ctree.c 105 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "transaction.h"
  22. #include "print-tree.h"
  23. #include "locking.h"
  24. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  25. *root, struct btrfs_path *path, int level);
  26. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  27. *root, struct btrfs_key *ins_key,
  28. struct btrfs_path *path, int data_size, int extend);
  29. static int push_node_left(struct btrfs_trans_handle *trans,
  30. struct btrfs_root *root, struct extent_buffer *dst,
  31. struct extent_buffer *src, int empty);
  32. static int balance_node_right(struct btrfs_trans_handle *trans,
  33. struct btrfs_root *root,
  34. struct extent_buffer *dst_buf,
  35. struct extent_buffer *src_buf);
  36. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  37. struct btrfs_path *path, int level, int slot);
  38. struct btrfs_path *btrfs_alloc_path(void)
  39. {
  40. struct btrfs_path *path;
  41. path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  42. if (path)
  43. path->reada = 1;
  44. return path;
  45. }
  46. /*
  47. * set all locked nodes in the path to blocking locks. This should
  48. * be done before scheduling
  49. */
  50. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  51. {
  52. int i;
  53. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  54. if (p->nodes[i] && p->locks[i])
  55. btrfs_set_lock_blocking(p->nodes[i]);
  56. }
  57. }
  58. /*
  59. * reset all the locked nodes in the patch to spinning locks.
  60. *
  61. * held is used to keep lockdep happy, when lockdep is enabled
  62. * we set held to a blocking lock before we go around and
  63. * retake all the spinlocks in the path. You can safely use NULL
  64. * for held
  65. */
  66. noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  67. struct extent_buffer *held)
  68. {
  69. int i;
  70. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  71. /* lockdep really cares that we take all of these spinlocks
  72. * in the right order. If any of the locks in the path are not
  73. * currently blocking, it is going to complain. So, make really
  74. * really sure by forcing the path to blocking before we clear
  75. * the path blocking.
  76. */
  77. if (held)
  78. btrfs_set_lock_blocking(held);
  79. btrfs_set_path_blocking(p);
  80. #endif
  81. for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  82. if (p->nodes[i] && p->locks[i])
  83. btrfs_clear_lock_blocking(p->nodes[i]);
  84. }
  85. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  86. if (held)
  87. btrfs_clear_lock_blocking(held);
  88. #endif
  89. }
  90. /* this also releases the path */
  91. void btrfs_free_path(struct btrfs_path *p)
  92. {
  93. btrfs_release_path(NULL, p);
  94. kmem_cache_free(btrfs_path_cachep, p);
  95. }
  96. /*
  97. * path release drops references on the extent buffers in the path
  98. * and it drops any locks held by this path
  99. *
  100. * It is safe to call this on paths that no locks or extent buffers held.
  101. */
  102. noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  103. {
  104. int i;
  105. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  106. p->slots[i] = 0;
  107. if (!p->nodes[i])
  108. continue;
  109. if (p->locks[i]) {
  110. btrfs_tree_unlock(p->nodes[i]);
  111. p->locks[i] = 0;
  112. }
  113. free_extent_buffer(p->nodes[i]);
  114. p->nodes[i] = NULL;
  115. }
  116. }
  117. /*
  118. * safely gets a reference on the root node of a tree. A lock
  119. * is not taken, so a concurrent writer may put a different node
  120. * at the root of the tree. See btrfs_lock_root_node for the
  121. * looping required.
  122. *
  123. * The extent buffer returned by this has a reference taken, so
  124. * it won't disappear. It may stop being the root of the tree
  125. * at any time because there are no locks held.
  126. */
  127. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  128. {
  129. struct extent_buffer *eb;
  130. spin_lock(&root->node_lock);
  131. eb = root->node;
  132. extent_buffer_get(eb);
  133. spin_unlock(&root->node_lock);
  134. return eb;
  135. }
  136. /* loop around taking references on and locking the root node of the
  137. * tree until you end up with a lock on the root. A locked buffer
  138. * is returned, with a reference held.
  139. */
  140. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  141. {
  142. struct extent_buffer *eb;
  143. while (1) {
  144. eb = btrfs_root_node(root);
  145. btrfs_tree_lock(eb);
  146. spin_lock(&root->node_lock);
  147. if (eb == root->node) {
  148. spin_unlock(&root->node_lock);
  149. break;
  150. }
  151. spin_unlock(&root->node_lock);
  152. btrfs_tree_unlock(eb);
  153. free_extent_buffer(eb);
  154. }
  155. return eb;
  156. }
  157. /* cowonly root (everything not a reference counted cow subvolume), just get
  158. * put onto a simple dirty list. transaction.c walks this to make sure they
  159. * get properly updated on disk.
  160. */
  161. static void add_root_to_dirty_list(struct btrfs_root *root)
  162. {
  163. if (root->track_dirty && list_empty(&root->dirty_list)) {
  164. list_add(&root->dirty_list,
  165. &root->fs_info->dirty_cowonly_roots);
  166. }
  167. }
  168. /*
  169. * used by snapshot creation to make a copy of a root for a tree with
  170. * a given objectid. The buffer with the new root node is returned in
  171. * cow_ret, and this func returns zero on success or a negative error code.
  172. */
  173. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  174. struct btrfs_root *root,
  175. struct extent_buffer *buf,
  176. struct extent_buffer **cow_ret, u64 new_root_objectid)
  177. {
  178. struct extent_buffer *cow;
  179. u32 nritems;
  180. int ret = 0;
  181. int level;
  182. struct btrfs_root *new_root;
  183. new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
  184. if (!new_root)
  185. return -ENOMEM;
  186. memcpy(new_root, root, sizeof(*new_root));
  187. new_root->root_key.objectid = new_root_objectid;
  188. WARN_ON(root->ref_cows && trans->transid !=
  189. root->fs_info->running_transaction->transid);
  190. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  191. level = btrfs_header_level(buf);
  192. nritems = btrfs_header_nritems(buf);
  193. cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0,
  194. new_root_objectid, trans->transid,
  195. level, buf->start, 0);
  196. if (IS_ERR(cow)) {
  197. kfree(new_root);
  198. return PTR_ERR(cow);
  199. }
  200. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  201. btrfs_set_header_bytenr(cow, cow->start);
  202. btrfs_set_header_generation(cow, trans->transid);
  203. btrfs_set_header_owner(cow, new_root_objectid);
  204. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
  205. write_extent_buffer(cow, root->fs_info->fsid,
  206. (unsigned long)btrfs_header_fsid(cow),
  207. BTRFS_FSID_SIZE);
  208. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  209. ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL);
  210. kfree(new_root);
  211. if (ret)
  212. return ret;
  213. btrfs_mark_buffer_dirty(cow);
  214. *cow_ret = cow;
  215. return 0;
  216. }
  217. /*
  218. * does the dirty work in cow of a single block. The parent block (if
  219. * supplied) is updated to point to the new cow copy. The new buffer is marked
  220. * dirty and returned locked. If you modify the block it needs to be marked
  221. * dirty again.
  222. *
  223. * search_start -- an allocation hint for the new block
  224. *
  225. * empty_size -- a hint that you plan on doing more cow. This is the size in
  226. * bytes the allocator should try to find free next to the block it returns.
  227. * This is just a hint and may be ignored by the allocator.
  228. */
  229. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  230. struct btrfs_root *root,
  231. struct extent_buffer *buf,
  232. struct extent_buffer *parent, int parent_slot,
  233. struct extent_buffer **cow_ret,
  234. u64 search_start, u64 empty_size)
  235. {
  236. u64 parent_start;
  237. struct extent_buffer *cow;
  238. u32 nritems;
  239. int ret = 0;
  240. int level;
  241. int unlock_orig = 0;
  242. if (*cow_ret == buf)
  243. unlock_orig = 1;
  244. btrfs_assert_tree_locked(buf);
  245. if (parent)
  246. parent_start = parent->start;
  247. else
  248. parent_start = 0;
  249. WARN_ON(root->ref_cows && trans->transid !=
  250. root->fs_info->running_transaction->transid);
  251. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  252. level = btrfs_header_level(buf);
  253. nritems = btrfs_header_nritems(buf);
  254. cow = btrfs_alloc_free_block(trans, root, buf->len,
  255. parent_start, root->root_key.objectid,
  256. trans->transid, level,
  257. search_start, empty_size);
  258. if (IS_ERR(cow))
  259. return PTR_ERR(cow);
  260. /* cow is set to blocking by btrfs_init_new_buffer */
  261. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  262. btrfs_set_header_bytenr(cow, cow->start);
  263. btrfs_set_header_generation(cow, trans->transid);
  264. btrfs_set_header_owner(cow, root->root_key.objectid);
  265. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
  266. write_extent_buffer(cow, root->fs_info->fsid,
  267. (unsigned long)btrfs_header_fsid(cow),
  268. BTRFS_FSID_SIZE);
  269. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  270. if (btrfs_header_generation(buf) != trans->transid) {
  271. u32 nr_extents;
  272. ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents);
  273. if (ret)
  274. return ret;
  275. ret = btrfs_cache_ref(trans, root, buf, nr_extents);
  276. WARN_ON(ret);
  277. } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) {
  278. /*
  279. * There are only two places that can drop reference to
  280. * tree blocks owned by living reloc trees, one is here,
  281. * the other place is btrfs_drop_subtree. In both places,
  282. * we check reference count while tree block is locked.
  283. * Furthermore, if reference count is one, it won't get
  284. * increased by someone else.
  285. */
  286. u32 refs;
  287. ret = btrfs_lookup_extent_ref(trans, root, buf->start,
  288. buf->len, &refs);
  289. BUG_ON(ret);
  290. if (refs == 1) {
  291. ret = btrfs_update_ref(trans, root, buf, cow,
  292. 0, nritems);
  293. clean_tree_block(trans, root, buf);
  294. } else {
  295. ret = btrfs_inc_ref(trans, root, buf, cow, NULL);
  296. }
  297. BUG_ON(ret);
  298. } else {
  299. ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems);
  300. if (ret)
  301. return ret;
  302. clean_tree_block(trans, root, buf);
  303. }
  304. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  305. ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start);
  306. WARN_ON(ret);
  307. }
  308. if (buf == root->node) {
  309. WARN_ON(parent && parent != buf);
  310. spin_lock(&root->node_lock);
  311. root->node = cow;
  312. extent_buffer_get(cow);
  313. spin_unlock(&root->node_lock);
  314. if (buf != root->commit_root) {
  315. btrfs_free_extent(trans, root, buf->start,
  316. buf->len, buf->start,
  317. root->root_key.objectid,
  318. btrfs_header_generation(buf),
  319. level, 1);
  320. }
  321. free_extent_buffer(buf);
  322. add_root_to_dirty_list(root);
  323. } else {
  324. btrfs_set_node_blockptr(parent, parent_slot,
  325. cow->start);
  326. WARN_ON(trans->transid == 0);
  327. btrfs_set_node_ptr_generation(parent, parent_slot,
  328. trans->transid);
  329. btrfs_mark_buffer_dirty(parent);
  330. WARN_ON(btrfs_header_generation(parent) != trans->transid);
  331. btrfs_free_extent(trans, root, buf->start, buf->len,
  332. parent_start, btrfs_header_owner(parent),
  333. btrfs_header_generation(parent), level, 1);
  334. }
  335. if (unlock_orig)
  336. btrfs_tree_unlock(buf);
  337. free_extent_buffer(buf);
  338. btrfs_mark_buffer_dirty(cow);
  339. *cow_ret = cow;
  340. return 0;
  341. }
  342. /*
  343. * cows a single block, see __btrfs_cow_block for the real work.
  344. * This version of it has extra checks so that a block isn't cow'd more than
  345. * once per transaction, as long as it hasn't been written yet
  346. */
  347. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  348. struct btrfs_root *root, struct extent_buffer *buf,
  349. struct extent_buffer *parent, int parent_slot,
  350. struct extent_buffer **cow_ret)
  351. {
  352. u64 search_start;
  353. int ret;
  354. if (trans->transaction != root->fs_info->running_transaction) {
  355. printk(KERN_CRIT "trans %llu running %llu\n",
  356. (unsigned long long)trans->transid,
  357. (unsigned long long)
  358. root->fs_info->running_transaction->transid);
  359. WARN_ON(1);
  360. }
  361. if (trans->transid != root->fs_info->generation) {
  362. printk(KERN_CRIT "trans %llu running %llu\n",
  363. (unsigned long long)trans->transid,
  364. (unsigned long long)root->fs_info->generation);
  365. WARN_ON(1);
  366. }
  367. if (btrfs_header_generation(buf) == trans->transid &&
  368. btrfs_header_owner(buf) == root->root_key.objectid &&
  369. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
  370. *cow_ret = buf;
  371. return 0;
  372. }
  373. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  374. if (parent)
  375. btrfs_set_lock_blocking(parent);
  376. btrfs_set_lock_blocking(buf);
  377. ret = __btrfs_cow_block(trans, root, buf, parent,
  378. parent_slot, cow_ret, search_start, 0);
  379. return ret;
  380. }
  381. /*
  382. * helper function for defrag to decide if two blocks pointed to by a
  383. * node are actually close by
  384. */
  385. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  386. {
  387. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  388. return 1;
  389. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  390. return 1;
  391. return 0;
  392. }
  393. /*
  394. * compare two keys in a memcmp fashion
  395. */
  396. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  397. {
  398. struct btrfs_key k1;
  399. btrfs_disk_key_to_cpu(&k1, disk);
  400. if (k1.objectid > k2->objectid)
  401. return 1;
  402. if (k1.objectid < k2->objectid)
  403. return -1;
  404. if (k1.type > k2->type)
  405. return 1;
  406. if (k1.type < k2->type)
  407. return -1;
  408. if (k1.offset > k2->offset)
  409. return 1;
  410. if (k1.offset < k2->offset)
  411. return -1;
  412. return 0;
  413. }
  414. /*
  415. * same as comp_keys only with two btrfs_key's
  416. */
  417. static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  418. {
  419. if (k1->objectid > k2->objectid)
  420. return 1;
  421. if (k1->objectid < k2->objectid)
  422. return -1;
  423. if (k1->type > k2->type)
  424. return 1;
  425. if (k1->type < k2->type)
  426. return -1;
  427. if (k1->offset > k2->offset)
  428. return 1;
  429. if (k1->offset < k2->offset)
  430. return -1;
  431. return 0;
  432. }
  433. /*
  434. * this is used by the defrag code to go through all the
  435. * leaves pointed to by a node and reallocate them so that
  436. * disk order is close to key order
  437. */
  438. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  439. struct btrfs_root *root, struct extent_buffer *parent,
  440. int start_slot, int cache_only, u64 *last_ret,
  441. struct btrfs_key *progress)
  442. {
  443. struct extent_buffer *cur;
  444. u64 blocknr;
  445. u64 gen;
  446. u64 search_start = *last_ret;
  447. u64 last_block = 0;
  448. u64 other;
  449. u32 parent_nritems;
  450. int end_slot;
  451. int i;
  452. int err = 0;
  453. int parent_level;
  454. int uptodate;
  455. u32 blocksize;
  456. int progress_passed = 0;
  457. struct btrfs_disk_key disk_key;
  458. parent_level = btrfs_header_level(parent);
  459. if (cache_only && parent_level != 1)
  460. return 0;
  461. if (trans->transaction != root->fs_info->running_transaction)
  462. WARN_ON(1);
  463. if (trans->transid != root->fs_info->generation)
  464. WARN_ON(1);
  465. parent_nritems = btrfs_header_nritems(parent);
  466. blocksize = btrfs_level_size(root, parent_level - 1);
  467. end_slot = parent_nritems;
  468. if (parent_nritems == 1)
  469. return 0;
  470. btrfs_set_lock_blocking(parent);
  471. for (i = start_slot; i < end_slot; i++) {
  472. int close = 1;
  473. if (!parent->map_token) {
  474. map_extent_buffer(parent,
  475. btrfs_node_key_ptr_offset(i),
  476. sizeof(struct btrfs_key_ptr),
  477. &parent->map_token, &parent->kaddr,
  478. &parent->map_start, &parent->map_len,
  479. KM_USER1);
  480. }
  481. btrfs_node_key(parent, &disk_key, i);
  482. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  483. continue;
  484. progress_passed = 1;
  485. blocknr = btrfs_node_blockptr(parent, i);
  486. gen = btrfs_node_ptr_generation(parent, i);
  487. if (last_block == 0)
  488. last_block = blocknr;
  489. if (i > 0) {
  490. other = btrfs_node_blockptr(parent, i - 1);
  491. close = close_blocks(blocknr, other, blocksize);
  492. }
  493. if (!close && i < end_slot - 2) {
  494. other = btrfs_node_blockptr(parent, i + 1);
  495. close = close_blocks(blocknr, other, blocksize);
  496. }
  497. if (close) {
  498. last_block = blocknr;
  499. continue;
  500. }
  501. if (parent->map_token) {
  502. unmap_extent_buffer(parent, parent->map_token,
  503. KM_USER1);
  504. parent->map_token = NULL;
  505. }
  506. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  507. if (cur)
  508. uptodate = btrfs_buffer_uptodate(cur, gen);
  509. else
  510. uptodate = 0;
  511. if (!cur || !uptodate) {
  512. if (cache_only) {
  513. free_extent_buffer(cur);
  514. continue;
  515. }
  516. if (!cur) {
  517. cur = read_tree_block(root, blocknr,
  518. blocksize, gen);
  519. } else if (!uptodate) {
  520. btrfs_read_buffer(cur, gen);
  521. }
  522. }
  523. if (search_start == 0)
  524. search_start = last_block;
  525. btrfs_tree_lock(cur);
  526. btrfs_set_lock_blocking(cur);
  527. err = __btrfs_cow_block(trans, root, cur, parent, i,
  528. &cur, search_start,
  529. min(16 * blocksize,
  530. (end_slot - i) * blocksize));
  531. if (err) {
  532. btrfs_tree_unlock(cur);
  533. free_extent_buffer(cur);
  534. break;
  535. }
  536. search_start = cur->start;
  537. last_block = cur->start;
  538. *last_ret = search_start;
  539. btrfs_tree_unlock(cur);
  540. free_extent_buffer(cur);
  541. }
  542. if (parent->map_token) {
  543. unmap_extent_buffer(parent, parent->map_token,
  544. KM_USER1);
  545. parent->map_token = NULL;
  546. }
  547. return err;
  548. }
  549. /*
  550. * The leaf data grows from end-to-front in the node.
