svc_xprt.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289
  1. /*
  2. * linux/net/sunrpc/svc_xprt.c
  3. *
  4. * Author: Tom Tucker <tom@opengridcomputing.com>
  5. */
  6. #include <linux/sched.h>
  7. #include <linux/errno.h>
  8. #include <linux/freezer.h>
  9. #include <linux/kthread.h>
  10. #include <linux/slab.h>
  11. #include <net/sock.h>
  12. #include <linux/sunrpc/stats.h>
  13. #include <linux/sunrpc/svc_xprt.h>
  14. #include <linux/sunrpc/svcsock.h>
  15. #include <linux/sunrpc/xprt.h>
  16. #include <linux/module.h>
  17. #define RPCDBG_FACILITY RPCDBG_SVCXPRT
  18. static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
  19. static int svc_deferred_recv(struct svc_rqst *rqstp);
  20. static struct cache_deferred_req *svc_defer(struct cache_req *req);
  21. static void svc_age_temp_xprts(unsigned long closure);
  22. static void svc_delete_xprt(struct svc_xprt *xprt);
  23. /* apparently the "standard" is that clients close
  24. * idle connections after 5 minutes, servers after
  25. * 6 minutes
  26. * http://www.connectathon.org/talks96/nfstcp.pdf
  27. */
  28. static int svc_conn_age_period = 6*60;
  29. /* List of registered transport classes */
  30. static DEFINE_SPINLOCK(svc_xprt_class_lock);
  31. static LIST_HEAD(svc_xprt_class_list);
  32. /* SMP locking strategy:
  33. *
  34. * svc_pool->sp_lock protects most of the fields of that pool.
  35. * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
  36. * when both need to be taken (rare), svc_serv->sv_lock is first.
  37. * BKL protects svc_serv->sv_nrthread.
  38. * svc_sock->sk_lock protects the svc_sock->sk_deferred list
  39. * and the ->sk_info_authunix cache.
  40. *
  41. * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
  42. * enqueued multiply. During normal transport processing this bit
  43. * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
  44. * Providers should not manipulate this bit directly.
  45. *
  46. * Some flags can be set to certain values at any time
  47. * providing that certain rules are followed:
  48. *
  49. * XPT_CONN, XPT_DATA:
  50. * - Can be set or cleared at any time.
  51. * - After a set, svc_xprt_enqueue must be called to enqueue
  52. * the transport for processing.
  53. * - After a clear, the transport must be read/accepted.
  54. * If this succeeds, it must be set again.
  55. * XPT_CLOSE:
  56. * - Can set at any time. It is never cleared.
  57. * XPT_DEAD:
  58. * - Can only be set while XPT_BUSY is held which ensures
  59. * that no other thread will be using the transport or will
  60. * try to set XPT_DEAD.
  61. */
  62. int svc_reg_xprt_class(struct svc_xprt_class *xcl)
  63. {
  64. struct svc_xprt_class *cl;
  65. int res = -EEXIST;
  66. dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
  67. INIT_LIST_HEAD(&xcl->xcl_list);
  68. spin_lock(&svc_xprt_class_lock);
  69. /* Make sure there isn't already a class with the same name */
  70. list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
  71. if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
  72. goto out;
  73. }
  74. list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
  75. res = 0;
  76. out:
  77. spin_unlock(&svc_xprt_class_lock);
  78. return res;
  79. }
  80. EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
  81. void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
  82. {
  83. dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
  84. spin_lock(&svc_xprt_class_lock);
  85. list_del_init(&xcl->xcl_list);
  86. spin_unlock(&svc_xprt_class_lock);
  87. }
  88. EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
  89. /*
  90. * Format the transport list for printing
  91. */
  92. int svc_print_xprts(char *buf, int maxlen)
  93. {
  94. struct svc_xprt_class *xcl;
  95. char tmpstr[80];
  96. int len = 0;
  97. buf[0] = '\0';
  98. spin_lock(&svc_xprt_class_lock);
  99. list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
  100. int slen;
  101. sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
  102. slen = strlen(tmpstr);
  103. if (len + slen > maxlen)
  104. break;
  105. len += slen;
  106. strcat(buf, tmpstr);
  107. }
  108. spin_unlock(&svc_xprt_class_lock);
  109. return len;
  110. }
  111. static void svc_xprt_free(struct kref *kref)
  112. {
  113. struct svc_xprt *xprt =
  114. container_of(kref, struct svc_xprt, xpt_ref);
  115. struct module *owner = xprt->xpt_class->xcl_owner;
  116. if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
  117. svcauth_unix_info_release(xprt);
  118. put_net(xprt->xpt_net);
  119. /* See comment on corresponding get in xs_setup_bc_tcp(): */
  120. if (xprt->xpt_bc_xprt)
  121. xprt_put(xprt->xpt_bc_xprt);
  122. xprt->xpt_ops->xpo_free(xprt);
  123. module_put(owner);
  124. }
  125. void svc_xprt_put(struct svc_xprt *xprt)
  126. {
  127. kref_put(&xprt->xpt_ref, svc_xprt_free);
  128. }
  129. EXPORT_SYMBOL_GPL(svc_xprt_put);
  130. /*
  131. * Called by transport drivers to initialize the transport independent
  132. * portion of the transport instance.
