emulate.c 110 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233
  1. /******************************************************************************
  2. * emulate.c
  3. *
  4. * Generic x86 (32-bit and 64-bit) instruction decoder and emulator.
  5. *
  6. * Copyright (c) 2005 Keir Fraser
  7. *
  8. * Linux coding style, mod r/m decoder, segment base fixes, real-mode
  9. * privileged instructions:
  10. *
  11. * Copyright (C) 2006 Qumranet
  12. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  13. *
  14. * Avi Kivity <avi@qumranet.com>
  15. * Yaniv Kamay <yaniv@qumranet.com>
  16. *
  17. * This work is licensed under the terms of the GNU GPL, version 2. See
  18. * the COPYING file in the top-level directory.
  19. *
  20. * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4
  21. */
  22. #include <linux/kvm_host.h>
  23. #include "kvm_cache_regs.h"
  24. #include <linux/module.h>
  25. #include <asm/kvm_emulate.h>
  26. #include "x86.h"
  27. #include "tss.h"
  28. /*
  29. * Opcode effective-address decode tables.
  30. * Note that we only emulate instructions that have at least one memory
  31. * operand (excluding implicit stack references). We assume that stack
  32. * references and instruction fetches will never occur in special memory
  33. * areas that require emulation. So, for example, 'mov <imm>,<reg>' need
  34. * not be handled.
  35. */
  36. /* Operand sizes: 8-bit operands or specified/overridden size. */
  37. #define ByteOp (1<<0) /* 8-bit operands. */
  38. /* Destination operand type. */
  39. #define ImplicitOps (1<<1) /* Implicit in opcode. No generic decode. */
  40. #define DstReg (2<<1) /* Register operand. */
  41. #define DstMem (3<<1) /* Memory operand. */
  42. #define DstAcc (4<<1) /* Destination Accumulator */
  43. #define DstDI (5<<1) /* Destination is in ES:(E)DI */
  44. #define DstMem64 (6<<1) /* 64bit memory operand */
  45. #define DstImmUByte (7<<1) /* 8-bit unsigned immediate operand */
  46. #define DstMask (7<<1)
  47. /* Source operand type. */
  48. #define SrcNone (0<<4) /* No source operand. */
  49. #define SrcReg (1<<4) /* Register operand. */
  50. #define SrcMem (2<<4) /* Memory operand. */
  51. #define SrcMem16 (3<<4) /* Memory operand (16-bit). */
  52. #define SrcMem32 (4<<4) /* Memory operand (32-bit). */
  53. #define SrcImm (5<<4) /* Immediate operand. */
  54. #define SrcImmByte (6<<4) /* 8-bit sign-extended immediate operand. */
  55. #define SrcOne (7<<4) /* Implied '1' */
  56. #define SrcImmUByte (8<<4) /* 8-bit unsigned immediate operand. */
  57. #define SrcImmU (9<<4) /* Immediate operand, unsigned */
  58. #define SrcSI (0xa<<4) /* Source is in the DS:RSI */
  59. #define SrcImmFAddr (0xb<<4) /* Source is immediate far address */
  60. #define SrcMemFAddr (0xc<<4) /* Source is far address in memory */
  61. #define SrcAcc (0xd<<4) /* Source Accumulator */
  62. #define SrcImmU16 (0xe<<4) /* Immediate operand, unsigned, 16 bits */
  63. #define SrcMask (0xf<<4)
  64. /* Generic ModRM decode. */
  65. #define ModRM (1<<8)
  66. /* Destination is only written; never read. */
  67. #define Mov (1<<9)
  68. #define BitOp (1<<10)
  69. #define MemAbs (1<<11) /* Memory operand is absolute displacement */
  70. #define String (1<<12) /* String instruction (rep capable) */
  71. #define Stack (1<<13) /* Stack instruction (push/pop) */
  72. #define Group (1<<14) /* Bits 3:5 of modrm byte extend opcode */
  73. #define GroupDual (1<<15) /* Alternate decoding of mod == 3 */
  74. #define Prefix (1<<16) /* Instruction varies with 66/f2/f3 prefix */
  75. #define Sse (1<<17) /* SSE Vector instruction */
  76. #define RMExt (1<<18) /* Opcode extension in ModRM r/m if mod == 3 */
  77. /* Misc flags */
  78. #define Prot (1<<21) /* instruction generates #UD if not in prot-mode */
  79. #define VendorSpecific (1<<22) /* Vendor specific instruction */
  80. #define NoAccess (1<<23) /* Don't access memory (lea/invlpg/verr etc) */
  81. #define Op3264 (1<<24) /* Operand is 64b in long mode, 32b otherwise */
  82. #define Undefined (1<<25) /* No Such Instruction */
  83. #define Lock (1<<26) /* lock prefix is allowed for the instruction */
  84. #define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */
  85. #define No64 (1<<28)
  86. /* Source 2 operand type */
  87. #define Src2None (0<<29)
  88. #define Src2CL (1<<29)
  89. #define Src2ImmByte (2<<29)
  90. #define Src2One (3<<29)
  91. #define Src2Imm (4<<29)
  92. #define Src2Mask (7<<29)
  93. #define X2(x...) x, x
  94. #define X3(x...) X2(x), x
  95. #define X4(x...) X2(x), X2(x)
  96. #define X5(x...) X4(x), x
  97. #define X6(x...) X4(x), X2(x)
  98. #define X7(x...) X4(x), X3(x)
  99. #define X8(x...) X4(x), X4(x)
  100. #define X16(x...) X8(x), X8(x)
  101. struct opcode {
  102. u32 flags;
  103. u8 intercept;
  104. union {
  105. int (*execute)(struct x86_emulate_ctxt *ctxt);
  106. struct opcode *group;
  107. struct group_dual *gdual;
  108. struct gprefix *gprefix;
  109. } u;
  110. int (*check_perm)(struct x86_emulate_ctxt *ctxt);
  111. };
  112. struct group_dual {
  113. struct opcode mod012[8];
  114. struct opcode mod3[8];
  115. };
  116. struct gprefix {
  117. struct opcode pfx_no;
  118. struct opcode pfx_66;
  119. struct opcode pfx_f2;
  120. struct opcode pfx_f3;
  121. };
  122. /* EFLAGS bit definitions. */
  123. #define EFLG_ID (1<<21)
  124. #define EFLG_VIP (1<<20)
  125. #define EFLG_VIF (1<<19)
  126. #define EFLG_AC (1<<18)
  127. #define EFLG_VM (1<<17)
  128. #define EFLG_RF (1<<16)
  129. #define EFLG_IOPL (3<<12)
  130. #define EFLG_NT (1<<14)
  131. #define EFLG_OF (1<<11)
  132. #define EFLG_DF (1<<10)
  133. #define EFLG_IF (1<<9)
  134. #define EFLG_TF (1<<8)
  135. #define EFLG_SF (1<<7)
  136. #define EFLG_ZF (1<<6)
  137. #define EFLG_AF (1<<4)
  138. #define EFLG_PF (1<<2)
  139. #define EFLG_CF (1<<0)
  140. #define EFLG_RESERVED_ZEROS_MASK 0xffc0802a
  141. #define EFLG_RESERVED_ONE_MASK 2
  142. /*
  143. * Instruction emulation:
  144. * Most instructions are emulated directly via a fragment of inline assembly
  145. * code. This allows us to save/restore EFLAGS and thus very easily pick up
  146. * any modified flags.
  147. */
  148. #if defined(CONFIG_X86_64)
  149. #define _LO32 "k" /* force 32-bit operand */
  150. #define _STK "%%rsp" /* stack pointer */
  151. #elif defined(__i386__)
  152. #define _LO32 "" /* force 32-bit operand */
  153. #define _STK "%%esp" /* stack pointer */
  154. #endif
  155. /*
  156. * These EFLAGS bits are restored from saved value during emulation, and
  157. * any changes are written back to the saved value after emulation.
  158. */
  159. #define EFLAGS_MASK (EFLG_OF|EFLG_SF|EFLG_ZF|EFLG_AF|EFLG_PF|EFLG_CF)
  160. /* Before executing instruction: restore necessary bits in EFLAGS. */
  161. #define _PRE_EFLAGS(_sav, _msk, _tmp) \
  162. /* EFLAGS = (_sav & _msk) | (EFLAGS & ~_msk); _sav &= ~_msk; */ \
  163. "movl %"_sav",%"_LO32 _tmp"; " \
  164. "push %"_tmp"; " \
  165. "push %"_tmp"; " \
  166. "movl %"_msk",%"_LO32 _tmp"; " \
  167. "andl %"_LO32 _tmp",("_STK"); " \
  168. "pushf; " \
  169. "notl %"_LO32 _tmp"; " \
  170. "andl %"_LO32 _tmp",("_STK"); " \
  171. "andl %"_LO32 _tmp","__stringify(BITS_PER_LONG/4)"("_STK"); " \
  172. "pop %"_tmp"; " \
  173. "orl %"_LO32 _tmp",("_STK"); " \
  174. "popf; " \
  175. "pop %"_sav"; "
  176. /* After executing instruction: write-back necessary bits in EFLAGS. */
  177. #define _POST_EFLAGS(_sav, _msk, _tmp) \
  178. /* _sav |= EFLAGS & _msk; */ \
  179. "pushf; " \
  180. "pop %"_tmp"; " \
  181. "andl %"_msk",%"_LO32 _tmp"; " \
  182. "orl %"_LO32 _tmp",%"_sav"; "
  183. #ifdef CONFIG_X86_64
  184. #define ON64(x) x
  185. #else
  186. #define ON64(x)
  187. #endif
  188. #define ____emulate_2op(_op, _src, _dst, _eflags, _x, _y, _suffix, _dsttype) \
  189. do { \
  190. __asm__ __volatile__ ( \
  191. _PRE_EFLAGS("0", "4", "2") \
  192. _op _suffix " %"_x"3,%1; " \
  193. _POST_EFLAGS("0", "4", "2") \
  194. : "=m" (_eflags), "+q" (*(_dsttype*)&(_dst).val),\
  195. "=&r" (_tmp) \
  196. : _y ((_src).val), "i" (EFLAGS_MASK)); \
  197. } while (0)
  198. /* Raw emulation: instruction has two explicit operands. */
  199. #define __emulate_2op_nobyte(_op,_src,_dst,_eflags,_wx,_wy,_lx,_ly,_qx,_qy) \
  200. do { \
  201. unsigned long _tmp; \
  202. \
  203. switch ((_dst).bytes) { \
  204. case 2: \
  205. ____emulate_2op(_op,_src,_dst,_eflags,_wx,_wy,"w",u16);\
  206. break; \
  207. case 4: \
  208. ____emulate_2op(_op,_src,_dst,_eflags,_lx,_ly,"l",u32);\
  209. break; \
  210. case 8: \
  211. ON64(____emulate_2op(_op,_src,_dst,_eflags,_qx,_qy,"q",u64)); \
  212. break; \
  213. } \
  214. } while (0)
  215. #define __emulate_2op(_op,_src,_dst,_eflags,_bx,_by,_wx,_wy,_lx,_ly,_qx,_qy) \
  216. do { \
  217. unsigned long _tmp; \
  218. switch ((_dst).bytes) { \
  219. case 1: \
  220. ____emulate_2op(_op,_src,_dst,_eflags,_bx,_by,"b",u8); \
  221. break; \
  222. default: \
  223. __emulate_2op_nobyte(_op, _src, _dst, _eflags, \
  224. _wx, _wy, _lx, _ly, _qx, _qy); \
  225. break; \
  226. } \
  227. } while (0)
  228. /* Source operand is byte-sized and may be restricted to just %cl. */
  229. #define emulate_2op_SrcB(_op, _src, _dst, _eflags) \
  230. __emulate_2op(_op, _src, _dst, _eflags, \
  231. "b", "c", "b", "c", "b", "c", "b", "c")
  232. /* Source operand is byte, word, long or quad sized. */
  233. #define emulate_2op_SrcV(_op, _src, _dst, _eflags) \
  234. __emulate_2op(_op, _src, _dst, _eflags, \
  235. "b", "q", "w", "r", _LO32, "r", "", "r")
  236. /* Source operand is word, long or quad sized. */
  237. #define emulate_2op_SrcV_nobyte(_op, _src, _dst, _eflags) \
  238. __emulate_2op_nobyte(_op, _src, _dst, _eflags, \
  239. "w", "r", _LO32, "r", "", "r")
  240. /* Instruction has three operands and one operand is stored in ECX register */
  241. #define __emulate_2op_cl(_op, _cl, _src, _dst, _eflags, _suffix, _type) \
  242. do { \
  243. unsigned long _tmp; \
  244. _type _clv = (_cl).val; \
  245. _type _srcv = (_src).val; \
  246. _type _dstv = (_dst).val; \
  247. \
  248. __asm__ __volatile__ ( \
  249. _PRE_EFLAGS("0", "5", "2") \
  250. _op _suffix " %4,%1 \n" \
  251. _POST_EFLAGS("0", "5", "2") \
  252. : "=m" (_eflags), "+r" (_dstv), "=&r" (_tmp) \
  253. : "c" (_clv) , "r" (_srcv), "i" (EFLAGS_MASK) \
  254. ); \
  255. \
  256. (_cl).val = (unsigned long) _clv; \
  257. (_src).val = (unsigned long) _srcv; \
  258. (_dst).val = (unsigned long) _dstv; \
  259. } while (0)
  260. #define emulate_2op_cl(_op, _cl, _src, _dst, _eflags) \
  261. do { \
  262. switch ((_dst).bytes) { \
  263. case 2: \
  264. __emulate_2op_cl(_op, _cl, _src, _dst, _eflags, \
  265. "w", unsigned short); \
  266. break; \
  267. case 4: \
  268. __emulate_2op_cl(_op, _cl, _src, _dst, _eflags, \
  269. "l", unsigned int); \
  270. break; \
  271. case 8: \
  272. ON64(__emulate_2op_cl(_op, _cl, _src, _dst, _eflags, \
  273. "q", unsigned long)); \
  274. break; \
  275. } \
  276. } while (0)
  277. #define __emulate_1op(_op, _dst, _eflags, _suffix) \
  278. do { \
  279. unsigned long _tmp; \
  280. \
  281. __asm__ __volatile__ ( \
  282. _PRE_EFLAGS("0", "3", "2") \
  283. _op _suffix " %1; " \
  284. _POST_EFLAGS("0", "3", "2") \
  285. : "=m" (_eflags), "+m" ((_dst).val), \
  286. "=&r" (_tmp) \
  287. : "i" (EFLAGS_MASK)); \
  288. } while (0)
  289. /* Instruction has only one explicit operand (no source operand). */
  290. #define emulate_1op(_op, _dst, _eflags) \
  291. do { \
  292. switch ((_dst).bytes) { \
  293. case 1: __emulate_1op(_op, _dst, _eflags, "b"); break; \
  294. case 2: __emulate_1op(_op, _dst, _eflags, "w"); break; \
  295. case 4: __emulate_1op(_op, _dst, _eflags, "l"); break; \
  296. case 8: ON64(__emulate_1op(_op, _dst, _eflags, "q")); break; \
  297. } \
  298. } while (0)
  299. #define __emulate_1op_rax_rdx(_op, _src, _rax, _rdx, _eflags, _suffix) \
  300. do { \
  301. unsigned long _tmp; \
  302. \
  303. __asm__ __volatile__ ( \
  304. _PRE_EFLAGS("0", "4", "1") \
  305. _op _suffix " %5; " \
  306. _POST_EFLAGS("0", "4", "1") \
  307. : "=m" (_eflags), "=&r" (_tmp), \
  308. "+a" (_rax), "+d" (_rdx) \
  309. : "i" (EFLAGS_MASK), "m" ((_src).val), \
  310. "a" (_rax), "d" (_rdx)); \
  311. } while (0)
  312. #define __emulate_1op_rax_rdx_ex(_op, _src, _rax, _rdx, _eflags, _suffix, _ex) \
  313. do { \
  314. unsigned long _tmp; \
  315. \
  316. __asm__ __volatile__ ( \
  317. _PRE_EFLAGS("0", "5", "1") \
  318. "1: \n\t" \
  319. _op _suffix " %6; " \
  320. "2: \n\t" \
  321. _POST_EFLAGS("0", "5", "1") \
  322. ".pushsection .fixup,\"ax\" \n\t" \
  323. "3: movb $1, %4 \n\t" \
  324. "jmp 2b \n\t" \
  325. ".popsection \n\t" \
  326. _ASM_EXTABLE(1b, 3b) \
  327. : "=m" (_eflags), "=&r" (_tmp), \
  328. "+a" (_rax), "+d" (_rdx), "+qm"(_ex) \
  329. : "i" (EFLAGS_MASK), "m" ((_src).val), \
  330. "a" (_rax), "d" (_rdx)); \
  331. } while (0)
  332. /* instruction has only one source operand, destination is implicit (e.g. mul, div, imul, idiv) */
  333. #define emulate_1op_rax_rdx(_op, _src, _rax, _rdx, _eflags) \
  334. do { \
  335. switch((_src).bytes) { \
  336. case 1: __emulate_1op_rax_rdx(_op, _src, _rax, _rdx, _eflags, "b"); break; \
  337. case 2: __emulate_1op_rax_rdx(_op, _src, _rax, _rdx, _eflags, "w"); break; \
  338. case 4: __emulate_1op_rax_rdx(_op, _src, _rax, _rdx, _eflags, "l"); break; \
  339. case 8: ON64(__emulate_1op_rax_rdx(_op, _src, _rax, _rdx, _eflags, "q")); break; \
  340. } \
  341. } while (0)
  342. #define emulate_1op_rax_rdx_ex(_op, _src, _rax, _rdx, _eflags, _ex) \
  343. do { \
  344. switch((_src).bytes) { \
  345. case 1: \
  346. __emulate_1op_rax_rdx_ex(_op, _src, _rax, _rdx, \
  347. _eflags, "b", _ex); \
  348. break; \
  349. case 2: \
  350. __emulate_1op_rax_rdx_ex(_op, _src, _rax, _rdx, \
  351. _eflags, "w", _ex); \
  352. break; \
  353. case 4: \
  354. __emulate_1op_rax_rdx_ex(_op, _src, _rax, _rdx, \
  355. _eflags, "l", _ex); \
  356. break; \
  357. case 8: ON64( \
  358. __emulate_1op_rax_rdx_ex(_op, _src, _rax, _rdx, \
  359. _eflags, "q", _ex)); \
  360. break; \
  361. } \
  362. } while (0)
  363. /* Fetch next part of the instruction being emulated. */
  364. #define insn_fetch(_type, _size, _eip) \
  365. ({ unsigned long _x; \
  366. rc = do_insn_fetch(ctxt, ops, (_eip), &_x, (_size)); \
  367. if (rc != X86EMUL_CONTINUE) \
  368. goto done; \
  369. (_eip) += (_size); \
  370. (_type)_x; \
  371. })
  372. #define insn_fetch_arr(_arr, _size, _eip) \
  373. ({ rc = do_insn_fetch(ctxt, ops, (_eip), _arr, (_size)); \
  374. if (rc != X86EMUL_CONTINUE) \
  375. goto done; \
  376. (_eip) += (_size); \
  377. })
  378. static int emulator_check_intercept(struct x86_emulate_ctxt *ctxt,
  379. enum x86_intercept intercept,
  380. enum x86_intercept_stage stage)
  381. {
  382. struct x86_instruction_info info = {
  383. .intercept = intercept,
  384. .rep_prefix = ctxt->decode.rep_prefix,
  385. .modrm_mod = ctxt->decode.modrm_mod,
  386. .modrm_reg = ctxt->decode.modrm_reg,
  387. .modrm_rm = ctxt->decode.modrm_rm,
  388. .src_val = ctxt->decode.src.val64,
  389. .src_bytes = ctxt->decode.src.bytes,
  390. .dst_bytes = ctxt->decode.dst.bytes,
  391. .ad_bytes = ctxt->decode.ad_bytes,
  392. .next_rip = ctxt->eip,
  393. };
  394. return ctxt->ops->intercept(ctxt->vcpu, &info, stage);
  395. }
  396. static inline unsigned long ad_mask(struct decode_cache *c)
  397. {
  398. return (1UL << (c->ad_bytes << 3)) - 1;
  399. }
  400. /* Access/update address held in a register, based on addressing mode. */
  401. static inline unsigned long
  402. address_mask(struct decode_cache *c, unsigned long reg)
  403. {
  404. if (c->ad_bytes == sizeof(unsigned long))
  405. return reg;
  406. else
  407. return reg & ad_mask(c);
  408. }
  409. static inline unsigned long
  410. register_address(struct decode_cache *c, unsigned long reg)
  411. {
  412. return address_mask(c, reg);
  413. }
  414. static inline void
  415. register_address_increment(struct decode_cache *c, unsigned long *reg, int inc)
  416. {
  417. if (c->ad_bytes == sizeof(unsigned long))
  418. *reg += inc;
  419. else
  420. *reg = (*reg & ~ad_mask(c)) | ((*reg + inc) & ad_mask(c));
  421. }
  422. static inline void jmp_rel(struct decode_cache *c, int rel)
  423. {
  424. register_address_increment(c, &c->eip, rel);
  425. }
  426. static void set_seg_override(struct decode_cache *c, int seg)
  427. {
  428. c->has_seg_override = true;
  429. c->seg_override = seg;
  430. }
  431. static unsigned long seg_base(struct x86_emulate_ctxt *ctxt,
  432. struct x86_emulate_ops *ops, int seg)
  433. {
  434. if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS)
  435. return 0;
  436. return ops->get_cached_segment_base(seg, ctxt->vcpu);
  437. }
  438. static unsigned seg_override(struct x86_emulate_ctxt *ctxt,
  439. struct x86_emulate_ops *ops,
  440. struct decode_cache *c)
  441. {
  442. if (!c->has_seg_override)
  443. return 0;
  444. return c->seg_override;
  445. }
  446. static int linearize(struct x86_emulate_ctxt *ctxt,
  447. struct segmented_address addr,
  448. ulong *linear)
  449. {
  450. struct decode_cache *c = &ctxt->decode;
  451. ulong la;
  452. la = seg_base(ctxt, ctxt->ops, addr.seg) + addr.ea;
  453. if (c->ad_bytes != 8)
  454. la &= (u32)-1;
  455. *linear = la;
  456. return X86EMUL_CONTINUE;
  457. }
  458. static int emulate_exception(struct x86_emulate_ctxt *ctxt, int vec,
  459. u32 error, bool valid)
  460. {
  461. ctxt->exception.vector = vec;
  462. ctxt->exception.error_code = error;
  463. ctxt->exception.error_code_valid = valid;
  464. return X86EMUL_PROPAGATE_FAULT;
  465. }
  466. static int emulate_db(struct x86_emulate_ctxt *ctxt)
  467. {
  468. return emulate_exception(ctxt, DB_VECTOR, 0, false);
  469. }
  470. static int emulate_gp(struct x86_emulate_ctxt *ctxt, int err)
  471. {
  472. return emulate_exception(ctxt, GP_VECTOR, err, true);
  473. }
  474. static int emulate_ud(struct x86_emulate_ctxt *ctxt)
  475. {
  476. return emulate_exception(ctxt, UD_VECTOR, 0, false);
  477. }
  478. static int emulate_ts(struct x86_emulate_ctxt *ctxt, int err)
  479. {
  480. return emulate_exception(ctxt, TS_VECTOR, err, true);
  481. }
  482. static int emulate_de(struct x86_emulate_ctxt *ctxt)
  483. {
  484. return emulate_exception(ctxt, DE_VECTOR, 0, false);
  485. }
  486. static int emulate_nm(struct x86_emulate_ctxt *ctxt)
  487. {
  488. return emulate_exception(ctxt, NM_VECTOR, 0, false);
  489. }
  490. static int segmented_read_std(struct x86_emulate_ctxt *ctxt,
  491. struct segmented_address addr,
  492. void *data,
  493. unsigned size)
  494. {
  495. int rc;
  496. ulong linear;
  497. rc = linearize(ctxt, addr, &linear);
  498. if (rc != X86EMUL_CONTINUE)
  499. return rc;
  500. return ctxt->ops->read_std(linear, data, size, ctxt->vcpu,
  501. &ctxt->exception);
  502. }
  503. static int do_fetch_insn_byte(struct x86_emulate_ctxt *ctxt,
  504. struct x86_emulate_ops *ops,
  505. unsigned long eip, u8 *dest)
  506. {
  507. struct fetch_cache *fc = &ctxt->decode.fetch;
  508. int rc;
  509. int size, cur_size;
  510. if (eip == fc->end) {
  511. cur_size = fc->end - fc->start;
  512. size = min(15UL - cur_size, PAGE_SIZE - offset_in_page(eip));
  513. rc = ops->fetch(ctxt->cs_base + eip, fc->data + cur_size,
  514. size, ctxt->vcpu, &ctxt->exception);
  515. if (rc != X86EMUL_CONTINUE)
  516. return rc;
  517. fc->end += size;
  518. }
  519. *dest = fc->data[eip - fc->start];
  520. return X86EMUL_CONTINUE;
  521. }
  522. static int do_insn_fetch(struct x86_emulate_ctxt *ctxt,
  523. struct x86_emulate_ops *ops,
  524. unsigned long eip, void *dest, unsigned size)
  525. {
  526. int rc;
  527. /* x86 instructions are limited to 15 bytes. */
  528. if (eip + size - ctxt->eip > 15)
  529. return X86EMUL_UNHANDLEABLE;
  530. while (size--) {
  531. rc = do_fetch_insn_byte(ctxt, ops, eip++, dest++);
  532. if (rc != X86EMUL_CONTINUE)
  533. return rc;
  534. }
  535. return X86EMUL_CONTINUE;
  536. }
  537. /*
  538. * Given the 'reg' portion of a ModRM byte, and a register block, return a
  539. * pointer into the block that addresses the relevant register.
