  146. phys_addr = (~0UL);
  147. else
  148. phys_addr = virt_to_phys(kvirt_addr);
  149. spin_unlock_irqrestore(&atc->vm_lock, flags);
  150. return phys_addr;
  151. }
  152. static unsigned int convert_format(snd_pcm_format_t snd_format)
  153. {
  154. switch (snd_format) {
  155. case SNDRV_PCM_FORMAT_U8:
  156. case SNDRV_PCM_FORMAT_S8:
  157. return SRC_SF_U8;
  158. case SNDRV_PCM_FORMAT_S16_LE:
  159. case SNDRV_PCM_FORMAT_U16_LE:
  160. return SRC_SF_S16;
  161. case SNDRV_PCM_FORMAT_S24_3LE:
  162. return SRC_SF_S24;
  163. case SNDRV_PCM_FORMAT_S24_LE:
  164. case SNDRV_PCM_FORMAT_S32_LE:
  165. return SRC_SF_S32;
  166. default:
  167. printk(KERN_ERR "not recognized snd format is %d \n",
  168. snd_format);
  169. return SRC_SF_S16;
  170. }
  171. }
  172. static unsigned int
  173. atc_get_pitch(unsigned int input_rate, unsigned int output_rate)
  174. {
  175. unsigned int pitch = 0;
  176. int b = 0;
  177. /* get pitch and convert to fixed-point 8.24 format. */
  178. pitch = (input_rate / output_rate) << 24;
  179. input_rate %= output_rate;
  180. input_rate /= 100;
  181. output_rate /= 100;
  182. for (b = 31; ((b >= 0) && !(input_rate >> b)); )
  183. b--;
  184. if (b >= 0) {
  185. input_rate <<= (31 - b);
  186. input_rate /= output_rate;
  187. b = 24 - (31 - b);
  188. if (b >= 0)
  189. input_rate <<= b;
  190. else
  191. input_rate >>= -b;
  192. pitch |= input_rate;
  193. }
  194. return pitch;
  195. }
  196. static int select_rom(unsigned int pitch)
  197. {
  198. if ((pitch > 0x00428f5c) && (pitch < 0x01b851ec)) {
  199. /* 0.26 <= pitch <= 1.72 */
  200. return 1;
  201. } else if ((0x01d66666 == pitch) || (0x01d66667 == pitch)) {
  202. /* pitch == 1.8375 */
  203. return 2;
  204. } else if (0x02000000 == pitch) {
  205. /* pitch == 2 */
  206. return 3;
  207. } else if ((pitch >= 0x0) && (pitch <= 0x08000000)) {
  208. /* 0 <= pitch <= 8 */
  209. return 0;
  210. } else {
  211. return -ENOENT;
  212. }
  213. }
  214. static int atc_pcm_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  215. {
  216. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  217. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  218. struct src_desc desc = {0};
  219. struct amixer_desc mix_dsc = {0};
  220. struct src *src = NULL;
  221. struct amixer *amixer = NULL;
  222. int err = 0;
  223. int n_amixer = apcm->substream->runtime->channels, i = 0;
  224. int device = apcm->substream->pcm->device;
  225. unsigned int pitch = 0;
  226. unsigned long flags;
  227. if (NULL != apcm->src) {
  228. /* Prepared pcm playback */
  229. return 0;
  230. }
  231. /* Get SRC resource */
  232. desc.multi = apcm->substream->runtime->channels;
  233. desc.msr = atc->msr;
  234. desc.mode = MEMRD;
  235. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  236. if (err)
  237. goto error1;
  238. pitch = atc_get_pitch(apcm->substream->runtime->rate,
  239. (atc->rsr * atc->msr));
  240. src = apcm->src;
  241. src->ops->set_pitch(src, pitch);
  242. src->ops->set_rom(src, select_rom(pitch));
  243. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  244. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  245. /* Get AMIXER resource */
  246. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  247. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  248. if (NULL == apcm->amixers) {
  249. err = -ENOMEM;
  250. goto error1;
  251. }
  252. mix_dsc.msr = atc->msr;
  253. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  254. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  255. (struct amixer **)&apcm->amixers[i]);
  256. if (err)
  257. goto error1;
  258. apcm->n_amixer++;
  259. }
  260. /* Set up device virtual mem map */
  261. err = ct_map_audio_buffer(atc, apcm);
  262. if (err < 0)
  263. goto error1;
  264. /* Connect resources */
  265. src = apcm->src;
  266. for (i = 0; i < n_amixer; i++) {
  267. amixer = apcm->amixers[i];
  268. spin_lock_irqsave(&atc->atc_lock, flags);
  269. amixer->ops->setup(amixer, &src->rsc,
  270. INIT_VOL, atc->pcm[i+device*2]);
  271. spin_unlock_irqrestore(&atc->atc_lock, flags);
  272. src = src->ops->next_interleave(src);
  273. if (NULL == src)
  274. src = apcm->src;
  275. }
  276. return 0;
  277. error1:
  278. atc_pcm_release_resources(atc, apcm);
  279. return err;
  280. }
  281. static int
  282. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  283. {
  284. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  285. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  286. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  287. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  288. struct srcimp *srcimp = NULL;
  289. int i = 0;
  290. if (NULL != apcm->srcimps) {
  291. for (i = 0; i < apcm->n_srcimp; i++) {
  292. srcimp = apcm->srcimps[i];
  293. srcimp->ops->unmap(srcimp);
  294. srcimp_mgr->put_srcimp(srcimp_mgr, srcimp);
  295. apcm->srcimps[i] = NULL;
  296. }
  297. kfree(apcm->srcimps);
  298. apcm->srcimps = NULL;
  299. }
  300. if (NULL != apcm->srccs) {
  301. for (i = 0; i < apcm->n_srcc; i++) {
  302. src_mgr->put_src(src_mgr, apcm->srccs[i]);
  303. apcm->srccs[i] = NULL;
  304. }
  305. kfree(apcm->srccs);
  306. apcm->srccs = NULL;
  307. }
  308. if (NULL != apcm->amixers) {
  309. for (i = 0; i < apcm->n_amixer; i++) {
