af_iucv.c 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444
  1. /*
  2. * IUCV protocol stack for Linux on zSeries
  3. *
  4. * Copyright IBM Corp. 2006, 2009
  5. *
  6. * Author(s): Jennifer Hunt <jenhunt@us.ibm.com>
  7. * Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
  8. * PM functions:
  9. * Ursula Braun <ursula.braun@de.ibm.com>
  10. */
  11. #define KMSG_COMPONENT "af_iucv"
  12. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  13. #include <linux/module.h>
  14. #include <linux/types.h>
  15. #include <linux/list.h>
  16. #include <linux/errno.h>
  17. #include <linux/kernel.h>
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/init.h>
  22. #include <linux/poll.h>
  23. #include <net/sock.h>
  24. #include <asm/ebcdic.h>
  25. #include <asm/cpcmd.h>
  26. #include <linux/kmod.h>
  27. #include <net/iucv/af_iucv.h>
  28. #define VERSION "1.2"
  29. static char iucv_userid[80];
  30. static const struct proto_ops iucv_sock_ops;
  31. static struct proto iucv_proto = {
  32. .name = "AF_IUCV",
  33. .owner = THIS_MODULE,
  34. .obj_size = sizeof(struct iucv_sock),
  35. };
  36. static struct iucv_interface *pr_iucv;
  37. /* special AF_IUCV IPRM messages */
  38. static const u8 iprm_shutdown[8] =
  39. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01};
  40. #define TRGCLS_SIZE (sizeof(((struct iucv_message *)0)->class))
  41. /* macros to set/get socket control buffer at correct offset */
  42. #define CB_TAG(skb) ((skb)->cb) /* iucv message tag */
  43. #define CB_TAG_LEN (sizeof(((struct iucv_message *) 0)->tag))
  44. #define CB_TRGCLS(skb) ((skb)->cb + CB_TAG_LEN) /* iucv msg target class */
  45. #define CB_TRGCLS_LEN (TRGCLS_SIZE)
  46. #define __iucv_sock_wait(sk, condition, timeo, ret) \
  47. do { \
  48. DEFINE_WAIT(__wait); \
  49. long __timeo = timeo; \
  50. ret = 0; \
  51. prepare_to_wait(sk_sleep(sk), &__wait, TASK_INTERRUPTIBLE); \
  52. while (!(condition)) { \
  53. if (!__timeo) { \
  54. ret = -EAGAIN; \
  55. break; \
  56. } \
  57. if (signal_pending(current)) { \
  58. ret = sock_intr_errno(__timeo); \
  59. break; \
  60. } \
  61. release_sock(sk); \
  62. __timeo = schedule_timeout(__timeo); \
  63. lock_sock(sk); \
  64. ret = sock_error(sk); \
  65. if (ret) \
  66. break; \
  67. } \
  68. finish_wait(sk_sleep(sk), &__wait); \
  69. } while (0)
  70. #define iucv_sock_wait(sk, condition, timeo) \
  71. ({ \
  72. int __ret = 0; \
  73. if (!(condition)) \
  74. __iucv_sock_wait(sk, condition, timeo, __ret); \
  75. __ret; \
  76. })
  77. static void iucv_sock_kill(struct sock *sk);
  78. static void iucv_sock_close(struct sock *sk);
  79. static void iucv_sever_path(struct sock *, int);
  80. static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
  81. struct packet_type *pt, struct net_device *orig_dev);
  82. static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
  83. struct sk_buff *skb, u8 flags);
  84. static void afiucv_hs_callback_txnotify(struct sk_buff *, enum iucv_tx_notify);
  85. /* Call Back functions */
  86. static void iucv_callback_rx(struct iucv_path *, struct iucv_message *);
  87. static void iucv_callback_txdone(struct iucv_path *, struct iucv_message *);
  88. static void iucv_callback_connack(struct iucv_path *, u8 ipuser[16]);
  89. static int iucv_callback_connreq(struct iucv_path *, u8 ipvmid[8],
  90. u8 ipuser[16]);
  91. static void iucv_callback_connrej(struct iucv_path *, u8 ipuser[16]);
  92. static void iucv_callback_shutdown(struct iucv_path *, u8 ipuser[16]);
  93. static struct iucv_sock_list iucv_sk_list = {
  94. .lock = __RW_LOCK_UNLOCKED(iucv_sk_list.lock),
  95. .autobind_name = ATOMIC_INIT(0)
  96. };
  97. static struct iucv_handler af_iucv_handler = {
  98. .path_pending = iucv_callback_connreq,
  99. .path_complete = iucv_callback_connack,
  100. .path_severed = iucv_callback_connrej,
  101. .message_pending = iucv_callback_rx,
  102. .message_complete = iucv_callback_txdone,
  103. .path_quiesced = iucv_callback_shutdown,
  104. };
  105. static inline void high_nmcpy(unsigned char *dst, char *src)
  106. {
  107. memcpy(dst, src, 8);
  108. }
  109. static inline void low_nmcpy(unsigned char *dst, char *src)
  110. {
  111. memcpy(&dst[8], src, 8);
  112. }
  113. static int afiucv_pm_prepare(struct device *dev)
  114. {
  115. #ifdef CONFIG_PM_DEBUG
  116. printk(KERN_WARNING "afiucv_pm_prepare\n");
  117. #endif
  118. return 0;
  119. }
  120. static void afiucv_pm_complete(struct device *dev)
  121. {
  122. #ifdef CONFIG_PM_DEBUG
  123. printk(KERN_WARNING "afiucv_pm_complete\n");
  124. #endif
  125. }
  126. /**
  127. * afiucv_pm_freeze() - Freeze PM callback
  128. * @dev: AFIUCV dummy device
  129. *
  130. * Sever all established IUCV communication pathes
  131. */
  132. static int afiucv_pm_freeze(struct device *dev)
  133. {
  134. struct iucv_sock *iucv;
  135. struct sock *sk;
  136. struct hlist_node *node;
  137. int err = 0;
  138. #ifdef CONFIG_PM_DEBUG
  139. printk(KERN_WARNING "afiucv_pm_freeze\n");
  140. #endif
  141. read_lock(&iucv_sk_list.lock);
  142. sk_for_each(sk, node, &iucv_sk_list.head) {
  143. iucv = iucv_sk(sk);
  144. skb_queue_purge(&iucv->send_skb_q);
  145. skb_queue_purge(&iucv->backlog_skb_q);
  146. switch (sk->sk_state) {
  147. case IUCV_DISCONN:
  148. case IUCV_CLOSING:
  149. case IUCV_CONNECTED:
  150. iucv_sever_path(sk, 0);
  151. break;
  152. case IUCV_OPEN:
  153. case IUCV_BOUND:
  154. case IUCV_LISTEN:
  155. case IUCV_CLOSED:
  156. default:
  157. break;
  158. }
  159. skb_queue_purge(&iucv->send_skb_q);
  160. skb_queue_purge(&iucv->backlog_skb_q);
  161. }
  162. read_unlock(&iucv_sk_list.lock);
  163. return err;
  164. }
  165. /**
  166. * afiucv_pm_restore_thaw() - Thaw and restore PM callback
  167. * @dev: AFIUCV dummy device
  168. *
  169. * socket clean up after freeze
  170. */
  171. static int afiucv_pm_restore_thaw(struct device *dev)
  172. {
  173. struct sock *sk;
  174. struct hlist_node *node;
  175. #ifdef CONFIG_PM_DEBUG
  176. printk(KERN_WARNING "afiucv_pm_restore_thaw\n");
  177. #endif
  178. read_lock(&iucv_sk_list.lock);
  179. sk_for_each(sk, node, &iucv_sk_list.head) {
  180. switch (sk->sk_state) {
  181. case IUCV_CONNECTED:
  182. sk->sk_err = EPIPE;
  183. sk->sk_state = IUCV_DISCONN;
  184. sk->sk_state_change(sk);
  185. break;
  186. case IUCV_DISCONN:
  187. case IUCV_CLOSING:
  188. case IUCV_LISTEN:
  189. case IUCV_BOUND:
  190. case IUCV_OPEN:
  191. default:
  192. break;
  193. }
  194. }
  195. read_unlock(&iucv_sk_list.lock);
  196. return 0;
  197. }
  198. static const struct dev_pm_ops afiucv_pm_ops = {
  199. .prepare = afiucv_pm_prepare,
  200. .complete = afiucv_pm_complete,
  201. .freeze = afiucv_pm_freeze,
  202. .thaw = afiucv_pm_restore_thaw,
  203. .restore = afiucv_pm_restore_thaw,
  204. };
  205. static struct device_driver af_iucv_driver = {
  206. .owner = THIS_MODULE,
  207. .name = "afiucv",
  208. .bus = NULL,
  209. .pm = &afiucv_pm_ops,
  210. };
  211. /* dummy device used as trigger for PM functions */
  212. static struct device *af_iucv_dev;
  213. /**
  214. * iucv_msg_length() - Returns the length of an iucv message.
  215. * @msg: Pointer to struct iucv_message, MUST NOT be NULL
  216. *
  217. * The function returns the length of the specified iucv message @msg of data
  218. * stored in a buffer and of data stored in the parameter list (PRMDATA).
  219. *
  220. * For IUCV_IPRMDATA, AF_IUCV uses the following convention to transport socket
  221. * data:
  222. * PRMDATA[0..6] socket data (max 7 bytes);
  223. * PRMDATA[7] socket data length value (len is 0xff - PRMDATA[7])
  224. *
  225. * The socket data length is computed by subtracting the socket data length
  226. * value from 0xFF.
  227. * If the socket data len is greater 7, then PRMDATA can be used for special
  228. * notifications (see iucv_sock_shutdown); and further,
  229. * if the socket data len is > 7, the function returns 8.
  230. *
  231. * Use this function to allocate socket buffers to store iucv message data.
  232. */
  233. static inline size_t iucv_msg_length(struct iucv_message *msg)
  234. {
  235. size_t datalen;
  236. if (msg->flags & IUCV_IPRMDATA) {
  237. datalen = 0xff - msg->rmmsg[7];
  238. return (datalen < 8) ? datalen : 8;
  239. }
  240. return msg->length;
  241. }
  242. /**
  243. * iucv_sock_in_state() - check for specific states
  244. * @sk: sock structure
  245. * @state: first iucv sk state
  246. * @state: second iucv sk state
  247. *
  248. * Returns true if the socket in either in the first or second state.
  249. */
  250. static int iucv_sock_in_state(struct sock *sk, int state, int state2)
  251. {
  252. return (sk->sk_state == state || sk->sk_state == state2);
  253. }
  254. /**
  255. * iucv_below_msglim() - function to check if messages can be sent
  256. * @sk: sock structure
  257. *
  258. * Returns true if the send queue length is lower than the message limit.
  259. * Always returns true if the socket is not connected (no iucv path for
  260. * checking the message limit).