  540. * @highbyte_regs specifies whether to decode AH,CH,DH,BH.
  541. */
  542. static void *decode_register(u8 modrm_reg, unsigned long *regs,
  543. int highbyte_regs)
  544. {
  545. void *p;
  546. p = &regs[modrm_reg];
  547. if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8)
  548. p = (unsigned char *)&regs[modrm_reg & 3] + 1;
  549. return p;
  550. }
  551. static int read_descriptor(struct x86_emulate_ctxt *ctxt,
  552. struct x86_emulate_ops *ops,
  553. struct segmented_address addr,
  554. u16 *size, unsigned long *address, int op_bytes)
  555. {
  556. int rc;
  557. if (op_bytes == 2)
  558. op_bytes = 3;
  559. *address = 0;
  560. rc = segmented_read_std(ctxt, addr, size, 2);
  561. if (rc != X86EMUL_CONTINUE)
  562. return rc;
  563. addr.ea += 2;
  564. rc = segmented_read_std(ctxt, addr, address, op_bytes);
  565. return rc;
  566. }
  567. static int test_cc(unsigned int condition, unsigned int flags)
  568. {
  569. int rc = 0;
  570. switch ((condition & 15) >> 1) {
  571. case 0: /* o */
  572. rc |= (flags & EFLG_OF);
  573. break;
  574. case 1: /* b/c/nae */
  575. rc |= (flags & EFLG_CF);
  576. break;
  577. case 2: /* z/e */
  578. rc |= (flags & EFLG_ZF);
  579. break;
  580. case 3: /* be/na */
  581. rc |= (flags & (EFLG_CF|EFLG_ZF));
  582. break;
  583. case 4: /* s */
  584. rc |= (flags & EFLG_SF);
  585. break;
  586. case 5: /* p/pe */
  587. rc |= (flags & EFLG_PF);
  588. break;
  589. case 7: /* le/ng */
  590. rc |= (flags & EFLG_ZF);
  591. /* fall through */
  592. case 6: /* l/nge */
  593. rc |= (!(flags & EFLG_SF) != !(flags & EFLG_OF));
  594. break;
  595. }
  596. /* Odd condition identifiers (lsb == 1) have inverted sense. */
  597. return (!!rc ^ (condition & 1));
  598. }
  599. static void fetch_register_operand(struct operand *op)
  600. {
  601. switch (op->bytes) {
  602. case 1:
  603. op->val = *(u8 *)op->addr.reg;
  604. break;
  605. case 2:
  606. op->val = *(u16 *)op->addr.reg;
  607. break;
  608. case 4:
  609. op->val = *(u32 *)op->addr.reg;
  610. break;
  611. case 8:
  612. op->val = *(u64 *)op->addr.reg;
  613. break;
  614. }
  615. }
  616. static void read_sse_reg(struct x86_emulate_ctxt *ctxt, sse128_t *data, int reg)
  617. {
  618. ctxt->ops->get_fpu(ctxt);
  619. switch (reg) {
  620. case 0: asm("movdqu %%xmm0, %0" : "=m"(*data)); break;
  621. case 1: asm("movdqu %%xmm1, %0" : "=m"(*data)); break;
  622. case 2: asm("movdqu %%xmm2, %0" : "=m"(*data)); break;
  623. case 3: asm("movdqu %%xmm3, %0" : "=m"(*data)); break;
  624. case 4: asm("movdqu %%xmm4, %0" : "=m"(*data)); break;
  625. case 5: asm("movdqu %%xmm5, %0" : "=m"(*data)); break;
  626. case 6: asm("movdqu %%xmm6, %0" : "=m"(*data)); break;
  627. case 7: asm("movdqu %%xmm7, %0" : "=m"(*data)); break;
  628. #ifdef CONFIG_X86_64
  629. case 8: asm("movdqu %%xmm8, %0" : "=m"(*data)); break;
  630. case 9: asm("movdqu %%xmm9, %0" : "=m"(*data)); break;
  631. case 10: asm("movdqu %%xmm10, %0" : "=m"(*data)); break;
  632. case 11: asm("movdqu %%xmm11, %0" : "=m"(*data)); break;
  633. case 12: asm("movdqu %%xmm12, %0" : "=m"(*data)); break;
  634. case 13: asm("movdqu %%xmm13, %0" : "=m"(*data)); break;
  635. case 14: asm("movdqu %%xmm14, %0" : "=m"(*data)); break;
  636. case 15: asm("movdqu %%xmm15, %0" : "=m"(*data)); break;
  637. #endif
  638. default: BUG();
  639. }
  640. ctxt->ops->put_fpu(ctxt);
  641. }
  642. static void write_sse_reg(struct x86_emulate_ctxt *ctxt, sse128_t *data,
  643. int reg)
  644. {
  645. ctxt->ops->get_fpu(ctxt);
  646. switch (reg) {
  647. case 0: asm("movdqu %0, %%xmm0" : : "m"(*data)); break;
  648. case 1: asm("movdqu %0, %%xmm1" : : "m"(*data)); break;
  649. case 2: asm("movdqu %0, %%xmm2" : : "m"(*data)); break;
  650. case 3: asm("movdqu %0, %%xmm3" : : "m"(*data)); break;
  651. case 4: asm("movdqu %0, %%xmm4" : : "m"(*data)); break;
  652. case 5: asm("movdqu %0, %%xmm5" : : "m"(*data)); break;
  653. case 6: asm("movdqu %0, %%xmm6" : : "m"(*data)); break;
  654. case 7: asm("movdqu %0, %%xmm7" : : "m"(*data)); break;
  655. #ifdef CONFIG_X86_64
  656. case 8: asm("movdqu %0, %%xmm8" : : "m"(*data)); break;
  657. case 9: asm("movdqu %0, %%xmm9" : : "m"(*data)); break;
  658. case 10: asm("movdqu %0, %%xmm10" : : "m"(*data)); break;
  659. case 11: asm("movdqu %0, %%xmm11" : : "m"(*data)); break;
  660. case 12: asm("movdqu %0, %%xmm12" : : "m"(*data)); break;
  661. case 13: asm("movdqu %0, %%xmm13" : : "m"(*data)); break;
  662. case 14: asm("movdqu %0, %%xmm14" : : "m"(*data)); break;
  663. case 15: asm("movdqu %0, %%xmm15" : : "m"(*data)); break;
  664. #endif
  665. default: BUG();
  666. }
  667. ctxt->ops->put_fpu(ctxt);
  668. }
  669. static void decode_register_operand(struct x86_emulate_ctxt *ctxt,
  670. struct operand *op,
  671. struct decode_cache *c,
  672. int inhibit_bytereg)
  673. {
  674. unsigned reg = c->modrm_reg;
  675. int highbyte_regs = c->rex_prefix == 0;
  676. if (!(c->d & ModRM))
  677. reg = (c->b & 7) | ((c->rex_prefix & 1) << 3);
  678. if (c->d & Sse) {
  679. op->type = OP_XMM;
  680. op->bytes = 16;
  681. op->addr.xmm = reg;
  682. read_sse_reg(ctxt, &op->vec_val, reg);
  683. return;
  684. }
  685. op->type = OP_REG;
  686. if ((c->d & ByteOp) && !inhibit_bytereg) {
  687. op->addr.reg = decode_register(reg, c->regs, highbyte_regs);
  688. op->bytes = 1;
  689. } else {
  690. op->addr.reg = decode_register(reg, c->regs, 0);
  691. op->bytes = c->op_bytes;
  692. }
  693. fetch_register_operand(op);
  694. op->orig_val = op->val;
  695. }
  696. static int decode_modrm(struct x86_emulate_ctxt *ctxt,
  697. struct x86_emulate_ops *ops,
  698. struct operand *op)
  699. {
  700. struct decode_cache *c = &ctxt->decode;
  701. u8 sib;
  702. int index_reg = 0, base_reg = 0, scale;
  703. int rc = X86EMUL_CONTINUE;
  704. ulong modrm_ea = 0;
  705. if (c->rex_prefix) {
  706. c->modrm_reg = (c->rex_prefix & 4) << 1; /* REX.R */
  707. index_reg = (c->rex_prefix & 2) << 2; /* REX.X */
  708. c->modrm_rm = base_reg = (c->rex_prefix & 1) << 3; /* REG.B */
  709. }
  710. c->modrm = insn_fetch(u8, 1, c->eip);
  711. c->modrm_mod |= (c->modrm & 0xc0) >> 6;
  712. c->modrm_reg |= (c->modrm & 0x38) >> 3;
  713. c->modrm_rm |= (c->modrm & 0x07);
  714. c->modrm_seg = VCPU_SREG_DS;
  715. if (c->modrm_mod == 3) {
  716. op->type = OP_REG;
  717. op->bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
  718. op->addr.reg = decode_register(c->modrm_rm,
  719. c->regs, c->d & ByteOp);
  720. if (c->d & Sse) {
  721. op->type = OP_XMM;
  722. op->bytes = 16;
  723. op->addr.xmm = c->modrm_rm;
  724. read_sse_reg(ctxt, &op->vec_val, c->modrm_rm);
  725. return rc;
  726. }
  727. fetch_register_operand(op);
  728. return rc;
  729. }
  730. op->type = OP_MEM;
  731. if (c->ad_bytes == 2) {
  732. unsigned bx = c->regs[VCPU_REGS_RBX];
  733. unsigned bp = c->regs[VCPU_REGS_RBP];
  734. unsigned si = c->regs[VCPU_REGS_RSI];
  735. unsigned di = c->regs[VCPU_REGS_RDI];
  736. /* 16-bit ModR/M decode. */
  737. switch (c->modrm_mod) {
  738. case 0:
  739. if (c->modrm_rm == 6)
  740. modrm_ea += insn_fetch(u16, 2, c->eip);
  741. break;
  742. case 1:
  743. modrm_ea += insn_fetch(s8, 1, c->eip);
  744. break;
  745. case 2:
  746. modrm_ea += insn_fetch(u16, 2, c->eip);
  747. break;
  748. }
  749. switch (c->modrm_rm) {
  750. case 0:
  751. modrm_ea += bx + si;
  752. break;
  753. case 1:
  754. modrm_ea += bx + di;
  755. break;
  756. case 2:
  757. modrm_ea += bp + si;
  758. break;
  759. case 3:
  760. modrm_ea += bp + di;
  761. break;
  762. case 4:
  763. modrm_ea += si;
  764. break;
  765. case 5:
  766. modrm_ea += di;
  767. break;
  768. case 6:
  769. if (c->modrm_mod != 0)
  770. modrm_ea += bp;
  771. break;
  772. case 7:
  773. modrm_ea += bx;
  774. break;
  775. }
  776. if (c->modrm_rm == 2 || c->modrm_rm == 3 ||
  777. (c->modrm_rm == 6 && c->modrm_mod != 0))
  778. c->modrm_seg = VCPU_SREG_SS;
  779. modrm_ea = (u16)modrm_ea;
  780. } else {
  781. /* 32/64-bit ModR/M decode. */
  782. if ((c->modrm_rm & 7) == 4) {
  783. sib = insn_fetch(u8, 1, c->eip);
  784. index_reg |= (sib >> 3) & 7;
  785. base_reg |= sib & 7;
  786. scale = sib >> 6;
  787. if ((base_reg & 7) == 5 && c->modrm_mod == 0)
  788. modrm_ea += insn_fetch(s32, 4, c->eip);
  789. else
  790. modrm_ea += c->regs[base_reg];
  791. if (index_reg != 4)
  792. modrm_ea += c->regs[index_reg] << scale;
  793. } else if ((c->modrm_rm & 7) == 5 && c->modrm_mod == 0) {
  794. if (ctxt->mode == X86EMUL_MODE_PROT64)
  795. c->rip_relative = 1;
  796. } else
  797. modrm_ea += c->regs[c->modrm_rm];
  798. switch (c->modrm_mod) {
  799. case 0:
  800. if (c->modrm_rm == 5)
  801. modrm_ea += insn_fetch(s32, 4, c->eip);
  802. break;
  803. case 1:
  804. modrm_ea += insn_fetch(s8, 1, c->eip);
  805. break;
  806. case 2:
  807. modrm_ea += insn_fetch(s32, 4, c->eip);
  808. break;
  809. }
  810. }
  811. op->addr.mem.ea = modrm_ea;
  812. done:
  813. return rc;
  814. }
  815. static int decode_abs(struct x86_emulate_ctxt *ctxt,
  816. struct x86_emulate_ops *ops,
  817. struct operand *op)
  818. {
  819. struct decode_cache *c = &ctxt->decode;
  820. int rc = X86EMUL_CONTINUE;
  821. op->type = OP_MEM;
  822. switch (c->ad_bytes) {
  823. case 2:
  824. op->addr.mem.ea = insn_fetch(u16, 2, c->eip);
  825. break;
  826. case 4:
  827. op->addr.mem.ea = insn_fetch(u32, 4, c->eip);
  828. break;
  829. case 8:
  830. op->addr.mem.ea = insn_fetch(u64, 8, c->eip);
  831. break;
  832. }
  833. done:
  834. return rc;
  835. }
  836. static void fetch_bit_operand(struct decode_cache *c)
  837. {
  838. long sv = 0, mask;
  839. if (c->dst.type == OP_MEM && c->src.type == OP_REG) {
  840. mask = ~(c->dst.bytes * 8 - 1);
  841. if (c->src.bytes == 2)
  842. sv = (s16)c->src.val & (s16)mask;
  843. else if (c->src.bytes == 4)
  844. sv = (s32)c->src.val & (s32)mask;
  845. c->dst.addr.mem.ea += (sv >> 3);
  846. }
  847. /* only subword offset */
  848. c->src.val &= (c->dst.bytes << 3) - 1;
  849. }
  850. static int read_emulated(struct x86_emulate_ctxt *ctxt,
  851. struct x86_emulate_ops *ops,
  852. unsigned long addr, void *dest, unsigned size)
  853. {
  854. int rc;
  855. struct read_cache *mc = &ctxt->decode.mem_read;
  856. while (size) {
  857. int n = min(size, 8u);
  858. size -= n;
  859. if (mc->pos < mc->end)
  860. goto read_cached;
  861. rc = ops->read_emulated(addr, mc->data + mc->end, n,
  862. &ctxt->exception, ctxt->vcpu);
  863. if (rc != X86EMUL_CONTINUE)
  864. return rc;
  865. mc->end += n;
  866. read_cached:
  867. memcpy(dest, mc->data + mc->pos, n);
  868. mc->pos += n;
  869. dest += n;
  870. addr += n;
  871. }
  872. return X86EMUL_CONTINUE;
  873. }
  874. static int segmented_read(struct x86_emulate_ctxt *ctxt,
  875. struct segmented_address addr,
  876. void *data,
  877. unsigned size)
  878. {
  879. int rc;
  880. ulong linear;
  881. rc = linearize(ctxt, addr, &linear);
  882. if (rc != X86EMUL_CONTINUE)
  883. return rc;
  884. return read_emulated(ctxt, ctxt->ops, linear, data, size);
  885. }
  886. static int segmented_write(struct x86_emulate_ctxt *ctxt,
  887. struct segmented_address addr,
  888. const void *data,
  889. unsigned size)
  890. {
  891. int rc;
  892. ulong linear;
  893. rc = linearize(ctxt, addr, &linear);
  894. if (rc != X86EMUL_CONTINUE)
  895. return rc;
  896. return ctxt->ops->write_emulated(linear, data, size,
  897. &ctxt->exception, ctxt->vcpu);
  898. }
  899. static int segmented_cmpxchg(struct x86_emulate_ctxt *ctxt,
  900. struct segmented_address addr,
  901. const void *orig_data, const void *data,
  902. unsigned size)
  903. {
  904. int rc;
  905. ulong linear;
  906. rc = linearize(ctxt, addr, &linear);
  907. if (rc != X86EMUL_CONTINUE)
  908. return rc;
  909. return ctxt->ops->cmpxchg_emulated(linear, orig_data, data,
  910. size, &ctxt->exception, ctxt->vcpu);
  911. }
  912. static int pio_in_emulated(struct x86_emulate_ctxt *ctxt,
  913. struct x86_emulate_ops *ops,
  914. unsigned int size, unsigned short port,
  915. void *dest)
  916. {
  917. struct read_cache *rc = &ctxt->decode.io_read;
  918. if (rc->pos == rc->end) { /* refill pio read ahead */
  919. struct decode_cache *c = &ctxt->decode;
  920. unsigned int in_page, n;
  921. unsigned int count = c->rep_prefix ?
  922. address_mask(c, c->regs[VCPU_REGS_RCX]) : 1;
  923. in_page = (ctxt->eflags & EFLG_DF) ?