  310. amixer_mgr->put_amixer(amixer_mgr, apcm->amixers[i]);
  311. apcm->amixers[i] = NULL;
  312. }
  313. kfree(apcm->amixers);
  314. apcm->amixers = NULL;
  315. }
  316. if (NULL != apcm->mono) {
  317. sum_mgr->put_sum(sum_mgr, apcm->mono);
  318. apcm->mono = NULL;
  319. }
  320. if (NULL != apcm->src) {
  321. src_mgr->put_src(src_mgr, apcm->src);
  322. apcm->src = NULL;
  323. }
  324. if (NULL != apcm->vm_block) {
  325. /* Undo device virtual mem map */
  326. ct_unmap_audio_buffer(atc, apcm);
  327. apcm->vm_block = NULL;
  328. }
  329. return 0;
  330. }
  331. static int atc_pcm_playback_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  332. {
  333. unsigned int max_cisz = 0;
  334. struct src *src = apcm->src;
  335. max_cisz = src->multi * src->rsc.msr;
  336. max_cisz = 0x80 * (max_cisz < 8 ? max_cisz : 8);
  337. src->ops->set_sa(src, apcm->vm_block->addr);
  338. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  339. src->ops->set_ca(src, apcm->vm_block->addr + max_cisz);
  340. src->ops->set_cisz(src, max_cisz);
  341. src->ops->set_bm(src, 1);
  342. src->ops->set_state(src, SRC_STATE_INIT);
  343. src->ops->commit_write(src);
  344. return 0;
  345. }
  346. static int atc_pcm_stop(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  347. {
  348. struct src *src = NULL;
  349. int i = 0;
  350. src = apcm->src;
  351. src->ops->set_bm(src, 0);
  352. src->ops->set_state(src, SRC_STATE_OFF);
  353. src->ops->commit_write(src);
  354. if (NULL != apcm->srccs) {
  355. for (i = 0; i < apcm->n_srcc; i++) {
  356. src = apcm->srccs[i];
  357. src->ops->set_bm(src, 0);
  358. src->ops->set_state(src, SRC_STATE_OFF);
  359. src->ops->commit_write(src);
  360. }
  361. }
  362. apcm->started = 0;
  363. return 0;
  364. }
  365. static int
  366. atc_pcm_playback_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  367. {
  368. struct src *src = apcm->src;
  369. u32 size = 0, max_cisz = 0;
  370. int position = 0;
  371. position = src->ops->get_ca(src);
  372. size = apcm->vm_block->size;
  373. max_cisz = src->multi * src->rsc.msr;
  374. max_cisz = 128 * (max_cisz < 8 ? max_cisz : 8);
  375. return (position + size - max_cisz - apcm->vm_block->addr) % size;
  376. }
  377. struct src_node_conf_t {
  378. unsigned int pitch;
  379. unsigned int msr:8;
  380. unsigned int mix_msr:8;
  381. unsigned int imp_msr:8;
  382. unsigned int vo:1;
  383. };
  384. static void setup_src_node_conf(struct ct_atc *atc, struct ct_atc_pcm *apcm,
  385. struct src_node_conf_t *conf, int *n_srcc)
  386. {
  387. unsigned int pitch = 0;
  388. /* get pitch and convert to fixed-point 8.24 format. */
  389. pitch = atc_get_pitch((atc->rsr * atc->msr),
  390. apcm->substream->runtime->rate);
  391. *n_srcc = 0;
  392. if (1 == atc->msr) {
  393. *n_srcc = apcm->substream->runtime->channels;
  394. conf[0].pitch = pitch;
  395. conf[0].mix_msr = conf[0].imp_msr = conf[0].msr = 1;
  396. conf[0].vo = 1;
  397. } else if (2 == atc->msr) {
  398. if (0x8000000 < pitch) {
  399. /* Need two-stage SRCs, SRCIMPs and
  400. * AMIXERs for converting format */
  401. conf[0].pitch = (atc->msr << 24);
  402. conf[0].msr = conf[0].mix_msr = 1;
  403. conf[0].imp_msr = atc->msr;
  404. conf[0].vo = 0;
  405. conf[1].pitch = atc_get_pitch(atc->rsr,
  406. apcm->substream->runtime->rate);
  407. conf[1].msr = conf[1].mix_msr = conf[1].imp_msr = 1;
  408. conf[1].vo = 1;
  409. *n_srcc = apcm->substream->runtime->channels * 2;
  410. } else if (0x1000000 < pitch) {
  411. /* Need one-stage SRCs, SRCIMPs and
  412. * AMIXERs for converting format */
  413. conf[0].pitch = pitch;
  414. conf[0].msr = conf[0].mix_msr
  415. = conf[0].imp_msr = atc->msr;
  416. conf[0].vo = 1;
  417. *n_srcc = apcm->substream->runtime->channels;
  418. }
  419. }
  420. }
  421. static int
  422. atc_pcm_capture_get_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  423. {
  424. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  425. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  426. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  427. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  428. struct src_desc src_dsc = {0};
  429. struct src *src = NULL;
  430. struct srcimp_desc srcimp_dsc = {0};
  431. struct srcimp *srcimp = NULL;
  432. struct amixer_desc mix_dsc = {0};
  433. struct sum_desc sum_dsc = {0};
  434. unsigned int pitch = 0;
  435. int multi = 0, err = 0, i = 0;
  436. int n_srcimp = 0, n_amixer = 0, n_srcc = 0, n_sum = 0;
  437. struct src_node_conf_t src_node_conf[2] = {{0} };
  438. /* The numbers of converting SRCs and SRCIMPs should be determined
  439. * by pitch value. */
  440. multi = apcm->substream->runtime->channels;
  441. /* get pitch and convert to fixed-point 8.24 format. */
  442. pitch = atc_get_pitch((atc->rsr * atc->msr),
  443. apcm->substream->runtime->rate);
  444. setup_src_node_conf(atc, apcm, src_node_conf, &n_srcc);
  445. n_sum = (1 == multi) ? 1 : 0;
  446. n_amixer += n_sum * 2 + n_srcc;
  447. n_srcimp += n_srcc;
  448. if ((multi > 1) && (0x8000000 >= pitch)) {
  449. /* Need extra AMIXERs and SRCIMPs for special treatment
  450. * of interleaved recording of conjugate channels */
  451. n_amixer += multi * atc->msr;
  452. n_srcimp += multi * atc->msr;
  453. } else {
  454. n_srcimp += multi;
  455. }
  456. if (n_srcc) {