  133. */
  134. void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
  135. struct svc_xprt *xprt, struct svc_serv *serv)
  136. {
  137. memset(xprt, 0, sizeof(*xprt));
  138. xprt->xpt_class = xcl;
  139. xprt->xpt_ops = xcl->xcl_ops;
  140. kref_init(&xprt->xpt_ref);
  141. xprt->xpt_server = serv;
  142. INIT_LIST_HEAD(&xprt->xpt_list);
  143. INIT_LIST_HEAD(&xprt->xpt_ready);
  144. INIT_LIST_HEAD(&xprt->xpt_deferred);
  145. INIT_LIST_HEAD(&xprt->xpt_users);
  146. mutex_init(&xprt->xpt_mutex);
  147. spin_lock_init(&xprt->xpt_lock);
  148. set_bit(XPT_BUSY, &xprt->xpt_flags);
  149. rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
  150. xprt->xpt_net = get_net(net);
  151. }
  152. EXPORT_SYMBOL_GPL(svc_xprt_init);
  153. static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
  154. struct svc_serv *serv,
  155. struct net *net,
  156. const int family,
  157. const unsigned short port,
  158. int flags)
  159. {
  160. struct sockaddr_in sin = {
  161. .sin_family = AF_INET,
  162. .sin_addr.s_addr = htonl(INADDR_ANY),
  163. .sin_port = htons(port),
  164. };
  165. #if IS_ENABLED(CONFIG_IPV6)
  166. struct sockaddr_in6 sin6 = {
  167. .sin6_family = AF_INET6,
  168. .sin6_addr = IN6ADDR_ANY_INIT,
  169. .sin6_port = htons(port),
  170. };
  171. #endif
  172. struct sockaddr *sap;
  173. size_t len;
  174. switch (family) {
  175. case PF_INET:
  176. sap = (struct sockaddr *)&sin;
  177. len = sizeof(sin);
  178. break;
  179. #if IS_ENABLED(CONFIG_IPV6)
  180. case PF_INET6:
  181. sap = (struct sockaddr *)&sin6;
  182. len = sizeof(sin6);
  183. break;
  184. #endif
  185. default:
  186. return ERR_PTR(-EAFNOSUPPORT);
  187. }
  188. return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
  189. }
  190. void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
  191. {
  192. clear_bit(XPT_TEMP, &new->xpt_flags);
  193. spin_lock_bh(&serv->sv_lock);
  194. list_add(&new->xpt_list, &serv->sv_permsocks);
  195. spin_unlock_bh(&serv->sv_lock);
  196. svc_xprt_received(new);
  197. }
  198. int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
  199. struct net *net, const int family,
  200. const unsigned short port, int flags)
  201. {
  202. struct svc_xprt_class *xcl;
  203. dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
  204. spin_lock(&svc_xprt_class_lock);
  205. list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
  206. struct svc_xprt *newxprt;
  207. unsigned short newport;
  208. if (strcmp(xprt_name, xcl->xcl_name))
  209. continue;
  210. if (!try_module_get(xcl->xcl_owner))
  211. goto err;
  212. spin_unlock(&svc_xprt_class_lock);
  213. newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
  214. if (IS_ERR(newxprt)) {
  215. module_put(xcl->xcl_owner);
  216. return PTR_ERR(newxprt);
  217. }
  218. svc_add_new_perm_xprt(serv, newxprt);
  219. newport = svc_xprt_local_port(newxprt);
  220. return newport;
  221. }
  222. err:
  223. spin_unlock(&svc_xprt_class_lock);
  224. dprintk("svc: transport %s not found\n", xprt_name);
  225. /* This errno is exposed to user space. Provide a reasonable
  226. * perror msg for a bad transport. */
  227. return -EPROTONOSUPPORT;
  228. }
  229. EXPORT_SYMBOL_GPL(svc_create_xprt);
  230. /*
  231. * Copy the local and remote xprt addresses to the rqstp structure
  232. */
  233. void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
  234. {
  235. memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
  236. rqstp->rq_addrlen = xprt->xpt_remotelen;
  237. /*
  238. * Destination address in request is needed for binding the
  239. * source address in RPC replies/callbacks later.
  240. */
  241. memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
  242. rqstp->rq_daddrlen = xprt->xpt_locallen;
  243. }
  244. EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
  245. /**
  246. * svc_print_addr - Format rq_addr field for printing
  247. * @rqstp: svc_rqst struct containing address to print
  248. * @buf: target buffer for formatted address
  249. * @len: length of target buffer
  250. *
  251. */
  252. char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
  253. {
  254. return __svc_print_addr(svc_addr(rqstp), buf, len);
  255. }
  256. EXPORT_SYMBOL_GPL(svc_print_addr);
  257. /*
  258. * Queue up an idle server thread. Must have pool->sp_lock held.