  924. offset_in_page(c->regs[VCPU_REGS_RDI]) :
  925. PAGE_SIZE - offset_in_page(c->regs[VCPU_REGS_RDI]);
  926. n = min(min(in_page, (unsigned int)sizeof(rc->data)) / size,
  927. count);
  928. if (n == 0)
  929. n = 1;
  930. rc->pos = rc->end = 0;
  931. if (!ops->pio_in_emulated(size, port, rc->data, n, ctxt->vcpu))
  932. return 0;
  933. rc->end = n * size;
  934. }
  935. memcpy(dest, rc->data + rc->pos, size);
  936. rc->pos += size;
  937. return 1;
  938. }
  939. static u32 desc_limit_scaled(struct desc_struct *desc)
  940. {
  941. u32 limit = get_desc_limit(desc);
  942. return desc->g ? (limit << 12) | 0xfff : limit;
  943. }
  944. static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt,
  945. struct x86_emulate_ops *ops,
  946. u16 selector, struct desc_ptr *dt)
  947. {
  948. if (selector & 1 << 2) {
  949. struct desc_struct desc;
  950. memset (dt, 0, sizeof *dt);
  951. if (!ops->get_cached_descriptor(&desc, NULL, VCPU_SREG_LDTR,
  952. ctxt->vcpu))
  953. return;
  954. dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */
  955. dt->address = get_desc_base(&desc);
  956. } else
  957. ops->get_gdt(dt, ctxt->vcpu);
  958. }
  959. /* allowed just for 8 bytes segments */
  960. static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt,
  961. struct x86_emulate_ops *ops,
  962. u16 selector, struct desc_struct *desc)
  963. {
  964. struct desc_ptr dt;
  965. u16 index = selector >> 3;
  966. int ret;
  967. ulong addr;
  968. get_descriptor_table_ptr(ctxt, ops, selector, &dt);
  969. if (dt.size < index * 8 + 7)
  970. return emulate_gp(ctxt, selector & 0xfffc);
  971. addr = dt.address + index * 8;
  972. ret = ops->read_std(addr, desc, sizeof *desc, ctxt->vcpu,
  973. &ctxt->exception);
  974. return ret;
  975. }
  976. /* allowed just for 8 bytes segments */
  977. static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt,
  978. struct x86_emulate_ops *ops,
  979. u16 selector, struct desc_struct *desc)
  980. {
  981. struct desc_ptr dt;
  982. u16 index = selector >> 3;
  983. ulong addr;
  984. int ret;
  985. get_descriptor_table_ptr(ctxt, ops, selector, &dt);
  986. if (dt.size < index * 8 + 7)
  987. return emulate_gp(ctxt, selector & 0xfffc);
  988. addr = dt.address + index * 8;
  989. ret = ops->write_std(addr, desc, sizeof *desc, ctxt->vcpu,
  990. &ctxt->exception);
  991. return ret;
  992. }
  993. /* Does not support long mode */
  994. static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
  995. struct x86_emulate_ops *ops,
  996. u16 selector, int seg)
  997. {
  998. struct desc_struct seg_desc;
  999. u8 dpl, rpl, cpl;
  1000. unsigned err_vec = GP_VECTOR;
  1001. u32 err_code = 0;
  1002. bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
  1003. int ret;
  1004. memset(&seg_desc, 0, sizeof seg_desc);
  1005. if ((seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86)
  1006. || ctxt->mode == X86EMUL_MODE_REAL) {
  1007. /* set real mode segment descriptor */
  1008. set_desc_base(&seg_desc, selector << 4);
  1009. set_desc_limit(&seg_desc, 0xffff);
  1010. seg_desc.type = 3;
  1011. seg_desc.p = 1;
  1012. seg_desc.s = 1;
  1013. goto load;
  1014. }
  1015. /* NULL selector is not valid for TR, CS and SS */
  1016. if ((seg == VCPU_SREG_CS || seg == VCPU_SREG_SS || seg == VCPU_SREG_TR)
  1017. && null_selector)
  1018. goto exception;
  1019. /* TR should be in GDT only */
  1020. if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
  1021. goto exception;
  1022. if (null_selector) /* for NULL selector skip all following checks */
  1023. goto load;
  1024. ret = read_segment_descriptor(ctxt, ops, selector, &seg_desc);
  1025. if (ret != X86EMUL_CONTINUE)
  1026. return ret;
  1027. err_code = selector & 0xfffc;
  1028. err_vec = GP_VECTOR;
  1029. /* can't load system descriptor into segment selecor */
  1030. if (seg <= VCPU_SREG_GS && !seg_desc.s)
  1031. goto exception;
  1032. if (!seg_desc.p) {
  1033. err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
  1034. goto exception;
  1035. }
  1036. rpl = selector & 3;
  1037. dpl = seg_desc.dpl;
  1038. cpl = ops->cpl(ctxt->vcpu);
  1039. switch (seg) {
  1040. case VCPU_SREG_SS:
  1041. /*
  1042. * segment is not a writable data segment or segment
  1043. * selector's RPL != CPL or segment selector's RPL != CPL
  1044. */
  1045. if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl)
  1046. goto exception;
  1047. break;
  1048. case VCPU_SREG_CS:
  1049. if (!(seg_desc.type & 8))
  1050. goto exception;
  1051. if (seg_desc.type & 4) {
  1052. /* conforming */
  1053. if (dpl > cpl)
  1054. goto exception;
  1055. } else {
  1056. /* nonconforming */
  1057. if (rpl > cpl || dpl != cpl)
  1058. goto exception;
  1059. }
  1060. /* CS(RPL) <- CPL */
  1061. selector = (selector & 0xfffc) | cpl;
  1062. break;
  1063. case VCPU_SREG_TR:
  1064. if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9))
  1065. goto exception;
  1066. break;
  1067. case VCPU_SREG_LDTR:
  1068. if (seg_desc.s || seg_desc.type != 2)
  1069. goto exception;
  1070. break;
  1071. default: /* DS, ES, FS, or GS */
  1072. /*
  1073. * segment is not a data or readable code segment or
  1074. * ((segment is a data or nonconforming code segment)
  1075. * and (both RPL and CPL > DPL))
  1076. */
  1077. if ((seg_desc.type & 0xa) == 0x8 ||
  1078. (((seg_desc.type & 0xc) != 0xc) &&
  1079. (rpl > dpl && cpl > dpl)))
  1080. goto exception;
  1081. break;
  1082. }
  1083. if (seg_desc.s) {
  1084. /* mark segment as accessed */
  1085. seg_desc.type |= 1;
  1086. ret = write_segment_descriptor(ctxt, ops, selector, &seg_desc);
  1087. if (ret != X86EMUL_CONTINUE)
  1088. return ret;
  1089. }
  1090. load:
  1091. ops->set_segment_selector(selector, seg, ctxt->vcpu);
  1092. ops->set_cached_descriptor(&seg_desc, 0, seg, ctxt->vcpu);
  1093. return X86EMUL_CONTINUE;
  1094. exception:
  1095. emulate_exception(ctxt, err_vec, err_code, true);
  1096. return X86EMUL_PROPAGATE_FAULT;
  1097. }
  1098. static void write_register_operand(struct operand *op)
  1099. {
  1100. /* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */
  1101. switch (op->bytes) {
  1102. case 1:
  1103. *(u8 *)op->addr.reg = (u8)op->val;
  1104. break;
  1105. case 2:
  1106. *(u16 *)op->addr.reg = (u16)op->val;
  1107. break;
  1108. case 4:
  1109. *op->addr.reg = (u32)op->val;
  1110. break; /* 64b: zero-extend */
  1111. case 8:
  1112. *op->addr.reg = op->val;
  1113. break;
  1114. }
  1115. }
  1116. static inline int writeback(struct x86_emulate_ctxt *ctxt,
  1117. struct x86_emulate_ops *ops)
  1118. {
  1119. int rc;
  1120. struct decode_cache *c = &ctxt->decode;
  1121. switch (c->dst.type) {
  1122. case OP_REG:
  1123. write_register_operand(&c->dst);
  1124. break;
  1125. case OP_MEM:
  1126. if (c->lock_prefix)
  1127. rc = segmented_cmpxchg(ctxt,
  1128. c->dst.addr.mem,
  1129. &c->dst.orig_val,
  1130. &c->dst.val,
  1131. c->dst.bytes);
  1132. else
  1133. rc = segmented_write(ctxt,
  1134. c->dst.addr.mem,
  1135. &c->dst.val,
  1136. c->dst.bytes);
  1137. if (rc != X86EMUL_CONTINUE)
  1138. return rc;
  1139. break;
  1140. case OP_XMM:
  1141. write_sse_reg(ctxt, &c->dst.vec_val, c->dst.addr.xmm);
  1142. break;
  1143. case OP_NONE:
  1144. /* no writeback */
  1145. break;
  1146. default:
  1147. break;
  1148. }
  1149. return X86EMUL_CONTINUE;
  1150. }
  1151. static inline void emulate_push(struct x86_emulate_ctxt *ctxt,
  1152. struct x86_emulate_ops *ops)
  1153. {
  1154. struct decode_cache *c = &ctxt->decode;
  1155. c->dst.type = OP_MEM;
  1156. c->dst.bytes = c->op_bytes;
  1157. c->dst.val = c->src.val;
  1158. register_address_increment(c, &c->regs[VCPU_REGS_RSP], -c->op_bytes);
  1159. c->dst.addr.mem.ea = register_address(c, c->regs[VCPU_REGS_RSP]);
  1160. c->dst.addr.mem.seg = VCPU_SREG_SS;
  1161. }
  1162. static int emulate_pop(struct x86_emulate_ctxt *ctxt,
  1163. struct x86_emulate_ops *ops,
  1164. void *dest, int len)
  1165. {
  1166. struct decode_cache *c = &ctxt->decode;
  1167. int rc;
  1168. struct segmented_address addr;
  1169. addr.ea = register_address(c, c->regs[VCPU_REGS_RSP]);
  1170. addr.seg = VCPU_SREG_SS;
  1171. rc = segmented_read(ctxt, addr, dest, len);
  1172. if (rc != X86EMUL_CONTINUE)
  1173. return rc;
  1174. register_address_increment(c, &c->regs[VCPU_REGS_RSP], len);
  1175. return rc;
  1176. }
  1177. static int emulate_popf(struct x86_emulate_ctxt *ctxt,
  1178. struct x86_emulate_ops *ops,
  1179. void *dest, int len)
  1180. {
  1181. int rc;
  1182. unsigned long val, change_mask;
  1183. int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1184. int cpl = ops->cpl(ctxt->vcpu);
  1185. rc = emulate_pop(ctxt, ops, &val, len);
  1186. if (rc != X86EMUL_CONTINUE)
  1187. return rc;
  1188. change_mask = EFLG_CF | EFLG_PF | EFLG_AF | EFLG_ZF | EFLG_SF | EFLG_OF
  1189. | EFLG_TF | EFLG_DF | EFLG_NT | EFLG_RF | EFLG_AC | EFLG_ID;
  1190. switch(ctxt->mode) {
  1191. case X86EMUL_MODE_PROT64:
  1192. case X86EMUL_MODE_PROT32:
  1193. case X86EMUL_MODE_PROT16:
  1194. if (cpl == 0)
  1195. change_mask |= EFLG_IOPL;
  1196. if (cpl <= iopl)
  1197. change_mask |= EFLG_IF;
  1198. break;
  1199. case X86EMUL_MODE_VM86:
  1200. if (iopl < 3)
  1201. return emulate_gp(ctxt, 0);
  1202. change_mask |= EFLG_IF;
  1203. break;
  1204. default: /* real mode */
  1205. change_mask |= (EFLG_IOPL | EFLG_IF);
  1206. break;
  1207. }
  1208. *(unsigned long *)dest =
  1209. (ctxt->eflags & ~change_mask) | (val & change_mask);
  1210. return rc;
  1211. }
  1212. static void emulate_push_sreg(struct x86_emulate_ctxt *ctxt,
  1213. struct x86_emulate_ops *ops, int seg)
  1214. {
  1215. struct decode_cache *c = &ctxt->decode;
  1216. c->src.val = ops->get_segment_selector(seg, ctxt->vcpu);
  1217. emulate_push(ctxt, ops);
  1218. }
  1219. static int emulate_pop_sreg(struct x86_emulate_ctxt *ctxt,
  1220. struct x86_emulate_ops *ops, int seg)
  1221. {
  1222. struct decode_cache *c = &ctxt->decode;
  1223. unsigned long selector;
  1224. int rc;
  1225. rc = emulate_pop(ctxt, ops, &selector, c->op_bytes);
  1226. if (rc != X86EMUL_CONTINUE)
  1227. return rc;
  1228. rc = load_segment_descriptor(ctxt, ops, (u16)selector, seg);
  1229. return rc;
  1230. }
  1231. static int emulate_pusha(struct x86_emulate_ctxt *ctxt,
  1232. struct x86_emulate_ops *ops)
  1233. {
  1234. struct decode_cache *c = &ctxt->decode;
  1235. unsigned long old_esp = c->regs[VCPU_REGS_RSP];
  1236. int rc = X86EMUL_CONTINUE;
  1237. int reg = VCPU_REGS_RAX;
  1238. while (reg <= VCPU_REGS_RDI) {
  1239. (reg == VCPU_REGS_RSP) ?
  1240. (c->src.val = old_esp) : (c->src.val = c->regs[reg]);
  1241. emulate_push(ctxt, ops);
  1242. rc = writeback(ctxt, ops);
  1243. if (rc != X86EMUL_CONTINUE)
  1244. return rc;
  1245. ++reg;
  1246. }
  1247. /* Disable writeback. */
  1248. c->dst.type = OP_NONE;
  1249. return rc;
  1250. }
  1251. static int emulate_popa(struct x86_emulate_ctxt *ctxt,
  1252. struct x86_emulate_ops *ops)
  1253. {
  1254. struct decode_cache *c = &ctxt->decode;
  1255. int rc = X86EMUL_CONTINUE;
  1256. int reg = VCPU_REGS_RDI;
  1257. while (reg >= VCPU_REGS_RAX) {
  1258. if (reg == VCPU_REGS_RSP) {
  1259. register_address_increment(c, &c->regs[VCPU_REGS_RSP],
  1260. c->op_bytes);
  1261. --reg;
  1262. }
  1263. rc = emulate_pop(ctxt, ops, &c->regs[reg], c->op_bytes);
  1264. if (rc != X86EMUL_CONTINUE)
  1265. break;
  1266. --reg;
  1267. }
  1268. return rc;
  1269. }
  1270. int emulate_int_real(struct x86_emulate_ctxt *ctxt,
  1271. struct x86_emulate_ops *ops, int irq)
  1272. {
  1273. struct decode_cache *c = &ctxt->decode;
  1274. int rc;
  1275. struct desc_ptr dt;
  1276. gva_t cs_addr;
  1277. gva_t eip_addr;
  1278. u16 cs, eip;
  1279. /* TODO: Add limit checks */
  1280. c->src.val = ctxt->eflags;
  1281. emulate_push(ctxt, ops);
  1282. rc = writeback(ctxt, ops);
  1283. if (rc != X86EMUL_CONTINUE)
  1284. return rc;
  1285. ctxt->eflags &= ~(EFLG_IF | EFLG_TF | EFLG_AC);
  1286. c->src.val = ops->get_segment_selector(VCPU_SREG_CS, ctxt->vcpu);
  1287. emulate_push(ctxt, ops);
  1288. rc = writeback(ctxt, ops);
  1289. if (rc != X86EMUL_CONTINUE)
  1290. return rc;
  1291. c->src.val = c->eip;
  1292. emulate_push(ctxt, ops);
  1293. rc = writeback(ctxt, ops);
  1294. if (rc != X86EMUL_CONTINUE)
  1295. return rc;
  1296. c->dst.type = OP_NONE;
  1297. ops->get_idt(&dt, ctxt->vcpu);
  1298. eip_addr = dt.address + (irq << 2);
  1299. cs_addr = dt.address + (irq << 2) + 2;
  1300. rc = ops->read_std(cs_addr, &cs, 2, ctxt->vcpu, &ctxt->exception);
  1301. if (rc != X86EMUL_CONTINUE)
  1302. return rc;
  1303. rc = ops->read_std(eip_addr, &eip, 2, ctxt->vcpu, &ctxt->exception);
  1304. if (rc != X86EMUL_CONTINUE)
  1305. return rc;
  1306. rc = load_segment_descriptor(ctxt, ops, cs, VCPU_SREG_CS);
  1307. if (rc != X86EMUL_CONTINUE)
  1308. return rc;
  1309. c->eip = eip;
  1310. return rc;
  1311. }
  1312. static int emulate_int(struct x86_emulate_ctxt *ctxt,
  1313. struct x86_emulate_ops *ops, int irq)
  1314. {
  1315. switch(ctxt->mode) {
  1316. case X86EMUL_MODE_REAL:
  1317. return emulate_int_real(ctxt, ops, irq);
  1318. case X86EMUL_MODE_VM86:
  1319. case X86EMUL_MODE_PROT16:
  1320. case X86EMUL_MODE_PROT32:
  1321. case X86EMUL_MODE_PROT64:
  1322. default:
  1323. /* Protected mode interrupts unimplemented yet */
  1324. return X86EMUL_UNHANDLEABLE;
  1325. }
  1326. }
  1327. static int emulate_iret_real(struct x86_emulate_ctxt *ctxt,
  1328. struct x86_emulate_ops *ops)
  1329. {
  1330. struct decode_cache *c = &ctxt->decode;
  1331. int rc = X86EMUL_CONTINUE;
  1332. unsigned long temp_eip = 0;
  1333. unsigned long temp_eflags = 0;
  1334. unsigned long cs = 0;
  1335. unsigned long mask = EFLG_CF | EFLG_PF | EFLG_AF | EFLG_ZF | EFLG_SF | EFLG_TF |
  1336. EFLG_IF | EFLG_DF | EFLG_OF | EFLG_IOPL | EFLG_NT | EFLG_RF |
  1337. EFLG_AC | EFLG_ID | (1 << 1); /* Last one is the reserved bit */
  1338. unsigned long vm86_mask = EFLG_VM | EFLG_VIF | EFLG_VIP;
  1339. /* TODO: Add stack limit check */
  1340. rc = emulate_pop(ctxt, ops, &temp_eip, c->op_bytes);
  1341. if (rc != X86EMUL_CONTINUE)
  1342. return rc;
  1343. if (temp_eip & ~0xffff)
  1344. return emulate_gp(ctxt, 0);
  1345. rc = emulate_pop(ctxt, ops, &cs, c->op_bytes);
  1346. if (rc != X86EMUL_CONTINUE)
  1347. return rc;
  1348. rc = emulate_pop(ctxt, ops, &temp_eflags, c->op_bytes);
  1349. if (rc != X86EMUL_CONTINUE)
  1350. return rc;
  1351. rc = load_segment_descriptor(ctxt, ops, (u16)cs, VCPU_SREG_CS);
  1352. if (rc != X86EMUL_CONTINUE)
  1353. return rc;
  1354. c->eip = temp_eip;
  1355. if (c->op_bytes == 4)
  1356. ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask));
  1357. else if (c->op_bytes == 2) {
  1358. ctxt->eflags &= ~0xffff;
  1359. ctxt->eflags |= temp_eflags;
  1360. }
  1361. ctxt->eflags &= ~EFLG_RESERVED_ZEROS_MASK; /* Clear reserved zeros */
  1362. ctxt->eflags |= EFLG_RESERVED_ONE_MASK;
  1363. return rc;
  1364. }
  1365. static inline int emulate_iret(struct x86_emulate_ctxt *ctxt,
  1366. struct x86_emulate_ops* ops)
  1367. {
  1368. switch(ctxt->mode) {
  1369. case X86EMUL_MODE_REAL:
  1370. return emulate_iret_real(ctxt, ops);
  1371. case X86EMUL_MODE_VM86:
  1372. case X86EMUL_MODE_PROT16:
  1373. case X86EMUL_MODE_PROT32:
  1374. case X86EMUL_MODE_PROT64:
  1375. default:
  1376. /* iret from protected mode unimplemented yet */
  1377. return X86EMUL_UNHANDLEABLE;
  1378. }
  1379. }
  1380. static inline int emulate_grp1a(struct x86_emulate_ctxt *ctxt,
  1381. struct x86_emulate_ops *ops)
  1382. {
  1383. struct decode_cache *c = &ctxt->decode;
  1384. return emulate_pop(ctxt, ops, &c->dst.val, c->dst.bytes);
  1385. }
  1386. static inline void emulate_grp2(struct x86_emulate_ctxt *ctxt)
  1387. {
  1388. struct decode_cache *c = &ctxt->decode;
  1389. switch (c->modrm_reg) {
  1390. case 0: /* rol */
  1391. emulate_2op_SrcB("rol", c->src, c->dst, ctxt->eflags);
  1392. break;
  1393. case 1: /* ror */
  1394. emulate_2op_SrcB("ror", c->src, c->dst, ctxt->eflags);
  1395. break;
  1396. case 2: /* rcl */
  1397. emulate_2op_SrcB("rcl", c->src, c->dst, ctxt->eflags);
  1398. break;
  1399. case 3: /* rcr */
  1400. emulate_2op_SrcB("rcr", c->src, c->dst, ctxt->eflags);
  1401. break;
  1402. case 4: /* sal/shl */
  1403. case 6: /* sal/shl */
  1404. emulate_2op_SrcB("sal", c->src, c->dst, ctxt->eflags);
  1405. break;
  1406. case 5: /* shr */
  1407. emulate_2op_SrcB("shr", c->src, c->dst, ctxt->eflags);
  1408. break;
  1409. case 7: /* sar */
  1410. emulate_2op_SrcB("sar", c->src, c->dst, ctxt->eflags);
  1411. break;
  1412. }
  1413. }
  1414. static inline int emulate_grp3(struct x86_emulate_ctxt *ctxt,
  1415. struct x86_emulate_ops *ops)
  1416. {
  1417. struct decode_cache *c = &ctxt->decode;
  1418. unsigned long *rax = &c->regs[VCPU_REGS_RAX];
  1419. unsigned long *rdx = &c->regs[VCPU_REGS_RDX];
  1420. u8 de = 0;
  1421. switch (c->modrm_reg) {
  1422. case 0 ... 1: /* test */
  1423. emulate_2op_SrcV("test", c->src, c->dst, ctxt->eflags);
  1424. break;
  1425. case 2: /* not */
  1426. c->dst.val = ~c->dst.val;
  1427. break;
  1428. case 3: /* neg */
  1429. emulate_1op("neg", c->dst, ctxt->eflags);
  1430. break;
  1431. case 4: /* mul */
  1432. emulate_1op_rax_rdx("mul", c->src, *rax, *rdx, ctxt->eflags);
  1433. break;
  1434. case 5: /* imul */
  1435. emulate_1op_rax_rdx("imul", c->src, *rax, *rdx, ctxt->eflags);
  1436. break;
  1437. case 6: /* div */
  1438. emulate_1op_rax_rdx_ex("div", c->src, *rax, *rdx,
  1439. ctxt->eflags, de);
  1440. break;
  1441. case 7: /* idiv */
  1442. emulate_1op_rax_rdx_ex("idiv", c->src, *rax, *rdx,
  1443. ctxt->eflags, de);
  1444. break;
  1445. default:
  1446. return X86EMUL_UNHANDLEABLE;
  1447. }
  1448. if (de)
  1449. return emulate_de(ctxt);
  1450. return X86EMUL_CONTINUE;
  1451. }
  1452. static inline int emulate_grp45(struct x86_emulate_ctxt *ctxt,
  1453. struct x86_emulate_ops *ops)
  1454. {
  1455. struct decode_cache *c = &ctxt->decode;
  1456. switch (c->modrm_reg) {
  1457. case 0: /* inc */
  1458. emulate_1op("inc", c->dst, ctxt->eflags);
  1459. break;
  1460. case 1: /* dec */
  1461. emulate_1op("dec", c->dst, ctxt->eflags);
  1462. break;
  1463. case 2: /* call near abs */ {
  1464. long int old_eip;
  1465. old_eip = c->eip;
  1466. c->eip = c->src.val;
  1467. c->src.val = old_eip;
  1468. emulate_push(ctxt, ops);
  1469. break;
  1470. }
  1471. case 4: /* jmp abs */
  1472. c->eip = c->src.val;
  1473. break;
  1474. case 6: /* push */
  1475. emulate_push(ctxt, ops);
  1476. break;
  1477. }
  1478. return X86EMUL_CONTINUE;
  1479. }
  1480. static inline int emulate_grp9(struct x86_emulate_ctxt *ctxt,
  1481. struct x86_emulate_ops *ops)
  1482. {
  1483. struct decode_cache *c = &ctxt->decode;
  1484. u64 old = c->dst.orig_val64;
  1485. if (((u32) (old >> 0) != (u32) c->regs[VCPU_REGS_RAX]) ||
  1486. ((u32) (old >> 32) != (u32) c->regs[VCPU_REGS_RDX])) {
  1487. c->regs[VCPU_REGS_RAX] = (u32) (old >> 0);
  1488. c->regs[VCPU_REGS_RDX] = (u32) (old >> 32);
  1489. ctxt->eflags &= ~EFLG_ZF;
  1490. } else {
  1491. c->dst.val64 = ((u64)c->regs[VCPU_REGS_RCX] << 32) |
  1492. (u32) c->regs[VCPU_REGS_RBX];
  1493. ctxt->eflags |= EFLG_ZF;
  1494. }
  1495. return X86EMUL_CONTINUE;
  1496. }
  1497. static int emulate_ret_far(struct x86_emulate_ctxt *ctxt,
  1498. struct x86_emulate_ops *ops)
  1499. {
  1500. struct decode_cache *c = &ctxt->decode;
  1501. int rc;
  1502. unsigned long cs;
  1503. rc = emulate_pop(ctxt, ops, &c->eip, c->op_bytes);
  1504. if (rc != X86EMUL_CONTINUE)
  1505. return rc;
  1506. if (c->op_bytes == 4)
  1507. c->eip = (u32)c->eip;
  1508. rc = emulate_pop(ctxt, ops, &cs, c->op_bytes);
  1509. if (rc != X86EMUL_CONTINUE)
  1510. return rc;
  1511. rc = load_segment_descriptor(ctxt, ops, (u16)cs, VCPU_SREG_CS);
  1512. return rc;
  1513. }
  1514. static int emulate_load_segment(struct x86_emulate_ctxt *ctxt,
  1515. struct x86_emulate_ops *ops, int seg)
  1516. {
  1517. struct decode_cache *c = &ctxt->decode;
  1518. unsigned short sel;
  1519. int rc;
  1520. memcpy(&sel, c->src.valptr + c->op_bytes, 2);
  1521. rc = load_segment_descriptor(ctxt, ops, sel, seg);
  1522. if (rc != X86EMUL_CONTINUE)
  1523. return rc;
  1524. c->dst.val = c->src.val;
  1525. return rc;
  1526. }
  1527. static inline void
  1528. setup_syscalls_segments(struct x86_emulate_ctxt *ctxt,
  1529. struct x86_emulate_ops *ops, struct desc_struct *cs,
  1530. struct desc_struct *ss)
  1531. {
  1532. memset(cs, 0, sizeof(struct desc_struct));
  1533. ops->get_cached_descriptor(cs, NULL, VCPU_SREG_CS, ctxt->vcpu);
  1534. memset(ss, 0, sizeof(struct desc_struct));
  1535. cs->l = 0; /* will be adjusted later */
  1536. set_desc_base(cs, 0); /* flat segment */
  1537. cs->g = 1; /* 4kb granularity */
  1538. set_desc_limit(cs, 0xfffff); /* 4GB limit */
  1539. cs->type = 0x0b; /* Read, Execute, Accessed */
  1540. cs->s = 1;
  1541. cs->dpl = 0; /* will be adjusted later */
  1542. cs->p = 1;
  1543. cs->d = 1;
  1544. set_desc_base(ss, 0); /* flat segment */
  1545. set_desc_limit(ss, 0xfffff); /* 4GB limit */
  1546. ss->g = 1; /* 4kb granularity */
  1547. ss->s = 1;
  1548. ss->type = 0x03; /* Read/Write, Accessed */
  1549. ss->d = 1; /* 32bit stack segment */
  1550. ss->dpl = 0;
  1551. ss->p = 1;
  1552. }
  1553. static int
  1554. emulate_syscall(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
  1555. {
  1556. struct decode_cache *c = &ctxt->decode;
  1557. struct desc_struct cs, ss;
  1558. u64 msr_data;
  1559. u16 cs_sel, ss_sel;
  1560. /* syscall is not available in real mode */
  1561. if (ctxt->mode == X86EMUL_MODE_REAL ||
  1562. ctxt->mode == X86EMUL_MODE_VM86)
  1563. return emulate_ud(ctxt);
  1564. setup_syscalls_segments(ctxt, ops, &cs, &ss);
  1565. ops->get_msr(ctxt->vcpu, MSR_STAR, &msr_data);
  1566. msr_data >>= 32;
  1567. cs_sel = (u16)(msr_data & 0xfffc);
  1568. ss_sel = (u16)(msr_data + 8);
  1569. if (is_long_mode(ctxt->vcpu)) {
  1570. cs.d = 0;
  1571. cs.l = 1;
  1572. }
  1573. ops->set_cached_descriptor(&cs, 0, VCPU_SREG_CS, ctxt->vcpu);
  1574. ops->set_segment_selector(cs_sel, VCPU_SREG_CS, ctxt->vcpu);
  1575. ops->set_cached_descriptor(&ss, 0, VCPU_SREG_SS, ctxt->vcpu);
  1576. ops->set_segment_selector(ss_sel, VCPU_SREG_SS, ctxt->vcpu);
  1577. c->regs[VCPU_REGS_RCX] = c->eip;
  1578. if (is_long_mode(ctxt->vcpu)) {
  1579. #ifdef CONFIG_X86_64
  1580. c->regs[VCPU_REGS_R11] = ctxt->eflags & ~EFLG_RF;
  1581. ops->get_msr(ctxt->vcpu,
  1582. ctxt->mode == X86EMUL_MODE_PROT64 ?