  261. */
  262. static inline int iucv_below_msglim(struct sock *sk)
  263. {
  264. struct iucv_sock *iucv = iucv_sk(sk);
  265. if (sk->sk_state != IUCV_CONNECTED)
  266. return 1;
  267. if (iucv->transport == AF_IUCV_TRANS_IUCV)
  268. return (skb_queue_len(&iucv->send_skb_q) < iucv->path->msglim);
  269. else
  270. return ((atomic_read(&iucv->msg_sent) < iucv->msglimit_peer) &&
  271. (atomic_read(&iucv->pendings) <= 0));
  272. }
  273. /**
  274. * iucv_sock_wake_msglim() - Wake up thread waiting on msg limit
  275. */
  276. static void iucv_sock_wake_msglim(struct sock *sk)
  277. {
  278. struct socket_wq *wq;
  279. rcu_read_lock();
  280. wq = rcu_dereference(sk->sk_wq);
  281. if (wq_has_sleeper(wq))
  282. wake_up_interruptible_all(&wq->wait);
  283. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  284. rcu_read_unlock();
  285. }
  286. /**
  287. * afiucv_hs_send() - send a message through HiperSockets transport
  288. */
  289. static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
  290. struct sk_buff *skb, u8 flags)
  291. {
  292. struct iucv_sock *iucv = iucv_sk(sock);
  293. struct af_iucv_trans_hdr *phs_hdr;
  294. struct sk_buff *nskb;
  295. int err, confirm_recv = 0;
  296. memset(skb->head, 0, ETH_HLEN);
  297. phs_hdr = (struct af_iucv_trans_hdr *)skb_push(skb,
  298. sizeof(struct af_iucv_trans_hdr));
  299. skb_reset_mac_header(skb);
  300. skb_reset_network_header(skb);
  301. skb_push(skb, ETH_HLEN);
  302. skb_reset_mac_header(skb);
  303. memset(phs_hdr, 0, sizeof(struct af_iucv_trans_hdr));
  304. phs_hdr->magic = ETH_P_AF_IUCV;
  305. phs_hdr->version = 1;
  306. phs_hdr->flags = flags;
  307. if (flags == AF_IUCV_FLAG_SYN)
  308. phs_hdr->window = iucv->msglimit;
  309. else if ((flags == AF_IUCV_FLAG_WIN) || !flags) {
  310. confirm_recv = atomic_read(&iucv->msg_recv);
  311. phs_hdr->window = confirm_recv;
  312. if (confirm_recv)
  313. phs_hdr->flags = phs_hdr->flags | AF_IUCV_FLAG_WIN;
  314. }
  315. memcpy(phs_hdr->destUserID, iucv->dst_user_id, 8);
  316. memcpy(phs_hdr->destAppName, iucv->dst_name, 8);
  317. memcpy(phs_hdr->srcUserID, iucv->src_user_id, 8);
  318. memcpy(phs_hdr->srcAppName, iucv->src_name, 8);
  319. ASCEBC(phs_hdr->destUserID, sizeof(phs_hdr->destUserID));
  320. ASCEBC(phs_hdr->destAppName, sizeof(phs_hdr->destAppName));
  321. ASCEBC(phs_hdr->srcUserID, sizeof(phs_hdr->srcUserID));
  322. ASCEBC(phs_hdr->srcAppName, sizeof(phs_hdr->srcAppName));
  323. if (imsg)
  324. memcpy(&phs_hdr->iucv_hdr, imsg, sizeof(struct iucv_message));
  325. skb->dev = iucv->hs_dev;
  326. if (!skb->dev)
  327. return -ENODEV;
  328. if (!(skb->dev->flags & IFF_UP) || !netif_carrier_ok(skb->dev))
  329. return -ENETDOWN;
  330. if (skb->len > skb->dev->mtu) {
  331. if (sock->sk_type == SOCK_SEQPACKET)
  332. return -EMSGSIZE;
  333. else
  334. skb_trim(skb, skb->dev->mtu);
  335. }
  336. skb->protocol = ETH_P_AF_IUCV;
  337. skb_shinfo(skb)->tx_flags |= SKBTX_DRV_NEEDS_SK_REF;
  338. nskb = skb_clone(skb, GFP_ATOMIC);
  339. if (!nskb)
  340. return -ENOMEM;
  341. skb_queue_tail(&iucv->send_skb_q, nskb);
  342. err = dev_queue_xmit(skb);
  343. if (net_xmit_eval(err)) {
  344. skb_unlink(nskb, &iucv->send_skb_q);
  345. kfree_skb(nskb);
  346. } else {
  347. atomic_sub(confirm_recv, &iucv->msg_recv);
  348. WARN_ON(atomic_read(&iucv->msg_recv) < 0);
  349. }
  350. return net_xmit_eval(err);
  351. }
  352. static struct sock *__iucv_get_sock_by_name(char *nm)
  353. {
  354. struct sock *sk;
  355. struct hlist_node *node;
  356. sk_for_each(sk, node, &iucv_sk_list.head)
  357. if (!memcmp(&iucv_sk(sk)->src_name, nm, 8))
  358. return sk;
  359. return NULL;
  360. }
  361. static void iucv_sock_destruct(struct sock *sk)
  362. {
  363. skb_queue_purge(&sk->sk_receive_queue);
  364. skb_queue_purge(&sk->sk_write_queue);
  365. }
  366. /* Cleanup Listen */
  367. static void iucv_sock_cleanup_listen(struct sock *parent)
  368. {
  369. struct sock *sk;
  370. /* Close non-accepted connections */
  371. while ((sk = iucv_accept_dequeue(parent, NULL))) {
  372. iucv_sock_close(sk);
  373. iucv_sock_kill(sk);
  374. }
  375. parent->sk_state = IUCV_CLOSED;
  376. }
  377. /* Kill socket (only if zapped and orphaned) */
  378. static void iucv_sock_kill(struct sock *sk)
  379. {
  380. if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
  381. return;
  382. iucv_sock_unlink(&iucv_sk_list, sk);
  383. sock_set_flag(sk, SOCK_DEAD);
  384. sock_put(sk);
  385. }
  386. /* Terminate an IUCV path */
  387. static void iucv_sever_path(struct sock *sk, int with_user_data)
  388. {
  389. unsigned char user_data[16];
  390. struct iucv_sock *iucv = iucv_sk(sk);
  391. struct iucv_path *path = iucv->path;
  392. if (iucv->path) {
  393. iucv->path = NULL;
  394. if (with_user_data) {
  395. low_nmcpy(user_data, iucv->src_name);
  396. high_nmcpy(user_data, iucv->dst_name);
  397. ASCEBC(user_data, sizeof(user_data));
  398. pr_iucv->path_sever(path, user_data);
  399. } else
  400. pr_iucv->path_sever(path, NULL);
  401. iucv_path_free(path);
  402. }
  403. }
  404. /* Send FIN through an IUCV socket for HIPER transport */
  405. static int iucv_send_ctrl(struct sock *sk, u8 flags)
  406. {
  407. int err = 0;
  408. int blen;
  409. struct sk_buff *skb;
  410. blen = sizeof(struct af_iucv_trans_hdr) + ETH_HLEN;
  411. skb = sock_alloc_send_skb(sk, blen, 1, &err);
  412. if (skb) {
  413. skb_reserve(skb, blen);
  414. err = afiucv_hs_send(NULL, sk, skb, flags);
  415. }
  416. return err;
  417. }
  418. /* Close an IUCV socket */
  419. static void iucv_sock_close(struct sock *sk)
  420. {
  421. struct iucv_sock *iucv = iucv_sk(sk);
  422. unsigned long timeo;
  423. int err = 0;
  424. lock_sock(sk);
  425. switch (sk->sk_state) {
  426. case IUCV_LISTEN:
  427. iucv_sock_cleanup_listen(sk);
  428. break;
  429. case IUCV_CONNECTED:
  430. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  431. err = iucv_send_ctrl(sk, AF_IUCV_FLAG_FIN);
  432. sk->sk_state = IUCV_DISCONN;
  433. sk->sk_state_change(sk);
  434. }
  435. case IUCV_DISCONN: /* fall through */
  436. sk->sk_state = IUCV_CLOSING;
  437. sk->sk_state_change(sk);
  438. if (!err && !skb_queue_empty(&iucv->send_skb_q)) {
  439. if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
  440. timeo = sk->sk_lingertime;
  441. else
  442. timeo = IUCV_DISCONN_TIMEOUT;
  443. iucv_sock_wait(sk,
  444. iucv_sock_in_state(sk, IUCV_CLOSED, 0),
  445. timeo);
  446. }
  447. case IUCV_CLOSING: /* fall through */
  448. sk->sk_state = IUCV_CLOSED;
  449. sk->sk_state_change(sk);
  450. sk->sk_err = ECONNRESET;
  451. sk->sk_state_change(sk);
  452. skb_queue_purge(&iucv->send_skb_q);
  453. skb_queue_purge(&iucv->backlog_skb_q);
  454. default: /* fall through */
  455. iucv_sever_path(sk, 1);
  456. }
  457. if (iucv->hs_dev) {
  458. dev_put(iucv->hs_dev);
  459. iucv->hs_dev = NULL;
  460. sk->sk_bound_dev_if = 0;
  461. }
  462. /* mark socket for deletion by iucv_sock_kill() */
  463. sock_set_flag(sk, SOCK_ZAPPED);
  464. release_sock(sk);
  465. }
  466. static void iucv_sock_init(struct sock *sk, struct sock *parent)
  467. {
  468. if (parent)
  469. sk->sk_type = parent->sk_type;
  470. }
  471. static struct sock *iucv_sock_alloc(struct socket *sock, int proto, gfp_t prio)
  472. {
  473. struct sock *sk;
  474. struct iucv_sock *iucv;
  475. sk = sk_alloc(&init_net, PF_IUCV, prio, &iucv_proto);
  476. if (!sk)
  477. return NULL;
  478. iucv = iucv_sk(sk);
  479. sock_init_data(sock, sk);
  480. INIT_LIST_HEAD(&iucv->accept_q);
  481. spin_lock_init(&iucv->accept_q_lock);
  482. skb_queue_head_init(&iucv->send_skb_q);
  483. INIT_LIST_HEAD(&iucv->message_q.list);
  484. spin_lock_init(&iucv->message_q.lock);
  485. skb_queue_head_init(&iucv->backlog_skb_q);
  486. iucv->send_tag = 0;
  487. atomic_set(&iucv->pendings, 0);
  488. iucv->flags = 0;
  489. iucv->msglimit = 0;
  490. atomic_set(&iucv->msg_sent, 0);
  491. atomic_set(&iucv->msg_recv, 0);
  492. iucv->path = NULL;
  493. iucv->sk_txnotify = afiucv_hs_callback_txnotify;
  494. memset(&iucv->src_user_id , 0, 32);
  495. if (pr_iucv)
  496. iucv->transport = AF_IUCV_TRANS_IUCV;
  497. else
  498. iucv->transport = AF_IUCV_TRANS_HIPER;
  499. sk->sk_destruct = iucv_sock_destruct;
  500. sk->sk_sndtimeo = IUCV_CONN_TIMEOUT;
  501. sk->sk_allocation = GFP_DMA;
  502. sock_reset_flag(sk, SOCK_ZAPPED);
  503. sk->sk_protocol = proto;
  504. sk->sk_state = IUCV_OPEN;
  505. iucv_sock_link(&iucv_sk_list, sk);
  506. return sk;
  507. }
  508. /* Create an IUCV socket */
  509. static int iucv_sock_create(struct net *net, struct socket *sock, int protocol,
  510. int kern)
  511. {
  512. struct sock *sk;
  513. if (protocol && protocol != PF_IUCV)
  514. return -EPROTONOSUPPORT;
  515. sock->state = SS_UNCONNECTED;
  516. switch (sock->type) {
  517. case SOCK_STREAM:
  518. sock->ops = &iucv_sock_ops;
  519. break;
  520. case SOCK_SEQPACKET:
  521. /* currently, proto ops can handle both sk types */
  522. sock->ops = &iucv_sock_ops;
  523. break;
  524. default:
  525. return -ESOCKTNOSUPPORT;
  526. }
  527. sk = iucv_sock_alloc(sock, protocol, GFP_KERNEL);
  528. if (!sk)
  529. return -ENOMEM;
  530. iucv_sock_init(sk, NULL);
  531. return 0;
  532. }
  533. void iucv_sock_link(struct iucv_sock_list *l, struct sock *sk)
  534. {
  535. write_lock_bh(&l->lock);
  536. sk_add_node(sk, &l->head);
  537. write_unlock_bh(&l->lock);
  538. }
  539. void iucv_sock_unlink(struct iucv_sock_list *l, struct sock *sk)
  540. {
  541. write_lock_bh(&l->lock);
  542. sk_del_node_init(sk);
  543. write_unlock_bh(&l->lock);
  544. }
  545. void iucv_accept_enqueue(struct sock *parent, struct sock *sk)
  546. {
  547. unsigned long flags;
  548. struct iucv_sock *par = iucv_sk(parent);
  549. sock_hold(sk);
  550. spin_lock_irqsave(&par->accept_q_lock, flags);
  551. list_add_tail(&iucv_sk(sk)->accept_q, &par->accept_q);