  551. * this returns the address of the start of the last item,
  552. * which is the stop of the leaf data stack
  553. */
  554. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  555. struct extent_buffer *leaf)
  556. {
  557. u32 nr = btrfs_header_nritems(leaf);
  558. if (nr == 0)
  559. return BTRFS_LEAF_DATA_SIZE(root);
  560. return btrfs_item_offset_nr(leaf, nr - 1);
  561. }
  562. /*
  563. * extra debugging checks to make sure all the items in a key are
  564. * well formed and in the proper order
  565. */
  566. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  567. int level)
  568. {
  569. struct extent_buffer *parent = NULL;
  570. struct extent_buffer *node = path->nodes[level];
  571. struct btrfs_disk_key parent_key;
  572. struct btrfs_disk_key node_key;
  573. int parent_slot;
  574. int slot;
  575. struct btrfs_key cpukey;
  576. u32 nritems = btrfs_header_nritems(node);
  577. if (path->nodes[level + 1])
  578. parent = path->nodes[level + 1];
  579. slot = path->slots[level];
  580. BUG_ON(nritems == 0);
  581. if (parent) {
  582. parent_slot = path->slots[level + 1];
  583. btrfs_node_key(parent, &parent_key, parent_slot);
  584. btrfs_node_key(node, &node_key, 0);
  585. BUG_ON(memcmp(&parent_key, &node_key,
  586. sizeof(struct btrfs_disk_key)));
  587. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  588. btrfs_header_bytenr(node));
  589. }
  590. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  591. if (slot != 0) {
  592. btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
  593. btrfs_node_key(node, &node_key, slot);
  594. BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
  595. }
  596. if (slot < nritems - 1) {
  597. btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
  598. btrfs_node_key(node, &node_key, slot);
  599. BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
  600. }
  601. return 0;
  602. }
  603. /*
  604. * extra checking to make sure all the items in a leaf are
  605. * well formed and in the proper order
  606. */
  607. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  608. int level)
  609. {
  610. struct extent_buffer *leaf = path->nodes[level];
  611. struct extent_buffer *parent = NULL;
  612. int parent_slot;
  613. struct btrfs_key cpukey;
  614. struct btrfs_disk_key parent_key;
  615. struct btrfs_disk_key leaf_key;
  616. int slot = path->slots[0];
  617. u32 nritems = btrfs_header_nritems(leaf);
  618. if (path->nodes[level + 1])
  619. parent = path->nodes[level + 1];
  620. if (nritems == 0)
  621. return 0;
  622. if (parent) {
  623. parent_slot = path->slots[level + 1];
  624. btrfs_node_key(parent, &parent_key, parent_slot);
  625. btrfs_item_key(leaf, &leaf_key, 0);
  626. BUG_ON(memcmp(&parent_key, &leaf_key,
  627. sizeof(struct btrfs_disk_key)));
  628. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  629. btrfs_header_bytenr(leaf));
  630. }
  631. if (slot != 0 && slot < nritems - 1) {
  632. btrfs_item_key(leaf, &leaf_key, slot);
  633. btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
  634. if (comp_keys(&leaf_key, &cpukey) <= 0) {
  635. btrfs_print_leaf(root, leaf);
  636. printk(KERN_CRIT "slot %d offset bad key\n", slot);
  637. BUG_ON(1);
  638. }
  639. if (btrfs_item_offset_nr(leaf, slot - 1) !=
  640. btrfs_item_end_nr(leaf, slot)) {
  641. btrfs_print_leaf(root, leaf);
  642. printk(KERN_CRIT "slot %d offset bad\n", slot);
  643. BUG_ON(1);
  644. }
  645. }
  646. if (slot < nritems - 1) {
  647. btrfs_item_key(leaf, &leaf_key, slot);
  648. btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
  649. BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
  650. if (btrfs_item_offset_nr(leaf, slot) !=
  651. btrfs_item_end_nr(leaf, slot + 1)) {
  652. btrfs_print_leaf(root, leaf);
  653. printk(KERN_CRIT "slot %d offset bad\n", slot);
  654. BUG_ON(1);
  655. }
  656. }
  657. BUG_ON(btrfs_item_offset_nr(leaf, 0) +
  658. btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
  659. return 0;
  660. }
  661. static noinline int check_block(struct btrfs_root *root,
  662. struct btrfs_path *path, int level)
  663. {
  664. return 0;
  665. if (level == 0)
  666. return check_leaf(root, path, level);
  667. return check_node(root, path, level);
  668. }
  669. /*
  670. * search for key in the extent_buffer. The items start at offset p,
  671. * and they are item_size apart. There are 'max' items in p.
  672. *
  673. * the slot in the array is returned via slot, and it points to
  674. * the place where you would insert key if it is not found in
  675. * the array.
  676. *
  677. * slot may point to max if the key is bigger than all of the keys
  678. */
  679. static noinline int generic_bin_search(struct extent_buffer *eb,
  680. unsigned long p,
  681. int item_size, struct btrfs_key *key,
  682. int max, int *slot)
  683. {
  684. int low = 0;
  685. int high = max;
  686. int mid;
  687. int ret;
  688. struct btrfs_disk_key *tmp = NULL;
  689. struct btrfs_disk_key unaligned;
  690. unsigned long offset;
  691. char *map_token = NULL;
  692. char *kaddr = NULL;
  693. unsigned long map_start = 0;
  694. unsigned long map_len = 0;
  695. int err;
  696. while (low < high) {
  697. mid = (low + high) / 2;
  698. offset = p + mid * item_size;
  699. if (!map_token || offset < map_start ||
  700. (offset + sizeof(struct btrfs_disk_key)) >
  701. map_start + map_len) {
  702. if (map_token) {
  703. unmap_extent_buffer(eb, map_token, KM_USER0);
  704. map_token = NULL;
  705. }
  706. err = map_private_extent_buffer(eb, offset,
  707. sizeof(struct btrfs_disk_key),
  708. &map_token, &kaddr,
  709. &map_start, &map_len, KM_USER0);
  710. if (!err) {
  711. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  712. map_start);
  713. } else {
  714. read_extent_buffer(eb, &unaligned,
  715. offset, sizeof(unaligned));
  716. tmp = &unaligned;
  717. }
  718. } else {
  719. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  720. map_start);
  721. }
  722. ret = comp_keys(tmp, key);
  723. if (ret < 0)
  724. low = mid + 1;
  725. else if (ret > 0)
  726. high = mid;
  727. else {
  728. *slot = mid;
  729. if (map_token)
  730. unmap_extent_buffer(eb, map_token, KM_USER0);
  731. return 0;
  732. }
  733. }
  734. *slot = low;
  735. if (map_token)
  736. unmap_extent_buffer(eb, map_token, KM_USER0);
  737. return 1;
  738. }
  739. /*
  740. * simple bin_search frontend that does the right thing for
  741. * leaves vs nodes
  742. */
  743. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  744. int level, int *slot)
  745. {
  746. if (level == 0) {
  747. return generic_bin_search(eb,
  748. offsetof(struct btrfs_leaf, items),
  749. sizeof(struct btrfs_item),
  750. key, btrfs_header_nritems(eb),
  751. slot);
  752. } else {
  753. return generic_bin_search(eb,
  754. offsetof(struct btrfs_node, ptrs),
  755. sizeof(struct btrfs_key_ptr),
  756. key, btrfs_header_nritems(eb),
  757. slot);
  758. }
  759. return -1;
  760. }
  761. /* given a node and slot number, this reads the blocks it points to. The
  762. * extent buffer is returned with a reference taken (but unlocked).
  763. * NULL is returned on error.
  764. */
  765. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  766. struct extent_buffer *parent, int slot)
  767. {
  768. int level = btrfs_header_level(parent);
  769. if (slot < 0)
  770. return NULL;
  771. if (slot >= btrfs_header_nritems(parent))
  772. return NULL;
  773. BUG_ON(level == 0);
  774. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  775. btrfs_level_size(root, level - 1),
  776. btrfs_node_ptr_generation(parent, slot));
  777. }
  778. /*
  779. * node level balancing, used to make sure nodes are in proper order for
  780. * item deletion. We balance from the top down, so we have to make sure
  781. * that a deletion won't leave an node completely empty later on.
  782. */
  783. static noinline int balance_level(struct btrfs_trans_handle *trans,
  784. struct btrfs_root *root,
  785. struct btrfs_path *path, int level)
  786. {
  787. struct extent_buffer *right = NULL;
  788. struct extent_buffer *mid;
  789. struct extent_buffer *left = NULL;
  790. struct extent_buffer *parent = NULL;
  791. int ret = 0;
  792. int wret;
  793. int pslot;
  794. int orig_slot = path->slots[level];
  795. int err_on_enospc = 0;
  796. u64 orig_ptr;
  797. if (level == 0)
  798. return 0;
  799. mid = path->nodes[level];
  800. WARN_ON(!path->locks[level]);
  801. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  802. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  803. if (level < BTRFS_MAX_LEVEL - 1)
  804. parent = path->nodes[level + 1];
  805. pslot = path->slots[level + 1];
  806. /*
  807. * deal with the case where there is only one pointer in the root
  808. * by promoting the node below to a root
  809. */
  810. if (!parent) {
  811. struct extent_buffer *child;
  812. if (btrfs_header_nritems(mid) != 1)
  813. return 0;
  814. /* promote the child to a root */
  815. child = read_node_slot(root, mid, 0);
  816. BUG_ON(!child);
  817. btrfs_tree_lock(child);
  818. btrfs_set_lock_blocking(child);
  819. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  820. BUG_ON(ret);
  821. spin_lock(&root->node_lock);
  822. root->node = child;
  823. spin_unlock(&root->node_lock);
  824. ret = btrfs_update_extent_ref(trans, root, child->start,
  825. mid->start, child->start,
  826. root->root_key.objectid,
  827. trans->transid, level - 1);
  828. BUG_ON(ret);
  829. add_root_to_dirty_list(root);
  830. btrfs_tree_unlock(child);
  831. path->locks[level] = 0;
  832. path->nodes[level] = NULL;
  833. clean_tree_block(trans, root, mid);
  834. btrfs_tree_unlock(mid);
  835. /* once for the path */
  836. free_extent_buffer(mid);
  837. ret = btrfs_free_extent(trans, root, mid->start, mid->len,
  838. mid->start, root->root_key.objectid,
  839. btrfs_header_generation(mid),
  840. level, 1);
  841. /* once for the root ptr */
  842. free_extent_buffer(mid);
  843. return ret;
  844. }
  845. if (btrfs_header_nritems(mid) >
  846. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  847. return 0;
  848. if (btrfs_header_nritems(mid) < 2)
  849. err_on_enospc = 1;
  850. left = read_node_slot(root, parent, pslot - 1);
  851. if (left) {
  852. btrfs_tree_lock(left);
  853. btrfs_set_lock_blocking(left);
  854. wret = btrfs_cow_block(trans, root, left,
  855. parent, pslot - 1, &left);
  856. if (wret) {
  857. ret = wret;
  858. goto enospc;
  859. }
  860. }
  861. right = read_node_slot(root, parent, pslot + 1);
  862. if (right) {
  863. btrfs_tree_lock(right);
  864. btrfs_set_lock_blocking(right);
  865. wret = btrfs_cow_block(trans, root, right,
  866. parent, pslot + 1, &right);
  867. if (wret) {
  868. ret = wret;
  869. goto enospc;
  870. }
  871. }
  872. /* first, try to make some room in the middle buffer */
  873. if (left) {
  874. orig_slot += btrfs_header_nritems(left);
  875. wret = push_node_left(trans, root, left, mid, 1);
  876. if (wret < 0)
  877. ret = wret;
  878. if (btrfs_header_nritems(mid) < 2)
  879. err_on_enospc = 1;
  880. }
  881. /*
  882. * then try to empty the right most buffer into the middle
  883. */
  884. if (right) {
  885. wret = push_node_left(trans, root, mid, right, 1);
  886. if (wret < 0 && wret != -ENOSPC)
  887. ret = wret;
  888. if (btrfs_header_nritems(right) == 0) {
  889. u64 bytenr = right->start;
  890. u64 generation = btrfs_header_generation(parent);
  891. u32 blocksize = right->len;
  892. clean_tree_block(trans, root, right);
  893. btrfs_tree_unlock(right);
  894. free_extent_buffer(right);
  895. right = NULL;
  896. wret = del_ptr(trans, root, path, level + 1, pslot +
  897. 1);
  898. if (wret)
  899. ret = wret;
  900. wret = btrfs_free_extent(trans, root, bytenr,
  901. blocksize, parent->start,
  902. btrfs_header_owner(parent),
  903. generation, level, 1);
  904. if (wret)
  905. ret = wret;
  906. } else {
  907. struct btrfs_disk_key right_key;
  908. btrfs_node_key(right, &right_key, 0);
  909. btrfs_set_node_key(parent, &right_key, pslot + 1);
  910. btrfs_mark_buffer_dirty(parent);
  911. }
  912. }
  913. if (btrfs_header_nritems(mid) == 1) {
  914. /*
  915. * we're not allowed to leave a node with one item in the
  916. * tree during a delete. A deletion from lower in the tree
  917. * could try to delete the only pointer in this node.
  918. * So, pull some keys from the left.