  1583. MSR_LSTAR : MSR_CSTAR, &msr_data);
  1584. c->eip = msr_data;
  1585. ops->get_msr(ctxt->vcpu, MSR_SYSCALL_MASK, &msr_data);
  1586. ctxt->eflags &= ~(msr_data | EFLG_RF);
  1587. #endif
  1588. } else {
  1589. /* legacy mode */
  1590. ops->get_msr(ctxt->vcpu, MSR_STAR, &msr_data);
  1591. c->eip = (u32)msr_data;
  1592. ctxt->eflags &= ~(EFLG_VM | EFLG_IF | EFLG_RF);
  1593. }
  1594. return X86EMUL_CONTINUE;
  1595. }
  1596. static int
  1597. emulate_sysenter(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
  1598. {
  1599. struct decode_cache *c = &ctxt->decode;
  1600. struct desc_struct cs, ss;
  1601. u64 msr_data;
  1602. u16 cs_sel, ss_sel;
  1603. /* inject #GP if in real mode */
  1604. if (ctxt->mode == X86EMUL_MODE_REAL)
  1605. return emulate_gp(ctxt, 0);
  1606. /* XXX sysenter/sysexit have not been tested in 64bit mode.
  1607. * Therefore, we inject an #UD.
  1608. */
  1609. if (ctxt->mode == X86EMUL_MODE_PROT64)
  1610. return emulate_ud(ctxt);
  1611. setup_syscalls_segments(ctxt, ops, &cs, &ss);
  1612. ops->get_msr(ctxt->vcpu, MSR_IA32_SYSENTER_CS, &msr_data);
  1613. switch (ctxt->mode) {
  1614. case X86EMUL_MODE_PROT32:
  1615. if ((msr_data & 0xfffc) == 0x0)
  1616. return emulate_gp(ctxt, 0);
  1617. break;
  1618. case X86EMUL_MODE_PROT64:
  1619. if (msr_data == 0x0)
  1620. return emulate_gp(ctxt, 0);
  1621. break;
  1622. }
  1623. ctxt->eflags &= ~(EFLG_VM | EFLG_IF | EFLG_RF);
  1624. cs_sel = (u16)msr_data;
  1625. cs_sel &= ~SELECTOR_RPL_MASK;
  1626. ss_sel = cs_sel + 8;
  1627. ss_sel &= ~SELECTOR_RPL_MASK;
  1628. if (ctxt->mode == X86EMUL_MODE_PROT64
  1629. || is_long_mode(ctxt->vcpu)) {
  1630. cs.d = 0;
  1631. cs.l = 1;
  1632. }
  1633. ops->set_cached_descriptor(&cs, 0, VCPU_SREG_CS, ctxt->vcpu);
  1634. ops->set_segment_selector(cs_sel, VCPU_SREG_CS, ctxt->vcpu);
  1635. ops->set_cached_descriptor(&ss, 0, VCPU_SREG_SS, ctxt->vcpu);
  1636. ops->set_segment_selector(ss_sel, VCPU_SREG_SS, ctxt->vcpu);
  1637. ops->get_msr(ctxt->vcpu, MSR_IA32_SYSENTER_EIP, &msr_data);
  1638. c->eip = msr_data;
  1639. ops->get_msr(ctxt->vcpu, MSR_IA32_SYSENTER_ESP, &msr_data);
  1640. c->regs[VCPU_REGS_RSP] = msr_data;
  1641. return X86EMUL_CONTINUE;
  1642. }
  1643. static int
  1644. emulate_sysexit(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
  1645. {
  1646. struct decode_cache *c = &ctxt->decode;
  1647. struct desc_struct cs, ss;
  1648. u64 msr_data;
  1649. int usermode;
  1650. u16 cs_sel, ss_sel;
  1651. /* inject #GP if in real mode or Virtual 8086 mode */
  1652. if (ctxt->mode == X86EMUL_MODE_REAL ||
  1653. ctxt->mode == X86EMUL_MODE_VM86)
  1654. return emulate_gp(ctxt, 0);
  1655. setup_syscalls_segments(ctxt, ops, &cs, &ss);
  1656. if ((c->rex_prefix & 0x8) != 0x0)
  1657. usermode = X86EMUL_MODE_PROT64;
  1658. else
  1659. usermode = X86EMUL_MODE_PROT32;
  1660. cs.dpl = 3;
  1661. ss.dpl = 3;
  1662. ops->get_msr(ctxt->vcpu, MSR_IA32_SYSENTER_CS, &msr_data);
  1663. switch (usermode) {
  1664. case X86EMUL_MODE_PROT32:
  1665. cs_sel = (u16)(msr_data + 16);
  1666. if ((msr_data & 0xfffc) == 0x0)
  1667. return emulate_gp(ctxt, 0);
  1668. ss_sel = (u16)(msr_data + 24);
  1669. break;
  1670. case X86EMUL_MODE_PROT64:
  1671. cs_sel = (u16)(msr_data + 32);
  1672. if (msr_data == 0x0)
  1673. return emulate_gp(ctxt, 0);
  1674. ss_sel = cs_sel + 8;
  1675. cs.d = 0;
  1676. cs.l = 1;
  1677. break;
  1678. }
  1679. cs_sel |= SELECTOR_RPL_MASK;
  1680. ss_sel |= SELECTOR_RPL_MASK;
  1681. ops->set_cached_descriptor(&cs, 0, VCPU_SREG_CS, ctxt->vcpu);
  1682. ops->set_segment_selector(cs_sel, VCPU_SREG_CS, ctxt->vcpu);
  1683. ops->set_cached_descriptor(&ss, 0, VCPU_SREG_SS, ctxt->vcpu);
  1684. ops->set_segment_selector(ss_sel, VCPU_SREG_SS, ctxt->vcpu);
  1685. c->eip = c->regs[VCPU_REGS_RDX];
  1686. c->regs[VCPU_REGS_RSP] = c->regs[VCPU_REGS_RCX];
  1687. return X86EMUL_CONTINUE;
  1688. }
  1689. static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt,
  1690. struct x86_emulate_ops *ops)
  1691. {
  1692. int iopl;
  1693. if (ctxt->mode == X86EMUL_MODE_REAL)
  1694. return false;
  1695. if (ctxt->mode == X86EMUL_MODE_VM86)
  1696. return true;
  1697. iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1698. return ops->cpl(ctxt->vcpu) > iopl;
  1699. }
  1700. static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt,
  1701. struct x86_emulate_ops *ops,
  1702. u16 port, u16 len)
  1703. {
  1704. struct desc_struct tr_seg;
  1705. u32 base3;
  1706. int r;
  1707. u16 io_bitmap_ptr, perm, bit_idx = port & 0x7;
  1708. unsigned mask = (1 << len) - 1;
  1709. unsigned long base;
  1710. ops->get_cached_descriptor(&tr_seg, &base3, VCPU_SREG_TR, ctxt->vcpu);
  1711. if (!tr_seg.p)
  1712. return false;
  1713. if (desc_limit_scaled(&tr_seg) < 103)
  1714. return false;
  1715. base = get_desc_base(&tr_seg);
  1716. #ifdef CONFIG_X86_64
  1717. base |= ((u64)base3) << 32;
  1718. #endif
  1719. r = ops->read_std(base + 102, &io_bitmap_ptr, 2, ctxt->vcpu, NULL);
  1720. if (r != X86EMUL_CONTINUE)
  1721. return false;
  1722. if (io_bitmap_ptr + port/8 > desc_limit_scaled(&tr_seg))
  1723. return false;
  1724. r = ops->read_std(base + io_bitmap_ptr + port/8, &perm, 2, ctxt->vcpu,
  1725. NULL);
  1726. if (r != X86EMUL_CONTINUE)
  1727. return false;
  1728. if ((perm >> bit_idx) & mask)
  1729. return false;
  1730. return true;
  1731. }
  1732. static bool emulator_io_permited(struct x86_emulate_ctxt *ctxt,
  1733. struct x86_emulate_ops *ops,
  1734. u16 port, u16 len)
  1735. {
  1736. if (ctxt->perm_ok)
  1737. return true;
  1738. if (emulator_bad_iopl(ctxt, ops))
  1739. if (!emulator_io_port_access_allowed(ctxt, ops, port, len))
  1740. return false;
  1741. ctxt->perm_ok = true;
  1742. return true;
  1743. }
  1744. static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt,
  1745. struct x86_emulate_ops *ops,
  1746. struct tss_segment_16 *tss)
  1747. {
  1748. struct decode_cache *c = &ctxt->decode;
  1749. tss->ip = c->eip;
  1750. tss->flag = ctxt->eflags;
  1751. tss->ax = c->regs[VCPU_REGS_RAX];
  1752. tss->cx = c->regs[VCPU_REGS_RCX];
  1753. tss->dx = c->regs[VCPU_REGS_RDX];
  1754. tss->bx = c->regs[VCPU_REGS_RBX];
  1755. tss->sp = c->regs[VCPU_REGS_RSP];
  1756. tss->bp = c->regs[VCPU_REGS_RBP];
  1757. tss->si = c->regs[VCPU_REGS_RSI];
  1758. tss->di = c->regs[VCPU_REGS_RDI];
  1759. tss->es = ops->get_segment_selector(VCPU_SREG_ES, ctxt->vcpu);
  1760. tss->cs = ops->get_segment_selector(VCPU_SREG_CS, ctxt->vcpu);
  1761. tss->ss = ops->get_segment_selector(VCPU_SREG_SS, ctxt->vcpu);
  1762. tss->ds = ops->get_segment_selector(VCPU_SREG_DS, ctxt->vcpu);
  1763. tss->ldt = ops->get_segment_selector(VCPU_SREG_LDTR, ctxt->vcpu);
  1764. }
  1765. static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt,
  1766. struct x86_emulate_ops *ops,
  1767. struct tss_segment_16 *tss)
  1768. {
  1769. struct decode_cache *c = &ctxt->decode;
  1770. int ret;
  1771. c->eip = tss->ip;
  1772. ctxt->eflags = tss->flag | 2;
  1773. c->regs[VCPU_REGS_RAX] = tss->ax;
  1774. c->regs[VCPU_REGS_RCX] = tss->cx;
  1775. c->regs[VCPU_REGS_RDX] = tss->dx;
  1776. c->regs[VCPU_REGS_RBX] = tss->bx;
  1777. c->regs[VCPU_REGS_RSP] = tss->sp;
  1778. c->regs[VCPU_REGS_RBP] = tss->bp;
  1779. c->regs[VCPU_REGS_RSI] = tss->si;
  1780. c->regs[VCPU_REGS_RDI] = tss->di;
  1781. /*
  1782. * SDM says that segment selectors are loaded before segment
  1783. * descriptors
  1784. */
  1785. ops->set_segment_selector(tss->ldt, VCPU_SREG_LDTR, ctxt->vcpu);
  1786. ops->set_segment_selector(tss->es, VCPU_SREG_ES, ctxt->vcpu);
  1787. ops->set_segment_selector(tss->cs, VCPU_SREG_CS, ctxt->vcpu);
  1788. ops->set_segment_selector(tss->ss, VCPU_SREG_SS, ctxt->vcpu);
  1789. ops->set_segment_selector(tss->ds, VCPU_SREG_DS, ctxt->vcpu);
  1790. /*
  1791. * Now load segment descriptors. If fault happenes at this stage
  1792. * it is handled in a context of new task
  1793. */
  1794. ret = load_segment_descriptor(ctxt, ops, tss->ldt, VCPU_SREG_LDTR);
  1795. if (ret != X86EMUL_CONTINUE)
  1796. return ret;
  1797. ret = load_segment_descriptor(ctxt, ops, tss->es, VCPU_SREG_ES);
  1798. if (ret != X86EMUL_CONTINUE)
  1799. return ret;
  1800. ret = load_segment_descriptor(ctxt, ops, tss->cs, VCPU_SREG_CS);
  1801. if (ret != X86EMUL_CONTINUE)
  1802. return ret;
  1803. ret = load_segment_descriptor(ctxt, ops, tss->ss, VCPU_SREG_SS);
  1804. if (ret != X86EMUL_CONTINUE)
  1805. return ret;
  1806. ret = load_segment_descriptor(ctxt, ops, tss->ds, VCPU_SREG_DS);
  1807. if (ret != X86EMUL_CONTINUE)
  1808. return ret;
  1809. return X86EMUL_CONTINUE;
  1810. }
  1811. static int task_switch_16(struct x86_emulate_ctxt *ctxt,
  1812. struct x86_emulate_ops *ops,
  1813. u16 tss_selector, u16 old_tss_sel,
  1814. ulong old_tss_base, struct desc_struct *new_desc)
  1815. {
  1816. struct tss_segment_16 tss_seg;
  1817. int ret;
  1818. u32 new_tss_base = get_desc_base(new_desc);
  1819. ret = ops->read_std(old_tss_base, &tss_seg, sizeof tss_seg, ctxt->vcpu,
  1820. &ctxt->exception);
  1821. if (ret != X86EMUL_CONTINUE)
  1822. /* FIXME: need to provide precise fault address */
  1823. return ret;
  1824. save_state_to_tss16(ctxt, ops, &tss_seg);
  1825. ret = ops->write_std(old_tss_base, &tss_seg, sizeof tss_seg, ctxt->vcpu,
  1826. &ctxt->exception);
  1827. if (ret != X86EMUL_CONTINUE)
  1828. /* FIXME: need to provide precise fault address */
  1829. return ret;
  1830. ret = ops->read_std(new_tss_base, &tss_seg, sizeof tss_seg, ctxt->vcpu,
  1831. &ctxt->exception);
  1832. if (ret != X86EMUL_CONTINUE)
  1833. /* FIXME: need to provide precise fault address */
  1834. return ret;
  1835. if (old_tss_sel != 0xffff) {
  1836. tss_seg.prev_task_link = old_tss_sel;
  1837. ret = ops->write_std(new_tss_base,
  1838. &tss_seg.prev_task_link,
  1839. sizeof tss_seg.prev_task_link,
  1840. ctxt->vcpu, &ctxt->exception);
  1841. if (ret != X86EMUL_CONTINUE)
  1842. /* FIXME: need to provide precise fault address */
  1843. return ret;
  1844. }
  1845. return load_state_from_tss16(ctxt, ops, &tss_seg);
  1846. }
  1847. static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt,
  1848. struct x86_emulate_ops *ops,
  1849. struct tss_segment_32 *tss)
  1850. {
  1851. struct decode_cache *c = &ctxt->decode;
  1852. tss->cr3 = ops->get_cr(3, ctxt->vcpu);
  1853. tss->eip = c->eip;
  1854. tss->eflags = ctxt->eflags;
  1855. tss->eax = c->regs[VCPU_REGS_RAX];
  1856. tss->ecx = c->regs[VCPU_REGS_RCX];
  1857. tss->edx = c->regs[VCPU_REGS_RDX];
  1858. tss->ebx = c->regs[VCPU_REGS_RBX];
  1859. tss->esp = c->regs[VCPU_REGS_RSP];
  1860. tss->ebp = c->regs[VCPU_REGS_RBP];
  1861. tss->esi = c->regs[VCPU_REGS_RSI];
  1862. tss->edi = c->regs[VCPU_REGS_RDI];
  1863. tss->es = ops->get_segment_selector(VCPU_SREG_ES, ctxt->vcpu);
  1864. tss->cs = ops->get_segment_selector(VCPU_SREG_CS, ctxt->vcpu);
  1865. tss->ss = ops->get_segment_selector(VCPU_SREG_SS, ctxt->vcpu);
  1866. tss->ds = ops->get_segment_selector(VCPU_SREG_DS, ctxt->vcpu);
  1867. tss->fs = ops->get_segment_selector(VCPU_SREG_FS, ctxt->vcpu);
  1868. tss->gs = ops->get_segment_selector(VCPU_SREG_GS, ctxt->vcpu);
  1869. tss->ldt_selector = ops->get_segment_selector(VCPU_SREG_LDTR, ctxt->vcpu);
  1870. }
  1871. static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt,
  1872. struct x86_emulate_ops *ops,
  1873. struct tss_segment_32 *tss)
  1874. {
  1875. struct decode_cache *c = &ctxt->decode;
  1876. int ret;
  1877. if (ops->set_cr(3, tss->cr3, ctxt->vcpu))
  1878. return emulate_gp(ctxt, 0);
  1879. c->eip = tss->eip;
  1880. ctxt->eflags = tss->eflags | 2;
  1881. c->regs[VCPU_REGS_RAX] = tss->eax;
  1882. c->regs[VCPU_REGS_RCX] = tss->ecx;
  1883. c->regs[VCPU_REGS_RDX] = tss->edx;
  1884. c->regs[VCPU_REGS_RBX] = tss->ebx;
  1885. c->regs[VCPU_REGS_RSP] = tss->esp;
  1886. c->regs[VCPU_REGS_RBP] = tss->ebp;
  1887. c->regs[VCPU_REGS_RSI] = tss->esi;
  1888. c->regs[VCPU_REGS_RDI] = tss->edi;
  1889. /*
  1890. * SDM says that segment selectors are loaded before segment
  1891. * descriptors
  1892. */
  1893. ops->set_segment_selector(tss->ldt_selector, VCPU_SREG_LDTR, ctxt->vcpu);
  1894. ops->set_segment_selector(tss->es, VCPU_SREG_ES, ctxt->vcpu);
  1895. ops->set_segment_selector(tss->cs, VCPU_SREG_CS, ctxt->vcpu);
  1896. ops->set_segment_selector(tss->ss, VCPU_SREG_SS, ctxt->vcpu);
  1897. ops->set_segment_selector(tss->ds, VCPU_SREG_DS, ctxt->vcpu);
  1898. ops->set_segment_selector(tss->fs, VCPU_SREG_FS, ctxt->vcpu);
  1899. ops->set_segment_selector(tss->gs, VCPU_SREG_GS, ctxt->vcpu);
  1900. /*
  1901. * Now load segment descriptors. If fault happenes at this stage
  1902. * it is handled in a context of new task
  1903. */
  1904. ret = load_segment_descriptor(ctxt, ops, tss->ldt_selector, VCPU_SREG_LDTR);
  1905. if (ret != X86EMUL_CONTINUE)
  1906. return ret;
  1907. ret = load_segment_descriptor(ctxt, ops, tss->es, VCPU_SREG_ES);
  1908. if (ret != X86EMUL_CONTINUE)
  1909. return ret;
  1910. ret = load_segment_descriptor(ctxt, ops, tss->cs, VCPU_SREG_CS);
  1911. if (ret != X86EMUL_CONTINUE)
  1912. return ret;
  1913. ret = load_segment_descriptor(ctxt, ops, tss->ss, VCPU_SREG_SS);
  1914. if (ret != X86EMUL_CONTINUE)
  1915. return ret;
  1916. ret = load_segment_descriptor(ctxt, ops, tss->ds, VCPU_SREG_DS);
  1917. if (ret != X86EMUL_CONTINUE)
  1918. return ret;
  1919. ret = load_segment_descriptor(ctxt, ops, tss->fs, VCPU_SREG_FS);
  1920. if (ret != X86EMUL_CONTINUE)
  1921. return ret;
  1922. ret = load_segment_descriptor(ctxt, ops, tss->gs, VCPU_SREG_GS);
  1923. if (ret != X86EMUL_CONTINUE)
  1924. return ret;
  1925. return X86EMUL_CONTINUE;
  1926. }
  1927. static int task_switch_32(struct x86_emulate_ctxt *ctxt,
  1928. struct x86_emulate_ops *ops,
  1929. u16 tss_selector, u16 old_tss_sel,
  1930. ulong old_tss_base, struct desc_struct *new_desc)
  1931. {
  1932. struct tss_segment_32 tss_seg;
  1933. int ret;
  1934. u32 new_tss_base = get_desc_base(new_desc);
  1935. ret = ops->read_std(old_tss_base, &tss_seg, sizeof tss_seg, ctxt->vcpu,
  1936. &ctxt->exception);
  1937. if (ret != X86EMUL_CONTINUE)
  1938. /* FIXME: need to provide precise fault address */
  1939. return ret;
  1940. save_state_to_tss32(ctxt, ops, &tss_seg);
  1941. ret = ops->write_std(old_tss_base, &tss_seg, sizeof tss_seg, ctxt->vcpu,
  1942. &ctxt->exception);
  1943. if (ret != X86EMUL_CONTINUE)
  1944. /* FIXME: need to provide precise fault address */
  1945. return ret;
  1946. ret = ops->read_std(new_tss_base, &tss_seg, sizeof tss_seg, ctxt->vcpu,
  1947. &ctxt->exception);
  1948. if (ret != X86EMUL_CONTINUE)
  1949. /* FIXME: need to provide precise fault address */
  1950. return ret;
  1951. if (old_tss_sel != 0xffff) {
  1952. tss_seg.prev_task_link = old_tss_sel;
  1953. ret = ops->write_std(new_tss_base,
  1954. &tss_seg.prev_task_link,
  1955. sizeof tss_seg.prev_task_link,
  1956. ctxt->vcpu, &ctxt->exception);
  1957. if (ret != X86EMUL_CONTINUE)
  1958. /* FIXME: need to provide precise fault address */
  1959. return ret;
  1960. }
  1961. return load_state_from_tss32(ctxt, ops, &tss_seg);
  1962. }
  1963. static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt,
  1964. struct x86_emulate_ops *ops,
  1965. u16 tss_selector, int reason,
  1966. bool has_error_code, u32 error_code)
  1967. {
  1968. struct desc_struct curr_tss_desc, next_tss_desc;
  1969. int ret;
  1970. u16 old_tss_sel = ops->get_segment_selector(VCPU_SREG_TR, ctxt->vcpu);
  1971. ulong old_tss_base =
  1972. ops->get_cached_segment_base(VCPU_SREG_TR, ctxt->vcpu);
  1973. u32 desc_limit;
  1974. /* FIXME: old_tss_base == ~0 ? */
  1975. ret = read_segment_descriptor(ctxt, ops, tss_selector, &next_tss_desc);
  1976. if (ret != X86EMUL_CONTINUE)
  1977. return ret;
  1978. ret = read_segment_descriptor(ctxt, ops, old_tss_sel, &curr_tss_desc);