  259. * Note: this is really a stack rather than a queue, so that we only
  260. * use as many different threads as we need, and the rest don't pollute
  261. * the cache.
  262. */
  263. static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
  264. {
  265. list_add(&rqstp->rq_list, &pool->sp_threads);
  266. }
  267. /*
  268. * Dequeue an nfsd thread. Must have pool->sp_lock held.
  269. */
  270. static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
  271. {
  272. list_del(&rqstp->rq_list);
  273. }
  274. static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
  275. {
  276. if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
  277. return true;
  278. if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
  279. return xprt->xpt_ops->xpo_has_wspace(xprt);
  280. return false;
  281. }
  282. /*
  283. * Queue up a transport with data pending. If there are idle nfsd
  284. * processes, wake 'em up.
  285. *
  286. */
  287. void svc_xprt_enqueue(struct svc_xprt *xprt)
  288. {
  289. struct svc_pool *pool;
  290. struct svc_rqst *rqstp;
  291. int cpu;
  292. if (!svc_xprt_has_something_to_do(xprt))
  293. return;
  294. cpu = get_cpu();
  295. pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
  296. put_cpu();
  297. spin_lock_bh(&pool->sp_lock);
  298. if (!list_empty(&pool->sp_threads) &&
  299. !list_empty(&pool->sp_sockets))
  300. printk(KERN_ERR
  301. "svc_xprt_enqueue: "
  302. "threads and transports both waiting??\n");
  303. pool->sp_stats.packets++;
  304. /* Mark transport as busy. It will remain in this state until
  305. * the provider calls svc_xprt_received. We update XPT_BUSY
  306. * atomically because it also guards against trying to enqueue
  307. * the transport twice.
  308. */
  309. if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
  310. /* Don't enqueue transport while already enqueued */
  311. dprintk("svc: transport %p busy, not enqueued\n", xprt);
  312. goto out_unlock;
  313. }
  314. if (!list_empty(&pool->sp_threads)) {
  315. rqstp = list_entry(pool->sp_threads.next,
  316. struct svc_rqst,
  317. rq_list);
  318. dprintk("svc: transport %p served by daemon %p\n",
  319. xprt, rqstp);
  320. svc_thread_dequeue(pool, rqstp);
  321. if (rqstp->rq_xprt)
  322. printk(KERN_ERR
  323. "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
  324. rqstp, rqstp->rq_xprt);
  325. rqstp->rq_xprt = xprt;
  326. svc_xprt_get(xprt);
  327. pool->sp_stats.threads_woken++;
  328. wake_up(&rqstp->rq_wait);
  329. } else {
  330. dprintk("svc: transport %p put into queue\n", xprt);
  331. list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
  332. pool->sp_stats.sockets_queued++;
  333. }
  334. out_unlock:
  335. spin_unlock_bh(&pool->sp_lock);
  336. }
  337. EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
  338. /*
  339. * Dequeue the first transport. Must be called with the pool->sp_lock held.
  340. */
  341. static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
  342. {
  343. struct svc_xprt *xprt;
  344. if (list_empty(&pool->sp_sockets))
  345. return NULL;
  346. xprt = list_entry(pool->sp_sockets.next,
  347. struct svc_xprt, xpt_ready);
  348. list_del_init(&xprt->xpt_ready);
  349. dprintk("svc: transport %p dequeued, inuse=%d\n",
  350. xprt, atomic_read(&xprt->xpt_ref.refcount));
  351. return xprt;
  352. }
  353. /*
  354. * svc_xprt_received conditionally queues the transport for processing
  355. * by another thread. The caller must hold the XPT_BUSY bit and must
  356. * not thereafter touch transport data.
  357. *
  358. * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
  359. * insufficient) data.
  360. */
  361. void svc_xprt_received(struct svc_xprt *xprt)
  362. {
  363. BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
  364. /* As soon as we clear busy, the xprt could be closed and
  365. * 'put', so we need a reference to call svc_xprt_enqueue with:
  366. */
  367. svc_xprt_get(xprt);
  368. clear_bit(XPT_BUSY, &xprt->xpt_flags);
  369. svc_xprt_enqueue(xprt);
  370. svc_xprt_put(xprt);
  371. }
  372. EXPORT_SYMBOL_GPL(svc_xprt_received);
  373. /**
  374. * svc_reserve - change the space reserved for the reply to a request.
  375. * @rqstp: The request in question
  376. * @space: new max space to reserve
  377. *
  378. * Each request reserves some space on the output queue of the transport
  379. * to make sure the reply fits. This function reduces that reserved
  380. * space to be the amount of space used already, plus @space.