  919. * There has to be a left pointer at this point because
  920. * otherwise we would have pulled some pointers from the
  921. * right
  922. */
  923. BUG_ON(!left);
  924. wret = balance_node_right(trans, root, mid, left);
  925. if (wret < 0) {
  926. ret = wret;
  927. goto enospc;
  928. }
  929. if (wret == 1) {
  930. wret = push_node_left(trans, root, left, mid, 1);
  931. if (wret < 0)
  932. ret = wret;
  933. }
  934. BUG_ON(wret == 1);
  935. }
  936. if (btrfs_header_nritems(mid) == 0) {
  937. /* we've managed to empty the middle node, drop it */
  938. u64 root_gen = btrfs_header_generation(parent);
  939. u64 bytenr = mid->start;
  940. u32 blocksize = mid->len;
  941. clean_tree_block(trans, root, mid);
  942. btrfs_tree_unlock(mid);
  943. free_extent_buffer(mid);
  944. mid = NULL;
  945. wret = del_ptr(trans, root, path, level + 1, pslot);
  946. if (wret)
  947. ret = wret;
  948. wret = btrfs_free_extent(trans, root, bytenr, blocksize,
  949. parent->start,
  950. btrfs_header_owner(parent),
  951. root_gen, level, 1);
  952. if (wret)
  953. ret = wret;
  954. } else {
  955. /* update the parent key to reflect our changes */
  956. struct btrfs_disk_key mid_key;
  957. btrfs_node_key(mid, &mid_key, 0);
  958. btrfs_set_node_key(parent, &mid_key, pslot);
  959. btrfs_mark_buffer_dirty(parent);
  960. }
  961. /* update the path */
  962. if (left) {
  963. if (btrfs_header_nritems(left) > orig_slot) {
  964. extent_buffer_get(left);
  965. /* left was locked after cow */
  966. path->nodes[level] = left;
  967. path->slots[level + 1] -= 1;
  968. path->slots[level] = orig_slot;
  969. if (mid) {
  970. btrfs_tree_unlock(mid);
  971. free_extent_buffer(mid);
  972. }
  973. } else {
  974. orig_slot -= btrfs_header_nritems(left);
  975. path->slots[level] = orig_slot;
  976. }
  977. }
  978. /* double check we haven't messed things up */
  979. check_block(root, path, level);
  980. if (orig_ptr !=
  981. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  982. BUG();
  983. enospc:
  984. if (right) {
  985. btrfs_tree_unlock(right);
  986. free_extent_buffer(right);
  987. }
  988. if (left) {
  989. if (path->nodes[level] != left)
  990. btrfs_tree_unlock(left);
  991. free_extent_buffer(left);
  992. }
  993. return ret;
  994. }
  995. /* Node balancing for insertion. Here we only split or push nodes around
  996. * when they are completely full. This is also done top down, so we
  997. * have to be pessimistic.
  998. */
  999. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  1000. struct btrfs_root *root,
  1001. struct btrfs_path *path, int level)
  1002. {
  1003. struct extent_buffer *right = NULL;
  1004. struct extent_buffer *mid;
  1005. struct extent_buffer *left = NULL;
  1006. struct extent_buffer *parent = NULL;
  1007. int ret = 0;
  1008. int wret;
  1009. int pslot;
  1010. int orig_slot = path->slots[level];
  1011. u64 orig_ptr;
  1012. if (level == 0)
  1013. return 1;
  1014. mid = path->nodes[level];
  1015. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  1016. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  1017. if (level < BTRFS_MAX_LEVEL - 1)
  1018. parent = path->nodes[level + 1];
  1019. pslot = path->slots[level + 1];
  1020. if (!parent)
  1021. return 1;
  1022. left = read_node_slot(root, parent, pslot - 1);
  1023. /* first, try to make some room in the middle buffer */
  1024. if (left) {
  1025. u32 left_nr;
  1026. btrfs_tree_lock(left);
  1027. btrfs_set_lock_blocking(left);
  1028. left_nr = btrfs_header_nritems(left);
  1029. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1030. wret = 1;
  1031. } else {
  1032. ret = btrfs_cow_block(trans, root, left, parent,
  1033. pslot - 1, &left);
  1034. if (ret)
  1035. wret = 1;
  1036. else {
  1037. wret = push_node_left(trans, root,
  1038. left, mid, 0);
  1039. }
  1040. }
  1041. if (wret < 0)
  1042. ret = wret;
  1043. if (wret == 0) {
  1044. struct btrfs_disk_key disk_key;
  1045. orig_slot += left_nr;
  1046. btrfs_node_key(mid, &disk_key, 0);
  1047. btrfs_set_node_key(parent, &disk_key, pslot);
  1048. btrfs_mark_buffer_dirty(parent);
  1049. if (btrfs_header_nritems(left) > orig_slot) {
  1050. path->nodes[level] = left;
  1051. path->slots[level + 1] -= 1;
  1052. path->slots[level] = orig_slot;
  1053. btrfs_tree_unlock(mid);
  1054. free_extent_buffer(mid);
  1055. } else {
  1056. orig_slot -=
  1057. btrfs_header_nritems(left);
  1058. path->slots[level] = orig_slot;
  1059. btrfs_tree_unlock(left);
  1060. free_extent_buffer(left);
  1061. }
  1062. return 0;
  1063. }
  1064. btrfs_tree_unlock(left);
  1065. free_extent_buffer(left);
  1066. }
  1067. right = read_node_slot(root, parent, pslot + 1);
  1068. /*
  1069. * then try to empty the right most buffer into the middle
  1070. */
  1071. if (right) {
  1072. u32 right_nr;
  1073. btrfs_tree_lock(right);
  1074. btrfs_set_lock_blocking(right);
  1075. right_nr = btrfs_header_nritems(right);
  1076. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1077. wret = 1;
  1078. } else {
  1079. ret = btrfs_cow_block(trans, root, right,
  1080. parent, pslot + 1,
  1081. &right);
  1082. if (ret)
  1083. wret = 1;
  1084. else {
  1085. wret = balance_node_right(trans, root,
  1086. right, mid);
  1087. }
  1088. }
  1089. if (wret < 0)
  1090. ret = wret;
  1091. if (wret == 0) {
  1092. struct btrfs_disk_key disk_key;
  1093. btrfs_node_key(right, &disk_key, 0);
  1094. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1095. btrfs_mark_buffer_dirty(parent);
  1096. if (btrfs_header_nritems(mid) <= orig_slot) {
  1097. path->nodes[level] = right;
  1098. path->slots[level + 1] += 1;
  1099. path->slots[level] = orig_slot -
  1100. btrfs_header_nritems(mid);
  1101. btrfs_tree_unlock(mid);
  1102. free_extent_buffer(mid);
  1103. } else {
  1104. btrfs_tree_unlock(right);
  1105. free_extent_buffer(right);
  1106. }
  1107. return 0;
  1108. }
  1109. btrfs_tree_unlock(right);
  1110. free_extent_buffer(right);
  1111. }
  1112. return 1;
  1113. }
  1114. /*
  1115. * readahead one full node of leaves, finding things that are close
  1116. * to the block in 'slot', and triggering ra on them.
  1117. */
  1118. static noinline void reada_for_search(struct btrfs_root *root,
  1119. struct btrfs_path *path,
  1120. int level, int slot, u64 objectid)
  1121. {
  1122. struct extent_buffer *node;
  1123. struct btrfs_disk_key disk_key;
  1124. u32 nritems;
  1125. u64 search;
  1126. u64 target;
  1127. u64 nread = 0;
  1128. int direction = path->reada;
  1129. struct extent_buffer *eb;
  1130. u32 nr;
  1131. u32 blocksize;
  1132. u32 nscan = 0;
  1133. if (level != 1)
  1134. return;
  1135. if (!path->nodes[level])
  1136. return;
  1137. node = path->nodes[level];
  1138. search = btrfs_node_blockptr(node, slot);
  1139. blocksize = btrfs_level_size(root, level - 1);
  1140. eb = btrfs_find_tree_block(root, search, blocksize);
  1141. if (eb) {
  1142. free_extent_buffer(eb);
  1143. return;
  1144. }
  1145. target = search;
  1146. nritems = btrfs_header_nritems(node);
  1147. nr = slot;
  1148. while (1) {
  1149. if (direction < 0) {
  1150. if (nr == 0)
  1151. break;
  1152. nr--;
  1153. } else if (direction > 0) {
  1154. nr++;
  1155. if (nr >= nritems)
  1156. break;
  1157. }
  1158. if (path->reada < 0 && objectid) {
  1159. btrfs_node_key(node, &disk_key, nr);
  1160. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1161. break;
  1162. }
  1163. search = btrfs_node_blockptr(node, nr);
  1164. if ((search <= target && target - search <= 65536) ||
  1165. (search > target && search - target <= 65536)) {
  1166. readahead_tree_block(root, search, blocksize,
  1167. btrfs_node_ptr_generation(node, nr));
  1168. nread += blocksize;
  1169. }
  1170. nscan++;
  1171. if ((nread > 65536 || nscan > 32))
  1172. break;
  1173. }
  1174. }
  1175. /*
  1176. * returns -EAGAIN if it had to drop the path, or zero if everything was in
  1177. * cache
  1178. */
  1179. static noinline int reada_for_balance(struct btrfs_root *root,
  1180. struct btrfs_path *path, int level)
  1181. {
  1182. int slot;
  1183. int nritems;
  1184. struct extent_buffer *parent;
  1185. struct extent_buffer *eb;
  1186. u64 gen;
  1187. u64 block1 = 0;
  1188. u64 block2 = 0;
  1189. int ret = 0;
  1190. int blocksize;
  1191. parent = path->nodes[level - 1];
  1192. if (!parent)
  1193. return 0;
  1194. nritems = btrfs_header_nritems(parent);
  1195. slot = path->slots[level];
  1196. blocksize = btrfs_level_size(root, level);
  1197. if (slot > 0) {
  1198. block1 = btrfs_node_blockptr(parent, slot - 1);
  1199. gen = btrfs_node_ptr_generation(parent, slot - 1);
  1200. eb = btrfs_find_tree_block(root, block1, blocksize);
  1201. if (eb && btrfs_buffer_uptodate(eb, gen))
  1202. block1 = 0;
  1203. free_extent_buffer(eb);
  1204. }
  1205. if (slot < nritems) {
  1206. block2 = btrfs_node_blockptr(parent, slot + 1);
  1207. gen = btrfs_node_ptr_generation(parent, slot + 1);
  1208. eb = btrfs_find_tree_block(root, block2, blocksize);
  1209. if (eb && btrfs_buffer_uptodate(eb, gen))
  1210. block2 = 0;
  1211. free_extent_buffer(eb);
  1212. }
  1213. if (block1 || block2) {
  1214. ret = -EAGAIN;
  1215. btrfs_release_path(root, path);
  1216. if (block1)
  1217. readahead_tree_block(root, block1, blocksize, 0);
  1218. if (block2)
  1219. readahead_tree_block(root, block2, blocksize, 0);
  1220. if (block1) {
  1221. eb = read_tree_block(root, block1, blocksize, 0);
  1222. free_extent_buffer(eb);
  1223. }
  1224. if (block1) {
  1225. eb = read_tree_block(root, block2, blocksize, 0);
  1226. free_extent_buffer(eb);
  1227. }
  1228. }
  1229. return ret;
  1230. }
  1231. /*
  1232. * when we walk down the tree, it is usually safe to unlock the higher layers
  1233. * in the tree. The exceptions are when our path goes through slot 0, because
  1234. * operations on the tree might require changing key pointers higher up in the
  1235. * tree.
  1236. *
  1237. * callers might also have set path->keep_locks, which tells this code to keep
  1238. * the lock if the path points to the last slot in the block. This is part of
  1239. * walking through the tree, and selecting the next slot in the higher block.
  1240. *
  1241. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1242. * if lowest_unlock is 1, level 0 won't be unlocked
  1243. */
  1244. static noinline void unlock_up(struct btrfs_path *path, int level,
  1245. int lowest_unlock)
  1246. {
  1247. int i;
  1248. int skip_level = level;
  1249. int no_skips = 0;
  1250. struct extent_buffer *t;
  1251. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1252. if (!path->nodes[i])
  1253. break;
  1254. if (!path->locks[i])
  1255. break;
  1256. if (!no_skips && path->slots[i] == 0) {
  1257. skip_level = i + 1;
  1258. continue;
  1259. }
  1260. if (!no_skips && path->keep_locks) {
  1261. u32 nritems;
  1262. t = path->nodes[i];
  1263. nritems = btrfs_header_nritems(t);
  1264. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1265. skip_level = i + 1;
  1266. continue;
  1267. }
  1268. }
  1269. if (skip_level < i && i >= lowest_unlock)
  1270. no_skips = 1;
  1271. t = path->nodes[i];
  1272. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1273. btrfs_tree_unlock(t);
  1274. path->locks[i] = 0;
  1275. }
  1276. }
  1277. }
  1278. /*
  1279. * This releases any locks held in the path starting at level and
  1280. * going all the way up to the root.
  1281. *
  1282. * btrfs_search_slot will keep the lock held on higher nodes in a few
  1283. * corner cases, such as COW of the block at slot zero in the node. This
  1284. * ignores those rules, and it should only be called when there are no
  1285. * more updates to be done higher up in the tree.
  1286. */
  1287. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  1288. {
  1289. int i;
  1290. if (path->keep_locks || path->lowest_level)
  1291. return;
  1292. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1293. if (!path->nodes[i])
  1294. continue;
  1295. if (!path->locks[i])
  1296. continue;
  1297. btrfs_tree_unlock(path->nodes[i]);
  1298. path->locks[i] = 0;
  1299. }
  1300. }
  1301. /*
  1302. * look for key in the tree. path is filled in with nodes along the way
  1303. * if key is found, we return zero and you can find the item in the leaf
  1304. * level of the path (level 0)
  1305. *
  1306. * If the key isn't found, the path points to the slot where it should
  1307. * be inserted, and 1 is returned. If there are other errors during the
  1308. * search a negative error number is returned.
  1309. *
  1310. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1311. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1312. * possible)
  1313. */
  1314. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1315. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1316. ins_len, int cow)
  1317. {
  1318. struct extent_buffer *b;
  1319. struct extent_buffer *tmp;
  1320. int slot;
  1321. int ret;
  1322. int level;
  1323. int should_reada = p->reada;
  1324. int lowest_unlock = 1;
  1325. int blocksize;
  1326. u8 lowest_level = 0;
  1327. u64 blocknr;
  1328. u64 gen;
  1329. lowest_level = p->lowest_level;
  1330. WARN_ON(lowest_level && ins_len > 0);
  1331. WARN_ON(p->nodes[0] != NULL);
  1332. if (ins_len < 0)
  1333. lowest_unlock = 2;
  1334. again:
  1335. if (p->skip_locking)
  1336. b = btrfs_root_node(root);
  1337. else
  1338. b = btrfs_lock_root_node(root);
  1339. while (b) {
  1340. level = btrfs_header_level(b);
  1341. /*
  1342. * setup the path here so we can release it under lock
  1343. * contention with the cow code
  1344. */
  1345. p->nodes[level] = b;
  1346. if (!p->skip_locking)
  1347. p->locks[level] = 1;
  1348. if (cow) {
  1349. int wret;
  1350. /* is a cow on this block not required */
  1351. if (btrfs_header_generation(b) == trans->transid &&
  1352. btrfs_header_owner(b) == root->root_key.objectid &&
  1353. !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) {
  1354. goto cow_done;
  1355. }
  1356. btrfs_set_path_blocking(p);
  1357. wret = btrfs_cow_block(trans, root, b,
  1358. p->nodes[level + 1],
  1359. p->slots[level + 1], &b);
  1360. if (wret) {
  1361. free_extent_buffer(b);
  1362. ret = wret;
  1363. goto done;
  1364. }
  1365. }
  1366. cow_done:
  1367. BUG_ON(!cow && ins_len);
  1368. if (level != btrfs_header_level(b))
  1369. WARN_ON(1);
  1370. level = btrfs_header_level(b);
  1371. p->nodes[level] = b;
  1372. if (!p->skip_locking)
  1373. p->locks[level] = 1;
  1374. btrfs_clear_path_blocking(p, NULL);
  1375. /*
  1376. * we have a lock on b and as long as we aren't changing
  1377. * the tree, there is no way to for the items in b to change.
  1378. * It is safe to drop the lock on our parent before we
  1379. * go through the expensive btree search on b.
  1380. *
  1381. * If cow is true, then we might be changing slot zero,
  1382. * which may require changing the parent. So, we can't
  1383. * drop the lock until after we know which slot we're
  1384. * operating on.