  552. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  553. iucv_sk(sk)->parent = parent;
  554. sk_acceptq_added(parent);
  555. }
  556. void iucv_accept_unlink(struct sock *sk)
  557. {
  558. unsigned long flags;
  559. struct iucv_sock *par = iucv_sk(iucv_sk(sk)->parent);
  560. spin_lock_irqsave(&par->accept_q_lock, flags);
  561. list_del_init(&iucv_sk(sk)->accept_q);
  562. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  563. sk_acceptq_removed(iucv_sk(sk)->parent);
  564. iucv_sk(sk)->parent = NULL;
  565. sock_put(sk);
  566. }
  567. struct sock *iucv_accept_dequeue(struct sock *parent, struct socket *newsock)
  568. {
  569. struct iucv_sock *isk, *n;
  570. struct sock *sk;
  571. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  572. sk = (struct sock *) isk;
  573. lock_sock(sk);
  574. if (sk->sk_state == IUCV_CLOSED) {
  575. iucv_accept_unlink(sk);
  576. release_sock(sk);
  577. continue;
  578. }
  579. if (sk->sk_state == IUCV_CONNECTED ||
  580. sk->sk_state == IUCV_DISCONN ||
  581. !newsock) {
  582. iucv_accept_unlink(sk);
  583. if (newsock)
  584. sock_graft(sk, newsock);
  585. release_sock(sk);
  586. return sk;
  587. }
  588. release_sock(sk);
  589. }
  590. return NULL;
  591. }
  592. /* Bind an unbound socket */
  593. static int iucv_sock_bind(struct socket *sock, struct sockaddr *addr,
  594. int addr_len)
  595. {
  596. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  597. struct sock *sk = sock->sk;
  598. struct iucv_sock *iucv;
  599. int err = 0;
  600. struct net_device *dev;
  601. char uid[9];
  602. /* Verify the input sockaddr */
  603. if (!addr || addr->sa_family != AF_IUCV)
  604. return -EINVAL;
  605. lock_sock(sk);
  606. if (sk->sk_state != IUCV_OPEN) {
  607. err = -EBADFD;
  608. goto done;
  609. }
  610. write_lock_bh(&iucv_sk_list.lock);
  611. iucv = iucv_sk(sk);
  612. if (__iucv_get_sock_by_name(sa->siucv_name)) {
  613. err = -EADDRINUSE;
  614. goto done_unlock;
  615. }
  616. if (iucv->path)
  617. goto done_unlock;
  618. /* Bind the socket */
  619. if (pr_iucv)
  620. if (!memcmp(sa->siucv_user_id, iucv_userid, 8))
  621. goto vm_bind; /* VM IUCV transport */
  622. /* try hiper transport */
  623. memcpy(uid, sa->siucv_user_id, sizeof(uid));
  624. ASCEBC(uid, 8);
  625. rcu_read_lock();
  626. for_each_netdev_rcu(&init_net, dev) {
  627. if (!memcmp(dev->perm_addr, uid, 8)) {
  628. memcpy(iucv->src_name, sa->siucv_name, 8);
  629. memcpy(iucv->src_user_id, sa->siucv_user_id, 8);
  630. sk->sk_bound_dev_if = dev->ifindex;
  631. iucv->hs_dev = dev;
  632. dev_hold(dev);
  633. sk->sk_state = IUCV_BOUND;
  634. iucv->transport = AF_IUCV_TRANS_HIPER;
  635. if (!iucv->msglimit)
  636. iucv->msglimit = IUCV_HIPER_MSGLIM_DEFAULT;
  637. rcu_read_unlock();
  638. goto done_unlock;
  639. }
  640. }
  641. rcu_read_unlock();
  642. vm_bind:
  643. if (pr_iucv) {
  644. /* use local userid for backward compat */
  645. memcpy(iucv->src_name, sa->siucv_name, 8);
  646. memcpy(iucv->src_user_id, iucv_userid, 8);
  647. sk->sk_state = IUCV_BOUND;
  648. iucv->transport = AF_IUCV_TRANS_IUCV;
  649. if (!iucv->msglimit)
  650. iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
  651. goto done_unlock;
  652. }
  653. /* found no dev to bind */
  654. err = -ENODEV;
  655. done_unlock:
  656. /* Release the socket list lock */
  657. write_unlock_bh(&iucv_sk_list.lock);
  658. done:
  659. release_sock(sk);
  660. return err;
  661. }
  662. /* Automatically bind an unbound socket */
  663. static int iucv_sock_autobind(struct sock *sk)
  664. {
  665. struct iucv_sock *iucv = iucv_sk(sk);
  666. char name[12];
  667. int err = 0;
  668. if (unlikely(!pr_iucv))
  669. return -EPROTO;
  670. memcpy(iucv->src_user_id, iucv_userid, 8);
  671. write_lock_bh(&iucv_sk_list.lock);
  672. sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name));
  673. while (__iucv_get_sock_by_name(name)) {
  674. sprintf(name, "%08x",
  675. atomic_inc_return(&iucv_sk_list.autobind_name));
  676. }
  677. write_unlock_bh(&iucv_sk_list.lock);
  678. memcpy(&iucv->src_name, name, 8);
  679. if (!iucv->msglimit)
  680. iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
  681. return err;
  682. }
  683. static int afiucv_path_connect(struct socket *sock, struct sockaddr *addr)
  684. {
  685. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  686. struct sock *sk = sock->sk;
  687. struct iucv_sock *iucv = iucv_sk(sk);
  688. unsigned char user_data[16];
  689. int err;
  690. high_nmcpy(user_data, sa->siucv_name);
  691. low_nmcpy(user_data, iucv->src_name);
  692. ASCEBC(user_data, sizeof(user_data));
  693. /* Create path. */
  694. iucv->path = iucv_path_alloc(iucv->msglimit,
  695. IUCV_IPRMDATA, GFP_KERNEL);
  696. if (!iucv->path) {
  697. err = -ENOMEM;
  698. goto done;
  699. }
  700. err = pr_iucv->path_connect(iucv->path, &af_iucv_handler,
  701. sa->siucv_user_id, NULL, user_data,
  702. sk);
  703. if (err) {
  704. iucv_path_free(iucv->path);
  705. iucv->path = NULL;
  706. switch (err) {
  707. case 0x0b: /* Target communicator is not logged on */
  708. err = -ENETUNREACH;
  709. break;
  710. case 0x0d: /* Max connections for this guest exceeded */
  711. case 0x0e: /* Max connections for target guest exceeded */
  712. err = -EAGAIN;
  713. break;
  714. case 0x0f: /* Missing IUCV authorization */
  715. err = -EACCES;
  716. break;
  717. default:
  718. err = -ECONNREFUSED;
  719. break;
  720. }
  721. }
  722. done:
  723. return err;
  724. }
  725. /* Connect an unconnected socket */
  726. static int iucv_sock_connect(struct socket *sock, struct sockaddr *addr,
  727. int alen, int flags)
  728. {
  729. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  730. struct sock *sk = sock->sk;
  731. struct iucv_sock *iucv = iucv_sk(sk);
  732. int err;
  733. if (addr->sa_family != AF_IUCV || alen < sizeof(struct sockaddr_iucv))
  734. return -EINVAL;
  735. if (sk->sk_state != IUCV_OPEN && sk->sk_state != IUCV_BOUND)
  736. return -EBADFD;
  737. if (sk->sk_state == IUCV_OPEN &&
  738. iucv->transport == AF_IUCV_TRANS_HIPER)
  739. return -EBADFD; /* explicit bind required */
  740. if (sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_SEQPACKET)
  741. return -EINVAL;
  742. if (sk->sk_state == IUCV_OPEN) {
  743. err = iucv_sock_autobind(sk);
  744. if (unlikely(err))
  745. return err;
  746. }
  747. lock_sock(sk);
  748. /* Set the destination information */
  749. memcpy(iucv->dst_user_id, sa->siucv_user_id, 8);
  750. memcpy(iucv->dst_name, sa->siucv_name, 8);
  751. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  752. err = iucv_send_ctrl(sock->sk, AF_IUCV_FLAG_SYN);
  753. else
  754. err = afiucv_path_connect(sock, addr);
  755. if (err)
  756. goto done;
  757. if (sk->sk_state != IUCV_CONNECTED)
  758. err = iucv_sock_wait(sk, iucv_sock_in_state(sk, IUCV_CONNECTED,
  759. IUCV_DISCONN),
  760. sock_sndtimeo(sk, flags & O_NONBLOCK));
  761. if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_CLOSED)
  762. err = -ECONNREFUSED;
  763. if (err && iucv->transport == AF_IUCV_TRANS_IUCV)
  764. iucv_sever_path(sk, 0);
  765. done:
  766. release_sock(sk);
  767. return err;
  768. }
  769. /* Move a socket into listening state. */
  770. static int iucv_sock_listen(struct socket *sock, int backlog)
  771. {
  772. struct sock *sk = sock->sk;
  773. int err;
  774. lock_sock(sk);
  775. err = -EINVAL;
  776. if (sk->sk_state != IUCV_BOUND)
  777. goto done;
  778. if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
  779. goto done;
  780. sk->sk_max_ack_backlog = backlog;
  781. sk->sk_ack_backlog = 0;
  782. sk->sk_state = IUCV_LISTEN;
  783. err = 0;
  784. done:
  785. release_sock(sk);
  786. return err;
  787. }
  788. /* Accept a pending connection */
  789. static int iucv_sock_accept(struct socket *sock, struct socket *newsock,
  790. int flags)
  791. {
  792. DECLARE_WAITQUEUE(wait, current);
  793. struct sock *sk = sock->sk, *nsk;
  794. long timeo;
  795. int err = 0;
  796. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  797. if (sk->sk_state != IUCV_LISTEN) {
  798. err = -EBADFD;
  799. goto done;
  800. }
  801. timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
  802. /* Wait for an incoming connection */
  803. add_wait_queue_exclusive(sk_sleep(sk), &wait);
  804. while (!(nsk = iucv_accept_dequeue(sk, newsock))) {
  805. set_current_state(TASK_INTERRUPTIBLE);
  806. if (!timeo) {
  807. err = -EAGAIN;
  808. break;
  809. }
  810. release_sock(sk);
  811. timeo = schedule_timeout(timeo);
  812. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  813. if (sk->sk_state != IUCV_LISTEN) {
  814. err = -EBADFD;
  815. break;
  816. }
  817. if (signal_pending(current)) {
  818. err = sock_intr_errno(timeo);
  819. break;
  820. }
  821. }
  822. set_current_state(TASK_RUNNING);
  823. remove_wait_queue(sk_sleep(sk), &wait);
  824. if (err)
  825. goto done;
  826. newsock->state = SS_CONNECTED;
  827. done:
  828. release_sock(sk);
  829. return err;
  830. }
  831. static int iucv_sock_getname(struct socket *sock, struct sockaddr *addr,
  832. int *len, int peer)
  833. {
  834. struct sockaddr_iucv *siucv = (struct sockaddr_iucv *) addr;
  835. struct sock *sk = sock->sk;
  836. struct iucv_sock *iucv = iucv_sk(sk);
  837. addr->sa_family = AF_IUCV;
  838. *len = sizeof(struct sockaddr_iucv);
  839. if (peer) {
  840. memcpy(siucv->siucv_user_id, iucv->dst_user_id, 8);
  841. memcpy(siucv->siucv_name, iucv->dst_name, 8);
  842. } else {
  843. memcpy(siucv->siucv_user_id, iucv->src_user_id, 8);
  844. memcpy(siucv->siucv_name, iucv->src_name, 8);
  845. }
  846. memset(&siucv->siucv_port, 0, sizeof(siucv->siucv_port));
  847. memset(&siucv->siucv_addr, 0, sizeof(siucv->siucv_addr));
  848. memset(&siucv->siucv_nodeid, 0, sizeof(siucv->siucv_nodeid));
  849. return 0;
  850. }
  851. /**
  852. * iucv_send_iprm() - Send socket data in parameter list of an iucv message.