  1979. if (ret != X86EMUL_CONTINUE)
  1980. return ret;
  1981. /* FIXME: check that next_tss_desc is tss */
  1982. if (reason != TASK_SWITCH_IRET) {
  1983. if ((tss_selector & 3) > next_tss_desc.dpl ||
  1984. ops->cpl(ctxt->vcpu) > next_tss_desc.dpl)
  1985. return emulate_gp(ctxt, 0);
  1986. }
  1987. desc_limit = desc_limit_scaled(&next_tss_desc);
  1988. if (!next_tss_desc.p ||
  1989. ((desc_limit < 0x67 && (next_tss_desc.type & 8)) ||
  1990. desc_limit < 0x2b)) {
  1991. emulate_ts(ctxt, tss_selector & 0xfffc);
  1992. return X86EMUL_PROPAGATE_FAULT;
  1993. }
  1994. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  1995. curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */
  1996. write_segment_descriptor(ctxt, ops, old_tss_sel,
  1997. &curr_tss_desc);
  1998. }
  1999. if (reason == TASK_SWITCH_IRET)
  2000. ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT;
  2001. /* set back link to prev task only if NT bit is set in eflags
  2002. note that old_tss_sel is not used afetr this point */
  2003. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  2004. old_tss_sel = 0xffff;
  2005. if (next_tss_desc.type & 8)
  2006. ret = task_switch_32(ctxt, ops, tss_selector, old_tss_sel,
  2007. old_tss_base, &next_tss_desc);
  2008. else
  2009. ret = task_switch_16(ctxt, ops, tss_selector, old_tss_sel,
  2010. old_tss_base, &next_tss_desc);
  2011. if (ret != X86EMUL_CONTINUE)
  2012. return ret;
  2013. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE)
  2014. ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT;
  2015. if (reason != TASK_SWITCH_IRET) {
  2016. next_tss_desc.type |= (1 << 1); /* set busy flag */
  2017. write_segment_descriptor(ctxt, ops, tss_selector,
  2018. &next_tss_desc);
  2019. }
  2020. ops->set_cr(0, ops->get_cr(0, ctxt->vcpu) | X86_CR0_TS, ctxt->vcpu);
  2021. ops->set_cached_descriptor(&next_tss_desc, 0, VCPU_SREG_TR, ctxt->vcpu);
  2022. ops->set_segment_selector(tss_selector, VCPU_SREG_TR, ctxt->vcpu);
  2023. if (has_error_code) {
  2024. struct decode_cache *c = &ctxt->decode;
  2025. c->op_bytes = c->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2;
  2026. c->lock_prefix = 0;
  2027. c->src.val = (unsigned long) error_code;
  2028. emulate_push(ctxt, ops);
  2029. }
  2030. return ret;
  2031. }
  2032. int emulator_task_switch(struct x86_emulate_ctxt *ctxt,
  2033. u16 tss_selector, int reason,
  2034. bool has_error_code, u32 error_code)
  2035. {
  2036. struct x86_emulate_ops *ops = ctxt->ops;
  2037. struct decode_cache *c = &ctxt->decode;
  2038. int rc;
  2039. c->eip = ctxt->eip;
  2040. c->dst.type = OP_NONE;
  2041. rc = emulator_do_task_switch(ctxt, ops, tss_selector, reason,
  2042. has_error_code, error_code);
  2043. if (rc == X86EMUL_CONTINUE) {
  2044. rc = writeback(ctxt, ops);
  2045. if (rc == X86EMUL_CONTINUE)
  2046. ctxt->eip = c->eip;
  2047. }
  2048. return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
  2049. }
  2050. static void string_addr_inc(struct x86_emulate_ctxt *ctxt, unsigned seg,
  2051. int reg, struct operand *op)
  2052. {
  2053. struct decode_cache *c = &ctxt->decode;
  2054. int df = (ctxt->eflags & EFLG_DF) ? -1 : 1;
  2055. register_address_increment(c, &c->regs[reg], df * op->bytes);
  2056. op->addr.mem.ea = register_address(c, c->regs[reg]);
  2057. op->addr.mem.seg = seg;
  2058. }
  2059. static int em_push(struct x86_emulate_ctxt *ctxt)
  2060. {
  2061. emulate_push(ctxt, ctxt->ops);
  2062. return X86EMUL_CONTINUE;
  2063. }
  2064. static int em_das(struct x86_emulate_ctxt *ctxt)
  2065. {
  2066. struct decode_cache *c = &ctxt->decode;
  2067. u8 al, old_al;
  2068. bool af, cf, old_cf;
  2069. cf = ctxt->eflags & X86_EFLAGS_CF;
  2070. al = c->dst.val;
  2071. old_al = al;
  2072. old_cf = cf;
  2073. cf = false;
  2074. af = ctxt->eflags & X86_EFLAGS_AF;
  2075. if ((al & 0x0f) > 9 || af) {
  2076. al -= 6;
  2077. cf = old_cf | (al >= 250);
  2078. af = true;
  2079. } else {
  2080. af = false;
  2081. }
  2082. if (old_al > 0x99 || old_cf) {
  2083. al -= 0x60;
  2084. cf = true;
  2085. }
  2086. c->dst.val = al;
  2087. /* Set PF, ZF, SF */
  2088. c->src.type = OP_IMM;
  2089. c->src.val = 0;
  2090. c->src.bytes = 1;
  2091. emulate_2op_SrcV("or", c->src, c->dst, ctxt->eflags);
  2092. ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF);
  2093. if (cf)
  2094. ctxt->eflags |= X86_EFLAGS_CF;
  2095. if (af)
  2096. ctxt->eflags |= X86_EFLAGS_AF;
  2097. return X86EMUL_CONTINUE;
  2098. }
  2099. static int em_call_far(struct x86_emulate_ctxt *ctxt)
  2100. {
  2101. struct decode_cache *c = &ctxt->decode;
  2102. u16 sel, old_cs;
  2103. ulong old_eip;
  2104. int rc;
  2105. old_cs = ctxt->ops->get_segment_selector(VCPU_SREG_CS, ctxt->vcpu);
  2106. old_eip = c->eip;
  2107. memcpy(&sel, c->src.valptr + c->op_bytes, 2);
  2108. if (load_segment_descriptor(ctxt, ctxt->ops, sel, VCPU_SREG_CS))
  2109. return X86EMUL_CONTINUE;
  2110. c->eip = 0;
  2111. memcpy(&c->eip, c->src.valptr, c->op_bytes);
  2112. c->src.val = old_cs;
  2113. emulate_push(ctxt, ctxt->ops);
  2114. rc = writeback(ctxt, ctxt->ops);
  2115. if (rc != X86EMUL_CONTINUE)
  2116. return rc;
  2117. c->src.val = old_eip;
  2118. emulate_push(ctxt, ctxt->ops);
  2119. rc = writeback(ctxt, ctxt->ops);
  2120. if (rc != X86EMUL_CONTINUE)
  2121. return rc;
  2122. c->dst.type = OP_NONE;
  2123. return X86EMUL_CONTINUE;
  2124. }
  2125. static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt)
  2126. {
  2127. struct decode_cache *c = &ctxt->decode;
  2128. int rc;
  2129. c->dst.type = OP_REG;
  2130. c->dst.addr.reg = &c->eip;
  2131. c->dst.bytes = c->op_bytes;
  2132. rc = emulate_pop(ctxt, ctxt->ops, &c->dst.val, c->op_bytes);
  2133. if (rc != X86EMUL_CONTINUE)
  2134. return rc;
  2135. register_address_increment(c, &c->regs[VCPU_REGS_RSP], c->src.val);
  2136. return X86EMUL_CONTINUE;
  2137. }
  2138. static int em_imul(struct x86_emulate_ctxt *ctxt)
  2139. {
  2140. struct decode_cache *c = &ctxt->decode;
  2141. emulate_2op_SrcV_nobyte("imul", c->src, c->dst, ctxt->eflags);
  2142. return X86EMUL_CONTINUE;
  2143. }
  2144. static int em_imul_3op(struct x86_emulate_ctxt *ctxt)
  2145. {
  2146. struct decode_cache *c = &ctxt->decode;
  2147. c->dst.val = c->src2.val;
  2148. return em_imul(ctxt);
  2149. }
  2150. static int em_cwd(struct x86_emulate_ctxt *ctxt)
  2151. {
  2152. struct decode_cache *c = &ctxt->decode;
  2153. c->dst.type = OP_REG;
  2154. c->dst.bytes = c->src.bytes;
  2155. c->dst.addr.reg = &c->regs[VCPU_REGS_RDX];
  2156. c->dst.val = ~((c->src.val >> (c->src.bytes * 8 - 1)) - 1);
  2157. return X86EMUL_CONTINUE;
  2158. }
  2159. static int em_rdtsc(struct x86_emulate_ctxt *ctxt)
  2160. {
  2161. struct decode_cache *c = &ctxt->decode;
  2162. u64 tsc = 0;
  2163. ctxt->ops->get_msr(ctxt->vcpu, MSR_IA32_TSC, &tsc);
  2164. c->regs[VCPU_REGS_RAX] = (u32)tsc;
  2165. c->regs[VCPU_REGS_RDX] = tsc >> 32;
  2166. return X86EMUL_CONTINUE;
  2167. }
  2168. static int em_mov(struct x86_emulate_ctxt *ctxt)
  2169. {
  2170. struct decode_cache *c = &ctxt->decode;
  2171. c->dst.val = c->src.val;
  2172. return X86EMUL_CONTINUE;
  2173. }
  2174. static int em_movdqu(struct x86_emulate_ctxt *ctxt)
  2175. {
  2176. struct decode_cache *c = &ctxt->decode;
  2177. memcpy(&c->dst.vec_val, &c->src.vec_val, c->op_bytes);
  2178. return X86EMUL_CONTINUE;
  2179. }
  2180. static int em_invlpg(struct x86_emulate_ctxt *ctxt)
  2181. {
  2182. struct decode_cache *c = &ctxt->decode;
  2183. int rc;
  2184. ulong linear;
  2185. rc = linearize(ctxt, c->src.addr.mem, &linear);
  2186. if (rc == X86EMUL_CONTINUE)
  2187. emulate_invlpg(ctxt->vcpu, linear);
  2188. /* Disable writeback. */
  2189. c->dst.type = OP_NONE;
  2190. return X86EMUL_CONTINUE;
  2191. }
  2192. static bool valid_cr(int nr)
  2193. {
  2194. switch (nr) {
  2195. case 0:
  2196. case 2 ... 4:
  2197. case 8:
  2198. return true;
  2199. default:
  2200. return false;
  2201. }
  2202. }
  2203. static int check_cr_read(struct x86_emulate_ctxt *ctxt)
  2204. {
  2205. struct decode_cache *c = &ctxt->decode;
  2206. if (!valid_cr(c->modrm_reg))
  2207. return emulate_ud(ctxt);
  2208. return X86EMUL_CONTINUE;
  2209. }
  2210. static int check_cr_write(struct x86_emulate_ctxt *ctxt)
  2211. {
  2212. struct decode_cache *c = &ctxt->decode;
  2213. u64 new_val = c->src.val64;
  2214. int cr = c->modrm_reg;
  2215. static u64 cr_reserved_bits[] = {
  2216. 0xffffffff00000000ULL,
  2217. 0, 0, 0, /* CR3 checked later */
  2218. CR4_RESERVED_BITS,
  2219. 0, 0, 0,
  2220. CR8_RESERVED_BITS,
  2221. };
  2222. if (!valid_cr(cr))
  2223. return emulate_ud(ctxt);
  2224. if (new_val & cr_reserved_bits[cr])
  2225. return emulate_gp(ctxt, 0);
  2226. switch (cr) {
  2227. case 0: {
  2228. u64 cr4, efer;
  2229. if (((new_val & X86_CR0_PG) && !(new_val & X86_CR0_PE)) ||
  2230. ((new_val & X86_CR0_NW) && !(new_val & X86_CR0_CD)))
  2231. return emulate_gp(ctxt, 0);
  2232. cr4 = ctxt->ops->get_cr(4, ctxt->vcpu);
  2233. ctxt->ops->get_msr(ctxt->vcpu, MSR_EFER, &efer);
  2234. if ((new_val & X86_CR0_PG) && (efer & EFER_LME) &&
  2235. !(cr4 & X86_CR4_PAE))
  2236. return emulate_gp(ctxt, 0);
  2237. break;
  2238. }
  2239. case 3: {
  2240. u64 rsvd = 0;
  2241. if (is_long_mode(ctxt->vcpu))
  2242. rsvd = CR3_L_MODE_RESERVED_BITS;
  2243. else if (is_pae(ctxt->vcpu))
  2244. rsvd = CR3_PAE_RESERVED_BITS;
  2245. else if (is_paging(ctxt->vcpu))
  2246. rsvd = CR3_NONPAE_RESERVED_BITS;
  2247. if (new_val & rsvd)
  2248. return emulate_gp(ctxt, 0);
  2249. break;
  2250. }
  2251. case 4: {
  2252. u64 cr4, efer;
  2253. cr4 = ctxt->ops->get_cr(4, ctxt->vcpu);
  2254. ctxt->ops->get_msr(ctxt->vcpu, MSR_EFER, &efer);
  2255. if ((efer & EFER_LMA) && !(new_val & X86_CR4_PAE))
  2256. return emulate_gp(ctxt, 0);
  2257. break;
  2258. }
  2259. }
  2260. return X86EMUL_CONTINUE;
  2261. }
  2262. static int check_dr7_gd(struct x86_emulate_ctxt *ctxt)
  2263. {
  2264. unsigned long dr7;
  2265. ctxt->ops->get_dr(7, &dr7, ctxt->vcpu);
  2266. /* Check if DR7.Global_Enable is set */
  2267. return dr7 & (1 << 13);
  2268. }
  2269. static int check_dr_read(struct x86_emulate_ctxt *ctxt)
  2270. {
  2271. struct decode_cache *c = &ctxt->decode;
  2272. int dr = c->modrm_reg;
  2273. u64 cr4;
  2274. if (dr > 7)
  2275. return emulate_ud(ctxt);
  2276. cr4 = ctxt->ops->get_cr(4, ctxt->vcpu);
  2277. if ((cr4 & X86_CR4_DE) && (dr == 4 || dr == 5))
  2278. return emulate_ud(ctxt);
  2279. if (check_dr7_gd(ctxt))
  2280. return emulate_db(ctxt);
  2281. return X86EMUL_CONTINUE;
  2282. }
  2283. static int check_dr_write(struct x86_emulate_ctxt *ctxt)
  2284. {
  2285. struct decode_cache *c = &ctxt->decode;
  2286. u64 new_val = c->src.val64;
  2287. int dr = c->modrm_reg;
  2288. if ((dr == 6 || dr == 7) && (new_val & 0xffffffff00000000ULL))
  2289. return emulate_gp(ctxt, 0);
  2290. return check_dr_read(ctxt);
  2291. }
  2292. static int check_svme(struct x86_emulate_ctxt *ctxt)
  2293. {
  2294. u64 efer;
  2295. ctxt->ops->get_msr(ctxt->vcpu, MSR_EFER, &efer);
  2296. if (!(efer & EFER_SVME))
  2297. return emulate_ud(ctxt);
  2298. return X86EMUL_CONTINUE;
  2299. }
  2300. static int check_svme_pa(struct x86_emulate_ctxt *ctxt)
  2301. {
  2302. u64 rax = kvm_register_read(ctxt->vcpu, VCPU_REGS_RAX);
  2303. /* Valid physical address? */
  2304. if (rax & 0xffff000000000000)
  2305. return emulate_gp(ctxt, 0);
  2306. return check_svme(ctxt);
  2307. }
  2308. static int check_rdtsc(struct x86_emulate_ctxt *ctxt)
  2309. {
  2310. u64 cr4 = ctxt->ops->get_cr(4, ctxt->vcpu);
  2311. if (cr4 & X86_CR4_TSD && ctxt->ops->cpl(ctxt->vcpu))
  2312. return emulate_ud(ctxt);
  2313. return X86EMUL_CONTINUE;
  2314. }
  2315. static int check_rdpmc(struct x86_emulate_ctxt *ctxt)
  2316. {
  2317. u64 cr4 = ctxt->ops->get_cr(4, ctxt->vcpu);
  2318. u64 rcx = kvm_register_read(ctxt->vcpu, VCPU_REGS_RCX);
  2319. if ((!(cr4 & X86_CR4_PCE) && ctxt->ops->cpl(ctxt->vcpu)) ||
  2320. (rcx > 3))
  2321. return emulate_gp(ctxt, 0);
  2322. return X86EMUL_CONTINUE;
  2323. }
  2324. static int check_perm_in(struct x86_emulate_ctxt *ctxt)
  2325. {
  2326. struct decode_cache *c = &ctxt->decode;
  2327. c->dst.bytes = min(c->dst.bytes, 4u);
  2328. if (!emulator_io_permited(ctxt, ctxt->ops, c->src.val, c->dst.bytes))
  2329. return emulate_gp(ctxt, 0);
  2330. return X86EMUL_CONTINUE;
  2331. }
  2332. static int check_perm_out(struct x86_emulate_ctxt *ctxt)
  2333. {
  2334. struct decode_cache *c = &ctxt->decode;
  2335. c->src.bytes = min(c->src.bytes, 4u);
  2336. if (!emulator_io_permited(ctxt, ctxt->ops, c->dst.val, c->src.bytes))
  2337. return emulate_gp(ctxt, 0);
  2338. return X86EMUL_CONTINUE;
  2339. }
  2340. #define D(_y) { .flags = (_y) }
  2341. #define DI(_y, _i) { .flags = (_y), .intercept = x86_intercept_##_i }
  2342. #define DIP(_y, _i, _p) { .flags = (_y), .intercept = x86_intercept_##_i, \
  2343. .check_perm = (_p) }
  2344. #define N D(0)
  2345. #define EXT(_f, _e) { .flags = ((_f) | RMExt), .u.group = (_e) }
  2346. #define G(_f, _g) { .flags = ((_f) | Group), .u.group = (_g) }
  2347. #define GD(_f, _g) { .flags = ((_f) | Group | GroupDual), .u.gdual = (_g) }
  2348. #define I(_f, _e) { .flags = (_f), .u.execute = (_e) }
  2349. #define II(_f, _e, _i) \
  2350. { .flags = (_f), .u.execute = (_e), .intercept = x86_intercept_##_i }
  2351. #define IIP(_f, _e, _i, _p) \
  2352. { .flags = (_f), .u.execute = (_e), .intercept = x86_intercept_##_i, \
  2353. .check_perm = (_p) }
  2354. #define GP(_f, _g) { .flags = ((_f) | Prefix), .u.gprefix = (_g) }
  2355. #define D2bv(_f) D((_f) | ByteOp), D(_f)
  2356. #define D2bvIP(_f, _i, _p) DIP((_f) | ByteOp, _i, _p), DIP(_f, _i, _p)
  2357. #define I2bv(_f, _e) I((_f) | ByteOp, _e), I(_f, _e)
  2358. #define D6ALU(_f) D2bv((_f) | DstMem | SrcReg | ModRM), \
  2359. D2bv(((_f) | DstReg | SrcMem | ModRM) & ~Lock), \
  2360. D2bv(((_f) & ~Lock) | DstAcc | SrcImm)
  2361. static struct opcode group7_rm1[] = {
  2362. DI(SrcNone | ModRM | Priv, monitor),
  2363. DI(SrcNone | ModRM | Priv, mwait),
  2364. N, N, N, N, N, N,
  2365. };
  2366. static struct opcode group7_rm3[] = {
  2367. DIP(SrcNone | ModRM | Prot | Priv, vmrun, check_svme_pa),
  2368. DI(SrcNone | ModRM | Prot | VendorSpecific, vmmcall),
  2369. DIP(SrcNone | ModRM | Prot | Priv, vmload, check_svme_pa),
  2370. DIP(SrcNone | ModRM | Prot | Priv, vmsave, check_svme_pa),
  2371. DIP(SrcNone | ModRM | Prot | Priv, stgi, check_svme),
  2372. DIP(SrcNone | ModRM | Prot | Priv, clgi, check_svme),
  2373. DIP(SrcNone | ModRM | Prot | Priv, skinit, check_svme),
  2374. DIP(SrcNone | ModRM | Prot | Priv, invlpga, check_svme),
  2375. };
  2376. static struct opcode group7_rm7[] = {
  2377. N,
  2378. DIP(SrcNone | ModRM, rdtscp, check_rdtsc),
  2379. N, N, N, N, N, N,
  2380. };
  2381. static struct opcode group1[] = {
  2382. X7(D(Lock)), N
  2383. };
  2384. static struct opcode group1A[] = {
  2385. D(DstMem | SrcNone | ModRM | Mov | Stack), N, N, N, N, N, N, N,
  2386. };
  2387. static struct opcode group3[] = {
  2388. D(DstMem | SrcImm | ModRM), D(DstMem | SrcImm | ModRM),
  2389. D(DstMem | SrcNone | ModRM | Lock), D(DstMem | SrcNone | ModRM | Lock),
  2390. X4(D(SrcMem | ModRM)),
  2391. };
  2392. static struct opcode group4[] = {
  2393. D(ByteOp | DstMem | SrcNone | ModRM | Lock), D(ByteOp | DstMem | SrcNone | ModRM | Lock),
  2394. N, N, N, N, N, N,
  2395. };
  2396. static struct opcode group5[] = {
  2397. D(DstMem | SrcNone | ModRM | Lock), D(DstMem | SrcNone | ModRM | Lock),
  2398. D(SrcMem | ModRM | Stack),
  2399. I(SrcMemFAddr | ModRM | ImplicitOps | Stack, em_call_far),
  2400. D(SrcMem | ModRM | Stack), D(SrcMemFAddr | ModRM | ImplicitOps),
  2401. D(SrcMem | ModRM | Stack), N,
  2402. };
  2403. static struct opcode group6[] = {
  2404. DI(ModRM | Prot, sldt),
  2405. DI(ModRM | Prot, str),