  1385. */
  1386. if (!cow)
  1387. btrfs_unlock_up_safe(p, level + 1);
  1388. ret = check_block(root, p, level);
  1389. if (ret) {
  1390. ret = -1;
  1391. goto done;
  1392. }
  1393. ret = bin_search(b, key, level, &slot);
  1394. if (level != 0) {
  1395. if (ret && slot > 0)
  1396. slot -= 1;
  1397. p->slots[level] = slot;
  1398. if ((p->search_for_split || ins_len > 0) &&
  1399. btrfs_header_nritems(b) >=
  1400. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1401. int sret;
  1402. sret = reada_for_balance(root, p, level);
  1403. if (sret)
  1404. goto again;
  1405. btrfs_set_path_blocking(p);
  1406. sret = split_node(trans, root, p, level);
  1407. btrfs_clear_path_blocking(p, NULL);
  1408. BUG_ON(sret > 0);
  1409. if (sret) {
  1410. ret = sret;
  1411. goto done;
  1412. }
  1413. b = p->nodes[level];
  1414. slot = p->slots[level];
  1415. } else if (ins_len < 0 &&
  1416. btrfs_header_nritems(b) <
  1417. BTRFS_NODEPTRS_PER_BLOCK(root) / 4) {
  1418. int sret;
  1419. sret = reada_for_balance(root, p, level);
  1420. if (sret)
  1421. goto again;
  1422. btrfs_set_path_blocking(p);
  1423. sret = balance_level(trans, root, p, level);
  1424. btrfs_clear_path_blocking(p, NULL);
  1425. if (sret) {
  1426. ret = sret;
  1427. goto done;
  1428. }
  1429. b = p->nodes[level];
  1430. if (!b) {
  1431. btrfs_release_path(NULL, p);
  1432. goto again;
  1433. }
  1434. slot = p->slots[level];
  1435. BUG_ON(btrfs_header_nritems(b) == 1);
  1436. }
  1437. unlock_up(p, level, lowest_unlock);
  1438. /* this is only true while dropping a snapshot */
  1439. if (level == lowest_level) {
  1440. ret = 0;
  1441. goto done;
  1442. }
  1443. blocknr = btrfs_node_blockptr(b, slot);
  1444. gen = btrfs_node_ptr_generation(b, slot);
  1445. blocksize = btrfs_level_size(root, level - 1);
  1446. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1447. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1448. b = tmp;
  1449. } else {
  1450. /*
  1451. * reduce lock contention at high levels
  1452. * of the btree by dropping locks before
  1453. * we read.
  1454. */
  1455. if (level > 0) {
  1456. btrfs_release_path(NULL, p);
  1457. if (tmp)
  1458. free_extent_buffer(tmp);
  1459. if (should_reada)
  1460. reada_for_search(root, p,
  1461. level, slot,
  1462. key->objectid);
  1463. tmp = read_tree_block(root, blocknr,
  1464. blocksize, gen);
  1465. if (tmp)
  1466. free_extent_buffer(tmp);
  1467. goto again;
  1468. } else {
  1469. btrfs_set_path_blocking(p);
  1470. if (tmp)
  1471. free_extent_buffer(tmp);
  1472. if (should_reada)
  1473. reada_for_search(root, p,
  1474. level, slot,
  1475. key->objectid);
  1476. b = read_node_slot(root, b, slot);
  1477. }
  1478. }
  1479. if (!p->skip_locking) {
  1480. int lret;
  1481. btrfs_clear_path_blocking(p, NULL);
  1482. lret = btrfs_try_spin_lock(b);
  1483. if (!lret) {
  1484. btrfs_set_path_blocking(p);
  1485. btrfs_tree_lock(b);
  1486. btrfs_clear_path_blocking(p, b);
  1487. }
  1488. }
  1489. } else {
  1490. p->slots[level] = slot;
  1491. if (ins_len > 0 &&
  1492. btrfs_leaf_free_space(root, b) < ins_len) {
  1493. int sret;
  1494. btrfs_set_path_blocking(p);
  1495. sret = split_leaf(trans, root, key,
  1496. p, ins_len, ret == 0);
  1497. btrfs_clear_path_blocking(p, NULL);
  1498. BUG_ON(sret > 0);
  1499. if (sret) {
  1500. ret = sret;
  1501. goto done;
  1502. }
  1503. }
  1504. if (!p->search_for_split)
  1505. unlock_up(p, level, lowest_unlock);
  1506. goto done;
  1507. }
  1508. }
  1509. ret = 1;
  1510. done:
  1511. /*
  1512. * we don't really know what they plan on doing with the path
  1513. * from here on, so for now just mark it as blocking
  1514. */
  1515. btrfs_set_path_blocking(p);
  1516. return ret;
  1517. }
  1518. int btrfs_merge_path(struct btrfs_trans_handle *trans,
  1519. struct btrfs_root *root,
  1520. struct btrfs_key *node_keys,
  1521. u64 *nodes, int lowest_level)
  1522. {
  1523. struct extent_buffer *eb;
  1524. struct extent_buffer *parent;
  1525. struct btrfs_key key;
  1526. u64 bytenr;
  1527. u64 generation;
  1528. u32 blocksize;
  1529. int level;
  1530. int slot;
  1531. int key_match;
  1532. int ret;
  1533. eb = btrfs_lock_root_node(root);
  1534. ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb);
  1535. BUG_ON(ret);
  1536. btrfs_set_lock_blocking(eb);
  1537. parent = eb;
  1538. while (1) {
  1539. level = btrfs_header_level(parent);
  1540. if (level == 0 || level <= lowest_level)
  1541. break;
  1542. ret = bin_search(parent, &node_keys[lowest_level], level,
  1543. &slot);
  1544. if (ret && slot > 0)
  1545. slot--;
  1546. bytenr = btrfs_node_blockptr(parent, slot);
  1547. if (nodes[level - 1] == bytenr)
  1548. break;
  1549. blocksize = btrfs_level_size(root, level - 1);
  1550. generation = btrfs_node_ptr_generation(parent, slot);
  1551. btrfs_node_key_to_cpu(eb, &key, slot);
  1552. key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key));
  1553. if (generation == trans->transid) {
  1554. eb = read_tree_block(root, bytenr, blocksize,
  1555. generation);
  1556. btrfs_tree_lock(eb);
  1557. btrfs_set_lock_blocking(eb);
  1558. }
  1559. /*
  1560. * if node keys match and node pointer hasn't been modified
  1561. * in the running transaction, we can merge the path. for
  1562. * blocks owened by reloc trees, the node pointer check is
  1563. * skipped, this is because these blocks are fully controlled
  1564. * by the space balance code, no one else can modify them.
  1565. */
  1566. if (!nodes[level - 1] || !key_match ||
  1567. (generation == trans->transid &&
  1568. btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) {
  1569. if (level == 1 || level == lowest_level + 1) {
  1570. if (generation == trans->transid) {
  1571. btrfs_tree_unlock(eb);
  1572. free_extent_buffer(eb);
  1573. }
  1574. break;
  1575. }
  1576. if (generation != trans->transid) {
  1577. eb = read_tree_block(root, bytenr, blocksize,
  1578. generation);
  1579. btrfs_tree_lock(eb);
  1580. btrfs_set_lock_blocking(eb);
  1581. }
  1582. ret = btrfs_cow_block(trans, root, eb, parent, slot,
  1583. &eb);
  1584. BUG_ON(ret);
  1585. if (root->root_key.objectid ==
  1586. BTRFS_TREE_RELOC_OBJECTID) {
  1587. if (!nodes[level - 1]) {
  1588. nodes[level - 1] = eb->start;
  1589. memcpy(&node_keys[level - 1], &key,
  1590. sizeof(node_keys[0]));
  1591. } else {
  1592. WARN_ON(1);
  1593. }
  1594. }
  1595. btrfs_tree_unlock(parent);
  1596. free_extent_buffer(parent);
  1597. parent = eb;
  1598. continue;
  1599. }
  1600. btrfs_set_node_blockptr(parent, slot, nodes[level - 1]);
  1601. btrfs_set_node_ptr_generation(parent, slot, trans->transid);
  1602. btrfs_mark_buffer_dirty(parent);
  1603. ret = btrfs_inc_extent_ref(trans, root,
  1604. nodes[level - 1],
  1605. blocksize, parent->start,
  1606. btrfs_header_owner(parent),
  1607. btrfs_header_generation(parent),
  1608. level - 1);
  1609. BUG_ON(ret);
  1610. /*
  1611. * If the block was created in the running transaction,
  1612. * it's possible this is the last reference to it, so we
  1613. * should drop the subtree.
  1614. */
  1615. if (generation == trans->transid) {
  1616. ret = btrfs_drop_subtree(trans, root, eb, parent);
  1617. BUG_ON(ret);
  1618. btrfs_tree_unlock(eb);
  1619. free_extent_buffer(eb);
  1620. } else {
  1621. ret = btrfs_free_extent(trans, root, bytenr,
  1622. blocksize, parent->start,
  1623. btrfs_header_owner(parent),
  1624. btrfs_header_generation(parent),
  1625. level - 1, 1);
  1626. BUG_ON(ret);
  1627. }
  1628. break;
  1629. }
  1630. btrfs_tree_unlock(parent);
  1631. free_extent_buffer(parent);
  1632. return 0;
  1633. }
  1634. /*
  1635. * adjust the pointers going up the tree, starting at level
  1636. * making sure the right key of each node is points to 'key'.
  1637. * This is used after shifting pointers to the left, so it stops
  1638. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1639. * higher levels
  1640. *
  1641. * If this fails to write a tree block, it returns -1, but continues
  1642. * fixing up the blocks in ram so the tree is consistent.
  1643. */
  1644. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1645. struct btrfs_root *root, struct btrfs_path *path,
  1646. struct btrfs_disk_key *key, int level)
  1647. {
  1648. int i;
  1649. int ret = 0;
  1650. struct extent_buffer *t;
  1651. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1652. int tslot = path->slots[i];
  1653. if (!path->nodes[i])
  1654. break;
  1655. t = path->nodes[i];
  1656. btrfs_set_node_key(t, key, tslot);
  1657. btrfs_mark_buffer_dirty(path->nodes[i]);
  1658. if (tslot != 0)
  1659. break;
  1660. }
  1661. return ret;
  1662. }
  1663. /*
  1664. * update item key.
  1665. *
  1666. * This function isn't completely safe. It's the caller's responsibility
  1667. * that the new key won't break the order
  1668. */
  1669. int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1670. struct btrfs_root *root, struct btrfs_path *path,
  1671. struct btrfs_key *new_key)
  1672. {
  1673. struct btrfs_disk_key disk_key;
  1674. struct extent_buffer *eb;
  1675. int slot;
  1676. eb = path->nodes[0];
  1677. slot = path->slots[0];
  1678. if (slot > 0) {
  1679. btrfs_item_key(eb, &disk_key, slot - 1);
  1680. if (comp_keys(&disk_key, new_key) >= 0)
  1681. return -1;
  1682. }
  1683. if (slot < btrfs_header_nritems(eb) - 1) {
  1684. btrfs_item_key(eb, &disk_key, slot + 1);
  1685. if (comp_keys(&disk_key, new_key) <= 0)
  1686. return -1;
  1687. }
  1688. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1689. btrfs_set_item_key(eb, &disk_key, slot);
  1690. btrfs_mark_buffer_dirty(eb);
  1691. if (slot == 0)
  1692. fixup_low_keys(trans, root, path, &disk_key, 1);
  1693. return 0;
  1694. }
  1695. /*
  1696. * try to push data from one node into the next node left in the
  1697. * tree.
  1698. *
  1699. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1700. * error, and > 0 if there was no room in the left hand block.
  1701. */
  1702. static int push_node_left(struct btrfs_trans_handle *trans,
  1703. struct btrfs_root *root, struct extent_buffer *dst,
  1704. struct extent_buffer *src, int empty)
  1705. {
  1706. int push_items = 0;
  1707. int src_nritems;
  1708. int dst_nritems;
  1709. int ret = 0;
  1710. src_nritems = btrfs_header_nritems(src);
  1711. dst_nritems = btrfs_header_nritems(dst);
  1712. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1713. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1714. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1715. if (!empty && src_nritems <= 8)
  1716. return 1;
  1717. if (push_items <= 0)
  1718. return 1;
  1719. if (empty) {
  1720. push_items = min(src_nritems, push_items);
  1721. if (push_items < src_nritems) {
  1722. /* leave at least 8 pointers in the node if
  1723. * we aren't going to empty it
  1724. */
  1725. if (src_nritems - push_items < 8) {
  1726. if (push_items <= 8)
  1727. return 1;
  1728. push_items -= 8;
  1729. }
  1730. }
  1731. } else
  1732. push_items = min(src_nritems - 8, push_items);
  1733. copy_extent_buffer(dst, src,
  1734. btrfs_node_key_ptr_offset(dst_nritems),
  1735. btrfs_node_key_ptr_offset(0),
  1736. push_items * sizeof(struct btrfs_key_ptr));
  1737. if (push_items < src_nritems) {
  1738. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1739. btrfs_node_key_ptr_offset(push_items),
  1740. (src_nritems - push_items) *
  1741. sizeof(struct btrfs_key_ptr));
  1742. }
  1743. btrfs_set_header_nritems(src, src_nritems - push_items);
  1744. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1745. btrfs_mark_buffer_dirty(src);
  1746. btrfs_mark_buffer_dirty(dst);
  1747. ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items);
  1748. BUG_ON(ret);
  1749. return ret;
  1750. }
  1751. /*
  1752. * try to push data from one node into the next node right in the
  1753. * tree.
  1754. *
  1755. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1756. * error, and > 0 if there was no room in the right hand block.
  1757. *
  1758. * this will only push up to 1/2 the contents of the left node over
  1759. */
  1760. static int balance_node_right(struct btrfs_trans_handle *trans,
  1761. struct btrfs_root *root,
  1762. struct extent_buffer *dst,
  1763. struct extent_buffer *src)
  1764. {
  1765. int push_items = 0;
  1766. int max_push;
  1767. int src_nritems;
  1768. int dst_nritems;
  1769. int ret = 0;
  1770. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1771. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1772. src_nritems = btrfs_header_nritems(src);
  1773. dst_nritems = btrfs_header_nritems(dst);
  1774. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1775. if (push_items <= 0)
  1776. return 1;
  1777. if (src_nritems < 4)
  1778. return 1;
  1779. max_push = src_nritems / 2 + 1;
  1780. /* don't try to empty the node */
  1781. if (max_push >= src_nritems)
  1782. return 1;
  1783. if (max_push < push_items)
  1784. push_items = max_push;
  1785. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1786. btrfs_node_key_ptr_offset(0),
  1787. (dst_nritems) *
  1788. sizeof(struct btrfs_key_ptr));
  1789. copy_extent_buffer(dst, src,
  1790. btrfs_node_key_ptr_offset(0),
  1791. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1792. push_items * sizeof(struct btrfs_key_ptr));
  1793. btrfs_set_header_nritems(src, src_nritems - push_items);
  1794. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1795. btrfs_mark_buffer_dirty(src);
  1796. btrfs_mark_buffer_dirty(dst);
  1797. ret = btrfs_update_ref(trans, root, src, dst, 0, push_items);
  1798. BUG_ON(ret);
  1799. return ret;
  1800. }
  1801. /*
  1802. * helper function to insert a new root level in the tree.
  1803. * A new node is allocated, and a single item is inserted to
  1804. * point to the existing root
  1805. *
  1806. * returns zero on success or < 0 on failure.
  1807. */
  1808. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  1809. struct btrfs_root *root,
  1810. struct btrfs_path *path, int level)
  1811. {
  1812. u64 lower_gen;
  1813. struct extent_buffer *lower;
  1814. struct extent_buffer *c;
  1815. struct extent_buffer *old;
  1816. struct btrfs_disk_key lower_key;
  1817. int ret;
  1818. BUG_ON(path->nodes[level]);
  1819. BUG_ON(path->nodes[level-1] != root->node);
  1820. lower = path->nodes[level-1];
  1821. if (level == 1)
  1822. btrfs_item_key(lower, &lower_key, 0);
  1823. else
  1824. btrfs_node_key(lower, &lower_key, 0);
  1825. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1826. root->root_key.objectid, trans->transid,
  1827. level, root->node->start, 0);
  1828. if (IS_ERR(c))
  1829. return PTR_ERR(c);
  1830. memset_extent_buffer(c, 0, 0, root->nodesize);
  1831. btrfs_set_header_nritems(c, 1);
  1832. btrfs_set_header_level(c, level);
  1833. btrfs_set_header_bytenr(c, c->start);
  1834. btrfs_set_header_generation(c, trans->transid);
  1835. btrfs_set_header_owner(c, root->root_key.objectid);
  1836. write_extent_buffer(c, root->fs_info->fsid,
  1837. (unsigned long)btrfs_header_fsid(c),
  1838. BTRFS_FSID_SIZE);
  1839. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1840. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1841. BTRFS_UUID_SIZE);
  1842. btrfs_set_node_key(c, &lower_key, 0);
  1843. btrfs_set_node_blockptr(c, 0, lower->start);
  1844. lower_gen = btrfs_header_generation(lower);
  1845. WARN_ON(lower_gen != trans->transid);
  1846. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1847. btrfs_mark_buffer_dirty(c);
  1848. spin_lock(&root->node_lock);
  1849. old = root->node;
  1850. root->node = c;
  1851. spin_unlock(&root->node_lock);
  1852. ret = btrfs_update_extent_ref(trans, root, lower->start,
  1853. lower->start, c->start,
  1854. root->root_key.objectid,
  1855. trans->transid, level - 1);
  1856. BUG_ON(ret);
  1857. /* the super has an extra ref to root->node */
  1858. free_extent_buffer(old);
  1859. add_root_to_dirty_list(root);
  1860. extent_buffer_get(c);
  1861. path->nodes[level] = c;
  1862. path->locks[level] = 1;
  1863. path->slots[level] = 0;
  1864. return 0;
  1865. }
  1866. /*
  1867. * worker function to insert a single pointer in a node.