  853. * @path: IUCV path
  854. * @msg: Pointer to a struct iucv_message
  855. * @skb: The socket data to send, skb->len MUST BE <= 7
  856. *
  857. * Send the socket data in the parameter list in the iucv message
  858. * (IUCV_IPRMDATA). The socket data is stored at index 0 to 6 in the parameter
  859. * list and the socket data len at index 7 (last byte).
  860. * See also iucv_msg_length().
  861. *
  862. * Returns the error code from the iucv_message_send() call.
  863. */
  864. static int iucv_send_iprm(struct iucv_path *path, struct iucv_message *msg,
  865. struct sk_buff *skb)
  866. {
  867. u8 prmdata[8];
  868. memcpy(prmdata, (void *) skb->data, skb->len);
  869. prmdata[7] = 0xff - (u8) skb->len;
  870. return pr_iucv->message_send(path, msg, IUCV_IPRMDATA, 0,
  871. (void *) prmdata, 8);
  872. }
  873. static int iucv_sock_sendmsg(struct kiocb *iocb, struct socket *sock,
  874. struct msghdr *msg, size_t len)
  875. {
  876. struct sock *sk = sock->sk;
  877. struct iucv_sock *iucv = iucv_sk(sk);
  878. struct sk_buff *skb;
  879. struct iucv_message txmsg;
  880. struct cmsghdr *cmsg;
  881. int cmsg_done;
  882. long timeo;
  883. char user_id[9];
  884. char appl_id[9];
  885. int err;
  886. int noblock = msg->msg_flags & MSG_DONTWAIT;
  887. err = sock_error(sk);
  888. if (err)
  889. return err;
  890. if (msg->msg_flags & MSG_OOB)
  891. return -EOPNOTSUPP;
  892. /* SOCK_SEQPACKET: we do not support segmented records */
  893. if (sk->sk_type == SOCK_SEQPACKET && !(msg->msg_flags & MSG_EOR))
  894. return -EOPNOTSUPP;
  895. lock_sock(sk);
  896. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  897. err = -EPIPE;
  898. goto out;
  899. }
  900. /* Return if the socket is not in connected state */
  901. if (sk->sk_state != IUCV_CONNECTED) {
  902. err = -ENOTCONN;
  903. goto out;
  904. }
  905. /* initialize defaults */
  906. cmsg_done = 0; /* check for duplicate headers */
  907. txmsg.class = 0;
  908. /* iterate over control messages */
  909. for (cmsg = CMSG_FIRSTHDR(msg); cmsg;
  910. cmsg = CMSG_NXTHDR(msg, cmsg)) {
  911. if (!CMSG_OK(msg, cmsg)) {
  912. err = -EINVAL;
  913. goto out;
  914. }
  915. if (cmsg->cmsg_level != SOL_IUCV)
  916. continue;
  917. if (cmsg->cmsg_type & cmsg_done) {
  918. err = -EINVAL;
  919. goto out;
  920. }
  921. cmsg_done |= cmsg->cmsg_type;
  922. switch (cmsg->cmsg_type) {
  923. case SCM_IUCV_TRGCLS:
  924. if (cmsg->cmsg_len != CMSG_LEN(TRGCLS_SIZE)) {
  925. err = -EINVAL;
  926. goto out;
  927. }
  928. /* set iucv message target class */
  929. memcpy(&txmsg.class,
  930. (void *) CMSG_DATA(cmsg), TRGCLS_SIZE);
  931. break;
  932. default:
  933. err = -EINVAL;
  934. goto out;
  935. break;
  936. }
  937. }
  938. /* allocate one skb for each iucv message:
  939. * this is fine for SOCK_SEQPACKET (unless we want to support
  940. * segmented records using the MSG_EOR flag), but
  941. * for SOCK_STREAM we might want to improve it in future */
  942. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  943. skb = sock_alloc_send_skb(sk,
  944. len + sizeof(struct af_iucv_trans_hdr) + ETH_HLEN,
  945. noblock, &err);
  946. else
  947. skb = sock_alloc_send_skb(sk, len, noblock, &err);
  948. if (!skb) {
  949. err = -ENOMEM;
  950. goto out;
  951. }
  952. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  953. skb_reserve(skb, sizeof(struct af_iucv_trans_hdr) + ETH_HLEN);
  954. if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
  955. err = -EFAULT;
  956. goto fail;
  957. }
  958. /* wait if outstanding messages for iucv path has reached */
  959. timeo = sock_sndtimeo(sk, noblock);
  960. err = iucv_sock_wait(sk, iucv_below_msglim(sk), timeo);
  961. if (err)
  962. goto fail;
  963. /* return -ECONNRESET if the socket is no longer connected */
  964. if (sk->sk_state != IUCV_CONNECTED) {
  965. err = -ECONNRESET;
  966. goto fail;
  967. }
  968. /* increment and save iucv message tag for msg_completion cbk */
  969. txmsg.tag = iucv->send_tag++;
  970. memcpy(CB_TAG(skb), &txmsg.tag, CB_TAG_LEN);
  971. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  972. atomic_inc(&iucv->msg_sent);
  973. err = afiucv_hs_send(&txmsg, sk, skb, 0);
  974. if (err) {
  975. atomic_dec(&iucv->msg_sent);
  976. goto fail;
  977. }
  978. goto release;
  979. }
  980. skb_queue_tail(&iucv->send_skb_q, skb);
  981. if (((iucv->path->flags & IUCV_IPRMDATA) & iucv->flags)
  982. && skb->len <= 7) {
  983. err = iucv_send_iprm(iucv->path, &txmsg, skb);
  984. /* on success: there is no message_complete callback
  985. * for an IPRMDATA msg; remove skb from send queue */
  986. if (err == 0) {
  987. skb_unlink(skb, &iucv->send_skb_q);
  988. kfree_skb(skb);
  989. }
  990. /* this error should never happen since the
  991. * IUCV_IPRMDATA path flag is set... sever path */
  992. if (err == 0x15) {
  993. pr_iucv->path_sever(iucv->path, NULL);
  994. skb_unlink(skb, &iucv->send_skb_q);
  995. err = -EPIPE;
  996. goto fail;
  997. }
  998. } else
  999. err = pr_iucv->message_send(iucv->path, &txmsg, 0, 0,
  1000. (void *) skb->data, skb->len);
  1001. if (err) {
  1002. if (err == 3) {
  1003. user_id[8] = 0;
  1004. memcpy(user_id, iucv->dst_user_id, 8);
  1005. appl_id[8] = 0;
  1006. memcpy(appl_id, iucv->dst_name, 8);
  1007. pr_err("Application %s on z/VM guest %s"
  1008. " exceeds message limit\n",
  1009. appl_id, user_id);
  1010. err = -EAGAIN;
  1011. } else
  1012. err = -EPIPE;
  1013. skb_unlink(skb, &iucv->send_skb_q);
  1014. goto fail;
  1015. }
  1016. release:
  1017. release_sock(sk);
  1018. return len;
  1019. fail:
  1020. kfree_skb(skb);
  1021. out:
  1022. release_sock(sk);
  1023. return err;
  1024. }
  1025. /* iucv_fragment_skb() - Fragment a single IUCV message into multiple skb's
  1026. *
  1027. * Locking: must be called with message_q.lock held
  1028. */
  1029. static int iucv_fragment_skb(struct sock *sk, struct sk_buff *skb, int len)
  1030. {
  1031. int dataleft, size, copied = 0;
  1032. struct sk_buff *nskb;
  1033. dataleft = len;
  1034. while (dataleft) {
  1035. if (dataleft >= sk->sk_rcvbuf / 4)
  1036. size = sk->sk_rcvbuf / 4;
  1037. else
  1038. size = dataleft;
  1039. nskb = alloc_skb(size, GFP_ATOMIC | GFP_DMA);
  1040. if (!nskb)
  1041. return -ENOMEM;
  1042. /* copy target class to control buffer of new skb */
  1043. memcpy(CB_TRGCLS(nskb), CB_TRGCLS(skb), CB_TRGCLS_LEN);
  1044. /* copy data fragment */
  1045. memcpy(nskb->data, skb->data + copied, size);
  1046. copied += size;
  1047. dataleft -= size;
  1048. skb_reset_transport_header(nskb);
  1049. skb_reset_network_header(nskb);
  1050. nskb->len = size;
  1051. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, nskb);
  1052. }
  1053. return 0;
  1054. }
  1055. /* iucv_process_message() - Receive a single outstanding IUCV message
  1056. *
  1057. * Locking: must be called with message_q.lock held
  1058. */
  1059. static void iucv_process_message(struct sock *sk, struct sk_buff *skb,
  1060. struct iucv_path *path,
  1061. struct iucv_message *msg)
  1062. {
  1063. int rc;
  1064. unsigned int len;
  1065. len = iucv_msg_length(msg);
  1066. /* store msg target class in the second 4 bytes of skb ctrl buffer */
  1067. /* Note: the first 4 bytes are reserved for msg tag */
  1068. memcpy(CB_TRGCLS(skb), &msg->class, CB_TRGCLS_LEN);
  1069. /* check for special IPRM messages (e.g. iucv_sock_shutdown) */
  1070. if ((msg->flags & IUCV_IPRMDATA) && len > 7) {
  1071. if (memcmp(msg->rmmsg, iprm_shutdown, 8) == 0) {
  1072. skb->data = NULL;
  1073. skb->len = 0;
  1074. }
  1075. } else {
  1076. rc = pr_iucv->message_receive(path, msg,
  1077. msg->flags & IUCV_IPRMDATA,
  1078. skb->data, len, NULL);
  1079. if (rc) {
  1080. kfree_skb(skb);
  1081. return;
  1082. }
  1083. /* we need to fragment iucv messages for SOCK_STREAM only;
  1084. * for SOCK_SEQPACKET, it is only relevant if we support
  1085. * record segmentation using MSG_EOR (see also recvmsg()) */
  1086. if (sk->sk_type == SOCK_STREAM &&
  1087. skb->truesize >= sk->sk_rcvbuf / 4) {