  2406. DI(ModRM | Prot | Priv, lldt),
  2407. DI(ModRM | Prot | Priv, ltr),
  2408. N, N, N, N,
  2409. };
  2410. static struct group_dual group7 = { {
  2411. DI(ModRM | Mov | DstMem | Priv, sgdt),
  2412. DI(ModRM | Mov | DstMem | Priv, sidt),
  2413. DI(ModRM | SrcMem | Priv, lgdt), DI(ModRM | SrcMem | Priv, lidt),
  2414. DI(SrcNone | ModRM | DstMem | Mov, smsw), N,
  2415. DI(SrcMem16 | ModRM | Mov | Priv, lmsw),
  2416. DI(SrcMem | ModRM | ByteOp | Priv | NoAccess, invlpg),
  2417. }, {
  2418. D(SrcNone | ModRM | Priv | VendorSpecific), EXT(0, group7_rm1),
  2419. N, EXT(0, group7_rm3),
  2420. DI(SrcNone | ModRM | DstMem | Mov, smsw), N,
  2421. DI(SrcMem16 | ModRM | Mov | Priv, lmsw), EXT(0, group7_rm7),
  2422. } };
  2423. static struct opcode group8[] = {
  2424. N, N, N, N,
  2425. D(DstMem | SrcImmByte | ModRM), D(DstMem | SrcImmByte | ModRM | Lock),
  2426. D(DstMem | SrcImmByte | ModRM | Lock), D(DstMem | SrcImmByte | ModRM | Lock),
  2427. };
  2428. static struct group_dual group9 = { {
  2429. N, D(DstMem64 | ModRM | Lock), N, N, N, N, N, N,
  2430. }, {
  2431. N, N, N, N, N, N, N, N,
  2432. } };
  2433. static struct opcode group11[] = {
  2434. I(DstMem | SrcImm | ModRM | Mov, em_mov), X7(D(Undefined)),
  2435. };
  2436. static struct gprefix pfx_0f_6f_0f_7f = {
  2437. N, N, N, I(Sse, em_movdqu),
  2438. };
  2439. static struct opcode opcode_table[256] = {
  2440. /* 0x00 - 0x07 */
  2441. D6ALU(Lock),
  2442. D(ImplicitOps | Stack | No64), D(ImplicitOps | Stack | No64),
  2443. /* 0x08 - 0x0F */
  2444. D6ALU(Lock),
  2445. D(ImplicitOps | Stack | No64), N,
  2446. /* 0x10 - 0x17 */
  2447. D6ALU(Lock),
  2448. D(ImplicitOps | Stack | No64), D(ImplicitOps | Stack | No64),
  2449. /* 0x18 - 0x1F */
  2450. D6ALU(Lock),
  2451. D(ImplicitOps | Stack | No64), D(ImplicitOps | Stack | No64),
  2452. /* 0x20 - 0x27 */
  2453. D6ALU(Lock), N, N,
  2454. /* 0x28 - 0x2F */
  2455. D6ALU(Lock), N, I(ByteOp | DstAcc | No64, em_das),
  2456. /* 0x30 - 0x37 */
  2457. D6ALU(Lock), N, N,
  2458. /* 0x38 - 0x3F */
  2459. D6ALU(0), N, N,
  2460. /* 0x40 - 0x4F */
  2461. X16(D(DstReg)),
  2462. /* 0x50 - 0x57 */
  2463. X8(I(SrcReg | Stack, em_push)),
  2464. /* 0x58 - 0x5F */
  2465. X8(D(DstReg | Stack)),
  2466. /* 0x60 - 0x67 */
  2467. D(ImplicitOps | Stack | No64), D(ImplicitOps | Stack | No64),
  2468. N, D(DstReg | SrcMem32 | ModRM | Mov) /* movsxd (x86/64) */ ,
  2469. N, N, N, N,
  2470. /* 0x68 - 0x6F */
  2471. I(SrcImm | Mov | Stack, em_push),
  2472. I(DstReg | SrcMem | ModRM | Src2Imm, em_imul_3op),
  2473. I(SrcImmByte | Mov | Stack, em_push),
  2474. I(DstReg | SrcMem | ModRM | Src2ImmByte, em_imul_3op),
  2475. D2bvIP(DstDI | Mov | String, ins, check_perm_in), /* insb, insw/insd */
  2476. D2bvIP(SrcSI | ImplicitOps | String, outs, check_perm_out), /* outsb, outsw/outsd */
  2477. /* 0x70 - 0x7F */
  2478. X16(D(SrcImmByte)),
  2479. /* 0x80 - 0x87 */
  2480. G(ByteOp | DstMem | SrcImm | ModRM | Group, group1),
  2481. G(DstMem | SrcImm | ModRM | Group, group1),
  2482. G(ByteOp | DstMem | SrcImm | ModRM | No64 | Group, group1),
  2483. G(DstMem | SrcImmByte | ModRM | Group, group1),
  2484. D2bv(DstMem | SrcReg | ModRM), D2bv(DstMem | SrcReg | ModRM | Lock),
  2485. /* 0x88 - 0x8F */
  2486. I2bv(DstMem | SrcReg | ModRM | Mov, em_mov),
  2487. I2bv(DstReg | SrcMem | ModRM | Mov, em_mov),
  2488. D(DstMem | SrcNone | ModRM | Mov), D(ModRM | SrcMem | NoAccess | DstReg),
  2489. D(ImplicitOps | SrcMem16 | ModRM), G(0, group1A),
  2490. /* 0x90 - 0x97 */
  2491. DI(SrcAcc | DstReg, pause), X7(D(SrcAcc | DstReg)),
  2492. /* 0x98 - 0x9F */
  2493. D(DstAcc | SrcNone), I(ImplicitOps | SrcAcc, em_cwd),
  2494. I(SrcImmFAddr | No64, em_call_far), N,
  2495. DI(ImplicitOps | Stack, pushf), DI(ImplicitOps | Stack, popf), N, N,
  2496. /* 0xA0 - 0xA7 */
  2497. I2bv(DstAcc | SrcMem | Mov | MemAbs, em_mov),
  2498. I2bv(DstMem | SrcAcc | Mov | MemAbs, em_mov),
  2499. I2bv(SrcSI | DstDI | Mov | String, em_mov),
  2500. D2bv(SrcSI | DstDI | String),
  2501. /* 0xA8 - 0xAF */
  2502. D2bv(DstAcc | SrcImm),
  2503. I2bv(SrcAcc | DstDI | Mov | String, em_mov),
  2504. I2bv(SrcSI | DstAcc | Mov | String, em_mov),
  2505. D2bv(SrcAcc | DstDI | String),
  2506. /* 0xB0 - 0xB7 */
  2507. X8(I(ByteOp | DstReg | SrcImm | Mov, em_mov)),
  2508. /* 0xB8 - 0xBF */
  2509. X8(I(DstReg | SrcImm | Mov, em_mov)),
  2510. /* 0xC0 - 0xC7 */
  2511. D2bv(DstMem | SrcImmByte | ModRM),
  2512. I(ImplicitOps | Stack | SrcImmU16, em_ret_near_imm),
  2513. D(ImplicitOps | Stack),
  2514. D(DstReg | SrcMemFAddr | ModRM | No64), D(DstReg | SrcMemFAddr | ModRM | No64),
  2515. G(ByteOp, group11), G(0, group11),
  2516. /* 0xC8 - 0xCF */
  2517. N, N, N, D(ImplicitOps | Stack),
  2518. D(ImplicitOps), DI(SrcImmByte, intn),
  2519. D(ImplicitOps | No64), DI(ImplicitOps, iret),
  2520. /* 0xD0 - 0xD7 */
  2521. D2bv(DstMem | SrcOne | ModRM), D2bv(DstMem | ModRM),
  2522. N, N, N, N,
  2523. /* 0xD8 - 0xDF */
  2524. N, N, N, N, N, N, N, N,
  2525. /* 0xE0 - 0xE7 */
  2526. X4(D(SrcImmByte)),
  2527. D2bvIP(SrcImmUByte | DstAcc, in, check_perm_in),
  2528. D2bvIP(SrcAcc | DstImmUByte, out, check_perm_out),
  2529. /* 0xE8 - 0xEF */
  2530. D(SrcImm | Stack), D(SrcImm | ImplicitOps),
  2531. D(SrcImmFAddr | No64), D(SrcImmByte | ImplicitOps),
  2532. D2bvIP(SrcNone | DstAcc, in, check_perm_in),
  2533. D2bvIP(SrcAcc | ImplicitOps, out, check_perm_out),
  2534. /* 0xF0 - 0xF7 */
  2535. N, DI(ImplicitOps, icebp), N, N,
  2536. DI(ImplicitOps | Priv, hlt), D(ImplicitOps),
  2537. G(ByteOp, group3), G(0, group3),
  2538. /* 0xF8 - 0xFF */
  2539. D(ImplicitOps), D(ImplicitOps), D(ImplicitOps), D(ImplicitOps),
  2540. D(ImplicitOps), D(ImplicitOps), G(0, group4), G(0, group5),
  2541. };
  2542. static struct opcode twobyte_table[256] = {
  2543. /* 0x00 - 0x0F */
  2544. G(0, group6), GD(0, &group7), N, N,
  2545. N, D(ImplicitOps | VendorSpecific), DI(ImplicitOps | Priv, clts), N,
  2546. DI(ImplicitOps | Priv, invd), DI(ImplicitOps | Priv, wbinvd), N, N,
  2547. N, D(ImplicitOps | ModRM), N, N,
  2548. /* 0x10 - 0x1F */
  2549. N, N, N, N, N, N, N, N, D(ImplicitOps | ModRM), N, N, N, N, N, N, N,
  2550. /* 0x20 - 0x2F */
  2551. DIP(ModRM | DstMem | Priv | Op3264, cr_read, check_cr_read),
  2552. DIP(ModRM | DstMem | Priv | Op3264, dr_read, check_dr_read),
  2553. DIP(ModRM | SrcMem | Priv | Op3264, cr_write, check_cr_write),
  2554. DIP(ModRM | SrcMem | Priv | Op3264, dr_write, check_dr_write),
  2555. N, N, N, N,
  2556. N, N, N, N, N, N, N, N,
  2557. /* 0x30 - 0x3F */
  2558. DI(ImplicitOps | Priv, wrmsr),
  2559. IIP(ImplicitOps, em_rdtsc, rdtsc, check_rdtsc),
  2560. DI(ImplicitOps | Priv, rdmsr),
  2561. DIP(ImplicitOps | Priv, rdpmc, check_rdpmc),
  2562. D(ImplicitOps | VendorSpecific), D(ImplicitOps | Priv | VendorSpecific),
  2563. N, N,
  2564. N, N, N, N, N, N, N, N,
  2565. /* 0x40 - 0x4F */
  2566. X16(D(DstReg | SrcMem | ModRM | Mov)),
  2567. /* 0x50 - 0x5F */
  2568. N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
  2569. /* 0x60 - 0x6F */
  2570. N, N, N, N,
  2571. N, N, N, N,
  2572. N, N, N, N,
  2573. N, N, N, GP(SrcMem | DstReg | ModRM | Mov, &pfx_0f_6f_0f_7f),
  2574. /* 0x70 - 0x7F */
  2575. N, N, N, N,
  2576. N, N, N, N,
  2577. N, N, N, N,
  2578. N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_6f_0f_7f),
  2579. /* 0x80 - 0x8F */
  2580. X16(D(SrcImm)),
  2581. /* 0x90 - 0x9F */
  2582. X16(D(ByteOp | DstMem | SrcNone | ModRM| Mov)),
  2583. /* 0xA0 - 0xA7 */
  2584. D(ImplicitOps | Stack), D(ImplicitOps | Stack),
  2585. DI(ImplicitOps, cpuid), D(DstMem | SrcReg | ModRM | BitOp),
  2586. D(DstMem | SrcReg | Src2ImmByte | ModRM),
  2587. D(DstMem | SrcReg | Src2CL | ModRM), N, N,
  2588. /* 0xA8 - 0xAF */
  2589. D(ImplicitOps | Stack), D(ImplicitOps | Stack),
  2590. DI(ImplicitOps, rsm), D(DstMem | SrcReg | ModRM | BitOp | Lock),
  2591. D(DstMem | SrcReg | Src2ImmByte | ModRM),
  2592. D(DstMem | SrcReg | Src2CL | ModRM),
  2593. D(ModRM), I(DstReg | SrcMem | ModRM, em_imul),
  2594. /* 0xB0 - 0xB7 */
  2595. D2bv(DstMem | SrcReg | ModRM | Lock),
  2596. D(DstReg | SrcMemFAddr | ModRM), D(DstMem | SrcReg | ModRM | BitOp | Lock),
  2597. D(DstReg | SrcMemFAddr | ModRM), D(DstReg | SrcMemFAddr | ModRM),
  2598. D(ByteOp | DstReg | SrcMem | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
  2599. /* 0xB8 - 0xBF */
  2600. N, N,
  2601. G(BitOp, group8), D(DstMem | SrcReg | ModRM | BitOp | Lock),
  2602. D(DstReg | SrcMem | ModRM), D(DstReg | SrcMem | ModRM),
  2603. D(ByteOp | DstReg | SrcMem | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
  2604. /* 0xC0 - 0xCF */
  2605. D2bv(DstMem | SrcReg | ModRM | Lock),
  2606. N, D(DstMem | SrcReg | ModRM | Mov),
  2607. N, N, N, GD(0, &group9),
  2608. N, N, N, N, N, N, N, N,
  2609. /* 0xD0 - 0xDF */
  2610. N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
  2611. /* 0xE0 - 0xEF */
  2612. N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
  2613. /* 0xF0 - 0xFF */
  2614. N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N
  2615. };
  2616. #undef D
  2617. #undef N
  2618. #undef G
  2619. #undef GD
  2620. #undef I
  2621. #undef GP
  2622. #undef EXT
  2623. #undef D2bv
  2624. #undef D2bvIP
  2625. #undef I2bv
  2626. #undef D6ALU
  2627. static unsigned imm_size(struct decode_cache *c)
  2628. {
  2629. unsigned size;
  2630. size = (c->d & ByteOp) ? 1 : c->op_bytes;
  2631. if (size == 8)
  2632. size = 4;
  2633. return size;
  2634. }
  2635. static int decode_imm(struct x86_emulate_ctxt *ctxt, struct operand *op,
  2636. unsigned size, bool sign_extension)
  2637. {
  2638. struct decode_cache *c = &ctxt->decode;
  2639. struct x86_emulate_ops *ops = ctxt->ops;
  2640. int rc = X86EMUL_CONTINUE;
  2641. op->type = OP_IMM;
  2642. op->bytes = size;
  2643. op->addr.mem.ea = c->eip;
  2644. /* NB. Immediates are sign-extended as necessary. */
  2645. switch (op->bytes) {
  2646. case 1:
  2647. op->val = insn_fetch(s8, 1, c->eip);
  2648. break;
  2649. case 2:
  2650. op->val = insn_fetch(s16, 2, c->eip);
  2651. break;
  2652. case 4:
  2653. op->val = insn_fetch(s32, 4, c->eip);
  2654. break;
  2655. }
  2656. if (!sign_extension) {
  2657. switch (op->bytes) {
  2658. case 1:
  2659. op->val &= 0xff;
  2660. break;
  2661. case 2:
  2662. op->val &= 0xffff;
  2663. break;
  2664. case 4:
  2665. op->val &= 0xffffffff;
  2666. break;
  2667. }
  2668. }
  2669. done:
  2670. return rc;
  2671. }
  2672. int
  2673. x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len)
  2674. {
  2675. struct x86_emulate_ops *ops = ctxt->ops;
  2676. struct decode_cache *c = &ctxt->decode;
  2677. int rc = X86EMUL_CONTINUE;
  2678. int mode = ctxt->mode;
  2679. int def_op_bytes, def_ad_bytes, dual, goffset, simd_prefix;
  2680. bool op_prefix = false;
  2681. struct opcode opcode, *g_mod012, *g_mod3;
  2682. struct operand memop = { .type = OP_NONE };
  2683. c->eip = ctxt->eip;
  2684. c->fetch.start = c->eip;
  2685. c->fetch.end = c->fetch.start + insn_len;
  2686. if (insn_len > 0)
  2687. memcpy(c->fetch.data, insn, insn_len);
  2688. ctxt->cs_base = seg_base(ctxt, ops, VCPU_SREG_CS);
  2689. switch (mode) {
  2690. case X86EMUL_MODE_REAL:
  2691. case X86EMUL_MODE_VM86:
  2692. case X86EMUL_MODE_PROT16:
  2693. def_op_bytes = def_ad_bytes = 2;
  2694. break;
  2695. case X86EMUL_MODE_PROT32:
  2696. def_op_bytes = def_ad_bytes = 4;
  2697. break;
  2698. #ifdef CONFIG_X86_64
  2699. case X86EMUL_MODE_PROT64:
  2700. def_op_bytes = 4;
  2701. def_ad_bytes = 8;
  2702. break;
  2703. #endif
  2704. default:
  2705. return -1;
  2706. }
  2707. c->op_bytes = def_op_bytes;
  2708. c->ad_bytes = def_ad_bytes;
  2709. /* Legacy prefixes. */
  2710. for (;;) {
  2711. switch (c->b = insn_fetch(u8, 1, c->eip)) {
  2712. case 0x66: /* operand-size override */
  2713. op_prefix = true;
  2714. /* switch between 2/4 bytes */
  2715. c->op_bytes = def_op_bytes ^ 6;
  2716. break;
  2717. case 0x67: /* address-size override */
  2718. if (mode == X86EMUL_MODE_PROT64)
  2719. /* switch between 4/8 bytes */
  2720. c->ad_bytes = def_ad_bytes ^ 12;
  2721. else
  2722. /* switch between 2/4 bytes */
  2723. c->ad_bytes = def_ad_bytes ^ 6;
  2724. break;
  2725. case 0x26: /* ES override */
  2726. case 0x2e: /* CS override */
  2727. case 0x36: /* SS override */
  2728. case 0x3e: /* DS override */
  2729. set_seg_override(c, (c->b >> 3) & 3);
  2730. break;
  2731. case 0x64: /* FS override */
  2732. case 0x65: /* GS override */
  2733. set_seg_override(c, c->b & 7);
  2734. break;
  2735. case 0x40 ... 0x4f: /* REX */
  2736. if (mode != X86EMUL_MODE_PROT64)
  2737. goto done_prefixes;
  2738. c->rex_prefix = c->b;
  2739. continue;
  2740. case 0xf0: /* LOCK */
  2741. c->lock_prefix = 1;
  2742. break;
  2743. case 0xf2: /* REPNE/REPNZ */
  2744. case 0xf3: /* REP/REPE/REPZ */
  2745. c->rep_prefix = c->b;
  2746. break;
  2747. default:
  2748. goto done_prefixes;
  2749. }
  2750. /* Any legacy prefix after a REX prefix nullifies its effect. */
  2751. c->rex_prefix = 0;
  2752. }
  2753. done_prefixes:
  2754. /* REX prefix. */
  2755. if (c->rex_prefix & 8)
  2756. c->op_bytes = 8; /* REX.W */
  2757. /* Opcode byte(s). */
  2758. opcode = opcode_table[c->b];
  2759. /* Two-byte opcode? */
  2760. if (c->b == 0x0f) {
  2761. c->twobyte = 1;
  2762. c->b = insn_fetch(u8, 1, c->eip);
  2763. opcode = twobyte_table[c->b];
  2764. }
  2765. c->d = opcode.flags;
  2766. if (c->d & Group) {
  2767. dual = c->d & GroupDual;
  2768. c->modrm = insn_fetch(u8, 1, c->eip);
  2769. --c->eip;
  2770. if (c->d & GroupDual) {
  2771. g_mod012 = opcode.u.gdual->mod012;
  2772. g_mod3 = opcode.u.gdual->mod3;
  2773. } else
  2774. g_mod012 = g_mod3 = opcode.u.group;
  2775. c->d &= ~(Group | GroupDual);
  2776. goffset = (c->modrm >> 3) & 7;
  2777. if ((c->modrm >> 6) == 3)
  2778. opcode = g_mod3[goffset];
  2779. else
  2780. opcode = g_mod012[goffset];
  2781. if (opcode.flags & RMExt) {
  2782. goffset = c->modrm & 7;
  2783. opcode = opcode.u.group[goffset];
  2784. }
  2785. c->d |= opcode.flags;
  2786. }
  2787. if (c->d & Prefix) {
  2788. if (c->rep_prefix && op_prefix)
  2789. return X86EMUL_UNHANDLEABLE;
  2790. simd_prefix = op_prefix ? 0x66 : c->rep_prefix;
  2791. switch (simd_prefix) {
  2792. case 0x00: opcode = opcode.u.gprefix->pfx_no; break;
  2793. case 0x66: opcode = opcode.u.gprefix->pfx_66; break;
  2794. case 0xf2: opcode = opcode.u.gprefix->pfx_f2; break;
  2795. case 0xf3: opcode = opcode.u.gprefix->pfx_f3; break;
  2796. }
  2797. c->d |= opcode.flags;
  2798. }
  2799. c->execute = opcode.u.execute;
  2800. c->check_perm = opcode.check_perm;
  2801. c->intercept = opcode.intercept;
  2802. /* Unrecognised? */
  2803. if (c->d == 0 || (c->d & Undefined))
  2804. return -1;
  2805. if (!(c->d & VendorSpecific) && ctxt->only_vendor_specific_insn)
  2806. return -1;
  2807. if (mode == X86EMUL_MODE_PROT64 && (c->d & Stack))
  2808. c->op_bytes = 8;
  2809. if (c->d & Op3264) {
  2810. if (mode == X86EMUL_MODE_PROT64)
  2811. c->op_bytes = 8;
  2812. else
  2813. c->op_bytes = 4;
  2814. }
  2815. if (c->d & Sse)
  2816. c->op_bytes = 16;
  2817. /* ModRM and SIB bytes. */
  2818. if (c->d & ModRM) {
  2819. rc = decode_modrm(ctxt, ops, &memop);
  2820. if (!c->has_seg_override)
  2821. set_seg_override(c, c->modrm_seg);
  2822. } else if (c->d & MemAbs)
  2823. rc = decode_abs(ctxt, ops, &memop);
  2824. if (rc != X86EMUL_CONTINUE)
  2825. goto done;
  2826. if (!c->has_seg_override)
  2827. set_seg_override(c, VCPU_SREG_DS);
  2828. memop.addr.mem.seg = seg_override(ctxt, ops, c);
  2829. if (memop.type == OP_MEM && c->ad_bytes != 8)
  2830. memop.addr.mem.ea = (u32)memop.addr.mem.ea;
  2831. if (memop.type == OP_MEM && c->rip_relative)
  2832. memop.addr.mem.ea += c->eip;
  2833. /*
  2834. * Decode and fetch the source operand: register, memory
  2835. * or immediate.