  457. apcm->srccs = kzalloc(sizeof(void *)*n_srcc, GFP_KERNEL);
  458. if (NULL == apcm->srccs)
  459. return -ENOMEM;
  460. }
  461. if (n_amixer) {
  462. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  463. if (NULL == apcm->amixers) {
  464. err = -ENOMEM;
  465. goto error1;
  466. }
  467. }
  468. apcm->srcimps = kzalloc(sizeof(void *)*n_srcimp, GFP_KERNEL);
  469. if (NULL == apcm->srcimps) {
  470. err = -ENOMEM;
  471. goto error1;
  472. }
  473. /* Allocate SRCs for sample rate conversion if needed */
  474. src_dsc.multi = 1;
  475. src_dsc.mode = ARCRW;
  476. for (i = 0, apcm->n_srcc = 0; i < n_srcc; i++) {
  477. src_dsc.msr = src_node_conf[i/multi].msr;
  478. err = src_mgr->get_src(src_mgr, &src_dsc,
  479. (struct src **)&apcm->srccs[i]);
  480. if (err)
  481. goto error1;
  482. src = apcm->srccs[i];
  483. pitch = src_node_conf[i/multi].pitch;
  484. src->ops->set_pitch(src, pitch);
  485. src->ops->set_rom(src, select_rom(pitch));
  486. src->ops->set_vo(src, src_node_conf[i/multi].vo);
  487. apcm->n_srcc++;
  488. }
  489. /* Allocate AMIXERs for routing SRCs of conversion if needed */
  490. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  491. if (i < (n_sum*2))
  492. mix_dsc.msr = atc->msr;
  493. else if (i < (n_sum*2+n_srcc))
  494. mix_dsc.msr = src_node_conf[(i-n_sum*2)/multi].mix_msr;
  495. else
  496. mix_dsc.msr = 1;
  497. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  498. (struct amixer **)&apcm->amixers[i]);
  499. if (err)
  500. goto error1;
  501. apcm->n_amixer++;
  502. }
  503. /* Allocate a SUM resource to mix all input channels together */
  504. sum_dsc.msr = atc->msr;
  505. err = sum_mgr->get_sum(sum_mgr, &sum_dsc, (struct sum **)&apcm->mono);
  506. if (err)
  507. goto error1;
  508. pitch = atc_get_pitch((atc->rsr * atc->msr),
  509. apcm->substream->runtime->rate);
  510. /* Allocate SRCIMP resources */
  511. for (i = 0, apcm->n_srcimp = 0; i < n_srcimp; i++) {
  512. if (i < (n_srcc))
  513. srcimp_dsc.msr = src_node_conf[i/multi].imp_msr;
  514. else if (1 == multi)
  515. srcimp_dsc.msr = (pitch <= 0x8000000) ? atc->msr : 1;
  516. else
  517. srcimp_dsc.msr = 1;
  518. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc, &srcimp);
  519. if (err)
  520. goto error1;
  521. apcm->srcimps[i] = srcimp;
  522. apcm->n_srcimp++;
  523. }
  524. /* Allocate a SRC for writing data to host memory */
  525. src_dsc.multi = apcm->substream->runtime->channels;
  526. src_dsc.msr = 1;
  527. src_dsc.mode = MEMWR;
  528. err = src_mgr->get_src(src_mgr, &src_dsc, (struct src **)&apcm->src);
  529. if (err)
  530. goto error1;
  531. src = apcm->src;
  532. src->ops->set_pitch(src, pitch);
  533. /* Set up device virtual mem map */
  534. err = ct_map_audio_buffer(atc, apcm);
  535. if (err < 0)
  536. goto error1;
  537. return 0;
  538. error1:
  539. atc_pcm_release_resources(atc, apcm);
  540. return err;
  541. }
  542. static int atc_pcm_capture_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  543. {
  544. struct src *src = NULL;
  545. struct amixer *amixer = NULL;
  546. struct srcimp *srcimp = NULL;
  547. struct ct_mixer *mixer = atc->mixer;
  548. struct sum *mono = NULL;
  549. struct rsc *out_ports[8] = {NULL};
  550. int err = 0, i = 0, j = 0, n_sum = 0, multi = 0;
  551. unsigned int pitch = 0;
  552. int mix_base = 0, imp_base = 0;
  553. if (NULL != apcm->src) {
  554. /* Prepared pcm capture */
  555. return 0;
  556. }
  557. /* Get needed resources. */
  558. err = atc_pcm_capture_get_resources(atc, apcm);
  559. if (err)
  560. return err;
  561. /* Connect resources */
  562. mixer->get_output_ports(mixer, MIX_PCMO_FRONT,
  563. &out_ports[0], &out_ports[1]);
  564. multi = apcm->substream->runtime->channels;
  565. if (1 == multi) {
  566. mono = apcm->mono;
  567. for (i = 0; i < 2; i++) {
  568. amixer = apcm->amixers[i];
  569. amixer->ops->setup(amixer, out_ports[i],
  570. MONO_SUM_SCALE, mono);
  571. }
  572. out_ports[0] = &mono->rsc;
  573. n_sum = 1;
  574. mix_base = n_sum * 2;
  575. }
  576. for (i = 0; i < apcm->n_srcc; i++) {
  577. src = apcm->srccs[i];
  578. srcimp = apcm->srcimps[imp_base+i];
  579. amixer = apcm->amixers[mix_base+i];
  580. srcimp->ops->map(srcimp, src, out_ports[i%multi]);
  581. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  582. out_ports[i%multi] = &amixer->rsc;
  583. }
  584. pitch = atc_get_pitch((atc->rsr * atc->msr),
  585. apcm->substream->runtime->rate);
  586. if ((multi > 1) && (pitch <= 0x8000000)) {
  587. /* Special connection for interleaved
  588. * recording with conjugate channels */
  589. for (i = 0; i < multi; i++) {
  590. out_ports[i]->ops->master(out_ports[i]);
  591. for (j = 0; j < atc->msr; j++) {
  592. amixer = apcm->amixers[apcm->n_srcc+j*multi+i];
  593. amixer->ops->set_input(amixer, out_ports[i]);
  594. amixer->ops->set_scale(amixer, INIT_VOL);
  595. amixer->ops->set_sum(amixer, NULL);
  596. amixer->ops->commit_raw_write(amixer);
  597. out_ports[i]->ops->next_conj(out_ports[i]);
  598. srcimp = apcm->srcimps[apcm->n_srcc+j*multi+i];
  599. srcimp->ops->map(srcimp, apcm->src,
  600. &amixer->rsc);
  601. }
  602. }
  603. } else {
  604. for (i = 0; i < multi; i++) {
  605. srcimp = apcm->srcimps[apcm->n_srcc+i];
  606. srcimp->ops->map(srcimp, apcm->src, out_ports[i]);
  607. }
  608. }
  609. return 0;