  1088. rc = iucv_fragment_skb(sk, skb, len);
  1089. kfree_skb(skb);
  1090. skb = NULL;
  1091. if (rc) {
  1092. pr_iucv->path_sever(path, NULL);
  1093. return;
  1094. }
  1095. skb = skb_dequeue(&iucv_sk(sk)->backlog_skb_q);
  1096. } else {
  1097. skb_reset_transport_header(skb);
  1098. skb_reset_network_header(skb);
  1099. skb->len = len;
  1100. }
  1101. }
  1102. if (sock_queue_rcv_skb(sk, skb))
  1103. skb_queue_head(&iucv_sk(sk)->backlog_skb_q, skb);
  1104. }
  1105. /* iucv_process_message_q() - Process outstanding IUCV messages
  1106. *
  1107. * Locking: must be called with message_q.lock held
  1108. */
  1109. static void iucv_process_message_q(struct sock *sk)
  1110. {
  1111. struct iucv_sock *iucv = iucv_sk(sk);
  1112. struct sk_buff *skb;
  1113. struct sock_msg_q *p, *n;
  1114. list_for_each_entry_safe(p, n, &iucv->message_q.list, list) {
  1115. skb = alloc_skb(iucv_msg_length(&p->msg), GFP_ATOMIC | GFP_DMA);
  1116. if (!skb)
  1117. break;
  1118. iucv_process_message(sk, skb, p->path, &p->msg);
  1119. list_del(&p->list);
  1120. kfree(p);
  1121. if (!skb_queue_empty(&iucv->backlog_skb_q))
  1122. break;
  1123. }
  1124. }
  1125. static int iucv_sock_recvmsg(struct kiocb *iocb, struct socket *sock,
  1126. struct msghdr *msg, size_t len, int flags)
  1127. {
  1128. int noblock = flags & MSG_DONTWAIT;
  1129. struct sock *sk = sock->sk;
  1130. struct iucv_sock *iucv = iucv_sk(sk);
  1131. unsigned int copied, rlen;
  1132. struct sk_buff *skb, *rskb, *cskb;
  1133. int err = 0;
  1134. if ((sk->sk_state == IUCV_DISCONN) &&
  1135. skb_queue_empty(&iucv->backlog_skb_q) &&
  1136. skb_queue_empty(&sk->sk_receive_queue) &&
  1137. list_empty(&iucv->message_q.list))
  1138. return 0;
  1139. if (flags & (MSG_OOB))
  1140. return -EOPNOTSUPP;
  1141. /* receive/dequeue next skb:
  1142. * the function understands MSG_PEEK and, thus, does not dequeue skb */
  1143. skb = skb_recv_datagram(sk, flags, noblock, &err);
  1144. if (!skb) {
  1145. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1146. return 0;
  1147. return err;
  1148. }
  1149. rlen = skb->len; /* real length of skb */
  1150. copied = min_t(unsigned int, rlen, len);
  1151. cskb = skb;
  1152. if (skb_copy_datagram_iovec(cskb, 0, msg->msg_iov, copied)) {
  1153. if (!(flags & MSG_PEEK))
  1154. skb_queue_head(&sk->sk_receive_queue, skb);
  1155. return -EFAULT;
  1156. }
  1157. /* SOCK_SEQPACKET: set MSG_TRUNC if recv buf size is too small */
  1158. if (sk->sk_type == SOCK_SEQPACKET) {
  1159. if (copied < rlen)
  1160. msg->msg_flags |= MSG_TRUNC;
  1161. /* each iucv message contains a complete record */
  1162. msg->msg_flags |= MSG_EOR;
  1163. }
  1164. /* create control message to store iucv msg target class:
  1165. * get the trgcls from the control buffer of the skb due to
  1166. * fragmentation of original iucv message. */
  1167. err = put_cmsg(msg, SOL_IUCV, SCM_IUCV_TRGCLS,
  1168. CB_TRGCLS_LEN, CB_TRGCLS(skb));
  1169. if (err) {
  1170. if (!(flags & MSG_PEEK))
  1171. skb_queue_head(&sk->sk_receive_queue, skb);
  1172. return err;
  1173. }
  1174. /* Mark read part of skb as used */
  1175. if (!(flags & MSG_PEEK)) {
  1176. /* SOCK_STREAM: re-queue skb if it contains unreceived data */
  1177. if (sk->sk_type == SOCK_STREAM) {
  1178. skb_pull(skb, copied);
  1179. if (skb->len) {
  1180. skb_queue_head(&sk->sk_receive_queue, skb);
  1181. goto done;
  1182. }
  1183. }
  1184. kfree_skb(skb);
  1185. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  1186. atomic_inc(&iucv->msg_recv);
  1187. if (atomic_read(&iucv->msg_recv) > iucv->msglimit) {
  1188. WARN_ON(1);
  1189. iucv_sock_close(sk);
  1190. return -EFAULT;
  1191. }
  1192. }
  1193. /* Queue backlog skbs */
  1194. spin_lock_bh(&iucv->message_q.lock);
  1195. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1196. while (rskb) {
  1197. if (sock_queue_rcv_skb(sk, rskb)) {
  1198. skb_queue_head(&iucv->backlog_skb_q,
  1199. rskb);
  1200. break;
  1201. } else {
  1202. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1203. }
  1204. }
  1205. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1206. if (!list_empty(&iucv->message_q.list))
  1207. iucv_process_message_q(sk);
  1208. if (atomic_read(&iucv->msg_recv) >=
  1209. iucv->msglimit / 2) {
  1210. err = iucv_send_ctrl(sk, AF_IUCV_FLAG_WIN);
  1211. if (err) {
  1212. sk->sk_state = IUCV_DISCONN;
  1213. sk->sk_state_change(sk);
  1214. }
  1215. }
  1216. }
  1217. spin_unlock_bh(&iucv->message_q.lock);
  1218. }
  1219. done:
  1220. /* SOCK_SEQPACKET: return real length if MSG_TRUNC is set */
  1221. if (sk->sk_type == SOCK_SEQPACKET && (flags & MSG_TRUNC))
  1222. copied = rlen;
  1223. return copied;
  1224. }
  1225. static inline unsigned int iucv_accept_poll(struct sock *parent)
  1226. {
  1227. struct iucv_sock *isk, *n;
  1228. struct sock *sk;
  1229. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  1230. sk = (struct sock *) isk;
  1231. if (sk->sk_state == IUCV_CONNECTED)
  1232. return POLLIN | POLLRDNORM;
  1233. }
  1234. return 0;
  1235. }
  1236. unsigned int iucv_sock_poll(struct file *file, struct socket *sock,
  1237. poll_table *wait)
  1238. {
  1239. struct sock *sk = sock->sk;
  1240. unsigned int mask = 0;
  1241. sock_poll_wait(file, sk_sleep(sk), wait);
  1242. if (sk->sk_state == IUCV_LISTEN)
  1243. return iucv_accept_poll(sk);
  1244. if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
  1245. mask |= POLLERR;
  1246. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1247. mask |= POLLRDHUP;
  1248. if (sk->sk_shutdown == SHUTDOWN_MASK)
  1249. mask |= POLLHUP;
  1250. if (!skb_queue_empty(&sk->sk_receive_queue) ||
  1251. (sk->sk_shutdown & RCV_SHUTDOWN))
  1252. mask |= POLLIN | POLLRDNORM;
  1253. if (sk->sk_state == IUCV_CLOSED)
  1254. mask |= POLLHUP;
  1255. if (sk->sk_state == IUCV_DISCONN)
  1256. mask |= POLLIN;
  1257. if (sock_writeable(sk) && iucv_below_msglim(sk))
  1258. mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
  1259. else
  1260. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1261. return mask;
  1262. }
  1263. static int iucv_sock_shutdown(struct socket *sock, int how)
  1264. {
  1265. struct sock *sk = sock->sk;
  1266. struct iucv_sock *iucv = iucv_sk(sk);
  1267. struct iucv_message txmsg;
  1268. int err = 0;
  1269. how++;
  1270. if ((how & ~SHUTDOWN_MASK) || !how)
  1271. return -EINVAL;
  1272. lock_sock(sk);
  1273. switch (sk->sk_state) {
  1274. case IUCV_DISCONN:
  1275. case IUCV_CLOSING:
  1276. case IUCV_CLOSED:
  1277. err = -ENOTCONN;
  1278. goto fail;
  1279. default:
  1280. sk->sk_shutdown |= how;
  1281. break;
  1282. }
  1283. if (how == SEND_SHUTDOWN || how == SHUTDOWN_MASK) {
  1284. txmsg.class = 0;
  1285. txmsg.tag = 0;
  1286. err = pr_iucv->message_send(iucv->path, &txmsg, IUCV_IPRMDATA,
  1287. 0, (void *) iprm_shutdown, 8);
  1288. if (err) {
  1289. switch (err) {
  1290. case 1:
  1291. err = -ENOTCONN;
  1292. break;
  1293. case 2:
  1294. err = -ECONNRESET;
  1295. break;
  1296. default:
  1297. err = -ENOTCONN;
  1298. break;
  1299. }
  1300. }
  1301. }
  1302. if (how == RCV_SHUTDOWN || how == SHUTDOWN_MASK) {
  1303. err = pr_iucv->path_quiesce(iucv->path, NULL);
  1304. if (err)
  1305. err = -ENOTCONN;
  1306. skb_queue_purge(&sk->sk_receive_queue);
  1307. }
  1308. /* Wake up anyone sleeping in poll */
  1309. sk->sk_state_change(sk);
  1310. fail:
  1311. release_sock(sk);
  1312. return err;
  1313. }
  1314. static int iucv_sock_release(struct socket *sock)
  1315. {
  1316. struct sock *sk = sock->sk;
  1317. int err = 0;
  1318. if (!sk)
  1319. return 0;
  1320. iucv_sock_close(sk);
  1321. sock_orphan(sk);
  1322. iucv_sock_kill(sk);
  1323. return err;
  1324. }
  1325. /* getsockopt and setsockopt */
  1326. static int iucv_sock_setsockopt(struct socket *sock, int level, int optname,
  1327. char __user *optval, unsigned int optlen)
  1328. {
  1329. struct sock *sk = sock->sk;
  1330. struct iucv_sock *iucv = iucv_sk(sk);
  1331. int val;
  1332. int rc;
  1333. if (level != SOL_IUCV)