  381. *
  382. */
  383. void svc_reserve(struct svc_rqst *rqstp, int space)
  384. {
  385. space += rqstp->rq_res.head[0].iov_len;
  386. if (space < rqstp->rq_reserved) {
  387. struct svc_xprt *xprt = rqstp->rq_xprt;
  388. atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
  389. rqstp->rq_reserved = space;
  390. svc_xprt_enqueue(xprt);
  391. }
  392. }
  393. EXPORT_SYMBOL_GPL(svc_reserve);
  394. static void svc_xprt_release(struct svc_rqst *rqstp)
  395. {
  396. struct svc_xprt *xprt = rqstp->rq_xprt;
  397. rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
  398. kfree(rqstp->rq_deferred);
  399. rqstp->rq_deferred = NULL;
  400. svc_free_res_pages(rqstp);
  401. rqstp->rq_res.page_len = 0;
  402. rqstp->rq_res.page_base = 0;
  403. /* Reset response buffer and release
  404. * the reservation.
  405. * But first, check that enough space was reserved
  406. * for the reply, otherwise we have a bug!
  407. */
  408. if ((rqstp->rq_res.len) > rqstp->rq_reserved)
  409. printk(KERN_ERR "RPC request reserved %d but used %d\n",
  410. rqstp->rq_reserved,
  411. rqstp->rq_res.len);
  412. rqstp->rq_res.head[0].iov_len = 0;
  413. svc_reserve(rqstp, 0);
  414. rqstp->rq_xprt = NULL;
  415. svc_xprt_put(xprt);
  416. }
  417. /*
  418. * External function to wake up a server waiting for data
  419. * This really only makes sense for services like lockd
  420. * which have exactly one thread anyway.
  421. */
  422. void svc_wake_up(struct svc_serv *serv)
  423. {
  424. struct svc_rqst *rqstp;
  425. unsigned int i;
  426. struct svc_pool *pool;
  427. for (i = 0; i < serv->sv_nrpools; i++) {
  428. pool = &serv->sv_pools[i];
  429. spin_lock_bh(&pool->sp_lock);
  430. if (!list_empty(&pool->sp_threads)) {
  431. rqstp = list_entry(pool->sp_threads.next,
  432. struct svc_rqst,
  433. rq_list);
  434. dprintk("svc: daemon %p woken up.\n", rqstp);
  435. /*
  436. svc_thread_dequeue(pool, rqstp);
  437. rqstp->rq_xprt = NULL;
  438. */
  439. wake_up(&rqstp->rq_wait);
  440. }
  441. spin_unlock_bh(&pool->sp_lock);
  442. }
  443. }
  444. EXPORT_SYMBOL_GPL(svc_wake_up);
  445. int svc_port_is_privileged(struct sockaddr *sin)
  446. {
  447. switch (sin->sa_family) {
  448. case AF_INET:
  449. return ntohs(((struct sockaddr_in *)sin)->sin_port)
  450. < PROT_SOCK;
  451. case AF_INET6:
  452. return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
  453. < PROT_SOCK;
  454. default:
  455. return 0;
  456. }
  457. }
  458. /*
  459. * Make sure that we don't have too many active connections. If we have,
  460. * something must be dropped. It's not clear what will happen if we allow
  461. * "too many" connections, but when dealing with network-facing software,
  462. * we have to code defensively. Here we do that by imposing hard limits.
  463. *
  464. * There's no point in trying to do random drop here for DoS
  465. * prevention. The NFS clients does 1 reconnect in 15 seconds. An
  466. * attacker can easily beat that.
  467. *
  468. * The only somewhat efficient mechanism would be if drop old
  469. * connections from the same IP first. But right now we don't even
  470. * record the client IP in svc_sock.
  471. *
  472. * single-threaded services that expect a lot of clients will probably
  473. * need to set sv_maxconn to override the default value which is based
  474. * on the number of threads
  475. */
  476. static void svc_check_conn_limits(struct svc_serv *serv)
  477. {
  478. unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
  479. (serv->sv_nrthreads+3) * 20;
  480. if (serv->sv_tmpcnt > limit) {
  481. struct svc_xprt *xprt = NULL;
  482. spin_lock_bh(&serv->sv_lock);
  483. if (!list_empty(&serv->sv_tempsocks)) {
  484. /* Try to help the admin */
  485. net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
  486. serv->sv_name, serv->sv_maxconn ?
  487. "max number of connections" :
  488. "number of threads");
  489. /*
  490. * Always select the oldest connection. It's not fair,
  491. * but so is life
  492. */
  493. xprt = list_entry(serv->sv_tempsocks.prev,
  494. struct svc_xprt,
  495. xpt_list);
  496. set_bit(XPT_CLOSE, &xprt->xpt_flags);
  497. svc_xprt_get(xprt);
  498. }
  499. spin_unlock_bh(&serv->sv_lock);
  500. if (xprt) {
  501. svc_xprt_enqueue(xprt);
  502. svc_xprt_put(xprt);
  503. }
  504. }
  505. }
  506. /*
  507. * Receive the next request on any transport. This code is carefully
  508. * organised not to touch any cachelines in the shared svc_serv
  509. * structure, only cachelines in the local svc_pool.