  610. }
  611. static int atc_pcm_capture_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  612. {
  613. struct src *src = NULL;
  614. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  615. int i = 0, multi = 0;
  616. if (apcm->started)
  617. return 0;
  618. apcm->started = 1;
  619. multi = apcm->substream->runtime->channels;
  620. /* Set up converting SRCs */
  621. for (i = 0; i < apcm->n_srcc; i++) {
  622. src = apcm->srccs[i];
  623. src->ops->set_pm(src, ((i%multi) != (multi-1)));
  624. src_mgr->src_disable(src_mgr, src);
  625. }
  626. /* Set up recording SRC */
  627. src = apcm->src;
  628. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  629. src->ops->set_sa(src, apcm->vm_block->addr);
  630. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  631. src->ops->set_ca(src, apcm->vm_block->addr);
  632. src_mgr->src_disable(src_mgr, src);
  633. /* Disable relevant SRCs firstly */
  634. src_mgr->commit_write(src_mgr);
  635. /* Enable SRCs respectively */
  636. for (i = 0; i < apcm->n_srcc; i++) {
  637. src = apcm->srccs[i];
  638. src->ops->set_state(src, SRC_STATE_RUN);
  639. src->ops->commit_write(src);
  640. src_mgr->src_enable_s(src_mgr, src);
  641. }
  642. src = apcm->src;
  643. src->ops->set_bm(src, 1);
  644. src->ops->set_state(src, SRC_STATE_RUN);
  645. src->ops->commit_write(src);
  646. src_mgr->src_enable_s(src_mgr, src);
  647. /* Enable relevant SRCs synchronously */
  648. src_mgr->commit_write(src_mgr);
  649. return 0;
  650. }
  651. static int
  652. atc_pcm_capture_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  653. {
  654. struct src *src = apcm->src;
  655. return src->ops->get_ca(src) - apcm->vm_block->addr;
  656. }
  657. static int spdif_passthru_playback_get_resources(struct ct_atc *atc,
  658. struct ct_atc_pcm *apcm)
  659. {
  660. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  661. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  662. struct src_desc desc = {0};
  663. struct amixer_desc mix_dsc = {0};
  664. struct src *src = NULL;
  665. int err = 0;
  666. int n_amixer = apcm->substream->runtime->channels, i = 0;
  667. unsigned int pitch = 0, rsr = atc->pll_rate;
  668. /* Get SRC resource */
  669. desc.multi = apcm->substream->runtime->channels;
  670. desc.msr = 1;
  671. while (apcm->substream->runtime->rate > (rsr * desc.msr))
  672. desc.msr <<= 1;
  673. desc.mode = MEMRD;
  674. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  675. if (err)
  676. goto error1;
  677. pitch = atc_get_pitch(apcm->substream->runtime->rate, (rsr * desc.msr));
  678. src = apcm->src;
  679. src->ops->set_pitch(src, pitch);
  680. src->ops->set_rom(src, select_rom(pitch));
  681. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  682. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  683. src->ops->set_bp(src, 1);
  684. /* Get AMIXER resource */
  685. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  686. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  687. if (NULL == apcm->amixers) {
  688. err = -ENOMEM;
  689. goto error1;
  690. }
  691. mix_dsc.msr = desc.msr;
  692. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  693. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  694. (struct amixer **)&apcm->amixers[i]);
  695. if (err)
  696. goto error1;
  697. apcm->n_amixer++;
  698. }
  699. /* Set up device virtual mem map */
  700. err = ct_map_audio_buffer(atc, apcm);
  701. if (err < 0)
  702. goto error1;
  703. return 0;
  704. error1:
  705. atc_pcm_release_resources(atc, apcm);
  706. return err;
  707. }
  708. static int
  709. spdif_passthru_playback_setup(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  710. {
  711. struct dao *dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  712. unsigned long flags;
  713. unsigned int rate = apcm->substream->runtime->rate;
  714. unsigned int status = 0;
  715. int err = 0;
  716. unsigned char iec958_con_fs = 0;
  717. switch (rate) {
  718. case 48000:
  719. iec958_con_fs = IEC958_AES3_CON_FS_48000;
  720. break;
  721. case 44100:
  722. iec958_con_fs = IEC958_AES3_CON_FS_44100;
  723. break;
  724. case 32000:
  725. iec958_con_fs = IEC958_AES3_CON_FS_32000;
  726. break;
  727. default:
  728. return -ENOENT;
  729. }
  730. spin_lock_irqsave(&atc->atc_lock, flags);
  731. dao->ops->get_spos(dao, &status);
  732. if (((status >> 24) & IEC958_AES3_CON_FS) != iec958_con_fs) {
  733. status &= ((~IEC958_AES3_CON_FS) << 24);
  734. status |= (iec958_con_fs << 24);
  735. dao->ops->set_spos(dao, status);
  736. dao->ops->commit_write(dao);
  737. }
  738. if ((rate != atc->pll_rate) && (32000 != rate)) {
  739. err = ((struct hw *)atc->hw)->pll_init(atc->hw, rate);
  740. atc->pll_rate = err ? 0 : rate;
  741. }
  742. spin_unlock_irqrestore(&atc->atc_lock, flags);
  743. return err;
  744. }
  745. static int
  746. spdif_passthru_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  747. {
  748. struct src *src = NULL;
  749. struct amixer *amixer = NULL;
  750. struct dao *dao = NULL;
  751. int err = 0;
  752. int i = 0;
  753. unsigned long flags;
  754. if (NULL != apcm->src)
  755. return 0;
  756. /* Configure SPDIFOO and PLL to passthrough mode;
  757. * determine pll_rate. */
  758. err = spdif_passthru_playback_setup(atc, apcm);
  759. if (err)
  760. return err;