  1868. * the node should have enough room for the pointer already
  1869. *
  1870. * slot and level indicate where you want the key to go, and
  1871. * blocknr is the block the key points to.
  1872. *
  1873. * returns zero on success and < 0 on any error
  1874. */
  1875. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1876. *root, struct btrfs_path *path, struct btrfs_disk_key
  1877. *key, u64 bytenr, int slot, int level)
  1878. {
  1879. struct extent_buffer *lower;
  1880. int nritems;
  1881. BUG_ON(!path->nodes[level]);
  1882. lower = path->nodes[level];
  1883. nritems = btrfs_header_nritems(lower);
  1884. if (slot > nritems)
  1885. BUG();
  1886. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1887. BUG();
  1888. if (slot != nritems) {
  1889. memmove_extent_buffer(lower,
  1890. btrfs_node_key_ptr_offset(slot + 1),
  1891. btrfs_node_key_ptr_offset(slot),
  1892. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1893. }
  1894. btrfs_set_node_key(lower, key, slot);
  1895. btrfs_set_node_blockptr(lower, slot, bytenr);
  1896. WARN_ON(trans->transid == 0);
  1897. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1898. btrfs_set_header_nritems(lower, nritems + 1);
  1899. btrfs_mark_buffer_dirty(lower);
  1900. return 0;
  1901. }
  1902. /*
  1903. * split the node at the specified level in path in two.
  1904. * The path is corrected to point to the appropriate node after the split
  1905. *
  1906. * Before splitting this tries to make some room in the node by pushing
  1907. * left and right, if either one works, it returns right away.
  1908. *
  1909. * returns 0 on success and < 0 on failure
  1910. */
  1911. static noinline int split_node(struct btrfs_trans_handle *trans,
  1912. struct btrfs_root *root,
  1913. struct btrfs_path *path, int level)
  1914. {
  1915. struct extent_buffer *c;
  1916. struct extent_buffer *split;
  1917. struct btrfs_disk_key disk_key;
  1918. int mid;
  1919. int ret;
  1920. int wret;
  1921. u32 c_nritems;
  1922. c = path->nodes[level];
  1923. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1924. if (c == root->node) {
  1925. /* trying to split the root, lets make a new one */
  1926. ret = insert_new_root(trans, root, path, level + 1);
  1927. if (ret)
  1928. return ret;
  1929. } else {
  1930. ret = push_nodes_for_insert(trans, root, path, level);
  1931. c = path->nodes[level];
  1932. if (!ret && btrfs_header_nritems(c) <
  1933. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1934. return 0;
  1935. if (ret < 0)
  1936. return ret;
  1937. }
  1938. c_nritems = btrfs_header_nritems(c);
  1939. split = btrfs_alloc_free_block(trans, root, root->nodesize,
  1940. path->nodes[level + 1]->start,
  1941. root->root_key.objectid,
  1942. trans->transid, level, c->start, 0);
  1943. if (IS_ERR(split))
  1944. return PTR_ERR(split);
  1945. btrfs_set_header_flags(split, btrfs_header_flags(c));
  1946. btrfs_set_header_level(split, btrfs_header_level(c));
  1947. btrfs_set_header_bytenr(split, split->start);
  1948. btrfs_set_header_generation(split, trans->transid);
  1949. btrfs_set_header_owner(split, root->root_key.objectid);
  1950. btrfs_set_header_flags(split, 0);
  1951. write_extent_buffer(split, root->fs_info->fsid,
  1952. (unsigned long)btrfs_header_fsid(split),
  1953. BTRFS_FSID_SIZE);
  1954. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  1955. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  1956. BTRFS_UUID_SIZE);
  1957. mid = (c_nritems + 1) / 2;
  1958. copy_extent_buffer(split, c,
  1959. btrfs_node_key_ptr_offset(0),
  1960. btrfs_node_key_ptr_offset(mid),
  1961. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1962. btrfs_set_header_nritems(split, c_nritems - mid);
  1963. btrfs_set_header_nritems(c, mid);
  1964. ret = 0;
  1965. btrfs_mark_buffer_dirty(c);
  1966. btrfs_mark_buffer_dirty(split);
  1967. btrfs_node_key(split, &disk_key, 0);
  1968. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  1969. path->slots[level + 1] + 1,
  1970. level + 1);
  1971. if (wret)
  1972. ret = wret;
  1973. ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid);
  1974. BUG_ON(ret);
  1975. if (path->slots[level] >= mid) {
  1976. path->slots[level] -= mid;
  1977. btrfs_tree_unlock(c);
  1978. free_extent_buffer(c);
  1979. path->nodes[level] = split;
  1980. path->slots[level + 1] += 1;
  1981. } else {
  1982. btrfs_tree_unlock(split);
  1983. free_extent_buffer(split);
  1984. }
  1985. return ret;
  1986. }
  1987. /*
  1988. * how many bytes are required to store the items in a leaf. start
  1989. * and nr indicate which items in the leaf to check. This totals up the
  1990. * space used both by the item structs and the item data
  1991. */
  1992. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  1993. {
  1994. int data_len;
  1995. int nritems = btrfs_header_nritems(l);
  1996. int end = min(nritems, start + nr) - 1;
  1997. if (!nr)
  1998. return 0;
  1999. data_len = btrfs_item_end_nr(l, start);
  2000. data_len = data_len - btrfs_item_offset_nr(l, end);
  2001. data_len += sizeof(struct btrfs_item) * nr;
  2002. WARN_ON(data_len < 0);
  2003. return data_len;
  2004. }
  2005. /*
  2006. * The space between the end of the leaf items and
  2007. * the start of the leaf data. IOW, how much room
  2008. * the leaf has left for both items and data
  2009. */
  2010. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  2011. struct extent_buffer *leaf)
  2012. {
  2013. int nritems = btrfs_header_nritems(leaf);
  2014. int ret;
  2015. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  2016. if (ret < 0) {
  2017. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  2018. "used %d nritems %d\n",
  2019. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  2020. leaf_space_used(leaf, 0, nritems), nritems);
  2021. }
  2022. return ret;
  2023. }
  2024. /*
  2025. * push some data in the path leaf to the right, trying to free up at
  2026. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2027. *
  2028. * returns 1 if the push failed because the other node didn't have enough
  2029. * room, 0 if everything worked out and < 0 if there were major errors.
  2030. */
  2031. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  2032. *root, struct btrfs_path *path, int data_size,
  2033. int empty)
  2034. {
  2035. struct extent_buffer *left = path->nodes[0];
  2036. struct extent_buffer *right;
  2037. struct extent_buffer *upper;
  2038. struct btrfs_disk_key disk_key;
  2039. int slot;
  2040. u32 i;
  2041. int free_space;
  2042. int push_space = 0;
  2043. int push_items = 0;
  2044. struct btrfs_item *item;
  2045. u32 left_nritems;
  2046. u32 nr;
  2047. u32 right_nritems;
  2048. u32 data_end;
  2049. u32 this_item_size;
  2050. int ret;
  2051. slot = path->slots[1];
  2052. if (!path->nodes[1])
  2053. return 1;
  2054. upper = path->nodes[1];
  2055. if (slot >= btrfs_header_nritems(upper) - 1)
  2056. return 1;
  2057. btrfs_assert_tree_locked(path->nodes[1]);
  2058. right = read_node_slot(root, upper, slot + 1);
  2059. btrfs_tree_lock(right);
  2060. btrfs_set_lock_blocking(right);
  2061. free_space = btrfs_leaf_free_space(root, right);
  2062. if (free_space < data_size)
  2063. goto out_unlock;
  2064. /* cow and double check */
  2065. ret = btrfs_cow_block(trans, root, right, upper,
  2066. slot + 1, &right);
  2067. if (ret)
  2068. goto out_unlock;
  2069. free_space = btrfs_leaf_free_space(root, right);
  2070. if (free_space < data_size)
  2071. goto out_unlock;
  2072. left_nritems = btrfs_header_nritems(left);
  2073. if (left_nritems == 0)
  2074. goto out_unlock;
  2075. if (empty)
  2076. nr = 0;
  2077. else
  2078. nr = 1;
  2079. if (path->slots[0] >= left_nritems)
  2080. push_space += data_size;
  2081. i = left_nritems - 1;
  2082. while (i >= nr) {
  2083. item = btrfs_item_nr(left, i);
  2084. if (!empty && push_items > 0) {
  2085. if (path->slots[0] > i)
  2086. break;
  2087. if (path->slots[0] == i) {
  2088. int space = btrfs_leaf_free_space(root, left);
  2089. if (space + push_space * 2 > free_space)
  2090. break;
  2091. }
  2092. }
  2093. if (path->slots[0] == i)
  2094. push_space += data_size;
  2095. if (!left->map_token) {
  2096. map_extent_buffer(left, (unsigned long)item,
  2097. sizeof(struct btrfs_item),
  2098. &left->map_token, &left->kaddr,
  2099. &left->map_start, &left->map_len,
  2100. KM_USER1);
  2101. }
  2102. this_item_size = btrfs_item_size(left, item);
  2103. if (this_item_size + sizeof(*item) + push_space > free_space)
  2104. break;
  2105. push_items++;
  2106. push_space += this_item_size + sizeof(*item);
  2107. if (i == 0)
  2108. break;
  2109. i--;
  2110. }
  2111. if (left->map_token) {
  2112. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2113. left->map_token = NULL;
  2114. }
  2115. if (push_items == 0)
  2116. goto out_unlock;
  2117. if (!empty && push_items == left_nritems)
  2118. WARN_ON(1);
  2119. /* push left to right */
  2120. right_nritems = btrfs_header_nritems(right);
  2121. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2122. push_space -= leaf_data_end(root, left);
  2123. /* make room in the right data area */
  2124. data_end = leaf_data_end(root, right);
  2125. memmove_extent_buffer(right,
  2126. btrfs_leaf_data(right) + data_end - push_space,
  2127. btrfs_leaf_data(right) + data_end,
  2128. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2129. /* copy from the left data area */
  2130. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2131. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2132. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2133. push_space);
  2134. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2135. btrfs_item_nr_offset(0),
  2136. right_nritems * sizeof(struct btrfs_item));
  2137. /* copy the items from left to right */
  2138. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2139. btrfs_item_nr_offset(left_nritems - push_items),
  2140. push_items * sizeof(struct btrfs_item));
  2141. /* update the item pointers */
  2142. right_nritems += push_items;
  2143. btrfs_set_header_nritems(right, right_nritems);
  2144. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2145. for (i = 0; i < right_nritems; i++) {
  2146. item = btrfs_item_nr(right, i);
  2147. if (!right->map_token) {
  2148. map_extent_buffer(right, (unsigned long)item,
  2149. sizeof(struct btrfs_item),
  2150. &right->map_token, &right->kaddr,
  2151. &right->map_start, &right->map_len,
  2152. KM_USER1);
  2153. }
  2154. push_space -= btrfs_item_size(right, item);
  2155. btrfs_set_item_offset(right, item, push_space);
  2156. }
  2157. if (right->map_token) {
  2158. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2159. right->map_token = NULL;
  2160. }
  2161. left_nritems -= push_items;
  2162. btrfs_set_header_nritems(left, left_nritems);
  2163. if (left_nritems)
  2164. btrfs_mark_buffer_dirty(left);
  2165. btrfs_mark_buffer_dirty(right);
  2166. ret = btrfs_update_ref(trans, root, left, right, 0, push_items);
  2167. BUG_ON(ret);
  2168. btrfs_item_key(right, &disk_key, 0);
  2169. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2170. btrfs_mark_buffer_dirty(upper);
  2171. /* then fixup the leaf pointer in the path */
  2172. if (path->slots[0] >= left_nritems) {
  2173. path->slots[0] -= left_nritems;
  2174. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2175. clean_tree_block(trans, root, path->nodes[0]);
  2176. btrfs_tree_unlock(path->nodes[0]);
  2177. free_extent_buffer(path->nodes[0]);
  2178. path->nodes[0] = right;
  2179. path->slots[1] += 1;
  2180. } else {
  2181. btrfs_tree_unlock(right);
  2182. free_extent_buffer(right);
  2183. }
  2184. return 0;
  2185. out_unlock:
  2186. btrfs_tree_unlock(right);
  2187. free_extent_buffer(right);
  2188. return 1;
  2189. }
  2190. /*
  2191. * push some data in the path leaf to the left, trying to free up at
  2192. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2193. */
  2194. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2195. *root, struct btrfs_path *path, int data_size,
  2196. int empty)
  2197. {
  2198. struct btrfs_disk_key disk_key;
  2199. struct extent_buffer *right = path->nodes[0];
  2200. struct extent_buffer *left;
  2201. int slot;
  2202. int i;
  2203. int free_space;
  2204. int push_space = 0;
  2205. int push_items = 0;
  2206. struct btrfs_item *item;
  2207. u32 old_left_nritems;
  2208. u32 right_nritems;
  2209. u32 nr;
  2210. int ret = 0;
  2211. int wret;
  2212. u32 this_item_size;
  2213. u32 old_left_item_size;
  2214. slot = path->slots[1];
  2215. if (slot == 0)
  2216. return 1;
  2217. if (!path->nodes[1])
  2218. return 1;
  2219. right_nritems = btrfs_header_nritems(right);
  2220. if (right_nritems == 0)
  2221. return 1;
  2222. btrfs_assert_tree_locked(path->nodes[1]);
  2223. left = read_node_slot(root, path->nodes[1], slot - 1);
  2224. btrfs_tree_lock(left);
  2225. btrfs_set_lock_blocking(left);
  2226. free_space = btrfs_leaf_free_space(root, left);
  2227. if (free_space < data_size) {
  2228. ret = 1;
  2229. goto out;
  2230. }
  2231. /* cow and double check */
  2232. ret = btrfs_cow_block(trans, root, left,
  2233. path->nodes[1], slot - 1, &left);
  2234. if (ret) {
  2235. /* we hit -ENOSPC, but it isn't fatal here */
  2236. ret = 1;
  2237. goto out;
  2238. }
  2239. free_space = btrfs_leaf_free_space(root, left);
  2240. if (free_space < data_size) {
  2241. ret = 1;
  2242. goto out;
  2243. }
  2244. if (empty)
  2245. nr = right_nritems;
  2246. else
  2247. nr = right_nritems - 1;
  2248. for (i = 0; i < nr; i++) {
  2249. item = btrfs_item_nr(right, i);
  2250. if (!right->map_token) {
  2251. map_extent_buffer(right, (unsigned long)item,
  2252. sizeof(struct btrfs_item),
  2253. &right->map_token, &right->kaddr,
  2254. &right->map_start, &right->map_len,
  2255. KM_USER1);
  2256. }
  2257. if (!empty && push_items > 0) {
  2258. if (path->slots[0] < i)
  2259. break;
  2260. if (path->slots[0] == i) {
  2261. int space = btrfs_leaf_free_space(root, right);
  2262. if (space + push_space * 2 > free_space)
  2263. break;
  2264. }
  2265. }
  2266. if (path->slots[0] == i)
  2267. push_space += data_size;
  2268. this_item_size = btrfs_item_size(right, item);
  2269. if (this_item_size + sizeof(*item) + push_space > free_space)
  2270. break;
  2271. push_items++;
  2272. push_space += this_item_size + sizeof(*item);
  2273. }
  2274. if (right->map_token) {
  2275. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2276. right->map_token = NULL;
  2277. }
  2278. if (push_items == 0) {
  2279. ret = 1;
  2280. goto out;
  2281. }
  2282. if (!empty && push_items == btrfs_header_nritems(right))
  2283. WARN_ON(1);
  2284. /* push data from right to left */
  2285. copy_extent_buffer(left, right,
  2286. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2287. btrfs_item_nr_offset(0),
  2288. push_items * sizeof(struct btrfs_item));
  2289. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2290. btrfs_item_offset_nr(right, push_items - 1);
  2291. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2292. leaf_data_end(root, left) - push_space,
  2293. btrfs_leaf_data(right) +
  2294. btrfs_item_offset_nr(right, push_items - 1),
  2295. push_space);
  2296. old_left_nritems = btrfs_header_nritems(left);
  2297. BUG_ON(old_left_nritems <= 0);
  2298. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2299. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2300. u32 ioff;
  2301. item = btrfs_item_nr(left, i);
  2302. if (!left->map_token) {
  2303. map_extent_buffer(left, (unsigned long)item,
  2304. sizeof(struct btrfs_item),
  2305. &left->map_token, &left->kaddr,
  2306. &left->map_start, &left->map_len,
  2307. KM_USER1);
  2308. }
  2309. ioff = btrfs_item_offset(left, item);
  2310. btrfs_set_item_offset(left, item,
  2311. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  2312. }
  2313. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2314. if (left->map_token) {
  2315. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2316. left->map_token = NULL;
  2317. }
  2318. /* fixup right node */
  2319. if (push_items > right_nritems) {
  2320. printk(KERN_CRIT "push items %d nr %u\n", push_items,
  2321. right_nritems);
  2322. WARN_ON(1);
  2323. }
  2324. if (push_items < right_nritems) {
  2325. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2326. leaf_data_end(root, right);
  2327. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2328. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2329. btrfs_leaf_data(right) +
  2330. leaf_data_end(root, right), push_space);
  2331. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2332. btrfs_item_nr_offset(push_items),
  2333. (btrfs_header_nritems(right) - push_items) *
  2334. sizeof(struct btrfs_item));
  2335. }
  2336. right_nritems -= push_items;
  2337. btrfs_set_header_nritems(right, right_nritems);
  2338. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2339. for (i = 0; i < right_nritems; i++) {
  2340. item = btrfs_item_nr(right, i);
  2341. if (!right->map_token) {
  2342. map_extent_buffer(right, (unsigned long)item,
  2343. sizeof(struct btrfs_item),
  2344. &right->map_token, &right->kaddr,
  2345. &right->map_start, &right->map_len,
  2346. KM_USER1);
  2347. }
  2348. push_space = push_space - btrfs_item_size(right, item);
  2349. btrfs_set_item_offset(right, item, push_space);
  2350. }
  2351. if (right->map_token) {
  2352. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2353. right->map_token = NULL;
  2354. }
  2355. btrfs_mark_buffer_dirty(left);
  2356. if (right_nritems)
  2357. btrfs_mark_buffer_dirty(right);
  2358. ret = btrfs_update_ref(trans, root, right, left,
  2359. old_left_nritems, push_items);
  2360. BUG_ON(ret);
  2361. btrfs_item_key(right, &disk_key, 0);
  2362. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2363. if (wret)
  2364. ret = wret;
  2365. /* then fixup the leaf pointer in the path */
  2366. if (path->slots[0] < push_items) {
  2367. path->slots[0] += old_left_nritems;
  2368. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2369. clean_tree_block(trans, root, path->nodes[0]);
  2370. btrfs_tree_unlock(path->nodes[0]);
  2371. free_extent_buffer(path->nodes[0]);
  2372. path->nodes[0] = left;
  2373. path->slots[1] -= 1;
  2374. } else {
  2375. btrfs_tree_unlock(left);
  2376. free_extent_buffer(left);
  2377. path->slots[0] -= push_items;
  2378. }
  2379. BUG_ON(path->slots[0] < 0);
  2380. return ret;
  2381. out:
  2382. btrfs_tree_unlock(left);
  2383. free_extent_buffer(left);
  2384. return ret;
  2385. }
  2386. /*
  2387. * split the path's leaf in two, making sure there is at least data_size
  2388. * available for the resulting leaf level of the path.