  1334. return -ENOPROTOOPT;
  1335. if (optlen < sizeof(int))
  1336. return -EINVAL;
  1337. if (get_user(val, (int __user *) optval))
  1338. return -EFAULT;
  1339. rc = 0;
  1340. lock_sock(sk);
  1341. switch (optname) {
  1342. case SO_IPRMDATA_MSG:
  1343. if (val)
  1344. iucv->flags |= IUCV_IPRMDATA;
  1345. else
  1346. iucv->flags &= ~IUCV_IPRMDATA;
  1347. break;
  1348. case SO_MSGLIMIT:
  1349. switch (sk->sk_state) {
  1350. case IUCV_OPEN:
  1351. case IUCV_BOUND:
  1352. if (val < 1 || val > (u16)(~0))
  1353. rc = -EINVAL;
  1354. else
  1355. iucv->msglimit = val;
  1356. break;
  1357. default:
  1358. rc = -EINVAL;
  1359. break;
  1360. }
  1361. break;
  1362. default:
  1363. rc = -ENOPROTOOPT;
  1364. break;
  1365. }
  1366. release_sock(sk);
  1367. return rc;
  1368. }
  1369. static int iucv_sock_getsockopt(struct socket *sock, int level, int optname,
  1370. char __user *optval, int __user *optlen)
  1371. {
  1372. struct sock *sk = sock->sk;
  1373. struct iucv_sock *iucv = iucv_sk(sk);
  1374. unsigned int val;
  1375. int len;
  1376. if (level != SOL_IUCV)
  1377. return -ENOPROTOOPT;
  1378. if (get_user(len, optlen))
  1379. return -EFAULT;
  1380. if (len < 0)
  1381. return -EINVAL;
  1382. len = min_t(unsigned int, len, sizeof(int));
  1383. switch (optname) {
  1384. case SO_IPRMDATA_MSG:
  1385. val = (iucv->flags & IUCV_IPRMDATA) ? 1 : 0;
  1386. break;
  1387. case SO_MSGLIMIT:
  1388. lock_sock(sk);
  1389. val = (iucv->path != NULL) ? iucv->path->msglim /* connected */
  1390. : iucv->msglimit; /* default */
  1391. release_sock(sk);
  1392. break;
  1393. case SO_MSGSIZE:
  1394. if (sk->sk_state == IUCV_OPEN)
  1395. return -EBADFD;
  1396. val = (iucv->hs_dev) ? iucv->hs_dev->mtu -
  1397. sizeof(struct af_iucv_trans_hdr) - ETH_HLEN :
  1398. 0x7fffffff;
  1399. break;
  1400. default:
  1401. return -ENOPROTOOPT;
  1402. }
  1403. if (put_user(len, optlen))
  1404. return -EFAULT;
  1405. if (copy_to_user(optval, &val, len))
  1406. return -EFAULT;
  1407. return 0;
  1408. }
  1409. /* Callback wrappers - called from iucv base support */
  1410. static int iucv_callback_connreq(struct iucv_path *path,
  1411. u8 ipvmid[8], u8 ipuser[16])
  1412. {
  1413. unsigned char user_data[16];
  1414. unsigned char nuser_data[16];
  1415. unsigned char src_name[8];
  1416. struct hlist_node *node;
  1417. struct sock *sk, *nsk;
  1418. struct iucv_sock *iucv, *niucv;
  1419. int err;
  1420. memcpy(src_name, ipuser, 8);
  1421. EBCASC(src_name, 8);
  1422. /* Find out if this path belongs to af_iucv. */
  1423. read_lock(&iucv_sk_list.lock);
  1424. iucv = NULL;
  1425. sk = NULL;
  1426. sk_for_each(sk, node, &iucv_sk_list.head)
  1427. if (sk->sk_state == IUCV_LISTEN &&
  1428. !memcmp(&iucv_sk(sk)->src_name, src_name, 8)) {
  1429. /*
  1430. * Found a listening socket with
  1431. * src_name == ipuser[0-7].
  1432. */
  1433. iucv = iucv_sk(sk);
  1434. break;
  1435. }
  1436. read_unlock(&iucv_sk_list.lock);
  1437. if (!iucv)
  1438. /* No socket found, not one of our paths. */
  1439. return -EINVAL;
  1440. bh_lock_sock(sk);
  1441. /* Check if parent socket is listening */
  1442. low_nmcpy(user_data, iucv->src_name);
  1443. high_nmcpy(user_data, iucv->dst_name);
  1444. ASCEBC(user_data, sizeof(user_data));
  1445. if (sk->sk_state != IUCV_LISTEN) {
  1446. err = pr_iucv->path_sever(path, user_data);
  1447. iucv_path_free(path);
  1448. goto fail;
  1449. }
  1450. /* Check for backlog size */
  1451. if (sk_acceptq_is_full(sk)) {
  1452. err = pr_iucv->path_sever(path, user_data);
  1453. iucv_path_free(path);
  1454. goto fail;
  1455. }
  1456. /* Create the new socket */
  1457. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC);
  1458. if (!nsk) {
  1459. err = pr_iucv->path_sever(path, user_data);
  1460. iucv_path_free(path);
  1461. goto fail;
  1462. }
  1463. niucv = iucv_sk(nsk);
  1464. iucv_sock_init(nsk, sk);
  1465. /* Set the new iucv_sock */
  1466. memcpy(niucv->dst_name, ipuser + 8, 8);
  1467. EBCASC(niucv->dst_name, 8);
  1468. memcpy(niucv->dst_user_id, ipvmid, 8);
  1469. memcpy(niucv->src_name, iucv->src_name, 8);
  1470. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1471. niucv->path = path;
  1472. /* Call iucv_accept */
  1473. high_nmcpy(nuser_data, ipuser + 8);
  1474. memcpy(nuser_data + 8, niucv->src_name, 8);
  1475. ASCEBC(nuser_data + 8, 8);
  1476. /* set message limit for path based on msglimit of accepting socket */
  1477. niucv->msglimit = iucv->msglimit;
  1478. path->msglim = iucv->msglimit;
  1479. err = pr_iucv->path_accept(path, &af_iucv_handler, nuser_data, nsk);
  1480. if (err) {
  1481. iucv_sever_path(nsk, 1);
  1482. iucv_sock_kill(nsk);
  1483. goto fail;
  1484. }
  1485. iucv_accept_enqueue(sk, nsk);
  1486. /* Wake up accept */
  1487. nsk->sk_state = IUCV_CONNECTED;
  1488. sk->sk_data_ready(sk, 1);
  1489. err = 0;
  1490. fail:
  1491. bh_unlock_sock(sk);
  1492. return 0;
  1493. }
  1494. static void iucv_callback_connack(struct iucv_path *path, u8 ipuser[16])
  1495. {
  1496. struct sock *sk = path->private;
  1497. sk->sk_state = IUCV_CONNECTED;
  1498. sk->sk_state_change(sk);
  1499. }
  1500. static void iucv_callback_rx(struct iucv_path *path, struct iucv_message *msg)
  1501. {
  1502. struct sock *sk = path->private;
  1503. struct iucv_sock *iucv = iucv_sk(sk);
  1504. struct sk_buff *skb;
  1505. struct sock_msg_q *save_msg;
  1506. int len;
  1507. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1508. pr_iucv->message_reject(path, msg);
  1509. return;
  1510. }
  1511. spin_lock(&iucv->message_q.lock);
  1512. if (!list_empty(&iucv->message_q.list) ||
  1513. !skb_queue_empty(&iucv->backlog_skb_q))
  1514. goto save_message;
  1515. len = atomic_read(&sk->sk_rmem_alloc);
  1516. len += SKB_TRUESIZE(iucv_msg_length(msg));
  1517. if (len > sk->sk_rcvbuf)
  1518. goto save_message;
  1519. skb = alloc_skb(iucv_msg_length(msg), GFP_ATOMIC | GFP_DMA);
  1520. if (!skb)
  1521. goto save_message;
  1522. iucv_process_message(sk, skb, path, msg);
  1523. goto out_unlock;
  1524. save_message:
  1525. save_msg = kzalloc(sizeof(struct sock_msg_q), GFP_ATOMIC | GFP_DMA);
  1526. if (!save_msg)
  1527. goto out_unlock;
  1528. save_msg->path = path;
  1529. save_msg->msg = *msg;
  1530. list_add_tail(&save_msg->list, &iucv->message_q.list);
  1531. out_unlock:
  1532. spin_unlock(&iucv->message_q.lock);
  1533. }
  1534. static void iucv_callback_txdone(struct iucv_path *path,
  1535. struct iucv_message *msg)
  1536. {
  1537. struct sock *sk = path->private;
  1538. struct sk_buff *this = NULL;
  1539. struct sk_buff_head *list = &iucv_sk(sk)->send_skb_q;
  1540. struct sk_buff *list_skb = list->next;
  1541. unsigned long flags;
  1542. bh_lock_sock(sk);
  1543. if (!skb_queue_empty(list)) {
  1544. spin_lock_irqsave(&list->lock, flags);
  1545. while (list_skb != (struct sk_buff *)list) {
  1546. if (!memcmp(&msg->tag, CB_TAG(list_skb), CB_TAG_LEN)) {
  1547. this = list_skb;
  1548. break;
  1549. }
  1550. list_skb = list_skb->next;
  1551. }
  1552. if (this)
  1553. __skb_unlink(this, list);
  1554. spin_unlock_irqrestore(&list->lock, flags);
  1555. if (this) {
  1556. kfree_skb(this);
  1557. /* wake up any process waiting for sending */
  1558. iucv_sock_wake_msglim(sk);
  1559. }
  1560. }
  1561. if (sk->sk_state == IUCV_CLOSING) {
  1562. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  1563. sk->sk_state = IUCV_CLOSED;
  1564. sk->sk_state_change(sk);
  1565. }
  1566. }
  1567. bh_unlock_sock(sk);
  1568. }
  1569. static void iucv_callback_connrej(struct iucv_path *path, u8 ipuser[16])
  1570. {
  1571. struct sock *sk = path->private;
  1572. if (sk->sk_state == IUCV_CLOSED)
  1573. return;
  1574. bh_lock_sock(sk);
  1575. iucv_sever_path(sk, 1);
  1576. sk->sk_state = IUCV_DISCONN;
  1577. sk->sk_state_change(sk);
  1578. bh_unlock_sock(sk);
  1579. }
  1580. /* called if the other communication side shuts down its RECV direction;
  1581. * in turn, the callback sets SEND_SHUTDOWN to disable sending of data.