  761. /* Get needed resources. */
  762. err = spdif_passthru_playback_get_resources(atc, apcm);
  763. if (err)
  764. return err;
  765. /* Connect resources */
  766. src = apcm->src;
  767. for (i = 0; i < apcm->n_amixer; i++) {
  768. amixer = apcm->amixers[i];
  769. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  770. src = src->ops->next_interleave(src);
  771. if (NULL == src)
  772. src = apcm->src;
  773. }
  774. /* Connect to SPDIFOO */
  775. spin_lock_irqsave(&atc->atc_lock, flags);
  776. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  777. amixer = apcm->amixers[0];
  778. dao->ops->set_left_input(dao, &amixer->rsc);
  779. amixer = apcm->amixers[1];
  780. dao->ops->set_right_input(dao, &amixer->rsc);
  781. spin_unlock_irqrestore(&atc->atc_lock, flags);
  782. return 0;
  783. }
  784. static int atc_select_line_in(struct ct_atc *atc)
  785. {
  786. struct hw *hw = atc->hw;
  787. struct ct_mixer *mixer = atc->mixer;
  788. struct src *src = NULL;
  789. if (hw->is_adc_source_selected(hw, ADC_LINEIN))
  790. return 0;
  791. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  792. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  793. hw->select_adc_source(hw, ADC_LINEIN);
  794. src = atc->srcs[2];
  795. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  796. src = atc->srcs[3];
  797. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  798. return 0;
  799. }
  800. static int atc_select_mic_in(struct ct_atc *atc)
  801. {
  802. struct hw *hw = atc->hw;
  803. struct ct_mixer *mixer = atc->mixer;
  804. struct src *src = NULL;
  805. if (hw->is_adc_source_selected(hw, ADC_MICIN))
  806. return 0;
  807. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  808. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  809. hw->select_adc_source(hw, ADC_MICIN);
  810. src = atc->srcs[2];
  811. mixer->set_input_left(mixer, MIX_MIC_IN, &src->rsc);
  812. src = atc->srcs[3];
  813. mixer->set_input_right(mixer, MIX_MIC_IN, &src->rsc);
  814. return 0;
  815. }
  816. static int atc_have_digit_io_switch(struct ct_atc *atc)
  817. {
  818. struct hw *hw = atc->hw;
  819. return hw->have_digit_io_switch(hw);
  820. }
  821. static int atc_select_digit_io(struct ct_atc *atc)
  822. {
  823. struct hw *hw = atc->hw;
  824. if (hw->is_adc_source_selected(hw, ADC_NONE))
  825. return 0;
  826. hw->select_adc_source(hw, ADC_NONE);
  827. return 0;
  828. }
  829. static int atc_daio_unmute(struct ct_atc *atc, unsigned char state, int type)
  830. {
  831. struct daio_mgr *daio_mgr = atc->rsc_mgrs[DAIO];
  832. if (state)
  833. daio_mgr->daio_enable(daio_mgr, atc->daios[type]);
  834. else
  835. daio_mgr->daio_disable(daio_mgr, atc->daios[type]);
  836. daio_mgr->commit_write(daio_mgr);
  837. return 0;
  838. }
  839. static int
  840. atc_dao_get_status(struct ct_atc *atc, unsigned int *status, int type)
  841. {
  842. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  843. return dao->ops->get_spos(dao, status);
  844. }
  845. static int
  846. atc_dao_set_status(struct ct_atc *atc, unsigned int status, int type)
  847. {
  848. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  849. dao->ops->set_spos(dao, status);
  850. dao->ops->commit_write(dao);
  851. return 0;
  852. }
  853. static int atc_line_front_unmute(struct ct_atc *atc, unsigned char state)
  854. {
  855. return atc_daio_unmute(atc, state, LINEO1);
  856. }
  857. static int atc_line_surround_unmute(struct ct_atc *atc, unsigned char state)
  858. {
  859. return atc_daio_unmute(atc, state, LINEO4);
  860. }
  861. static int atc_line_clfe_unmute(struct ct_atc *atc, unsigned char state)
  862. {
  863. return atc_daio_unmute(atc, state, LINEO3);
  864. }
  865. static int atc_line_rear_unmute(struct ct_atc *atc, unsigned char state)
  866. {
  867. return atc_daio_unmute(atc, state, LINEO2);
  868. }
  869. static int atc_line_in_unmute(struct ct_atc *atc, unsigned char state)
  870. {
  871. return atc_daio_unmute(atc, state, LINEIM);
  872. }
  873. static int atc_spdif_out_unmute(struct ct_atc *atc, unsigned char state)
  874. {
  875. return atc_daio_unmute(atc, state, SPDIFOO);
  876. }
  877. static int atc_spdif_in_unmute(struct ct_atc *atc, unsigned char state)
  878. {
  879. return atc_daio_unmute(atc, state, SPDIFIO);
  880. }
  881. static int atc_spdif_out_get_status(struct ct_atc *atc, unsigned int *status)
  882. {
  883. return atc_dao_get_status(atc, status, SPDIFOO);
  884. }
  885. static int atc_spdif_out_set_status(struct ct_atc *atc, unsigned int status)
  886. {
  887. return atc_dao_set_status(atc, status, SPDIFOO);
  888. }
  889. static int atc_spdif_out_passthru(struct ct_atc *atc, unsigned char state)
  890. {
  891. unsigned long flags;
  892. struct dao_desc da_dsc = {0};
  893. struct dao *dao = NULL;
  894. int err = 0;
  895. struct ct_mixer *mixer = atc->mixer;
  896. struct rsc *rscs[2] = {NULL};
  897. unsigned int spos = 0;
  898. spin_lock_irqsave(&atc->atc_lock, flags);
  899. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  900. da_dsc.msr = state ? 1 : atc->msr;
  901. da_dsc.passthru = state ? 1 : 0;
  902. err = dao->ops->reinit(dao, &da_dsc);
  903. if (state) {
  904. spos = IEC958_DEFAULT_CON;
  905. } else {
  906. mixer->get_output_ports(mixer, MIX_SPDIF_OUT,
  907. &rscs[0], &rscs[1]);
  908. dao->ops->set_left_input(dao, rscs[0]);