  510. */
  511. int svc_recv(struct svc_rqst *rqstp, long timeout)
  512. {
  513. struct svc_xprt *xprt = NULL;
  514. struct svc_serv *serv = rqstp->rq_server;
  515. struct svc_pool *pool = rqstp->rq_pool;
  516. int len, i;
  517. int pages;
  518. struct xdr_buf *arg;
  519. DECLARE_WAITQUEUE(wait, current);
  520. long time_left;
  521. dprintk("svc: server %p waiting for data (to = %ld)\n",
  522. rqstp, timeout);
  523. if (rqstp->rq_xprt)
  524. printk(KERN_ERR
  525. "svc_recv: service %p, transport not NULL!\n",
  526. rqstp);
  527. if (waitqueue_active(&rqstp->rq_wait))
  528. printk(KERN_ERR
  529. "svc_recv: service %p, wait queue active!\n",
  530. rqstp);
  531. /* now allocate needed pages. If we get a failure, sleep briefly */
  532. pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
  533. BUG_ON(pages >= RPCSVC_MAXPAGES);
  534. for (i = 0; i < pages ; i++)
  535. while (rqstp->rq_pages[i] == NULL) {
  536. struct page *p = alloc_page(GFP_KERNEL);
  537. if (!p) {
  538. set_current_state(TASK_INTERRUPTIBLE);
  539. if (signalled() || kthread_should_stop()) {
  540. set_current_state(TASK_RUNNING);
  541. return -EINTR;
  542. }
  543. schedule_timeout(msecs_to_jiffies(500));
  544. }
  545. rqstp->rq_pages[i] = p;
  546. }
  547. rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
  548. /* Make arg->head point to first page and arg->pages point to rest */
  549. arg = &rqstp->rq_arg;
  550. arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
  551. arg->head[0].iov_len = PAGE_SIZE;
  552. arg->pages = rqstp->rq_pages + 1;
  553. arg->page_base = 0;
  554. /* save at least one page for response */
  555. arg->page_len = (pages-2)*PAGE_SIZE;
  556. arg->len = (pages-1)*PAGE_SIZE;
  557. arg->tail[0].iov_len = 0;
  558. try_to_freeze();
  559. cond_resched();
  560. if (signalled() || kthread_should_stop())
  561. return -EINTR;
  562. /* Normally we will wait up to 5 seconds for any required
  563. * cache information to be provided.
  564. */
  565. rqstp->rq_chandle.thread_wait = 5*HZ;
  566. spin_lock_bh(&pool->sp_lock);
  567. xprt = svc_xprt_dequeue(pool);
  568. if (xprt) {
  569. rqstp->rq_xprt = xprt;
  570. svc_xprt_get(xprt);
  571. /* As there is a shortage of threads and this request
  572. * had to be queued, don't allow the thread to wait so
  573. * long for cache updates.
  574. */
  575. rqstp->rq_chandle.thread_wait = 1*HZ;
  576. } else {
  577. /* No data pending. Go to sleep */
  578. svc_thread_enqueue(pool, rqstp);
  579. /*
  580. * We have to be able to interrupt this wait
  581. * to bring down the daemons ...
  582. */
  583. set_current_state(TASK_INTERRUPTIBLE);
  584. /*
  585. * checking kthread_should_stop() here allows us to avoid
  586. * locking and signalling when stopping kthreads that call
  587. * svc_recv. If the thread has already been woken up, then
  588. * we can exit here without sleeping. If not, then it
  589. * it'll be woken up quickly during the schedule_timeout
  590. */
  591. if (kthread_should_stop()) {
  592. set_current_state(TASK_RUNNING);
  593. spin_unlock_bh(&pool->sp_lock);
  594. return -EINTR;
  595. }
  596. add_wait_queue(&rqstp->rq_wait, &wait);
  597. spin_unlock_bh(&pool->sp_lock);
  598. time_left = schedule_timeout(timeout);
  599. try_to_freeze();
  600. spin_lock_bh(&pool->sp_lock);
  601. remove_wait_queue(&rqstp->rq_wait, &wait);
  602. if (!time_left)
  603. pool->sp_stats.threads_timedout++;
  604. xprt = rqstp->rq_xprt;
  605. if (!xprt) {
  606. svc_thread_dequeue(pool, rqstp);
  607. spin_unlock_bh(&pool->sp_lock);
  608. dprintk("svc: server %p, no data yet\n", rqstp);
  609. if (signalled() || kthread_should_stop())