  2389. *
  2390. * returns 0 if all went well and < 0 on failure.
  2391. */
  2392. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2393. struct btrfs_root *root,
  2394. struct btrfs_key *ins_key,
  2395. struct btrfs_path *path, int data_size,
  2396. int extend)
  2397. {
  2398. struct extent_buffer *l;
  2399. u32 nritems;
  2400. int mid;
  2401. int slot;
  2402. struct extent_buffer *right;
  2403. int data_copy_size;
  2404. int rt_data_off;
  2405. int i;
  2406. int ret = 0;
  2407. int wret;
  2408. int double_split;
  2409. int num_doubles = 0;
  2410. struct btrfs_disk_key disk_key;
  2411. /* first try to make some room by pushing left and right */
  2412. if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
  2413. wret = push_leaf_right(trans, root, path, data_size, 0);
  2414. if (wret < 0)
  2415. return wret;
  2416. if (wret) {
  2417. wret = push_leaf_left(trans, root, path, data_size, 0);
  2418. if (wret < 0)
  2419. return wret;
  2420. }
  2421. l = path->nodes[0];
  2422. /* did the pushes work? */
  2423. if (btrfs_leaf_free_space(root, l) >= data_size)
  2424. return 0;
  2425. }
  2426. if (!path->nodes[1]) {
  2427. ret = insert_new_root(trans, root, path, 1);
  2428. if (ret)
  2429. return ret;
  2430. }
  2431. again:
  2432. double_split = 0;
  2433. l = path->nodes[0];
  2434. slot = path->slots[0];
  2435. nritems = btrfs_header_nritems(l);
  2436. mid = (nritems + 1) / 2;
  2437. right = btrfs_alloc_free_block(trans, root, root->leafsize,
  2438. path->nodes[1]->start,
  2439. root->root_key.objectid,
  2440. trans->transid, 0, l->start, 0);
  2441. if (IS_ERR(right)) {
  2442. BUG_ON(1);
  2443. return PTR_ERR(right);
  2444. }
  2445. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2446. btrfs_set_header_bytenr(right, right->start);
  2447. btrfs_set_header_generation(right, trans->transid);
  2448. btrfs_set_header_owner(right, root->root_key.objectid);
  2449. btrfs_set_header_level(right, 0);
  2450. write_extent_buffer(right, root->fs_info->fsid,
  2451. (unsigned long)btrfs_header_fsid(right),
  2452. BTRFS_FSID_SIZE);
  2453. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2454. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2455. BTRFS_UUID_SIZE);
  2456. if (mid <= slot) {
  2457. if (nritems == 1 ||
  2458. leaf_space_used(l, mid, nritems - mid) + data_size >
  2459. BTRFS_LEAF_DATA_SIZE(root)) {
  2460. if (slot >= nritems) {
  2461. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2462. btrfs_set_header_nritems(right, 0);
  2463. wret = insert_ptr(trans, root, path,
  2464. &disk_key, right->start,
  2465. path->slots[1] + 1, 1);
  2466. if (wret)
  2467. ret = wret;
  2468. btrfs_tree_unlock(path->nodes[0]);
  2469. free_extent_buffer(path->nodes[0]);
  2470. path->nodes[0] = right;
  2471. path->slots[0] = 0;
  2472. path->slots[1] += 1;
  2473. btrfs_mark_buffer_dirty(right);
  2474. return ret;
  2475. }
  2476. mid = slot;
  2477. if (mid != nritems &&
  2478. leaf_space_used(l, mid, nritems - mid) +
  2479. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2480. double_split = 1;
  2481. }
  2482. }
  2483. } else {
  2484. if (leaf_space_used(l, 0, mid) + data_size >
  2485. BTRFS_LEAF_DATA_SIZE(root)) {
  2486. if (!extend && data_size && slot == 0) {
  2487. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2488. btrfs_set_header_nritems(right, 0);
  2489. wret = insert_ptr(trans, root, path,
  2490. &disk_key,
  2491. right->start,
  2492. path->slots[1], 1);
  2493. if (wret)
  2494. ret = wret;
  2495. btrfs_tree_unlock(path->nodes[0]);
  2496. free_extent_buffer(path->nodes[0]);
  2497. path->nodes[0] = right;
  2498. path->slots[0] = 0;
  2499. if (path->slots[1] == 0) {
  2500. wret = fixup_low_keys(trans, root,
  2501. path, &disk_key, 1);
  2502. if (wret)
  2503. ret = wret;
  2504. }
  2505. btrfs_mark_buffer_dirty(right);
  2506. return ret;
  2507. } else if ((extend || !data_size) && slot == 0) {
  2508. mid = 1;
  2509. } else {
  2510. mid = slot;
  2511. if (mid != nritems &&
  2512. leaf_space_used(l, mid, nritems - mid) +
  2513. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2514. double_split = 1;
  2515. }
  2516. }
  2517. }
  2518. }
  2519. nritems = nritems - mid;
  2520. btrfs_set_header_nritems(right, nritems);
  2521. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2522. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2523. btrfs_item_nr_offset(mid),
  2524. nritems * sizeof(struct btrfs_item));
  2525. copy_extent_buffer(right, l,
  2526. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2527. data_copy_size, btrfs_leaf_data(l) +
  2528. leaf_data_end(root, l), data_copy_size);
  2529. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2530. btrfs_item_end_nr(l, mid);
  2531. for (i = 0; i < nritems; i++) {
  2532. struct btrfs_item *item = btrfs_item_nr(right, i);
  2533. u32 ioff;
  2534. if (!right->map_token) {
  2535. map_extent_buffer(right, (unsigned long)item,
  2536. sizeof(struct btrfs_item),
  2537. &right->map_token, &right->kaddr,
  2538. &right->map_start, &right->map_len,
  2539. KM_USER1);
  2540. }
  2541. ioff = btrfs_item_offset(right, item);
  2542. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  2543. }
  2544. if (right->map_token) {
  2545. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2546. right->map_token = NULL;
  2547. }
  2548. btrfs_set_header_nritems(l, mid);
  2549. ret = 0;
  2550. btrfs_item_key(right, &disk_key, 0);
  2551. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2552. path->slots[1] + 1, 1);
  2553. if (wret)
  2554. ret = wret;
  2555. btrfs_mark_buffer_dirty(right);
  2556. btrfs_mark_buffer_dirty(l);
  2557. BUG_ON(path->slots[0] != slot);
  2558. ret = btrfs_update_ref(trans, root, l, right, 0, nritems);
  2559. BUG_ON(ret);
  2560. if (mid <= slot) {
  2561. btrfs_tree_unlock(path->nodes[0]);
  2562. free_extent_buffer(path->nodes[0]);
  2563. path->nodes[0] = right;
  2564. path->slots[0] -= mid;
  2565. path->slots[1] += 1;
  2566. } else {
  2567. btrfs_tree_unlock(right);
  2568. free_extent_buffer(right);
  2569. }
  2570. BUG_ON(path->slots[0] < 0);
  2571. if (double_split) {
  2572. BUG_ON(num_doubles != 0);
  2573. num_doubles++;
  2574. goto again;
  2575. }
  2576. return ret;
  2577. }
  2578. /*
  2579. * This function splits a single item into two items,
  2580. * giving 'new_key' to the new item and splitting the
  2581. * old one at split_offset (from the start of the item).
  2582. *
  2583. * The path may be released by this operation. After
  2584. * the split, the path is pointing to the old item. The
  2585. * new item is going to be in the same node as the old one.
  2586. *
  2587. * Note, the item being split must be smaller enough to live alone on
  2588. * a tree block with room for one extra struct btrfs_item
  2589. *
  2590. * This allows us to split the item in place, keeping a lock on the
  2591. * leaf the entire time.
  2592. */
  2593. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2594. struct btrfs_root *root,
  2595. struct btrfs_path *path,
  2596. struct btrfs_key *new_key,
  2597. unsigned long split_offset)
  2598. {
  2599. u32 item_size;
  2600. struct extent_buffer *leaf;
  2601. struct btrfs_key orig_key;
  2602. struct btrfs_item *item;
  2603. struct btrfs_item *new_item;
  2604. int ret = 0;
  2605. int slot;
  2606. u32 nritems;
  2607. u32 orig_offset;
  2608. struct btrfs_disk_key disk_key;
  2609. char *buf;
  2610. leaf = path->nodes[0];
  2611. btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
  2612. if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
  2613. goto split;
  2614. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2615. btrfs_release_path(root, path);
  2616. path->search_for_split = 1;
  2617. path->keep_locks = 1;
  2618. ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
  2619. path->search_for_split = 0;
  2620. /* if our item isn't there or got smaller, return now */
  2621. if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
  2622. path->slots[0])) {
  2623. path->keep_locks = 0;
  2624. return -EAGAIN;
  2625. }
  2626. ret = split_leaf(trans, root, &orig_key, path,
  2627. sizeof(struct btrfs_item), 1);
  2628. path->keep_locks = 0;
  2629. BUG_ON(ret);
  2630. /*
  2631. * make sure any changes to the path from split_leaf leave it
  2632. * in a blocking state
  2633. */
  2634. btrfs_set_path_blocking(path);
  2635. leaf = path->nodes[0];
  2636. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2637. split:
  2638. item = btrfs_item_nr(leaf, path->slots[0]);
  2639. orig_offset = btrfs_item_offset(leaf, item);
  2640. item_size = btrfs_item_size(leaf, item);
  2641. buf = kmalloc(item_size, GFP_NOFS);
  2642. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2643. path->slots[0]), item_size);
  2644. slot = path->slots[0] + 1;
  2645. leaf = path->nodes[0];
  2646. nritems = btrfs_header_nritems(leaf);
  2647. if (slot != nritems) {
  2648. /* shift the items */
  2649. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2650. btrfs_item_nr_offset(slot),
  2651. (nritems - slot) * sizeof(struct btrfs_item));
  2652. }
  2653. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2654. btrfs_set_item_key(leaf, &disk_key, slot);
  2655. new_item = btrfs_item_nr(leaf, slot);
  2656. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2657. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2658. btrfs_set_item_offset(leaf, item,
  2659. orig_offset + item_size - split_offset);
  2660. btrfs_set_item_size(leaf, item, split_offset);
  2661. btrfs_set_header_nritems(leaf, nritems + 1);
  2662. /* write the data for the start of the original item */
  2663. write_extent_buffer(leaf, buf,
  2664. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2665. split_offset);
  2666. /* write the data for the new item */
  2667. write_extent_buffer(leaf, buf + split_offset,
  2668. btrfs_item_ptr_offset(leaf, slot),
  2669. item_size - split_offset);
  2670. btrfs_mark_buffer_dirty(leaf);
  2671. ret = 0;
  2672. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2673. btrfs_print_leaf(root, leaf);
  2674. BUG();
  2675. }
  2676. kfree(buf);
  2677. return ret;
  2678. }
  2679. /*
  2680. * make the item pointed to by the path smaller. new_size indicates
  2681. * how small to make it, and from_end tells us if we just chop bytes
  2682. * off the end of the item or if we shift the item to chop bytes off
  2683. * the front.