  909. dao->ops->set_right_input(dao, rscs[1]);
  910. /* Restore PLL to atc->rsr if needed. */
  911. if (atc->pll_rate != atc->rsr) {
  912. err = ((struct hw *)atc->hw)->pll_init(atc->hw,
  913. atc->rsr);
  914. atc->pll_rate = err ? 0 : atc->rsr;
  915. }
  916. }
  917. dao->ops->set_spos(dao, spos);
  918. dao->ops->commit_write(dao);
  919. spin_unlock_irqrestore(&atc->atc_lock, flags);
  920. return err;
  921. }
  922. static int ct_atc_destroy(struct ct_atc *atc)
  923. {
  924. struct daio_mgr *daio_mgr = NULL;
  925. struct dao *dao = NULL;
  926. struct dai *dai = NULL;
  927. struct daio *daio = NULL;
  928. struct sum_mgr *sum_mgr = NULL;
  929. struct src_mgr *src_mgr = NULL;
  930. struct srcimp_mgr *srcimp_mgr = NULL;
  931. struct srcimp *srcimp = NULL;
  932. struct ct_mixer *mixer = NULL;
  933. int i = 0;
  934. if (NULL == atc)
  935. return 0;
  936. /* Stop hardware and disable all interrupts */
  937. if (NULL != atc->hw)
  938. ((struct hw *)atc->hw)->card_stop(atc->hw);
  939. /* Destroy internal mixer objects */
  940. if (NULL != atc->mixer) {
  941. mixer = atc->mixer;
  942. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  943. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  944. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  945. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  946. mixer->set_input_left(mixer, MIX_SPDIF_IN, NULL);
  947. mixer->set_input_right(mixer, MIX_SPDIF_IN, NULL);
  948. ct_mixer_destroy(atc->mixer);
  949. }
  950. if (NULL != atc->daios) {
  951. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  952. for (i = 0; i < atc->n_daio; i++) {
  953. daio = atc->daios[i];
  954. if (daio->type < LINEIM) {
  955. dao = container_of(daio, struct dao, daio);
  956. dao->ops->clear_left_input(dao);
  957. dao->ops->clear_right_input(dao);
  958. } else {
  959. dai = container_of(daio, struct dai, daio);
  960. /* some thing to do for dai ... */
  961. }
  962. daio_mgr->put_daio(daio_mgr, daio);
  963. }
  964. kfree(atc->daios);
  965. }
  966. if (NULL != atc->pcm) {
  967. sum_mgr = atc->rsc_mgrs[SUM];
  968. for (i = 0; i < atc->n_pcm; i++)
  969. sum_mgr->put_sum(sum_mgr, atc->pcm[i]);
  970. kfree(atc->pcm);
  971. }
  972. if (NULL != atc->srcs) {
  973. src_mgr = atc->rsc_mgrs[SRC];
  974. for (i = 0; i < atc->n_src; i++)
  975. src_mgr->put_src(src_mgr, atc->srcs[i]);
  976. kfree(atc->srcs);
  977. }
  978. if (NULL != atc->srcimps) {
  979. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  980. for (i = 0; i < atc->n_srcimp; i++) {
  981. srcimp = atc->srcimps[i];
  982. srcimp->ops->unmap(srcimp);
  983. srcimp_mgr->put_srcimp(srcimp_mgr, atc->srcimps[i]);
  984. }
  985. kfree(atc->srcimps);
  986. }
  987. for (i = 0; i < NUM_RSCTYP; i++) {
  988. if ((NULL != rsc_mgr_funcs[i].destroy) &&
  989. (NULL != atc->rsc_mgrs[i]))
  990. rsc_mgr_funcs[i].destroy(atc->rsc_mgrs[i]);
  991. }
  992. if (NULL != atc->hw)
  993. destroy_hw_obj((struct hw *)atc->hw);
  994. /* Destroy device virtual memory manager object */
  995. if (NULL != atc->vm) {
  996. ct_vm_destroy(atc->vm);
  997. atc->vm = NULL;
  998. }
  999. kfree(atc);
  1000. return 0;
  1001. }
  1002. static int atc_dev_free(struct snd_device *dev)
  1003. {
  1004. struct ct_atc *atc = dev->device_data;
  1005. return ct_atc_destroy(atc);
  1006. }
  1007. static int atc_identify_card(struct ct_atc *atc)
  1008. {
  1009. u16 subsys = 0;
  1010. u8 revision = 0;
  1011. struct pci_dev *pci = atc->pci;
  1012. const struct ct_atc_chip_details *d;
  1013. enum CTCARDS i;
  1014. pci_read_config_word(pci, PCI_SUBSYSTEM_ID, &subsys);
  1015. pci_read_config_byte(pci, PCI_REVISION_ID, &revision);
  1016. atc->chip_details = NULL;
  1017. atc->model = NUM_CTCARDS;
  1018. for (d = atc_chip_details; d->vendor; d++) {
  1019. if (d->vendor != pci->vendor || d->device != pci->device)
  1020. continue;
  1021. if (NULL == d->sub_details) {
  1022. atc->chip_details = d;
  1023. break;
  1024. }
  1025. for (i = 0; i < NUM_CTCARDS; i++) {
  1026. if ((d->sub_details[i].subsys == subsys) ||
  1027. (((subsys & 0x6000) == 0x6000) &&
  1028. ((d->sub_details[i].subsys & 0x6000) == 0x6000))) {
  1029. atc->model = i;
  1030. break;
  1031. }
  1032. }
  1033. if (i >= NUM_CTCARDS)
  1034. continue;
  1035. atc->chip_details = d;
  1036. break;
  1037. /* not take revision into consideration now */
  1038. }
  1039. if (!d->vendor)
  1040. return -ENOENT;
  1041. return 0;
  1042. }
  1043. static int ct_create_alsa_devs(struct ct_atc *atc)
  1044. {
  1045. enum CTALSADEVS i;
  1046. struct hw *hw = atc->hw;
  1047. int err;
  1048. switch (hw->get_chip_type(hw)) {
  1049. case ATC20K1:
  1050. alsa_dev_funcs[MIXER].public_name = "20K1";
  1051. break;
  1052. case ATC20K2:
  1053. alsa_dev_funcs[MIXER].public_name = "20K2";
  1054. break;
  1055. default:
  1056. alsa_dev_funcs[MIXER].public_name = "Unknown";
  1057. break;
  1058. }
  1059. for (i = 0; i < NUM_CTALSADEVS; i++) {
  1060. if (NULL == alsa_dev_funcs[i].create)
  1061. continue;
  1062. err = alsa_dev_funcs[i].create(atc, i,
  1063. alsa_dev_funcs[i].public_name);
  1064. if (err) {
  1065. printk(KERN_ERR "Creating alsa device %d failed!\n", i);
  1066. return err;
  1067. }
  1068. }
  1069. return 0;
  1070. }
  1071. static int atc_create_hw_devs(struct ct_atc *atc)