  2836. */
  2837. switch (c->d & SrcMask) {
  2838. case SrcNone:
  2839. break;
  2840. case SrcReg:
  2841. decode_register_operand(ctxt, &c->src, c, 0);
  2842. break;
  2843. case SrcMem16:
  2844. memop.bytes = 2;
  2845. goto srcmem_common;
  2846. case SrcMem32:
  2847. memop.bytes = 4;
  2848. goto srcmem_common;
  2849. case SrcMem:
  2850. memop.bytes = (c->d & ByteOp) ? 1 :
  2851. c->op_bytes;
  2852. srcmem_common:
  2853. c->src = memop;
  2854. break;
  2855. case SrcImmU16:
  2856. rc = decode_imm(ctxt, &c->src, 2, false);
  2857. break;
  2858. case SrcImm:
  2859. rc = decode_imm(ctxt, &c->src, imm_size(c), true);
  2860. break;
  2861. case SrcImmU:
  2862. rc = decode_imm(ctxt, &c->src, imm_size(c), false);
  2863. break;
  2864. case SrcImmByte:
  2865. rc = decode_imm(ctxt, &c->src, 1, true);
  2866. break;
  2867. case SrcImmUByte:
  2868. rc = decode_imm(ctxt, &c->src, 1, false);
  2869. break;
  2870. case SrcAcc:
  2871. c->src.type = OP_REG;
  2872. c->src.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
  2873. c->src.addr.reg = &c->regs[VCPU_REGS_RAX];
  2874. fetch_register_operand(&c->src);
  2875. break;
  2876. case SrcOne:
  2877. c->src.bytes = 1;
  2878. c->src.val = 1;
  2879. break;
  2880. case SrcSI:
  2881. c->src.type = OP_MEM;
  2882. c->src.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
  2883. c->src.addr.mem.ea =
  2884. register_address(c, c->regs[VCPU_REGS_RSI]);
  2885. c->src.addr.mem.seg = seg_override(ctxt, ops, c),
  2886. c->src.val = 0;
  2887. break;
  2888. case SrcImmFAddr:
  2889. c->src.type = OP_IMM;
  2890. c->src.addr.mem.ea = c->eip;
  2891. c->src.bytes = c->op_bytes + 2;
  2892. insn_fetch_arr(c->src.valptr, c->src.bytes, c->eip);
  2893. break;
  2894. case SrcMemFAddr:
  2895. memop.bytes = c->op_bytes + 2;
  2896. goto srcmem_common;
  2897. break;
  2898. }
  2899. if (rc != X86EMUL_CONTINUE)
  2900. goto done;
  2901. /*
  2902. * Decode and fetch the second source operand: register, memory
  2903. * or immediate.
  2904. */
  2905. switch (c->d & Src2Mask) {
  2906. case Src2None:
  2907. break;
  2908. case Src2CL:
  2909. c->src2.bytes = 1;
  2910. c->src2.val = c->regs[VCPU_REGS_RCX] & 0x8;
  2911. break;
  2912. case Src2ImmByte:
  2913. rc = decode_imm(ctxt, &c->src2, 1, true);
  2914. break;
  2915. case Src2One:
  2916. c->src2.bytes = 1;
  2917. c->src2.val = 1;
  2918. break;
  2919. case Src2Imm:
  2920. rc = decode_imm(ctxt, &c->src2, imm_size(c), true);
  2921. break;
  2922. }
  2923. if (rc != X86EMUL_CONTINUE)
  2924. goto done;
  2925. /* Decode and fetch the destination operand: register or memory. */
  2926. switch (c->d & DstMask) {
  2927. case DstReg:
  2928. decode_register_operand(ctxt, &c->dst, c,
  2929. c->twobyte && (c->b == 0xb6 || c->b == 0xb7));
  2930. break;
  2931. case DstImmUByte:
  2932. c->dst.type = OP_IMM;
  2933. c->dst.addr.mem.ea = c->eip;
  2934. c->dst.bytes = 1;
  2935. c->dst.val = insn_fetch(u8, 1, c->eip);
  2936. break;
  2937. case DstMem:
  2938. case DstMem64:
  2939. c->dst = memop;
  2940. if ((c->d & DstMask) == DstMem64)
  2941. c->dst.bytes = 8;
  2942. else
  2943. c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
  2944. if (c->d & BitOp)
  2945. fetch_bit_operand(c);
  2946. c->dst.orig_val = c->dst.val;
  2947. break;
  2948. case DstAcc:
  2949. c->dst.type = OP_REG;
  2950. c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
  2951. c->dst.addr.reg = &c->regs[VCPU_REGS_RAX];
  2952. fetch_register_operand(&c->dst);
  2953. c->dst.orig_val = c->dst.val;
  2954. break;
  2955. case DstDI:
  2956. c->dst.type = OP_MEM;
  2957. c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes;
  2958. c->dst.addr.mem.ea =
  2959. register_address(c, c->regs[VCPU_REGS_RDI]);
  2960. c->dst.addr.mem.seg = VCPU_SREG_ES;
  2961. c->dst.val = 0;
  2962. break;
  2963. case ImplicitOps:
  2964. /* Special instructions do their own operand decoding. */
  2965. default:
  2966. c->dst.type = OP_NONE; /* Disable writeback. */
  2967. return 0;
  2968. }
  2969. done:
  2970. return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
  2971. }
  2972. static bool string_insn_completed(struct x86_emulate_ctxt *ctxt)
  2973. {
  2974. struct decode_cache *c = &ctxt->decode;
  2975. /* The second termination condition only applies for REPE
  2976. * and REPNE. Test if the repeat string operation prefix is
  2977. * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the
  2978. * corresponding termination condition according to:
  2979. * - if REPE/REPZ and ZF = 0 then done
  2980. * - if REPNE/REPNZ and ZF = 1 then done
  2981. */
  2982. if (((c->b == 0xa6) || (c->b == 0xa7) ||
  2983. (c->b == 0xae) || (c->b == 0xaf))
  2984. && (((c->rep_prefix == REPE_PREFIX) &&
  2985. ((ctxt->eflags & EFLG_ZF) == 0))
  2986. || ((c->rep_prefix == REPNE_PREFIX) &&
  2987. ((ctxt->eflags & EFLG_ZF) == EFLG_ZF))))
  2988. return true;
  2989. return false;
  2990. }
  2991. int
  2992. x86_emulate_insn(struct x86_emulate_ctxt *ctxt)
  2993. {
  2994. struct x86_emulate_ops *ops = ctxt->ops;
  2995. u64 msr_data;
  2996. struct decode_cache *c = &ctxt->decode;
  2997. int rc = X86EMUL_CONTINUE;
  2998. int saved_dst_type = c->dst.type;
  2999. int irq; /* Used for int 3, int, and into */
  3000. ctxt->decode.mem_read.pos = 0;
  3001. if (ctxt->mode == X86EMUL_MODE_PROT64 && (c->d & No64)) {
  3002. rc = emulate_ud(ctxt);
  3003. goto done;
  3004. }
  3005. /* LOCK prefix is allowed only with some instructions */
  3006. if (c->lock_prefix && (!(c->d & Lock) || c->dst.type != OP_MEM)) {
  3007. rc = emulate_ud(ctxt);
  3008. goto done;
  3009. }
  3010. if ((c->d & SrcMask) == SrcMemFAddr && c->src.type != OP_MEM) {
  3011. rc = emulate_ud(ctxt);
  3012. goto done;
  3013. }
  3014. if ((c->d & Sse)
  3015. && ((ops->get_cr(0, ctxt->vcpu) & X86_CR0_EM)
  3016. || !(ops->get_cr(4, ctxt->vcpu) & X86_CR4_OSFXSR))) {
  3017. rc = emulate_ud(ctxt);
  3018. goto done;
  3019. }
  3020. if ((c->d & Sse) && (ops->get_cr(0, ctxt->vcpu) & X86_CR0_TS)) {
  3021. rc = emulate_nm(ctxt);
  3022. goto done;
  3023. }
  3024. if (unlikely(ctxt->guest_mode) && c->intercept) {
  3025. rc = emulator_check_intercept(ctxt, c->intercept,
  3026. X86_ICPT_PRE_EXCEPT);
  3027. if (rc != X86EMUL_CONTINUE)
  3028. goto done;
  3029. }
  3030. /* Privileged instruction can be executed only in CPL=0 */
  3031. if ((c->d & Priv) && ops->cpl(ctxt->vcpu)) {
  3032. rc = emulate_gp(ctxt, 0);
  3033. goto done;
  3034. }
  3035. /* Instruction can only be executed in protected mode */
  3036. if ((c->d & Prot) && !(ctxt->mode & X86EMUL_MODE_PROT)) {
  3037. rc = emulate_ud(ctxt);
  3038. goto done;
  3039. }
  3040. /* Do instruction specific permission checks */
  3041. if (c->check_perm) {
  3042. rc = c->check_perm(ctxt);
  3043. if (rc != X86EMUL_CONTINUE)
  3044. goto done;
  3045. }
  3046. if (unlikely(ctxt->guest_mode) && c->intercept) {
  3047. rc = emulator_check_intercept(ctxt, c->intercept,
  3048. X86_ICPT_POST_EXCEPT);
  3049. if (rc != X86EMUL_CONTINUE)
  3050. goto done;
  3051. }
  3052. if (c->rep_prefix && (c->d & String)) {
  3053. /* All REP prefixes have the same first termination condition */
  3054. if (address_mask(c, c->regs[VCPU_REGS_RCX]) == 0) {
  3055. ctxt->eip = c->eip;
  3056. goto done;
  3057. }
  3058. }
  3059. if ((c->src.type == OP_MEM) && !(c->d & NoAccess)) {
  3060. rc = segmented_read(ctxt, c->src.addr.mem,
  3061. c->src.valptr, c->src.bytes);
  3062. if (rc != X86EMUL_CONTINUE)
  3063. goto done;
  3064. c->src.orig_val64 = c->src.val64;
  3065. }
  3066. if (c->src2.type == OP_MEM) {
  3067. rc = segmented_read(ctxt, c->src2.addr.mem,
  3068. &c->src2.val, c->src2.bytes);
  3069. if (rc != X86EMUL_CONTINUE)
  3070. goto done;
  3071. }
  3072. if ((c->d & DstMask) == ImplicitOps)
  3073. goto special_insn;
  3074. if ((c->dst.type == OP_MEM) && !(c->d & Mov)) {
  3075. /* optimisation - avoid slow emulated read if Mov */
  3076. rc = segmented_read(ctxt, c->dst.addr.mem,
  3077. &c->dst.val, c->dst.bytes);
  3078. if (rc != X86EMUL_CONTINUE)
  3079. goto done;
  3080. }
  3081. c->dst.orig_val = c->dst.val;
  3082. special_insn:
  3083. if (unlikely(ctxt->guest_mode) && c->intercept) {
  3084. rc = emulator_check_intercept(ctxt, c->intercept,
  3085. X86_ICPT_POST_MEMACCESS);
  3086. if (rc != X86EMUL_CONTINUE)
  3087. goto done;
  3088. }
  3089. if (c->execute) {
  3090. rc = c->execute(ctxt);
  3091. if (rc != X86EMUL_CONTINUE)
  3092. goto done;
  3093. goto writeback;
  3094. }
  3095. if (c->twobyte)
  3096. goto twobyte_insn;
  3097. switch (c->b) {
  3098. case 0x00 ... 0x05:
  3099. add: /* add */
  3100. emulate_2op_SrcV("add", c->src, c->dst, ctxt->eflags);
  3101. break;
  3102. case 0x06: /* push es */
  3103. emulate_push_sreg(ctxt, ops, VCPU_SREG_ES);
  3104. break;
  3105. case 0x07: /* pop es */
  3106. rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_ES);
  3107. break;
  3108. case 0x08 ... 0x0d:
  3109. or: /* or */
  3110. emulate_2op_SrcV("or", c->src, c->dst, ctxt->eflags);
  3111. break;
  3112. case 0x0e: /* push cs */
  3113. emulate_push_sreg(ctxt, ops, VCPU_SREG_CS);
  3114. break;
  3115. case 0x10 ... 0x15:
  3116. adc: /* adc */
  3117. emulate_2op_SrcV("adc", c->src, c->dst, ctxt->eflags);
  3118. break;
  3119. case 0x16: /* push ss */
  3120. emulate_push_sreg(ctxt, ops, VCPU_SREG_SS);
  3121. break;
  3122. case 0x17: /* pop ss */
  3123. rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_SS);
  3124. break;
  3125. case 0x18 ... 0x1d:
  3126. sbb: /* sbb */
  3127. emulate_2op_SrcV("sbb", c->src, c->dst, ctxt->eflags);
  3128. break;
  3129. case 0x1e: /* push ds */
  3130. emulate_push_sreg(ctxt, ops, VCPU_SREG_DS);
  3131. break;
  3132. case 0x1f: /* pop ds */
  3133. rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_DS);
  3134. break;
  3135. case 0x20 ... 0x25:
  3136. and: /* and */
  3137. emulate_2op_SrcV("and", c->src, c->dst, ctxt->eflags);
  3138. break;
  3139. case 0x28 ... 0x2d:
  3140. sub: /* sub */
  3141. emulate_2op_SrcV("sub", c->src, c->dst, ctxt->eflags);
  3142. break;
  3143. case 0x30 ... 0x35:
  3144. xor: /* xor */
  3145. emulate_2op_SrcV("xor", c->src, c->dst, ctxt->eflags);
  3146. break;
  3147. case 0x38 ... 0x3d:
  3148. cmp: /* cmp */
  3149. emulate_2op_SrcV("cmp", c->src, c->dst, ctxt->eflags);
  3150. break;
  3151. case 0x40 ... 0x47: /* inc r16/r32 */
  3152. emulate_1op("inc", c->dst, ctxt->eflags);
  3153. break;
  3154. case 0x48 ... 0x4f: /* dec r16/r32 */
  3155. emulate_1op("dec", c->dst, ctxt->eflags);
  3156. break;
  3157. case 0x58 ... 0x5f: /* pop reg */
  3158. pop_instruction:
  3159. rc = emulate_pop(ctxt, ops, &c->dst.val, c->op_bytes);
  3160. break;
  3161. case 0x60: /* pusha */
  3162. rc = emulate_pusha(ctxt, ops);
  3163. break;
  3164. case 0x61: /* popa */
  3165. rc = emulate_popa(ctxt, ops);
  3166. break;
  3167. case 0x63: /* movsxd */
  3168. if (ctxt->mode != X86EMUL_MODE_PROT64)
  3169. goto cannot_emulate;
  3170. c->dst.val = (s32) c->src.val;
  3171. break;
  3172. case 0x6c: /* insb */
  3173. case 0x6d: /* insw/insd */
  3174. c->src.val = c->regs[VCPU_REGS_RDX];
  3175. goto do_io_in;
  3176. case 0x6e: /* outsb */
  3177. case 0x6f: /* outsw/outsd */
  3178. c->dst.val = c->regs[VCPU_REGS_RDX];
  3179. goto do_io_out;
  3180. break;
  3181. case 0x70 ... 0x7f: /* jcc (short) */
  3182. if (test_cc(c->b, ctxt->eflags))
  3183. jmp_rel(c, c->src.val);
  3184. break;
  3185. case 0x80 ... 0x83: /* Grp1 */
  3186. switch (c->modrm_reg) {
  3187. case 0:
  3188. goto add;
  3189. case 1:
  3190. goto or;
  3191. case 2:
  3192. goto adc;
  3193. case 3:
  3194. goto sbb;
  3195. case 4:
  3196. goto and;
  3197. case 5:
  3198. goto sub;
  3199. case 6:
  3200. goto xor;
  3201. case 7:
  3202. goto cmp;
  3203. }
  3204. break;
  3205. case 0x84 ... 0x85:
  3206. test:
  3207. emulate_2op_SrcV("test", c->src, c->dst, ctxt->eflags);
  3208. break;
  3209. case 0x86 ... 0x87: /* xchg */
  3210. xchg:
  3211. /* Write back the register source. */
  3212. c->src.val = c->dst.val;
  3213. write_register_operand(&c->src);
  3214. /*
  3215. * Write back the memory destination with implicit LOCK
  3216. * prefix.