  1582. */
  1583. static void iucv_callback_shutdown(struct iucv_path *path, u8 ipuser[16])
  1584. {
  1585. struct sock *sk = path->private;
  1586. bh_lock_sock(sk);
  1587. if (sk->sk_state != IUCV_CLOSED) {
  1588. sk->sk_shutdown |= SEND_SHUTDOWN;
  1589. sk->sk_state_change(sk);
  1590. }
  1591. bh_unlock_sock(sk);
  1592. }
  1593. /***************** HiperSockets transport callbacks ********************/
  1594. static void afiucv_swap_src_dest(struct sk_buff *skb)
  1595. {
  1596. struct af_iucv_trans_hdr *trans_hdr =
  1597. (struct af_iucv_trans_hdr *)skb->data;
  1598. char tmpID[8];
  1599. char tmpName[8];
  1600. ASCEBC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
  1601. ASCEBC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
  1602. ASCEBC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
  1603. ASCEBC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
  1604. memcpy(tmpID, trans_hdr->srcUserID, 8);
  1605. memcpy(tmpName, trans_hdr->srcAppName, 8);
  1606. memcpy(trans_hdr->srcUserID, trans_hdr->destUserID, 8);
  1607. memcpy(trans_hdr->srcAppName, trans_hdr->destAppName, 8);
  1608. memcpy(trans_hdr->destUserID, tmpID, 8);
  1609. memcpy(trans_hdr->destAppName, tmpName, 8);
  1610. skb_push(skb, ETH_HLEN);
  1611. memset(skb->data, 0, ETH_HLEN);
  1612. }
  1613. /**
  1614. * afiucv_hs_callback_syn - react on received SYN
  1615. **/
  1616. static int afiucv_hs_callback_syn(struct sock *sk, struct sk_buff *skb)
  1617. {
  1618. struct sock *nsk;
  1619. struct iucv_sock *iucv, *niucv;
  1620. struct af_iucv_trans_hdr *trans_hdr;
  1621. int err;
  1622. iucv = iucv_sk(sk);
  1623. trans_hdr = (struct af_iucv_trans_hdr *)skb->data;
  1624. if (!iucv) {
  1625. /* no sock - connection refused */
  1626. afiucv_swap_src_dest(skb);
  1627. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
  1628. err = dev_queue_xmit(skb);
  1629. goto out;
  1630. }
  1631. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC);
  1632. bh_lock_sock(sk);
  1633. if ((sk->sk_state != IUCV_LISTEN) ||
  1634. sk_acceptq_is_full(sk) ||
  1635. !nsk) {
  1636. /* error on server socket - connection refused */
  1637. if (nsk)
  1638. sk_free(nsk);
  1639. afiucv_swap_src_dest(skb);
  1640. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
  1641. err = dev_queue_xmit(skb);
  1642. bh_unlock_sock(sk);
  1643. goto out;
  1644. }
  1645. niucv = iucv_sk(nsk);
  1646. iucv_sock_init(nsk, sk);
  1647. niucv->transport = AF_IUCV_TRANS_HIPER;
  1648. niucv->msglimit = iucv->msglimit;
  1649. if (!trans_hdr->window)
  1650. niucv->msglimit_peer = IUCV_HIPER_MSGLIM_DEFAULT;
  1651. else
  1652. niucv->msglimit_peer = trans_hdr->window;
  1653. memcpy(niucv->dst_name, trans_hdr->srcAppName, 8);
  1654. memcpy(niucv->dst_user_id, trans_hdr->srcUserID, 8);
  1655. memcpy(niucv->src_name, iucv->src_name, 8);
  1656. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1657. nsk->sk_bound_dev_if = sk->sk_bound_dev_if;
  1658. niucv->hs_dev = iucv->hs_dev;
  1659. dev_hold(niucv->hs_dev);
  1660. afiucv_swap_src_dest(skb);
  1661. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK;
  1662. trans_hdr->window = niucv->msglimit;
  1663. /* if receiver acks the xmit connection is established */
  1664. err = dev_queue_xmit(skb);
  1665. if (!err) {
  1666. iucv_accept_enqueue(sk, nsk);
  1667. nsk->sk_state = IUCV_CONNECTED;
  1668. sk->sk_data_ready(sk, 1);
  1669. } else
  1670. iucv_sock_kill(nsk);
  1671. bh_unlock_sock(sk);
  1672. out:
  1673. return NET_RX_SUCCESS;
  1674. }
  1675. /**
  1676. * afiucv_hs_callback_synack() - react on received SYN-ACK
  1677. **/
  1678. static int afiucv_hs_callback_synack(struct sock *sk, struct sk_buff *skb)
  1679. {
  1680. struct iucv_sock *iucv = iucv_sk(sk);
  1681. struct af_iucv_trans_hdr *trans_hdr =
  1682. (struct af_iucv_trans_hdr *)skb->data;
  1683. if (!iucv)
  1684. goto out;
  1685. if (sk->sk_state != IUCV_BOUND)
  1686. goto out;
  1687. bh_lock_sock(sk);
  1688. iucv->msglimit_peer = trans_hdr->window;
  1689. sk->sk_state = IUCV_CONNECTED;
  1690. sk->sk_state_change(sk);
  1691. bh_unlock_sock(sk);
  1692. out:
  1693. kfree_skb(skb);
  1694. return NET_RX_SUCCESS;
  1695. }
  1696. /**
  1697. * afiucv_hs_callback_synfin() - react on received SYN_FIN
  1698. **/
  1699. static int afiucv_hs_callback_synfin(struct sock *sk, struct sk_buff *skb)
  1700. {
  1701. struct iucv_sock *iucv = iucv_sk(sk);
  1702. if (!iucv)
  1703. goto out;
  1704. if (sk->sk_state != IUCV_BOUND)
  1705. goto out;
  1706. bh_lock_sock(sk);
  1707. sk->sk_state = IUCV_DISCONN;
  1708. sk->sk_state_change(sk);
  1709. bh_unlock_sock(sk);
  1710. out:
  1711. kfree_skb(skb);
  1712. return NET_RX_SUCCESS;
  1713. }
  1714. /**
  1715. * afiucv_hs_callback_fin() - react on received FIN
  1716. **/
  1717. static int afiucv_hs_callback_fin(struct sock *sk, struct sk_buff *skb)
  1718. {
  1719. struct iucv_sock *iucv = iucv_sk(sk);
  1720. /* other end of connection closed */
  1721. if (!iucv)
  1722. goto out;
  1723. bh_lock_sock(sk);
  1724. if (sk->sk_state == IUCV_CONNECTED) {
  1725. sk->sk_state = IUCV_DISCONN;
  1726. sk->sk_state_change(sk);
  1727. }
  1728. bh_unlock_sock(sk);
  1729. out:
  1730. kfree_skb(skb);
  1731. return NET_RX_SUCCESS;
  1732. }
  1733. /**
  1734. * afiucv_hs_callback_win() - react on received WIN
  1735. **/
  1736. static int afiucv_hs_callback_win(struct sock *sk, struct sk_buff *skb)
  1737. {
  1738. struct iucv_sock *iucv = iucv_sk(sk);
  1739. struct af_iucv_trans_hdr *trans_hdr =
  1740. (struct af_iucv_trans_hdr *)skb->data;
  1741. if (!iucv)
  1742. return NET_RX_SUCCESS;
  1743. if (sk->sk_state != IUCV_CONNECTED)
  1744. return NET_RX_SUCCESS;
  1745. atomic_sub(trans_hdr->window, &iucv->msg_sent);
  1746. iucv_sock_wake_msglim(sk);
  1747. return NET_RX_SUCCESS;
  1748. }
  1749. /**
  1750. * afiucv_hs_callback_rx() - react on received data
  1751. **/
  1752. static int afiucv_hs_callback_rx(struct sock *sk, struct sk_buff *skb)
  1753. {
  1754. struct iucv_sock *iucv = iucv_sk(sk);
  1755. if (!iucv) {
  1756. kfree_skb(skb);
  1757. return NET_RX_SUCCESS;
  1758. }
  1759. if (sk->sk_state != IUCV_CONNECTED) {
  1760. kfree_skb(skb);
  1761. return NET_RX_SUCCESS;
  1762. }
  1763. /* write stuff from iucv_msg to skb cb */
  1764. if (skb->len <= sizeof(struct af_iucv_trans_hdr)) {
  1765. kfree_skb(skb);
  1766. return NET_RX_SUCCESS;
  1767. }
  1768. skb_pull(skb, sizeof(struct af_iucv_trans_hdr));
  1769. skb_reset_transport_header(skb);
  1770. skb_reset_network_header(skb);
  1771. spin_lock(&iucv->message_q.lock);
  1772. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1773. if (sock_queue_rcv_skb(sk, skb)) {
  1774. /* handle rcv queue full */
  1775. skb_queue_tail(&iucv->backlog_skb_q, skb);
  1776. }
  1777. } else
  1778. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb);
  1779. spin_unlock(&iucv->message_q.lock);
  1780. return NET_RX_SUCCESS;
  1781. }
  1782. /**
  1783. * afiucv_hs_rcv() - base function for arriving data through HiperSockets
  1784. * transport
  1785. * called from netif RX softirq
  1786. **/
  1787. static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
  1788. struct packet_type *pt, struct net_device *orig_dev)
  1789. {
  1790. struct hlist_node *node;
  1791. struct sock *sk;
  1792. struct iucv_sock *iucv;
  1793. struct af_iucv_trans_hdr *trans_hdr;
  1794. char nullstring[8];
  1795. int err = 0;
  1796. skb_pull(skb, ETH_HLEN);
  1797. trans_hdr = (struct af_iucv_trans_hdr *)skb->data;
  1798. EBCASC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
  1799. EBCASC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
  1800. EBCASC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
  1801. EBCASC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
  1802. memset(nullstring, 0, sizeof(nullstring));
  1803. iucv = NULL;
  1804. sk = NULL;
  1805. read_lock(&iucv_sk_list.lock);
  1806. sk_for_each(sk, node, &iucv_sk_list.head) {
  1807. if (trans_hdr->flags == AF_IUCV_FLAG_SYN) {
  1808. if ((!memcmp(&iucv_sk(sk)->src_name,
  1809. trans_hdr->destAppName, 8)) &&
  1810. (!memcmp(&iucv_sk(sk)->src_user_id,
  1811. trans_hdr->destUserID, 8)) &&
  1812. (!memcmp(&iucv_sk(sk)->dst_name, nullstring, 8)) &&
  1813. (!memcmp(&iucv_sk(sk)->dst_user_id,
  1814. nullstring, 8))) {
  1815. iucv = iucv_sk(sk);
  1816. break;
  1817. }
  1818. } else {
  1819. if ((!memcmp(&iucv_sk(sk)->src_name,
  1820. trans_hdr->destAppName, 8)) &&
  1821. (!memcmp(&iucv_sk(sk)->src_user_id,
  1822. trans_hdr->destUserID, 8)) &&
  1823. (!memcmp(&iucv_sk(sk)->dst_name,
  1824. trans_hdr->srcAppName, 8)) &&
  1825. (!memcmp(&iucv_sk(sk)->dst_user_id,
  1826. trans_hdr->srcUserID, 8))) {
  1827. iucv = iucv_sk(sk);
  1828. break;
  1829. }
  1830. }
  1831. }
  1832. read_unlock(&iucv_sk_list.lock);
  1833. if (!iucv)
  1834. sk = NULL;
  1835. /* no sock
  1836. how should we send with no sock
  1837. 1) send without sock no send rc checking?