  2684. */
  2685. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2686. struct btrfs_root *root,
  2687. struct btrfs_path *path,
  2688. u32 new_size, int from_end)
  2689. {
  2690. int ret = 0;
  2691. int slot;
  2692. int slot_orig;
  2693. struct extent_buffer *leaf;
  2694. struct btrfs_item *item;
  2695. u32 nritems;
  2696. unsigned int data_end;
  2697. unsigned int old_data_start;
  2698. unsigned int old_size;
  2699. unsigned int size_diff;
  2700. int i;
  2701. slot_orig = path->slots[0];
  2702. leaf = path->nodes[0];
  2703. slot = path->slots[0];
  2704. old_size = btrfs_item_size_nr(leaf, slot);
  2705. if (old_size == new_size)
  2706. return 0;
  2707. nritems = btrfs_header_nritems(leaf);
  2708. data_end = leaf_data_end(root, leaf);
  2709. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2710. size_diff = old_size - new_size;
  2711. BUG_ON(slot < 0);
  2712. BUG_ON(slot >= nritems);
  2713. /*
  2714. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2715. */
  2716. /* first correct the data pointers */
  2717. for (i = slot; i < nritems; i++) {
  2718. u32 ioff;
  2719. item = btrfs_item_nr(leaf, i);
  2720. if (!leaf->map_token) {
  2721. map_extent_buffer(leaf, (unsigned long)item,
  2722. sizeof(struct btrfs_item),
  2723. &leaf->map_token, &leaf->kaddr,
  2724. &leaf->map_start, &leaf->map_len,
  2725. KM_USER1);
  2726. }
  2727. ioff = btrfs_item_offset(leaf, item);
  2728. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  2729. }
  2730. if (leaf->map_token) {
  2731. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2732. leaf->map_token = NULL;
  2733. }
  2734. /* shift the data */
  2735. if (from_end) {
  2736. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2737. data_end + size_diff, btrfs_leaf_data(leaf) +
  2738. data_end, old_data_start + new_size - data_end);
  2739. } else {
  2740. struct btrfs_disk_key disk_key;
  2741. u64 offset;
  2742. btrfs_item_key(leaf, &disk_key, slot);
  2743. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2744. unsigned long ptr;
  2745. struct btrfs_file_extent_item *fi;
  2746. fi = btrfs_item_ptr(leaf, slot,
  2747. struct btrfs_file_extent_item);
  2748. fi = (struct btrfs_file_extent_item *)(
  2749. (unsigned long)fi - size_diff);
  2750. if (btrfs_file_extent_type(leaf, fi) ==
  2751. BTRFS_FILE_EXTENT_INLINE) {
  2752. ptr = btrfs_item_ptr_offset(leaf, slot);
  2753. memmove_extent_buffer(leaf, ptr,
  2754. (unsigned long)fi,
  2755. offsetof(struct btrfs_file_extent_item,
  2756. disk_bytenr));
  2757. }
  2758. }
  2759. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2760. data_end + size_diff, btrfs_leaf_data(leaf) +
  2761. data_end, old_data_start - data_end);
  2762. offset = btrfs_disk_key_offset(&disk_key);
  2763. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2764. btrfs_set_item_key(leaf, &disk_key, slot);
  2765. if (slot == 0)
  2766. fixup_low_keys(trans, root, path, &disk_key, 1);
  2767. }
  2768. item = btrfs_item_nr(leaf, slot);
  2769. btrfs_set_item_size(leaf, item, new_size);
  2770. btrfs_mark_buffer_dirty(leaf);
  2771. ret = 0;
  2772. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2773. btrfs_print_leaf(root, leaf);
  2774. BUG();
  2775. }
  2776. return ret;
  2777. }
  2778. /*
  2779. * make the item pointed to by the path bigger, data_size is the new size.
  2780. */
  2781. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2782. struct btrfs_root *root, struct btrfs_path *path,
  2783. u32 data_size)
  2784. {
  2785. int ret = 0;
  2786. int slot;
  2787. int slot_orig;
  2788. struct extent_buffer *leaf;
  2789. struct btrfs_item *item;
  2790. u32 nritems;
  2791. unsigned int data_end;
  2792. unsigned int old_data;
  2793. unsigned int old_size;
  2794. int i;
  2795. slot_orig = path->slots[0];
  2796. leaf = path->nodes[0];
  2797. nritems = btrfs_header_nritems(leaf);
  2798. data_end = leaf_data_end(root, leaf);
  2799. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2800. btrfs_print_leaf(root, leaf);
  2801. BUG();
  2802. }
  2803. slot = path->slots[0];
  2804. old_data = btrfs_item_end_nr(leaf, slot);
  2805. BUG_ON(slot < 0);
  2806. if (slot >= nritems) {
  2807. btrfs_print_leaf(root, leaf);
  2808. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  2809. slot, nritems);
  2810. BUG_ON(1);
  2811. }
  2812. /*
  2813. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2814. */
  2815. /* first correct the data pointers */
  2816. for (i = slot; i < nritems; i++) {
  2817. u32 ioff;
  2818. item = btrfs_item_nr(leaf, i);
  2819. if (!leaf->map_token) {
  2820. map_extent_buffer(leaf, (unsigned long)item,
  2821. sizeof(struct btrfs_item),
  2822. &leaf->map_token, &leaf->kaddr,
  2823. &leaf->map_start, &leaf->map_len,
  2824. KM_USER1);
  2825. }
  2826. ioff = btrfs_item_offset(leaf, item);
  2827. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2828. }
  2829. if (leaf->map_token) {
  2830. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2831. leaf->map_token = NULL;
  2832. }
  2833. /* shift the data */
  2834. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2835. data_end - data_size, btrfs_leaf_data(leaf) +
  2836. data_end, old_data - data_end);
  2837. data_end = old_data;
  2838. old_size = btrfs_item_size_nr(leaf, slot);
  2839. item = btrfs_item_nr(leaf, slot);
  2840. btrfs_set_item_size(leaf, item, old_size + data_size);
  2841. btrfs_mark_buffer_dirty(leaf);
  2842. ret = 0;
  2843. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2844. btrfs_print_leaf(root, leaf);
  2845. BUG();
  2846. }
  2847. return ret;
  2848. }
  2849. /*
  2850. * Given a key and some data, insert items into the tree.
  2851. * This does all the path init required, making room in the tree if needed.
  2852. * Returns the number of keys that were inserted.
  2853. */
  2854. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  2855. struct btrfs_root *root,
  2856. struct btrfs_path *path,
  2857. struct btrfs_key *cpu_key, u32 *data_size,
  2858. int nr)
  2859. {
  2860. struct extent_buffer *leaf;
  2861. struct btrfs_item *item;
  2862. int ret = 0;
  2863. int slot;
  2864. int i;
  2865. u32 nritems;
  2866. u32 total_data = 0;
  2867. u32 total_size = 0;
  2868. unsigned int data_end;
  2869. struct btrfs_disk_key disk_key;
  2870. struct btrfs_key found_key;
  2871. for (i = 0; i < nr; i++) {
  2872. if (total_size + data_size[i] + sizeof(struct btrfs_item) >
  2873. BTRFS_LEAF_DATA_SIZE(root)) {
  2874. break;
  2875. nr = i;
  2876. }
  2877. total_data += data_size[i];
  2878. total_size += data_size[i] + sizeof(struct btrfs_item);
  2879. }
  2880. BUG_ON(nr == 0);
  2881. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  2882. if (ret == 0)
  2883. return -EEXIST;
  2884. if (ret < 0)
  2885. goto out;
  2886. leaf = path->nodes[0];
  2887. nritems = btrfs_header_nritems(leaf);
  2888. data_end = leaf_data_end(root, leaf);
  2889. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  2890. for (i = nr; i >= 0; i--) {
  2891. total_data -= data_size[i];
  2892. total_size -= data_size[i] + sizeof(struct btrfs_item);
  2893. if (total_size < btrfs_leaf_free_space(root, leaf))
  2894. break;
  2895. }
  2896. nr = i;
  2897. }
  2898. slot = path->slots[0];
  2899. BUG_ON(slot < 0);
  2900. if (slot != nritems) {
  2901. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  2902. item = btrfs_item_nr(leaf, slot);
  2903. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  2904. /* figure out how many keys we can insert in here */
  2905. total_data = data_size[0];
  2906. for (i = 1; i < nr; i++) {
  2907. if (comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  2908. break;
  2909. total_data += data_size[i];
  2910. }
  2911. nr = i;
  2912. if (old_data < data_end) {
  2913. btrfs_print_leaf(root, leaf);
  2914. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  2915. slot, old_data, data_end);
  2916. BUG_ON(1);
  2917. }
  2918. /*
  2919. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2920. */
  2921. /* first correct the data pointers */
  2922. WARN_ON(leaf->map_token);
  2923. for (i = slot; i < nritems; i++) {
  2924. u32 ioff;
  2925. item = btrfs_item_nr(leaf, i);
  2926. if (!leaf->map_token) {
  2927. map_extent_buffer(leaf, (unsigned long)item,
  2928. sizeof(struct btrfs_item),
  2929. &leaf->map_token, &leaf->kaddr,
  2930. &leaf->map_start, &leaf->map_len,
  2931. KM_USER1);
  2932. }
  2933. ioff = btrfs_item_offset(leaf, item);
  2934. btrfs_set_item_offset(leaf, item, ioff - total_data);
  2935. }
  2936. if (leaf->map_token) {
  2937. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2938. leaf->map_token = NULL;
  2939. }
  2940. /* shift the items */
  2941. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  2942. btrfs_item_nr_offset(slot),
  2943. (nritems - slot) * sizeof(struct btrfs_item));
  2944. /* shift the data */
  2945. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2946. data_end - total_data, btrfs_leaf_data(leaf) +
  2947. data_end, old_data - data_end);
  2948. data_end = old_data;
  2949. } else {
  2950. /*
  2951. * this sucks but it has to be done, if we are inserting at
  2952. * the end of the leaf only insert 1 of the items, since we
  2953. * have no way of knowing whats on the next leaf and we'd have
  2954. * to drop our current locks to figure it out
  2955. */
  2956. nr = 1;
  2957. }
  2958. /* setup the item for the new data */
  2959. for (i = 0; i < nr; i++) {
  2960. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  2961. btrfs_set_item_key(leaf, &disk_key, slot + i);
  2962. item = btrfs_item_nr(leaf, slot + i);
  2963. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  2964. data_end -= data_size[i];
  2965. btrfs_set_item_size(leaf, item, data_size[i]);
  2966. }
  2967. btrfs_set_header_nritems(leaf, nritems + nr);
  2968. btrfs_mark_buffer_dirty(leaf);
  2969. ret = 0;
  2970. if (slot == 0) {
  2971. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  2972. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2973. }
  2974. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2975. btrfs_print_leaf(root, leaf);
  2976. BUG();
  2977. }
  2978. out:
  2979. if (!ret)
  2980. ret = nr;
  2981. return ret;
  2982. }
  2983. /*
  2984. * Given a key and some data, insert items into the tree.
  2985. * This does all the path init required, making room in the tree if needed.
  2986. */
  2987. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  2988. struct btrfs_root *root,
  2989. struct btrfs_path *path,
  2990. struct btrfs_key *cpu_key, u32 *data_size,
  2991. int nr)
  2992. {
  2993. struct extent_buffer *leaf;
  2994. struct btrfs_item *item;
  2995. int ret = 0;
  2996. int slot;
  2997. int slot_orig;
  2998. int i;
  2999. u32 nritems;
  3000. u32 total_size = 0;
  3001. u32 total_data = 0;
  3002. unsigned int data_end;
  3003. struct btrfs_disk_key disk_key;
  3004. for (i = 0; i < nr; i++)
  3005. total_data += data_size[i];
  3006. total_size = total_data + (nr * sizeof(struct btrfs_item));
  3007. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3008. if (ret == 0)
  3009. return -EEXIST;
  3010. if (ret < 0)
  3011. goto out;
  3012. slot_orig = path->slots[0];
  3013. leaf = path->nodes[0];
  3014. nritems = btrfs_header_nritems(leaf);
  3015. data_end = leaf_data_end(root, leaf);
  3016. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3017. btrfs_print_leaf(root, leaf);
  3018. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  3019. total_size, btrfs_leaf_free_space(root, leaf));
  3020. BUG();
  3021. }
  3022. slot = path->slots[0];
  3023. BUG_ON(slot < 0);
  3024. if (slot != nritems) {
  3025. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3026. if (old_data < data_end) {
  3027. btrfs_print_leaf(root, leaf);
  3028. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3029. slot, old_data, data_end);
  3030. BUG_ON(1);
  3031. }
  3032. /*
  3033. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3034. */
  3035. /* first correct the data pointers */
  3036. WARN_ON(leaf->map_token);
  3037. for (i = slot; i < nritems; i++) {
  3038. u32 ioff;
  3039. item = btrfs_item_nr(leaf, i);
  3040. if (!leaf->map_token) {
  3041. map_extent_buffer(leaf, (unsigned long)item,
  3042. sizeof(struct btrfs_item),
  3043. &leaf->map_token, &leaf->kaddr,
  3044. &leaf->map_start, &leaf->map_len,
  3045. KM_USER1);
  3046. }
  3047. ioff = btrfs_item_offset(leaf, item);
  3048. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3049. }
  3050. if (leaf->map_token) {
  3051. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3052. leaf->map_token = NULL;
  3053. }
  3054. /* shift the items */
  3055. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3056. btrfs_item_nr_offset(slot),
  3057. (nritems - slot) * sizeof(struct btrfs_item));
  3058. /* shift the data */
  3059. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3060. data_end - total_data, btrfs_leaf_data(leaf) +
  3061. data_end, old_data - data_end);
  3062. data_end = old_data;
  3063. }
  3064. /* setup the item for the new data */
  3065. for (i = 0; i < nr; i++) {
  3066. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3067. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3068. item = btrfs_item_nr(leaf, slot + i);
  3069. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3070. data_end -= data_size[i];
  3071. btrfs_set_item_size(leaf, item, data_size[i]);
  3072. }
  3073. btrfs_set_header_nritems(leaf, nritems + nr);
  3074. btrfs_mark_buffer_dirty(leaf);
  3075. ret = 0;
  3076. if (slot == 0) {
  3077. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3078. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3079. }
  3080. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3081. btrfs_print_leaf(root, leaf);
  3082. BUG();
  3083. }
  3084. out:
  3085. btrfs_unlock_up_safe(path, 1);
  3086. return ret;
  3087. }
  3088. /*
  3089. * Given a key and some data, insert an item into the tree.
  3090. * This does all the path init required, making room in the tree if needed.
  3091. */
  3092. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  3093. *root, struct btrfs_key *cpu_key, void *data, u32
  3094. data_size)
  3095. {
  3096. int ret = 0;
  3097. struct btrfs_path *path;
  3098. struct extent_buffer *leaf;
  3099. unsigned long ptr;
  3100. path = btrfs_alloc_path();
  3101. BUG_ON(!path);
  3102. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  3103. if (!ret) {
  3104. leaf = path->nodes[0];
  3105. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3106. write_extent_buffer(leaf, data, ptr, data_size);
  3107. btrfs_mark_buffer_dirty(leaf);
  3108. }
  3109. btrfs_free_path(path);
  3110. return ret;
  3111. }
  3112. /*
  3113. * delete the pointer from a given node.
  3114. *
  3115. * the tree should have been previously balanced so the deletion does not
  3116. * empty a node.
  3117. */
  3118. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3119. struct btrfs_path *path, int level, int slot)
  3120. {
  3121. struct extent_buffer *parent = path->nodes[level];
  3122. u32 nritems;
  3123. int ret = 0;
  3124. int wret;
  3125. nritems = btrfs_header_nritems(parent);
  3126. if (slot != nritems - 1) {
  3127. memmove_extent_buffer(parent,
  3128. btrfs_node_key_ptr_offset(slot),
  3129. btrfs_node_key_ptr_offset(slot + 1),
  3130. sizeof(struct btrfs_key_ptr) *
  3131. (nritems - slot - 1));
  3132. }
  3133. nritems--;
  3134. btrfs_set_header_nritems(parent, nritems);
  3135. if (nritems == 0 && parent == root->node) {
  3136. BUG_ON(btrfs_header_level(root->node) != 1);
  3137. /* just turn the root into a leaf and break */
  3138. btrfs_set_header_level(root->node, 0);
  3139. } else if (slot == 0) {
  3140. struct btrfs_disk_key disk_key;
  3141. btrfs_node_key(parent, &disk_key, 0);
  3142. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3143. if (wret)
  3144. ret = wret;
  3145. }
  3146. btrfs_mark_buffer_dirty(parent);
  3147. return ret;
  3148. }
  3149. /*
  3150. * a helper function to delete the leaf pointed to by path->slots[1] and
  3151. * path->nodes[1]. bytenr is the node block pointer, but since the callers
  3152. * already know it, it is faster to have them pass it down than to
  3153. * read it out of the node again.
  3154. *
  3155. * This deletes the pointer in path->nodes[1] and frees the leaf
  3156. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3157. *
  3158. * The path must have already been setup for deleting the leaf, including
  3159. * all the proper balancing. path->nodes[1] must be locked.