  3217. */
  3218. c->dst.val = c->src.orig_val;
  3219. c->lock_prefix = 1;
  3220. break;
  3221. case 0x8c: /* mov r/m, sreg */
  3222. if (c->modrm_reg > VCPU_SREG_GS) {
  3223. rc = emulate_ud(ctxt);
  3224. goto done;
  3225. }
  3226. c->dst.val = ops->get_segment_selector(c->modrm_reg, ctxt->vcpu);
  3227. break;
  3228. case 0x8d: /* lea r16/r32, m */
  3229. c->dst.val = c->src.addr.mem.ea;
  3230. break;
  3231. case 0x8e: { /* mov seg, r/m16 */
  3232. uint16_t sel;
  3233. sel = c->src.val;
  3234. if (c->modrm_reg == VCPU_SREG_CS ||
  3235. c->modrm_reg > VCPU_SREG_GS) {
  3236. rc = emulate_ud(ctxt);
  3237. goto done;
  3238. }
  3239. if (c->modrm_reg == VCPU_SREG_SS)
  3240. ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
  3241. rc = load_segment_descriptor(ctxt, ops, sel, c->modrm_reg);
  3242. c->dst.type = OP_NONE; /* Disable writeback. */
  3243. break;
  3244. }
  3245. case 0x8f: /* pop (sole member of Grp1a) */
  3246. rc = emulate_grp1a(ctxt, ops);
  3247. break;
  3248. case 0x90 ... 0x97: /* nop / xchg reg, rax */
  3249. if (c->dst.addr.reg == &c->regs[VCPU_REGS_RAX])
  3250. break;
  3251. goto xchg;
  3252. case 0x98: /* cbw/cwde/cdqe */
  3253. switch (c->op_bytes) {
  3254. case 2: c->dst.val = (s8)c->dst.val; break;
  3255. case 4: c->dst.val = (s16)c->dst.val; break;
  3256. case 8: c->dst.val = (s32)c->dst.val; break;
  3257. }
  3258. break;
  3259. case 0x9c: /* pushf */
  3260. c->src.val = (unsigned long) ctxt->eflags;
  3261. emulate_push(ctxt, ops);
  3262. break;
  3263. case 0x9d: /* popf */
  3264. c->dst.type = OP_REG;
  3265. c->dst.addr.reg = &ctxt->eflags;
  3266. c->dst.bytes = c->op_bytes;
  3267. rc = emulate_popf(ctxt, ops, &c->dst.val, c->op_bytes);
  3268. break;
  3269. case 0xa6 ... 0xa7: /* cmps */
  3270. c->dst.type = OP_NONE; /* Disable writeback. */
  3271. goto cmp;
  3272. case 0xa8 ... 0xa9: /* test ax, imm */
  3273. goto test;
  3274. case 0xae ... 0xaf: /* scas */
  3275. goto cmp;
  3276. case 0xc0 ... 0xc1:
  3277. emulate_grp2(ctxt);
  3278. break;
  3279. case 0xc3: /* ret */
  3280. c->dst.type = OP_REG;
  3281. c->dst.addr.reg = &c->eip;
  3282. c->dst.bytes = c->op_bytes;
  3283. goto pop_instruction;
  3284. case 0xc4: /* les */
  3285. rc = emulate_load_segment(ctxt, ops, VCPU_SREG_ES);
  3286. break;
  3287. case 0xc5: /* lds */
  3288. rc = emulate_load_segment(ctxt, ops, VCPU_SREG_DS);
  3289. break;
  3290. case 0xcb: /* ret far */
  3291. rc = emulate_ret_far(ctxt, ops);
  3292. break;
  3293. case 0xcc: /* int3 */
  3294. irq = 3;
  3295. goto do_interrupt;
  3296. case 0xcd: /* int n */
  3297. irq = c->src.val;
  3298. do_interrupt:
  3299. rc = emulate_int(ctxt, ops, irq);
  3300. break;
  3301. case 0xce: /* into */
  3302. if (ctxt->eflags & EFLG_OF) {
  3303. irq = 4;
  3304. goto do_interrupt;
  3305. }
  3306. break;
  3307. case 0xcf: /* iret */
  3308. rc = emulate_iret(ctxt, ops);
  3309. break;
  3310. case 0xd0 ... 0xd1: /* Grp2 */
  3311. emulate_grp2(ctxt);
  3312. break;
  3313. case 0xd2 ... 0xd3: /* Grp2 */
  3314. c->src.val = c->regs[VCPU_REGS_RCX];
  3315. emulate_grp2(ctxt);
  3316. break;
  3317. case 0xe0 ... 0xe2: /* loop/loopz/loopnz */
  3318. register_address_increment(c, &c->regs[VCPU_REGS_RCX], -1);
  3319. if (address_mask(c, c->regs[VCPU_REGS_RCX]) != 0 &&
  3320. (c->b == 0xe2 || test_cc(c->b ^ 0x5, ctxt->eflags)))
  3321. jmp_rel(c, c->src.val);
  3322. break;
  3323. case 0xe3: /* jcxz/jecxz/jrcxz */
  3324. if (address_mask(c, c->regs[VCPU_REGS_RCX]) == 0)
  3325. jmp_rel(c, c->src.val);
  3326. break;
  3327. case 0xe4: /* inb */
  3328. case 0xe5: /* in */
  3329. goto do_io_in;
  3330. case 0xe6: /* outb */
  3331. case 0xe7: /* out */
  3332. goto do_io_out;
  3333. case 0xe8: /* call (near) */ {
  3334. long int rel = c->src.val;
  3335. c->src.val = (unsigned long) c->eip;
  3336. jmp_rel(c, rel);
  3337. emulate_push(ctxt, ops);
  3338. break;
  3339. }
  3340. case 0xe9: /* jmp rel */
  3341. goto jmp;
  3342. case 0xea: { /* jmp far */
  3343. unsigned short sel;
  3344. jump_far:
  3345. memcpy(&sel, c->src.valptr + c->op_bytes, 2);
  3346. if (load_segment_descriptor(ctxt, ops, sel, VCPU_SREG_CS))
  3347. goto done;
  3348. c->eip = 0;
  3349. memcpy(&c->eip, c->src.valptr, c->op_bytes);
  3350. break;
  3351. }
  3352. case 0xeb:
  3353. jmp: /* jmp rel short */
  3354. jmp_rel(c, c->src.val);
  3355. c->dst.type = OP_NONE; /* Disable writeback. */
  3356. break;
  3357. case 0xec: /* in al,dx */
  3358. case 0xed: /* in (e/r)ax,dx */
  3359. c->src.val = c->regs[VCPU_REGS_RDX];
  3360. do_io_in:
  3361. if (!pio_in_emulated(ctxt, ops, c->dst.bytes, c->src.val,
  3362. &c->dst.val))
  3363. goto done; /* IO is needed */
  3364. break;
  3365. case 0xee: /* out dx,al */
  3366. case 0xef: /* out dx,(e/r)ax */
  3367. c->dst.val = c->regs[VCPU_REGS_RDX];
  3368. do_io_out:
  3369. ops->pio_out_emulated(c->src.bytes, c->dst.val,
  3370. &c->src.val, 1, ctxt->vcpu);
  3371. c->dst.type = OP_NONE; /* Disable writeback. */
  3372. break;
  3373. case 0xf4: /* hlt */
  3374. ctxt->vcpu->arch.halt_request = 1;
  3375. break;
  3376. case 0xf5: /* cmc */
  3377. /* complement carry flag from eflags reg */
  3378. ctxt->eflags ^= EFLG_CF;
  3379. break;
  3380. case 0xf6 ... 0xf7: /* Grp3 */
  3381. rc = emulate_grp3(ctxt, ops);
  3382. break;
  3383. case 0xf8: /* clc */
  3384. ctxt->eflags &= ~EFLG_CF;
  3385. break;
  3386. case 0xf9: /* stc */
  3387. ctxt->eflags |= EFLG_CF;
  3388. break;
  3389. case 0xfa: /* cli */
  3390. if (emulator_bad_iopl(ctxt, ops)) {
  3391. rc = emulate_gp(ctxt, 0);
  3392. goto done;
  3393. } else
  3394. ctxt->eflags &= ~X86_EFLAGS_IF;
  3395. break;
  3396. case 0xfb: /* sti */
  3397. if (emulator_bad_iopl(ctxt, ops)) {
  3398. rc = emulate_gp(ctxt, 0);
  3399. goto done;
  3400. } else {
  3401. ctxt->interruptibility = KVM_X86_SHADOW_INT_STI;
  3402. ctxt->eflags |= X86_EFLAGS_IF;
  3403. }
  3404. break;
  3405. case 0xfc: /* cld */
  3406. ctxt->eflags &= ~EFLG_DF;
  3407. break;
  3408. case 0xfd: /* std */
  3409. ctxt->eflags |= EFLG_DF;
  3410. break;
  3411. case 0xfe: /* Grp4 */
  3412. grp45:
  3413. rc = emulate_grp45(ctxt, ops);
  3414. break;
  3415. case 0xff: /* Grp5 */
  3416. if (c->modrm_reg == 5)
  3417. goto jump_far;
  3418. goto grp45;
  3419. default:
  3420. goto cannot_emulate;
  3421. }
  3422. if (rc != X86EMUL_CONTINUE)
  3423. goto done;
  3424. writeback:
  3425. rc = writeback(ctxt, ops);
  3426. if (rc != X86EMUL_CONTINUE)
  3427. goto done;
  3428. /*
  3429. * restore dst type in case the decoding will be reused
  3430. * (happens for string instruction )
  3431. */
  3432. c->dst.type = saved_dst_type;
  3433. if ((c->d & SrcMask) == SrcSI)
  3434. string_addr_inc(ctxt, seg_override(ctxt, ops, c),
  3435. VCPU_REGS_RSI, &c->src);
  3436. if ((c->d & DstMask) == DstDI)
  3437. string_addr_inc(ctxt, VCPU_SREG_ES, VCPU_REGS_RDI,
  3438. &c->dst);
  3439. if (c->rep_prefix && (c->d & String)) {
  3440. struct read_cache *r = &ctxt->decode.io_read;
  3441. register_address_increment(c, &c->regs[VCPU_REGS_RCX], -1);
  3442. if (!string_insn_completed(ctxt)) {
  3443. /*
  3444. * Re-enter guest when pio read ahead buffer is empty
  3445. * or, if it is not used, after each 1024 iteration.
  3446. */
  3447. if ((r->end != 0 || c->regs[VCPU_REGS_RCX] & 0x3ff) &&
  3448. (r->end == 0 || r->end != r->pos)) {
  3449. /*
  3450. * Reset read cache. Usually happens before
  3451. * decode, but since instruction is restarted
  3452. * we have to do it here.
  3453. */
  3454. ctxt->decode.mem_read.end = 0;
  3455. return EMULATION_RESTART;
  3456. }
  3457. goto done; /* skip rip writeback */
  3458. }
  3459. }
  3460. ctxt->eip = c->eip;
  3461. done:
  3462. if (rc == X86EMUL_PROPAGATE_FAULT)
  3463. ctxt->have_exception = true;
  3464. if (rc == X86EMUL_INTERCEPTED)
  3465. return EMULATION_INTERCEPTED;
  3466. return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
  3467. twobyte_insn:
  3468. switch (c->b) {
  3469. case 0x01: /* lgdt, lidt, lmsw */
  3470. switch (c->modrm_reg) {
  3471. u16 size;
  3472. unsigned long address;
  3473. case 0: /* vmcall */
  3474. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  3475. goto cannot_emulate;
  3476. rc = kvm_fix_hypercall(ctxt->vcpu);
  3477. if (rc != X86EMUL_CONTINUE)
  3478. goto done;
  3479. /* Let the processor re-execute the fixed hypercall */
  3480. c->eip = ctxt->eip;
  3481. /* Disable writeback. */
  3482. c->dst.type = OP_NONE;
  3483. break;
  3484. case 2: /* lgdt */
  3485. rc = read_descriptor(ctxt, ops, c->src.addr.mem,
  3486. &size, &address, c->op_bytes);
  3487. if (rc != X86EMUL_CONTINUE)
  3488. goto done;
  3489. realmode_lgdt(ctxt->vcpu, size, address);
  3490. /* Disable writeback. */
  3491. c->dst.type = OP_NONE;
  3492. break;
  3493. case 3: /* lidt/vmmcall */
  3494. if (c->modrm_mod == 3) {
  3495. switch (c->modrm_rm) {
  3496. case 1:
  3497. rc = kvm_fix_hypercall(ctxt->vcpu);
  3498. break;
  3499. default:
  3500. goto cannot_emulate;
  3501. }
  3502. } else {
  3503. rc = read_descriptor(ctxt, ops, c->src.addr.mem,
  3504. &size, &address,
  3505. c->op_bytes);
  3506. if (rc != X86EMUL_CONTINUE)
  3507. goto done;
  3508. realmode_lidt(ctxt->vcpu, size, address);
  3509. }
  3510. /* Disable writeback. */
  3511. c->dst.type = OP_NONE;
  3512. break;
  3513. case 4: /* smsw */
  3514. c->dst.bytes = 2;
  3515. c->dst.val = ops->get_cr(0, ctxt->vcpu);
  3516. break;
  3517. case 6: /* lmsw */
  3518. ops->set_cr(0, (ops->get_cr(0, ctxt->vcpu) & ~0x0eul) |
  3519. (c->src.val & 0x0f), ctxt->vcpu);
  3520. c->dst.type = OP_NONE;
  3521. break;
  3522. case 5: /* not defined */
  3523. emulate_ud(ctxt);
  3524. rc = X86EMUL_PROPAGATE_FAULT;
  3525. goto done;
  3526. case 7: /* invlpg*/
  3527. rc = em_invlpg(ctxt);
  3528. break;
  3529. default:
  3530. goto cannot_emulate;
  3531. }
  3532. break;
  3533. case 0x05: /* syscall */
  3534. rc = emulate_syscall(ctxt, ops);
  3535. break;
  3536. case 0x06:
  3537. emulate_clts(ctxt->vcpu);
  3538. break;
  3539. case 0x09: /* wbinvd */
  3540. kvm_emulate_wbinvd(ctxt->vcpu);
  3541. break;
  3542. case 0x08: /* invd */
  3543. case 0x0d: /* GrpP (prefetch) */
  3544. case 0x18: /* Grp16 (prefetch/nop) */
  3545. break;
  3546. case 0x20: /* mov cr, reg */
  3547. c->dst.val = ops->get_cr(c->modrm_reg, ctxt->vcpu);
  3548. break;
  3549. case 0x21: /* mov from dr to reg */
  3550. ops->get_dr(c->modrm_reg, &c->dst.val, ctxt->vcpu);
  3551. break;
  3552. case 0x22: /* mov reg, cr */
  3553. if (ops->set_cr(c->modrm_reg, c->src.val, ctxt->vcpu)) {
  3554. emulate_gp(ctxt, 0);
  3555. rc = X86EMUL_PROPAGATE_FAULT;
  3556. goto done;
  3557. }
  3558. c->dst.type = OP_NONE;
  3559. break;
  3560. case 0x23: /* mov from reg to dr */
  3561. if (ops->set_dr(c->modrm_reg, c->src.val &
  3562. ((ctxt->mode == X86EMUL_MODE_PROT64) ?
  3563. ~0ULL : ~0U), ctxt->vcpu) < 0) {
  3564. /* #UD condition is already handled by the code above */
  3565. emulate_gp(ctxt, 0);
  3566. rc = X86EMUL_PROPAGATE_FAULT;
  3567. goto done;
  3568. }
  3569. c->dst.type = OP_NONE; /* no writeback */
  3570. break;
  3571. case 0x30:
  3572. /* wrmsr */
  3573. msr_data = (u32)c->regs[VCPU_REGS_RAX]
  3574. | ((u64)c->regs[VCPU_REGS_RDX] << 32);
  3575. if (ops->set_msr(ctxt->vcpu, c->regs[VCPU_REGS_RCX], msr_data)) {
  3576. emulate_gp(ctxt, 0);
  3577. rc = X86EMUL_PROPAGATE_FAULT;
  3578. goto done;
  3579. }
  3580. rc = X86EMUL_CONTINUE;
  3581. break;
  3582. case 0x32:
  3583. /* rdmsr */
  3584. if (ops->get_msr(ctxt->vcpu, c->regs[VCPU_REGS_RCX], &msr_data)) {
  3585. emulate_gp(ctxt, 0);
  3586. rc = X86EMUL_PROPAGATE_FAULT;
  3587. goto done;
  3588. } else {
  3589. c->regs[VCPU_REGS_RAX] = (u32)msr_data;
  3590. c->regs[VCPU_REGS_RDX] = msr_data >> 32;
  3591. }
  3592. rc = X86EMUL_CONTINUE;
  3593. break;
  3594. case 0x34: /* sysenter */
  3595. rc = emulate_sysenter(ctxt, ops);
  3596. break;
  3597. case 0x35: /* sysexit */
  3598. rc = emulate_sysexit(ctxt, ops);
  3599. break;
  3600. case 0x40 ... 0x4f: /* cmov */
  3601. c->dst.val = c->dst.orig_val = c->src.val;
  3602. if (!test_cc(c->b, ctxt->eflags))
  3603. c->dst.type = OP_NONE; /* no writeback */
  3604. break;
  3605. case 0x80 ... 0x8f: /* jnz rel, etc*/
  3606. if (test_cc(c->b, ctxt->eflags))
  3607. jmp_rel(c, c->src.val);
  3608. break;
  3609. case 0x90 ... 0x9f: /* setcc r/m8 */
  3610. c->dst.val = test_cc(c->b, ctxt->eflags);
  3611. break;
  3612. case 0xa0: /* push fs */
  3613. emulate_push_sreg(ctxt, ops, VCPU_SREG_FS);
  3614. break;
  3615. case 0xa1: /* pop fs */
  3616. rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_FS);
  3617. break;
  3618. case 0xa3:
  3619. bt: /* bt */
  3620. c->dst.type = OP_NONE;
  3621. /* only subword offset */
  3622. c->src.val &= (c->dst.bytes << 3) - 1;
  3623. emulate_2op_SrcV_nobyte("bt", c->src, c->dst, ctxt->eflags);
  3624. break;
  3625. case 0xa4: /* shld imm8, r, r/m */
  3626. case 0xa5: /* shld cl, r, r/m */
  3627. emulate_2op_cl("shld", c->src2, c->src, c->dst, ctxt->eflags);
  3628. break;
  3629. case 0xa8: /* push gs */
  3630. emulate_push_sreg(ctxt, ops, VCPU_SREG_GS);
  3631. break;
  3632. case 0xa9: /* pop gs */
  3633. rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_GS);
  3634. break;
  3635. case 0xab:
  3636. bts: /* bts */
  3637. emulate_2op_SrcV_nobyte("bts", c->src, c->dst, ctxt->eflags);
  3638. break;
  3639. case 0xac: /* shrd imm8, r, r/m */
  3640. case 0xad: /* shrd cl, r, r/m */
  3641. emulate_2op_cl("shrd", c->src2, c->src, c->dst, ctxt->eflags);
  3642. break;
  3643. case 0xae: /* clflush */
  3644. break;
  3645. case 0xb0 ... 0xb1: /* cmpxchg */
  3646. /*
  3647. * Save real source value, then compare EAX against
  3648. * destination.
  3649. */
  3650. c->src.orig_val = c->src.val;
  3651. c->src.val = c->regs[VCPU_REGS_RAX];
  3652. emulate_2op_SrcV("cmp", c->src, c->dst, ctxt->eflags);
  3653. if (ctxt->eflags & EFLG_ZF) {
  3654. /* Success: write back to memory. */
  3655. c->dst.val = c->src.orig_val;
  3656. } else {
  3657. /* Failure: write the value we saw to EAX. */
  3658. c->dst.type = OP_REG;
  3659. c->dst.addr.reg = (unsigned long *)&c->regs[VCPU_REGS_RAX];
  3660. }
  3661. break;
  3662. case 0xb2: /* lss */
  3663. rc = emulate_load_segment(ctxt, ops, VCPU_SREG_SS);
  3664. break;
  3665. case 0xb3:
  3666. btr: /* btr */
  3667. emulate_2op_SrcV_nobyte("btr", c->src, c->dst, ctxt->eflags);
  3668. break;
  3669. case 0xb4: /* lfs */
  3670. rc = emulate_load_segment(ctxt, ops, VCPU_SREG_FS);
  3671. break;
  3672. case 0xb5: /* lgs */
  3673. rc = emulate_load_segment(ctxt, ops, VCPU_SREG_GS);
  3674. break;
  3675. case 0xb6 ... 0xb7: /* movzx */
  3676. c->dst.bytes = c->op_bytes;
  3677. c->dst.val = (c->d & ByteOp) ? (u8) c->src.val
  3678. : (u16) c->src.val;
  3679. break;
  3680. case 0xba: /* Grp8 */
  3681. switch (c->modrm_reg & 3) {
  3682. case 0:
  3683. goto bt;
  3684. case 1:
  3685. goto bts;
  3686. case 2:
  3687. goto btr;
  3688. case 3:
  3689. goto btc;
  3690. }
  3691. break;
  3692. case 0xbb:
  3693. btc: /* btc */
  3694. emulate_2op_SrcV_nobyte("btc", c->src, c->dst, ctxt->eflags);
  3695. break;
  3696. case 0xbc: { /* bsf */
  3697. u8 zf;
  3698. __asm__ ("bsf %2, %0; setz %1"
  3699. : "=r"(c->dst.val), "=q"(zf)
  3700. : "r"(c->src.val));
  3701. ctxt->eflags &= ~X86_EFLAGS_ZF;
  3702. if (zf) {
  3703. ctxt->eflags |= X86_EFLAGS_ZF;
  3704. c->dst.type = OP_NONE; /* Disable writeback. */
  3705. }
  3706. break;
  3707. }
  3708. case 0xbd: { /* bsr */
  3709. u8 zf;
  3710. __asm__ ("bsr %2, %0; setz %1"
  3711. : "=r"(c->dst.val), "=q"(zf)
  3712. : "r"(c->src.val));
  3713. ctxt->eflags &= ~X86_EFLAGS_ZF;
  3714. if (zf) {
  3715. ctxt->eflags |= X86_EFLAGS_ZF;
  3716. c->dst.type = OP_NONE; /* Disable writeback. */
  3717. }
  3718. break;
  3719. }
  3720. case 0xbe ... 0xbf: /* movsx */
  3721. c->dst.bytes = c->op_bytes;
  3722. c->dst.val = (c->d & ByteOp) ? (s8) c->src.val :
  3723. (s16) c->src.val;
  3724. break;
  3725. case 0xc0 ... 0xc1: /* xadd */
  3726. emulate_2op_SrcV("add", c->src, c->dst, ctxt->eflags);
  3727. /* Write back the register source. */
  3728. c->src.val = c->dst.orig_val;
  3729. write_register_operand(&c->src);
  3730. break;
  3731. case 0xc3: /* movnti */
  3732. c->dst.bytes = c->op_bytes;
  3733. c->dst.val = (c->op_bytes == 4) ? (u32) c->src.val :
  3734. (u64) c->src.val;
  3735. break;
  3736. case 0xc7: /* Grp9 (cmpxchg8b) */
  3737. rc = emulate_grp9(ctxt, ops);
  3738. break;
  3739. default:
  3740. goto cannot_emulate;
  3741. }
  3742. if (rc != X86EMUL_CONTINUE)
  3743. goto done;
  3744. goto writeback;
  3745. cannot_emulate:
  3746. return EMULATION_FAILED;
  3747. }