  610. return -EINTR;
  611. else
  612. return -EAGAIN;
  613. }
  614. }
  615. spin_unlock_bh(&pool->sp_lock);
  616. len = 0;
  617. if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
  618. dprintk("svc_recv: found XPT_CLOSE\n");
  619. svc_delete_xprt(xprt);
  620. /* Leave XPT_BUSY set on the dead xprt: */
  621. goto out;
  622. }
  623. if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
  624. struct svc_xprt *newxpt;
  625. newxpt = xprt->xpt_ops->xpo_accept(xprt);
  626. if (newxpt) {
  627. /*
  628. * We know this module_get will succeed because the
  629. * listener holds a reference too
  630. */
  631. __module_get(newxpt->xpt_class->xcl_owner);
  632. svc_check_conn_limits(xprt->xpt_server);
  633. spin_lock_bh(&serv->sv_lock);
  634. set_bit(XPT_TEMP, &newxpt->xpt_flags);
  635. list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
  636. serv->sv_tmpcnt++;
  637. if (serv->sv_temptimer.function == NULL) {
  638. /* setup timer to age temp transports */
  639. setup_timer(&serv->sv_temptimer,
  640. svc_age_temp_xprts,
  641. (unsigned long)serv);
  642. mod_timer(&serv->sv_temptimer,
  643. jiffies + svc_conn_age_period * HZ);
  644. }
  645. spin_unlock_bh(&serv->sv_lock);
  646. svc_xprt_received(newxpt);
  647. }
  648. } else if (xprt->xpt_ops->xpo_has_wspace(xprt)) {
  649. dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
  650. rqstp, pool->sp_id, xprt,
  651. atomic_read(&xprt->xpt_ref.refcount));
  652. rqstp->rq_deferred = svc_deferred_dequeue(xprt);
  653. if (rqstp->rq_deferred)
  654. len = svc_deferred_recv(rqstp);
  655. else
  656. len = xprt->xpt_ops->xpo_recvfrom(rqstp);
  657. dprintk("svc: got len=%d\n", len);
  658. rqstp->rq_reserved = serv->sv_max_mesg;
  659. atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
  660. }
  661. svc_xprt_received(xprt);
  662. /* No data, incomplete (TCP) read, or accept() */
  663. if (len <= 0)
  664. goto out;
  665. clear_bit(XPT_OLD, &xprt->xpt_flags);
  666. rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
  667. rqstp->rq_chandle.defer = svc_defer;
  668. if (serv->sv_stats)
  669. serv->sv_stats->netcnt++;
  670. return len;
  671. out:
  672. rqstp->rq_res.len = 0;
  673. svc_xprt_release(rqstp);
  674. return -EAGAIN;
  675. }
  676. EXPORT_SYMBOL_GPL(svc_recv);
  677. /*
  678. * Drop request
  679. */
  680. void svc_drop(struct svc_rqst *rqstp)
  681. {
  682. dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
  683. svc_xprt_release(rqstp);
  684. }
  685. EXPORT_SYMBOL_GPL(svc_drop);
  686. /*
  687. * Return reply to client.
  688. */
  689. int svc_send(struct svc_rqst *rqstp)
  690. {
  691. struct svc_xprt *xprt;
  692. int len;
  693. struct xdr_buf *xb;
  694. xprt = rqstp->rq_xprt;
  695. if (!xprt)
  696. return -EFAULT;
  697. /* release the receive skb before sending the reply */
  698. rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
  699. /* calculate over-all length */
  700. xb = &rqstp->rq_res;
  701. xb->len = xb->head[0].iov_len +
  702. xb->page_len +
  703. xb->tail[0].iov_len;
  704. /* Grab mutex to serialize outgoing data. */
  705. mutex_lock(&xprt->xpt_mutex);
  706. if (test_bit(XPT_DEAD, &xprt->xpt_flags)
  707. || test_bit(XPT_CLOSE, &xprt->xpt_flags))
  708. len = -ENOTCONN;
  709. else
  710. len = xprt->xpt_ops->xpo_sendto(rqstp);
  711. mutex_unlock(&xprt->xpt_mutex);
  712. rpc_wake_up(&xprt->xpt_bc_pending);
  713. svc_xprt_release(rqstp);
  714. if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
  715. return 0;
  716. return len;
  717. }
  718. /*
  719. * Timer function to close old temporary transports, using
  720. * a mark-and-sweep algorithm.