  3160. */
  3161. noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3162. struct btrfs_root *root,
  3163. struct btrfs_path *path, u64 bytenr)
  3164. {
  3165. int ret;
  3166. u64 root_gen = btrfs_header_generation(path->nodes[1]);
  3167. u64 parent_start = path->nodes[1]->start;
  3168. u64 parent_owner = btrfs_header_owner(path->nodes[1]);
  3169. ret = del_ptr(trans, root, path, 1, path->slots[1]);
  3170. if (ret)
  3171. return ret;
  3172. /*
  3173. * btrfs_free_extent is expensive, we want to make sure we
  3174. * aren't holding any locks when we call it
  3175. */
  3176. btrfs_unlock_up_safe(path, 0);
  3177. ret = btrfs_free_extent(trans, root, bytenr,
  3178. btrfs_level_size(root, 0),
  3179. parent_start, parent_owner,
  3180. root_gen, 0, 1);
  3181. return ret;
  3182. }
  3183. /*
  3184. * delete the item at the leaf level in path. If that empties
  3185. * the leaf, remove it from the tree
  3186. */
  3187. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3188. struct btrfs_path *path, int slot, int nr)
  3189. {
  3190. struct extent_buffer *leaf;
  3191. struct btrfs_item *item;
  3192. int last_off;
  3193. int dsize = 0;
  3194. int ret = 0;
  3195. int wret;
  3196. int i;
  3197. u32 nritems;
  3198. leaf = path->nodes[0];
  3199. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3200. for (i = 0; i < nr; i++)
  3201. dsize += btrfs_item_size_nr(leaf, slot + i);
  3202. nritems = btrfs_header_nritems(leaf);
  3203. if (slot + nr != nritems) {
  3204. int data_end = leaf_data_end(root, leaf);
  3205. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3206. data_end + dsize,
  3207. btrfs_leaf_data(leaf) + data_end,
  3208. last_off - data_end);
  3209. for (i = slot + nr; i < nritems; i++) {
  3210. u32 ioff;
  3211. item = btrfs_item_nr(leaf, i);
  3212. if (!leaf->map_token) {
  3213. map_extent_buffer(leaf, (unsigned long)item,
  3214. sizeof(struct btrfs_item),
  3215. &leaf->map_token, &leaf->kaddr,
  3216. &leaf->map_start, &leaf->map_len,
  3217. KM_USER1);
  3218. }
  3219. ioff = btrfs_item_offset(leaf, item);
  3220. btrfs_set_item_offset(leaf, item, ioff + dsize);
  3221. }
  3222. if (leaf->map_token) {
  3223. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3224. leaf->map_token = NULL;
  3225. }
  3226. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3227. btrfs_item_nr_offset(slot + nr),
  3228. sizeof(struct btrfs_item) *
  3229. (nritems - slot - nr));
  3230. }
  3231. btrfs_set_header_nritems(leaf, nritems - nr);
  3232. nritems -= nr;
  3233. /* delete the leaf if we've emptied it */
  3234. if (nritems == 0) {
  3235. if (leaf == root->node) {
  3236. btrfs_set_header_level(leaf, 0);
  3237. } else {
  3238. ret = btrfs_del_leaf(trans, root, path, leaf->start);
  3239. BUG_ON(ret);
  3240. }
  3241. } else {
  3242. int used = leaf_space_used(leaf, 0, nritems);
  3243. if (slot == 0) {
  3244. struct btrfs_disk_key disk_key;
  3245. btrfs_item_key(leaf, &disk_key, 0);
  3246. wret = fixup_low_keys(trans, root, path,
  3247. &disk_key, 1);
  3248. if (wret)
  3249. ret = wret;
  3250. }
  3251. /* delete the leaf if it is mostly empty */
  3252. if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) {
  3253. /* push_leaf_left fixes the path.
  3254. * make sure the path still points to our leaf
  3255. * for possible call to del_ptr below
  3256. */
  3257. slot = path->slots[1];
  3258. extent_buffer_get(leaf);
  3259. wret = push_leaf_left(trans, root, path, 1, 1);
  3260. if (wret < 0 && wret != -ENOSPC)
  3261. ret = wret;
  3262. if (path->nodes[0] == leaf &&
  3263. btrfs_header_nritems(leaf)) {
  3264. wret = push_leaf_right(trans, root, path, 1, 1);
  3265. if (wret < 0 && wret != -ENOSPC)
  3266. ret = wret;
  3267. }
  3268. if (btrfs_header_nritems(leaf) == 0) {
  3269. path->slots[1] = slot;
  3270. ret = btrfs_del_leaf(trans, root, path,
  3271. leaf->start);
  3272. BUG_ON(ret);
  3273. free_extent_buffer(leaf);
  3274. } else {
  3275. /* if we're still in the path, make sure
  3276. * we're dirty. Otherwise, one of the
  3277. * push_leaf functions must have already
  3278. * dirtied this buffer
  3279. */
  3280. if (path->nodes[0] == leaf)
  3281. btrfs_mark_buffer_dirty(leaf);
  3282. free_extent_buffer(leaf);
  3283. }
  3284. } else {
  3285. btrfs_mark_buffer_dirty(leaf);
  3286. }
  3287. }
  3288. return ret;
  3289. }
  3290. /*
  3291. * search the tree again to find a leaf with lesser keys
  3292. * returns 0 if it found something or 1 if there are no lesser leaves.
  3293. * returns < 0 on io errors.
  3294. *
  3295. * This may release the path, and so you may lose any locks held at the
  3296. * time you call it.
  3297. */
  3298. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3299. {
  3300. struct btrfs_key key;
  3301. struct btrfs_disk_key found_key;
  3302. int ret;
  3303. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3304. if (key.offset > 0)
  3305. key.offset--;
  3306. else if (key.type > 0)
  3307. key.type--;
  3308. else if (key.objectid > 0)
  3309. key.objectid--;
  3310. else
  3311. return 1;
  3312. btrfs_release_path(root, path);
  3313. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3314. if (ret < 0)
  3315. return ret;
  3316. btrfs_item_key(path->nodes[0], &found_key, 0);
  3317. ret = comp_keys(&found_key, &key);
  3318. if (ret < 0)
  3319. return 0;
  3320. return 1;
  3321. }
  3322. /*
  3323. * A helper function to walk down the tree starting at min_key, and looking
  3324. * for nodes or leaves that are either in cache or have a minimum
  3325. * transaction id. This is used by the btree defrag code, and tree logging
  3326. *
  3327. * This does not cow, but it does stuff the starting key it finds back
  3328. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3329. * key and get a writable path.
  3330. *
  3331. * This does lock as it descends, and path->keep_locks should be set
  3332. * to 1 by the caller.
  3333. *
  3334. * This honors path->lowest_level to prevent descent past a given level
  3335. * of the tree.
  3336. *
  3337. * min_trans indicates the oldest transaction that you are interested
  3338. * in walking through. Any nodes or leaves older than min_trans are
  3339. * skipped over (without reading them).
  3340. *
  3341. * returns zero if something useful was found, < 0 on error and 1 if there
  3342. * was nothing in the tree that matched the search criteria.
  3343. */
  3344. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3345. struct btrfs_key *max_key,
  3346. struct btrfs_path *path, int cache_only,
  3347. u64 min_trans)
  3348. {
  3349. struct extent_buffer *cur;
  3350. struct btrfs_key found_key;
  3351. int slot;
  3352. int sret;
  3353. u32 nritems;
  3354. int level;
  3355. int ret = 1;
  3356. WARN_ON(!path->keep_locks);
  3357. again:
  3358. cur = btrfs_lock_root_node(root);
  3359. level = btrfs_header_level(cur);
  3360. WARN_ON(path->nodes[level]);
  3361. path->nodes[level] = cur;
  3362. path->locks[level] = 1;
  3363. if (btrfs_header_generation(cur) < min_trans) {
  3364. ret = 1;
  3365. goto out;
  3366. }
  3367. while (1) {
  3368. nritems = btrfs_header_nritems(cur);
  3369. level = btrfs_header_level(cur);
  3370. sret = bin_search(cur, min_key, level, &slot);
  3371. /* at the lowest level, we're done, setup the path and exit */
  3372. if (level == path->lowest_level) {
  3373. if (slot >= nritems)
  3374. goto find_next_key;
  3375. ret = 0;
  3376. path->slots[level] = slot;
  3377. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3378. goto out;
  3379. }
  3380. if (sret && slot > 0)
  3381. slot--;
  3382. /*
  3383. * check this node pointer against the cache_only and
  3384. * min_trans parameters. If it isn't in cache or is too
  3385. * old, skip to the next one.
  3386. */
  3387. while (slot < nritems) {
  3388. u64 blockptr;
  3389. u64 gen;
  3390. struct extent_buffer *tmp;
  3391. struct btrfs_disk_key disk_key;
  3392. blockptr = btrfs_node_blockptr(cur, slot);
  3393. gen = btrfs_node_ptr_generation(cur, slot);
  3394. if (gen < min_trans) {
  3395. slot++;
  3396. continue;
  3397. }
  3398. if (!cache_only)
  3399. break;
  3400. if (max_key) {
  3401. btrfs_node_key(cur, &disk_key, slot);
  3402. if (comp_keys(&disk_key, max_key) >= 0) {
  3403. ret = 1;
  3404. goto out;
  3405. }
  3406. }
  3407. tmp = btrfs_find_tree_block(root, blockptr,
  3408. btrfs_level_size(root, level - 1));
  3409. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3410. free_extent_buffer(tmp);
  3411. break;
  3412. }
  3413. if (tmp)
  3414. free_extent_buffer(tmp);
  3415. slot++;
  3416. }
  3417. find_next_key:
  3418. /*
  3419. * we didn't find a candidate key in this node, walk forward
  3420. * and find another one
  3421. */
  3422. if (slot >= nritems) {
  3423. path->slots[level] = slot;
  3424. btrfs_set_path_blocking(path);
  3425. sret = btrfs_find_next_key(root, path, min_key, level,
  3426. cache_only, min_trans);
  3427. if (sret == 0) {
  3428. btrfs_release_path(root, path);
  3429. goto again;
  3430. } else {
  3431. goto out;
  3432. }
  3433. }
  3434. /* save our key for returning back */
  3435. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3436. path->slots[level] = slot;
  3437. if (level == path->lowest_level) {
  3438. ret = 0;
  3439. unlock_up(path, level, 1);
  3440. goto out;
  3441. }
  3442. btrfs_set_path_blocking(path);
  3443. cur = read_node_slot(root, cur, slot);
  3444. btrfs_tree_lock(cur);
  3445. path->locks[level - 1] = 1;
  3446. path->nodes[level - 1] = cur;
  3447. unlock_up(path, level, 1);
  3448. btrfs_clear_path_blocking(path, NULL);
  3449. }
  3450. out:
  3451. if (ret == 0)
  3452. memcpy(min_key, &found_key, sizeof(found_key));
  3453. btrfs_set_path_blocking(path);
  3454. return ret;
  3455. }
  3456. /*
  3457. * this is similar to btrfs_next_leaf, but does not try to preserve
  3458. * and fixup the path. It looks for and returns the next key in the
  3459. * tree based on the current path and the cache_only and min_trans
  3460. * parameters.
  3461. *
  3462. * 0 is returned if another key is found, < 0 if there are any errors
  3463. * and 1 is returned if there are no higher keys in the tree
  3464. *
  3465. * path->keep_locks should be set to 1 on the search made before
  3466. * calling this function.
  3467. */
  3468. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3469. struct btrfs_key *key, int lowest_level,
  3470. int cache_only, u64 min_trans)
  3471. {
  3472. int level = lowest_level;
  3473. int slot;
  3474. struct extent_buffer *c;
  3475. WARN_ON(!path->keep_locks);
  3476. while (level < BTRFS_MAX_LEVEL) {
  3477. if (!path->nodes[level])
  3478. return 1;
  3479. slot = path->slots[level] + 1;
  3480. c = path->nodes[level];
  3481. next:
  3482. if (slot >= btrfs_header_nritems(c)) {
  3483. level++;
  3484. if (level == BTRFS_MAX_LEVEL)
  3485. return 1;
  3486. continue;
  3487. }
  3488. if (level == 0)
  3489. btrfs_item_key_to_cpu(c, key, slot);
  3490. else {
  3491. u64 blockptr = btrfs_node_blockptr(c, slot);
  3492. u64 gen = btrfs_node_ptr_generation(c, slot);
  3493. if (cache_only) {
  3494. struct extent_buffer *cur;
  3495. cur = btrfs_find_tree_block(root, blockptr,
  3496. btrfs_level_size(root, level - 1));
  3497. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3498. slot++;
  3499. if (cur)
  3500. free_extent_buffer(cur);
  3501. goto next;
  3502. }
  3503. free_extent_buffer(cur);
  3504. }
  3505. if (gen < min_trans) {
  3506. slot++;
  3507. goto next;
  3508. }
  3509. btrfs_node_key_to_cpu(c, key, slot);
  3510. }
  3511. return 0;
  3512. }
  3513. return 1;
  3514. }
  3515. /*
  3516. * search the tree again to find a leaf with greater keys
  3517. * returns 0 if it found something or 1 if there are no greater leaves.
  3518. * returns < 0 on io errors.
  3519. */
  3520. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3521. {
  3522. int slot;
  3523. int level = 1;
  3524. struct extent_buffer *c;
  3525. struct extent_buffer *next = NULL;
  3526. struct btrfs_key key;
  3527. u32 nritems;
  3528. int ret;
  3529. nritems = btrfs_header_nritems(path->nodes[0]);
  3530. if (nritems == 0)
  3531. return 1;
  3532. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3533. btrfs_release_path(root, path);
  3534. path->keep_locks = 1;
  3535. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3536. path->keep_locks = 0;
  3537. if (ret < 0)
  3538. return ret;
  3539. btrfs_set_path_blocking(path);
  3540. nritems = btrfs_header_nritems(path->nodes[0]);
  3541. /*
  3542. * by releasing the path above we dropped all our locks. A balance
  3543. * could have added more items next to the key that used to be
  3544. * at the very end of the block. So, check again here and
  3545. * advance the path if there are now more items available.
  3546. */
  3547. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3548. path->slots[0]++;
  3549. goto done;
  3550. }
  3551. while (level < BTRFS_MAX_LEVEL) {
  3552. if (!path->nodes[level])
  3553. return 1;
  3554. slot = path->slots[level] + 1;
  3555. c = path->nodes[level];
  3556. if (slot >= btrfs_header_nritems(c)) {
  3557. level++;
  3558. if (level == BTRFS_MAX_LEVEL)
  3559. return 1;
  3560. continue;
  3561. }
  3562. if (next) {
  3563. btrfs_tree_unlock(next);
  3564. free_extent_buffer(next);
  3565. }
  3566. /* the path was set to blocking above */
  3567. if (level == 1 && (path->locks[1] || path->skip_locking) &&
  3568. path->reada)
  3569. reada_for_search(root, path, level, slot, 0);
  3570. next = read_node_slot(root, c, slot);
  3571. if (!path->skip_locking) {
  3572. btrfs_assert_tree_locked(c);
  3573. btrfs_tree_lock(next);
  3574. btrfs_set_lock_blocking(next);
  3575. }
  3576. break;
  3577. }
  3578. path->slots[level] = slot;
  3579. while (1) {
  3580. level--;
  3581. c = path->nodes[level];
  3582. if (path->locks[level])
  3583. btrfs_tree_unlock(c);
  3584. free_extent_buffer(c);
  3585. path->nodes[level] = next;
  3586. path->slots[level] = 0;
  3587. if (!path->skip_locking)
  3588. path->locks[level] = 1;
  3589. if (!level)
  3590. break;
  3591. btrfs_set_path_blocking(path);
  3592. if (level == 1 && path->locks[1] && path->reada)
  3593. reada_for_search(root, path, level, slot, 0);
  3594. next = read_node_slot(root, next, 0);
  3595. if (!path->skip_locking) {
  3596. btrfs_assert_tree_locked(path->nodes[level]);
  3597. btrfs_tree_lock(next);
  3598. btrfs_set_lock_blocking(next);
  3599. }
  3600. }
  3601. done:
  3602. unlock_up(path, 0, 1);
  3603. return 0;
  3604. }
  3605. /*
  3606. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3607. * searching until it gets past min_objectid or finds an item of 'type'
  3608. *
  3609. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3610. */
  3611. int btrfs_previous_item(struct btrfs_root *root,
  3612. struct btrfs_path *path, u64 min_objectid,
  3613. int type)
  3614. {
  3615. struct btrfs_key found_key;
  3616. struct extent_buffer *leaf;
  3617. u32 nritems;
  3618. int ret;
  3619. while (1) {
  3620. if (path->slots[0] == 0) {
  3621. btrfs_set_path_blocking(path);
  3622. ret = btrfs_prev_leaf(root, path);
  3623. if (ret != 0)
  3624. return ret;
  3625. } else {
  3626. path->slots[0]--;
  3627. }
  3628. leaf = path->nodes[0];
  3629. nritems = btrfs_header_nritems(leaf);
  3630. if (nritems == 0)
  3631. return 1;
  3632. if (path->slots[0] == nritems)
  3633. path->slots[0]--;
  3634. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3635. if (found_key.type == type)
  3636. return 0;
  3637. if (found_key.objectid < min_objectid)
  3638. break;
  3639. if (found_key.objectid == min_objectid &&
  3640. found_key.type < type)
  3641. break;
  3642. }
  3643. return 1;
  3644. }