  1072. {
  1073. struct hw *hw = NULL;
  1074. struct card_conf info = {0};
  1075. int i = 0, err = 0;
  1076. err = create_hw_obj(atc->pci, &hw);
  1077. if (err) {
  1078. printk(KERN_ERR "Failed to create hw obj!!!\n");
  1079. return err;
  1080. }
  1081. atc->hw = hw;
  1082. /* Initialize card hardware. */
  1083. info.rsr = atc->rsr;
  1084. info.msr = atc->msr;
  1085. info.vm_pgt_phys = atc_get_ptp_phys(atc, 0);
  1086. err = hw->card_init(hw, &info);
  1087. if (err < 0)
  1088. return err;
  1089. for (i = 0; i < NUM_RSCTYP; i++) {
  1090. if (NULL == rsc_mgr_funcs[i].create)
  1091. continue;
  1092. err = rsc_mgr_funcs[i].create(atc->hw, &atc->rsc_mgrs[i]);
  1093. if (err) {
  1094. printk(KERN_ERR "Failed to create rsc_mgr %d!!!\n", i);
  1095. return err;
  1096. }
  1097. }
  1098. return 0;
  1099. }
  1100. static int atc_get_resources(struct ct_atc *atc)
  1101. {
  1102. struct daio_desc da_desc = {0};
  1103. struct daio_mgr *daio_mgr = NULL;
  1104. struct src_desc src_dsc = {0};
  1105. struct src_mgr *src_mgr = NULL;
  1106. struct srcimp_desc srcimp_dsc = {0};
  1107. struct srcimp_mgr *srcimp_mgr = NULL;
  1108. struct sum_desc sum_dsc = {0};
  1109. struct sum_mgr *sum_mgr = NULL;
  1110. int err = 0, i = 0;
  1111. unsigned short subsys_id = 0;
  1112. atc->daios = kzalloc(sizeof(void *)*(DAIONUM), GFP_KERNEL);
  1113. if (NULL == atc->daios)
  1114. return -ENOMEM;
  1115. atc->srcs = kzalloc(sizeof(void *)*(2*2), GFP_KERNEL);
  1116. if (NULL == atc->srcs)
  1117. return -ENOMEM;
  1118. atc->srcimps = kzalloc(sizeof(void *)*(2*2), GFP_KERNEL);
  1119. if (NULL == atc->srcimps)
  1120. return -ENOMEM;
  1121. atc->pcm = kzalloc(sizeof(void *)*(2*4), GFP_KERNEL);
  1122. if (NULL == atc->pcm)
  1123. return -ENOMEM;
  1124. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  1125. da_desc.msr = atc->msr;
  1126. for (i = 0, atc->n_daio = 0; i < DAIONUM-1; i++) {
  1127. da_desc.type = i;
  1128. err = daio_mgr->get_daio(daio_mgr, &da_desc,
  1129. (struct daio **)&atc->daios[i]);
  1130. if (err) {
  1131. printk(KERN_ERR "Failed to get DAIO "
  1132. "resource %d!!!\n", i);
  1133. return err;
  1134. }
  1135. atc->n_daio++;
  1136. }
  1137. pci_read_config_word(atc->pci, PCI_SUBSYSTEM_ID, &subsys_id);
  1138. if ((subsys_id == 0x0029) || (subsys_id == 0x0031)) {
  1139. /* SB073x cards */
  1140. da_desc.type = SPDIFI1;
  1141. } else {
  1142. da_desc.type = SPDIFIO;
  1143. }
  1144. err = daio_mgr->get_daio(daio_mgr, &da_desc,
  1145. (struct daio **)&atc->daios[i]);
  1146. if (err) {
  1147. printk(KERN_ERR "Failed to get S/PDIF-in resource!!!\n");
  1148. return err;
  1149. }
  1150. atc->n_daio++;
  1151. src_mgr = atc->rsc_mgrs[SRC];
  1152. src_dsc.multi = 1;
  1153. src_dsc.msr = atc->msr;
  1154. src_dsc.mode = ARCRW;
  1155. for (i = 0, atc->n_src = 0; i < (2*2); i++) {
  1156. err = src_mgr->get_src(src_mgr, &src_dsc,
  1157. (struct src **)&atc->srcs[i]);
  1158. if (err)
  1159. return err;
  1160. atc->n_src++;
  1161. }
  1162. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  1163. srcimp_dsc.msr = 8; /* SRCIMPs for S/PDIFIn SRT */
  1164. for (i = 0, atc->n_srcimp = 0; i < (2*1); i++) {
  1165. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
  1166. (struct srcimp **)&atc->srcimps[i]);
  1167. if (err)
  1168. return err;
  1169. atc->n_srcimp++;
  1170. }
  1171. srcimp_dsc.msr = 8; /* SRCIMPs for LINE/MICIn SRT */
  1172. for (i = 0; i < (2*1); i++) {
  1173. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
  1174. (struct srcimp **)&atc->srcimps[2*1+i]);
  1175. if (err)
  1176. return err;
  1177. atc->n_srcimp++;
  1178. }
  1179. sum_mgr = atc->rsc_mgrs[SUM];
  1180. sum_dsc.msr = atc->msr;
  1181. for (i = 0, atc->n_pcm = 0; i < (2*4); i++) {
  1182. err = sum_mgr->get_sum(sum_mgr, &sum_dsc,
  1183. (struct sum **)&atc->pcm[i]);
  1184. if (err)
  1185. return err;
  1186. atc->n_pcm++;
  1187. }
  1188. err = ct_mixer_create(atc, (struct ct_mixer **)&atc->mixer);
  1189. if (err) {
  1190. printk(KERN_ERR "Failed to create mixer obj!!!\n");
  1191. return err;
  1192. }
  1193. return 0;
  1194. }
  1195. static void
  1196. atc_connect_dai(struct src_mgr *src_mgr, struct dai *dai,
  1197. struct src **srcs, struct srcimp **srcimps)
  1198. {
  1199. struct rsc *rscs[2] = {NULL};
  1200. struct src *src = NULL;
  1201. struct srcimp *srcimp = NULL;
  1202. int i = 0;
  1203. rscs[0] = &dai->daio.rscl;
  1204. rscs[1] = &dai->daio.rscr;
  1205. for (i = 0; i < 2; i++) {
  1206. src = srcs[i];
  1207. srcimp = srcimps[i];
  1208. srcimp->ops->map(srcimp, src, rscs[i]);
  1209. src_mgr->src_disable(src_mgr, src);
  1210. }
  1211. src_mgr->commit_write(src_mgr); /* Actually disable SRCs */
  1212. src = srcs[0];
  1213. src->ops->set_pm(src, 1);
  1214. for (i = 0; i < 2; i++) {
  1215. src = srcs[i];
  1216. src->ops->set_state(src, SRC_STATE_RUN);
  1217. src->ops->commit_write(src);
  1218. src_mgr->src_enable_s(src_mgr, src);
  1219. }
  1220. dai->ops->set_srt_srcl(dai, &(srcs[0]->rsc));
  1221. dai->ops->set_srt_srcr(dai, &(srcs[1]->rsc));
  1222. dai->ops->set_enb_src(dai, 1);
  1223. dai->ops->set_enb_srt(dai, 1);
  1224. dai->ops->commit_write(dai);
  1225. src_mgr->commit_write(src_mgr); /* Synchronously enable SRCs */
  1226. }