  721. */
  722. static void svc_age_temp_xprts(unsigned long closure)
  723. {
  724. struct svc_serv *serv = (struct svc_serv *)closure;
  725. struct svc_xprt *xprt;
  726. struct list_head *le, *next;
  727. LIST_HEAD(to_be_aged);
  728. dprintk("svc_age_temp_xprts\n");
  729. if (!spin_trylock_bh(&serv->sv_lock)) {
  730. /* busy, try again 1 sec later */
  731. dprintk("svc_age_temp_xprts: busy\n");
  732. mod_timer(&serv->sv_temptimer, jiffies + HZ);
  733. return;
  734. }
  735. list_for_each_safe(le, next, &serv->sv_tempsocks) {
  736. xprt = list_entry(le, struct svc_xprt, xpt_list);
  737. /* First time through, just mark it OLD. Second time
  738. * through, close it. */
  739. if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
  740. continue;
  741. if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
  742. test_bit(XPT_BUSY, &xprt->xpt_flags))
  743. continue;
  744. svc_xprt_get(xprt);
  745. list_move(le, &to_be_aged);
  746. set_bit(XPT_CLOSE, &xprt->xpt_flags);
  747. set_bit(XPT_DETACHED, &xprt->xpt_flags);
  748. }
  749. spin_unlock_bh(&serv->sv_lock);
  750. while (!list_empty(&to_be_aged)) {
  751. le = to_be_aged.next;
  752. /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
  753. list_del_init(le);
  754. xprt = list_entry(le, struct svc_xprt, xpt_list);
  755. dprintk("queuing xprt %p for closing\n", xprt);
  756. /* a thread will dequeue and close it soon */
  757. svc_xprt_enqueue(xprt);
  758. svc_xprt_put(xprt);
  759. }
  760. mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
  761. }
  762. static void call_xpt_users(struct svc_xprt *xprt)
  763. {
  764. struct svc_xpt_user *u;
  765. spin_lock(&xprt->xpt_lock);
  766. while (!list_empty(&xprt->xpt_users)) {
  767. u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
  768. list_del(&u->list);
  769. u->callback(u);
  770. }
  771. spin_unlock(&xprt->xpt_lock);
  772. }
  773. /*
  774. * Remove a dead transport
  775. */
  776. static void svc_delete_xprt(struct svc_xprt *xprt)
  777. {
  778. struct svc_serv *serv = xprt->xpt_server;
  779. struct svc_deferred_req *dr;
  780. /* Only do this once */
  781. if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
  782. BUG();
  783. dprintk("svc: svc_delete_xprt(%p)\n", xprt);
  784. xprt->xpt_ops->xpo_detach(xprt);
  785. spin_lock_bh(&serv->sv_lock);
  786. if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
  787. list_del_init(&xprt->xpt_list);
  788. BUG_ON(!list_empty(&xprt->xpt_ready));
  789. if (test_bit(XPT_TEMP, &xprt->xpt_flags))
  790. serv->sv_tmpcnt--;
  791. spin_unlock_bh(&serv->sv_lock);
  792. while ((dr = svc_deferred_dequeue(xprt)) != NULL)
  793. kfree(dr);
  794. call_xpt_users(xprt);
  795. svc_xprt_put(xprt);
  796. }
  797. void svc_close_xprt(struct svc_xprt *xprt)
  798. {
  799. set_bit(XPT_CLOSE, &xprt->xpt_flags);
  800. if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
  801. /* someone else will have to effect the close */
  802. return;
  803. /*
  804. * We expect svc_close_xprt() to work even when no threads are
  805. * running (e.g., while configuring the server before starting
  806. * any threads), so if the transport isn't busy, we delete
  807. * it ourself:
  808. */
  809. svc_delete_xprt(xprt);
  810. }
  811. EXPORT_SYMBOL_GPL(svc_close_xprt);
  812. static void svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
  813. {
  814. struct svc_xprt *xprt;
  815. spin_lock(&serv->sv_lock);
  816. list_for_each_entry(xprt, xprt_list, xpt_list) {
  817. if (xprt->xpt_net != net)
  818. continue;
  819. set_bit(XPT_CLOSE, &xprt->xpt_flags);
  820. set_bit(XPT_BUSY, &xprt->xpt_flags);
  821. }
  822. spin_unlock(&serv->sv_lock);
  823. }
  824. static void svc_clear_pools(struct svc_serv *serv, struct net *net)
  825. {
  826. struct svc_pool *pool;
  827. struct svc_xprt *xprt;
  828. struct svc_xprt *tmp;
  829. int i;
  830. for (i = 0; i < serv->sv_nrpools; i++) {
  831. pool = &serv->sv_pools[i];
  832. spin_lock_bh(&pool->sp_lock);
  833. list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
  834. if (xprt->xpt_net != net)
  835. continue;
  836. list_del_init(&xprt->xpt_ready);
  837. }
  838. spin_unlock_bh(&pool->sp_lock);
  839. }
  840. }
  841. static void svc_clear_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
  842. {
  843. struct svc_xprt *xprt;
  844. struct svc_xprt *tmp;
  845. LIST_HEAD(victims);
  846. spin_lock(&serv->sv_lock);
  847. list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
  848. if (xprt->xpt_net != net)
  849. continue;
  850. list_move(&xprt->xpt_list, &victims);
  851. }
  852. spin_unlock(&serv->sv_lock);
  853. list_for_each_entry_safe(xprt, tmp, &victims, xpt_list)
  854. svc_delete_xprt(xprt);
  855. }
  856. void svc_close_net(struct svc_serv *serv, struct net *net)
  857. {
  858. svc_close_list(serv, &serv->sv_tempsocks, net);
  859. svc_close_list(serv, &serv->sv_permsocks, net);
  860. svc_clear_pools(serv, net);
  861. /*
  862. * At this point the sp_sockets lists will stay empty, since
  863. * svc_xprt_enqueue will not add new entries without taking the
  864. * sp_lock and checking XPT_BUSY.