  1838. 2) introduce default sock to handle this cases
  1839. SYN -> send SYN|ACK in good case, send SYN|FIN in bad case
  1840. data -> send FIN
  1841. SYN|ACK, SYN|FIN, FIN -> no action? */
  1842. switch (trans_hdr->flags) {
  1843. case AF_IUCV_FLAG_SYN:
  1844. /* connect request */
  1845. err = afiucv_hs_callback_syn(sk, skb);
  1846. break;
  1847. case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK):
  1848. /* connect request confirmed */
  1849. err = afiucv_hs_callback_synack(sk, skb);
  1850. break;
  1851. case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN):
  1852. /* connect request refused */
  1853. err = afiucv_hs_callback_synfin(sk, skb);
  1854. break;
  1855. case (AF_IUCV_FLAG_FIN):
  1856. /* close request */
  1857. err = afiucv_hs_callback_fin(sk, skb);
  1858. break;
  1859. case (AF_IUCV_FLAG_WIN):
  1860. err = afiucv_hs_callback_win(sk, skb);
  1861. if (skb->len == sizeof(struct af_iucv_trans_hdr)) {
  1862. kfree_skb(skb);
  1863. break;
  1864. }
  1865. /* fall through */
  1866. case 0:
  1867. /* plain data frame */
  1868. memcpy(CB_TRGCLS(skb), &trans_hdr->iucv_hdr.class,
  1869. CB_TRGCLS_LEN);
  1870. err = afiucv_hs_callback_rx(sk, skb);
  1871. break;
  1872. default:
  1873. ;
  1874. }
  1875. return err;
  1876. }
  1877. /**
  1878. * afiucv_hs_callback_txnotify() - handle send notifcations from HiperSockets
  1879. * transport
  1880. **/
  1881. static void afiucv_hs_callback_txnotify(struct sk_buff *skb,
  1882. enum iucv_tx_notify n)
  1883. {
  1884. struct sock *isk = skb->sk;
  1885. struct sock *sk = NULL;
  1886. struct iucv_sock *iucv = NULL;
  1887. struct sk_buff_head *list;
  1888. struct sk_buff *list_skb;
  1889. struct sk_buff *nskb;
  1890. unsigned long flags;
  1891. struct hlist_node *node;
  1892. read_lock_irqsave(&iucv_sk_list.lock, flags);
  1893. sk_for_each(sk, node, &iucv_sk_list.head)
  1894. if (sk == isk) {
  1895. iucv = iucv_sk(sk);
  1896. break;
  1897. }
  1898. read_unlock_irqrestore(&iucv_sk_list.lock, flags);
  1899. if (!iucv || sock_flag(sk, SOCK_ZAPPED))
  1900. return;
  1901. list = &iucv->send_skb_q;
  1902. spin_lock_irqsave(&list->lock, flags);
  1903. if (skb_queue_empty(list))
  1904. goto out_unlock;
  1905. list_skb = list->next;
  1906. nskb = list_skb->next;
  1907. while (list_skb != (struct sk_buff *)list) {
  1908. if (skb_shinfo(list_skb) == skb_shinfo(skb)) {
  1909. switch (n) {
  1910. case TX_NOTIFY_OK:
  1911. __skb_unlink(list_skb, list);
  1912. kfree_skb(list_skb);
  1913. iucv_sock_wake_msglim(sk);
  1914. break;
  1915. case TX_NOTIFY_PENDING:
  1916. atomic_inc(&iucv->pendings);
  1917. break;
  1918. case TX_NOTIFY_DELAYED_OK:
  1919. __skb_unlink(list_skb, list);
  1920. atomic_dec(&iucv->pendings);
  1921. if (atomic_read(&iucv->pendings) <= 0)
  1922. iucv_sock_wake_msglim(sk);
  1923. kfree_skb(list_skb);
  1924. break;
  1925. case TX_NOTIFY_UNREACHABLE:
  1926. case TX_NOTIFY_DELAYED_UNREACHABLE:
  1927. case TX_NOTIFY_TPQFULL: /* not yet used */
  1928. case TX_NOTIFY_GENERALERROR:
  1929. case TX_NOTIFY_DELAYED_GENERALERROR:
  1930. __skb_unlink(list_skb, list);
  1931. kfree_skb(list_skb);
  1932. if (sk->sk_state == IUCV_CONNECTED) {
  1933. sk->sk_state = IUCV_DISCONN;
  1934. sk->sk_state_change(sk);
  1935. }
  1936. break;
  1937. }
  1938. break;
  1939. }
  1940. list_skb = nskb;
  1941. nskb = nskb->next;
  1942. }
  1943. out_unlock:
  1944. spin_unlock_irqrestore(&list->lock, flags);
  1945. if (sk->sk_state == IUCV_CLOSING) {
  1946. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  1947. sk->sk_state = IUCV_CLOSED;
  1948. sk->sk_state_change(sk);
  1949. }
  1950. }
  1951. }
  1952. /*
  1953. * afiucv_netdev_event: handle netdev notifier chain events
  1954. */
  1955. static int afiucv_netdev_event(struct notifier_block *this,
  1956. unsigned long event, void *ptr)
  1957. {
  1958. struct net_device *event_dev = (struct net_device *)ptr;
  1959. struct hlist_node *node;
  1960. struct sock *sk;
  1961. struct iucv_sock *iucv;
  1962. switch (event) {
  1963. case NETDEV_REBOOT:
  1964. case NETDEV_GOING_DOWN:
  1965. sk_for_each(sk, node, &iucv_sk_list.head) {
  1966. iucv = iucv_sk(sk);
  1967. if ((iucv->hs_dev == event_dev) &&
  1968. (sk->sk_state == IUCV_CONNECTED)) {
  1969. if (event == NETDEV_GOING_DOWN)
  1970. iucv_send_ctrl(sk, AF_IUCV_FLAG_FIN);
  1971. sk->sk_state = IUCV_DISCONN;
  1972. sk->sk_state_change(sk);
  1973. }
  1974. }
  1975. break;
  1976. case NETDEV_DOWN:
  1977. case NETDEV_UNREGISTER:
  1978. default:
  1979. break;
  1980. }
  1981. return NOTIFY_DONE;
  1982. }
  1983. static struct notifier_block afiucv_netdev_notifier = {
  1984. .notifier_call = afiucv_netdev_event,
  1985. };
  1986. static const struct proto_ops iucv_sock_ops = {
  1987. .family = PF_IUCV,
  1988. .owner = THIS_MODULE,
  1989. .release = iucv_sock_release,
  1990. .bind = iucv_sock_bind,
  1991. .connect = iucv_sock_connect,
  1992. .listen = iucv_sock_listen,
  1993. .accept = iucv_sock_accept,
  1994. .getname = iucv_sock_getname,
  1995. .sendmsg = iucv_sock_sendmsg,
  1996. .recvmsg = iucv_sock_recvmsg,
  1997. .poll = iucv_sock_poll,
  1998. .ioctl = sock_no_ioctl,
  1999. .mmap = sock_no_mmap,
  2000. .socketpair = sock_no_socketpair,
  2001. .shutdown = iucv_sock_shutdown,
  2002. .setsockopt = iucv_sock_setsockopt,
  2003. .getsockopt = iucv_sock_getsockopt,
  2004. };
  2005. static const struct net_proto_family iucv_sock_family_ops = {
  2006. .family = AF_IUCV,
  2007. .owner = THIS_MODULE,
  2008. .create = iucv_sock_create,
  2009. };
  2010. static struct packet_type iucv_packet_type = {
  2011. .type = cpu_to_be16(ETH_P_AF_IUCV),
  2012. .func = afiucv_hs_rcv,
  2013. };
  2014. static int afiucv_iucv_init(void)
  2015. {
  2016. int err;
  2017. err = pr_iucv->iucv_register(&af_iucv_handler, 0);
  2018. if (err)
  2019. goto out;
  2020. /* establish dummy device */
  2021. af_iucv_driver.bus = pr_iucv->bus;
  2022. err = driver_register(&af_iucv_driver);
  2023. if (err)
  2024. goto out_iucv;
  2025. af_iucv_dev = kzalloc(sizeof(struct device), GFP_KERNEL);
  2026. if (!af_iucv_dev) {
  2027. err = -ENOMEM;
  2028. goto out_driver;
  2029. }
  2030. dev_set_name(af_iucv_dev, "af_iucv");
  2031. af_iucv_dev->bus = pr_iucv->bus;
  2032. af_iucv_dev->parent = pr_iucv->root;
  2033. af_iucv_dev->release = (void (*)(struct device *))kfree;
  2034. af_iucv_dev->driver = &af_iucv_driver;
  2035. err = device_register(af_iucv_dev);
  2036. if (err)
  2037. goto out_driver;
  2038. return 0;
  2039. out_driver:
  2040. driver_unregister(&af_iucv_driver);
  2041. out_iucv:
  2042. pr_iucv->iucv_unregister(&af_iucv_handler, 0);
  2043. out:
  2044. return err;
  2045. }
  2046. static int __init afiucv_init(void)
  2047. {
  2048. int err;
  2049. if (MACHINE_IS_VM) {
  2050. cpcmd("QUERY USERID", iucv_userid, sizeof(iucv_userid), &err);
  2051. if (unlikely(err)) {
  2052. WARN_ON(err);
  2053. err = -EPROTONOSUPPORT;
  2054. goto out;
  2055. }
  2056. pr_iucv = try_then_request_module(symbol_get(iucv_if), "iucv");
  2057. if (!pr_iucv) {
  2058. printk(KERN_WARNING "iucv_if lookup failed\n");
  2059. memset(&iucv_userid, 0, sizeof(iucv_userid));
  2060. }
  2061. } else {
  2062. memset(&iucv_userid, 0, sizeof(iucv_userid));
  2063. pr_iucv = NULL;
  2064. }
  2065. err = proto_register(&iucv_proto, 0);
  2066. if (err)
  2067. goto out;
  2068. err = sock_register(&iucv_sock_family_ops);
  2069. if (err)
  2070. goto out_proto;
  2071. if (pr_iucv) {
  2072. err = afiucv_iucv_init();
  2073. if (err)
  2074. goto out_sock;
  2075. } else
  2076. register_netdevice_notifier(&afiucv_netdev_notifier);
  2077. dev_add_pack(&iucv_packet_type);
  2078. return 0;
  2079. out_sock:
  2080. sock_unregister(PF_IUCV);
  2081. out_proto:
  2082. proto_unregister(&iucv_proto);
  2083. out:
  2084. if (pr_iucv)
  2085. symbol_put(iucv_if);
  2086. return err;
  2087. }
  2088. static void __exit afiucv_exit(void)
  2089. {
  2090. if (pr_iucv) {
  2091. device_unregister(af_iucv_dev);
  2092. driver_unregister(&af_iucv_driver);
  2093. pr_iucv->iucv_unregister(&af_iucv_handler, 0);
  2094. symbol_put(iucv_if);
  2095. } else
  2096. unregister_netdevice_notifier(&afiucv_netdev_notifier);
  2097. dev_remove_pack(&iucv_packet_type);
  2098. sock_unregister(PF_IUCV);
  2099. proto_unregister(&iucv_proto);
  2100. }
  2101. module_init(afiucv_init);
  2102. module_exit(afiucv_exit);
  2103. MODULE_AUTHOR("Jennifer Hunt <jenhunt@us.ibm.com>");
  2104. MODULE_DESCRIPTION("IUCV Sockets ver " VERSION);
  2105. MODULE_VERSION(VERSION);
  2106. MODULE_LICENSE("GPL");
  2107. MODULE_ALIAS_NETPROTO(PF_IUCV);