  1227. static void atc_connect_resources(struct ct_atc *atc)
  1228. {
  1229. struct dai *dai = NULL;
  1230. struct dao *dao = NULL;
  1231. struct src *src = NULL;
  1232. struct sum *sum = NULL;
  1233. struct ct_mixer *mixer = NULL;
  1234. struct rsc *rscs[2] = {NULL};
  1235. int i = 0, j = 0;
  1236. mixer = atc->mixer;
  1237. for (i = MIX_WAVE_FRONT, j = LINEO1; i <= MIX_SPDIF_OUT; i++, j++) {
  1238. mixer->get_output_ports(mixer, i, &rscs[0], &rscs[1]);
  1239. dao = container_of(atc->daios[j], struct dao, daio);
  1240. dao->ops->set_left_input(dao, rscs[0]);
  1241. dao->ops->set_right_input(dao, rscs[1]);
  1242. }
  1243. dai = container_of(atc->daios[LINEIM], struct dai, daio);
  1244. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1245. (struct src **)&atc->srcs[2],
  1246. (struct srcimp **)&atc->srcimps[2]);
  1247. src = atc->srcs[2];
  1248. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  1249. src = atc->srcs[3];
  1250. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  1251. dai = container_of(atc->daios[SPDIFIO], struct dai, daio);
  1252. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1253. (struct src **)&atc->srcs[0],
  1254. (struct srcimp **)&atc->srcimps[0]);
  1255. src = atc->srcs[0];
  1256. mixer->set_input_left(mixer, MIX_SPDIF_IN, &src->rsc);
  1257. src = atc->srcs[1];
  1258. mixer->set_input_right(mixer, MIX_SPDIF_IN, &src->rsc);
  1259. for (i = MIX_PCMI_FRONT, j = 0; i <= MIX_PCMI_SURROUND; i++, j += 2) {
  1260. sum = atc->pcm[j];
  1261. mixer->set_input_left(mixer, i, &sum->rsc);
  1262. sum = atc->pcm[j+1];
  1263. mixer->set_input_right(mixer, i, &sum->rsc);
  1264. }
  1265. }
  1266. static void atc_set_ops(struct ct_atc *atc)
  1267. {
  1268. /* Set operations */
  1269. atc->map_audio_buffer = ct_map_audio_buffer;
  1270. atc->unmap_audio_buffer = ct_unmap_audio_buffer;
  1271. atc->pcm_playback_prepare = atc_pcm_playback_prepare;
  1272. atc->pcm_release_resources = atc_pcm_release_resources;
  1273. atc->pcm_playback_start = atc_pcm_playback_start;
  1274. atc->pcm_playback_stop = atc_pcm_stop;
  1275. atc->pcm_playback_position = atc_pcm_playback_position;
  1276. atc->pcm_capture_prepare = atc_pcm_capture_prepare;
  1277. atc->pcm_capture_start = atc_pcm_capture_start;
  1278. atc->pcm_capture_stop = atc_pcm_stop;
  1279. atc->pcm_capture_position = atc_pcm_capture_position;
  1280. atc->spdif_passthru_playback_prepare = spdif_passthru_playback_prepare;
  1281. atc->get_ptp_phys = atc_get_ptp_phys;
  1282. atc->select_line_in = atc_select_line_in;
  1283. atc->select_mic_in = atc_select_mic_in;
  1284. atc->select_digit_io = atc_select_digit_io;
  1285. atc->line_front_unmute = atc_line_front_unmute;
  1286. atc->line_surround_unmute = atc_line_surround_unmute;
  1287. atc->line_clfe_unmute = atc_line_clfe_unmute;
  1288. atc->line_rear_unmute = atc_line_rear_unmute;
  1289. atc->line_in_unmute = atc_line_in_unmute;
  1290. atc->spdif_out_unmute = atc_spdif_out_unmute;
  1291. atc->spdif_in_unmute = atc_spdif_in_unmute;
  1292. atc->spdif_out_get_status = atc_spdif_out_get_status;
  1293. atc->spdif_out_set_status = atc_spdif_out_set_status;
  1294. atc->spdif_out_passthru = atc_spdif_out_passthru;
  1295. atc->have_digit_io_switch = atc_have_digit_io_switch;
  1296. }
  1297. /**
  1298. * ct_atc_create - create and initialize a hardware manager
  1299. * @card: corresponding alsa card object
  1300. * @pci: corresponding kernel pci device object
  1301. * @ratc: return created object address in it
  1302. *
  1303. * Creates and initializes a hardware manager.
  1304. *
  1305. * Creates kmallocated ct_atc structure. Initializes hardware.
  1306. * Returns 0 if suceeds, or negative error code if fails.
  1307. */
  1308. int ct_atc_create(struct snd_card *card, struct pci_dev *pci,
  1309. unsigned int rsr, unsigned int msr, struct ct_atc **ratc)
  1310. {
  1311. struct ct_atc *atc = NULL;
  1312. static struct snd_device_ops ops = {
  1313. .dev_free = atc_dev_free,
  1314. };
  1315. int err = 0;
  1316. *ratc = NULL;
  1317. atc = kzalloc(sizeof(*atc), GFP_KERNEL);
  1318. if (NULL == atc)
  1319. return -ENOMEM;
  1320. atc->card = card;
  1321. atc->pci = pci;
  1322. atc->rsr = rsr;
  1323. atc->msr = msr;
  1324. /* Set operations */
  1325. atc_set_ops(atc);
  1326. spin_lock_init(&atc->atc_lock);
  1327. spin_lock_init(&atc->vm_lock);
  1328. /* Find card model */
  1329. err = atc_identify_card(atc);
  1330. if (err < 0) {
  1331. printk(KERN_ERR "ctatc: Card not recognised\n");
  1332. goto error1;
  1333. }
  1334. /* Set up device virtual memory management object */
  1335. err = ct_vm_create(&atc->vm);
  1336. if (err < 0)
  1337. goto error1;
  1338. /* Create all atc hw devices */
  1339. err = atc_create_hw_devs(atc);
  1340. if (err < 0)
  1341. goto error1;
  1342. /* Get resources */
  1343. err = atc_get_resources(atc);
  1344. if (err < 0)
  1345. goto error1;
  1346. /* Build topology */
  1347. atc_connect_resources(atc);
  1348. atc->create_alsa_devs = ct_create_alsa_devs;
  1349. err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, atc, &ops);
  1350. if (err < 0)
  1351. goto error1;
  1352. snd_card_set_dev(card, &pci->dev);
  1353. *ratc = atc;
  1354. return 0;
  1355. error1:
  1356. ct_atc_destroy(atc);
  1357. printk(KERN_ERR "Something wrong!!!\n");
  1358. return err;
  1359. }