  865. */
  866. svc_clear_list(serv, &serv->sv_tempsocks, net);
  867. svc_clear_list(serv, &serv->sv_permsocks, net);
  868. }
  869. /*
  870. * Handle defer and revisit of requests
  871. */
  872. static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
  873. {
  874. struct svc_deferred_req *dr =
  875. container_of(dreq, struct svc_deferred_req, handle);
  876. struct svc_xprt *xprt = dr->xprt;
  877. spin_lock(&xprt->xpt_lock);
  878. set_bit(XPT_DEFERRED, &xprt->xpt_flags);
  879. if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
  880. spin_unlock(&xprt->xpt_lock);
  881. dprintk("revisit canceled\n");
  882. svc_xprt_put(xprt);
  883. kfree(dr);
  884. return;
  885. }
  886. dprintk("revisit queued\n");
  887. dr->xprt = NULL;
  888. list_add(&dr->handle.recent, &xprt->xpt_deferred);
  889. spin_unlock(&xprt->xpt_lock);
  890. svc_xprt_enqueue(xprt);
  891. svc_xprt_put(xprt);
  892. }
  893. /*
  894. * Save the request off for later processing. The request buffer looks
  895. * like this:
  896. *
  897. * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
  898. *
  899. * This code can only handle requests that consist of an xprt-header
  900. * and rpc-header.
  901. */
  902. static struct cache_deferred_req *svc_defer(struct cache_req *req)
  903. {
  904. struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
  905. struct svc_deferred_req *dr;
  906. if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
  907. return NULL; /* if more than a page, give up FIXME */
  908. if (rqstp->rq_deferred) {
  909. dr = rqstp->rq_deferred;
  910. rqstp->rq_deferred = NULL;
  911. } else {
  912. size_t skip;
  913. size_t size;
  914. /* FIXME maybe discard if size too large */
  915. size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
  916. dr = kmalloc(size, GFP_KERNEL);
  917. if (dr == NULL)
  918. return NULL;
  919. dr->handle.owner = rqstp->rq_server;
  920. dr->prot = rqstp->rq_prot;
  921. memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
  922. dr->addrlen = rqstp->rq_addrlen;
  923. dr->daddr = rqstp->rq_daddr;
  924. dr->argslen = rqstp->rq_arg.len >> 2;
  925. dr->xprt_hlen = rqstp->rq_xprt_hlen;
  926. /* back up head to the start of the buffer and copy */
  927. skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
  928. memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
  929. dr->argslen << 2);
  930. }
  931. svc_xprt_get(rqstp->rq_xprt);
  932. dr->xprt = rqstp->rq_xprt;
  933. rqstp->rq_dropme = true;
  934. dr->handle.revisit = svc_revisit;
  935. return &dr->handle;
  936. }
  937. /*
  938. * recv data from a deferred request into an active one
  939. */
  940. static int svc_deferred_recv(struct svc_rqst *rqstp)
  941. {
  942. struct svc_deferred_req *dr = rqstp->rq_deferred;
  943. /* setup iov_base past transport header */
  944. rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
  945. /* The iov_len does not include the transport header bytes */
  946. rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
  947. rqstp->rq_arg.page_len = 0;
  948. /* The rq_arg.len includes the transport header bytes */
  949. rqstp->rq_arg.len = dr->argslen<<2;
  950. rqstp->rq_prot = dr->prot;
  951. memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
  952. rqstp->rq_addrlen = dr->addrlen;
  953. /* Save off transport header len in case we get deferred again */
  954. rqstp->rq_xprt_hlen = dr->xprt_hlen;
  955. rqstp->rq_daddr = dr->daddr;
  956. rqstp->rq_respages = rqstp->rq_pages;
  957. return (dr->argslen<<2) - dr->xprt_hlen;
  958. }
  959. static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
  960. {
  961. struct svc_deferred_req *dr = NULL;
  962. if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
  963. return NULL;
  964. spin_lock(&xprt->xpt_lock);
  965. if (!list_empty(&xprt->xpt_deferred)) {
  966. dr = list_entry(xprt->xpt_deferred.next,
  967. struct svc_deferred_req,
  968. handle.recent);
  969. list_del_init(&dr->handle.recent);
  970. } else
  971. clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
  972. spin_unlock(&xprt->xpt_lock);
  973. return dr;
  974. }
  975. /**
  976. * svc_find_xprt - find an RPC transport instance
  977. * @serv: pointer to svc_serv to search
  978. * @xcl_name: C string containing transport's class name
  979. * @net: owner net pointer
  980. * @af: Address family of transport's local address
  981. * @port: transport's IP port number
  982. *
  983. * Return the transport instance pointer for the endpoint accepting
  984. * connections/peer traffic from the specified transport class,
  985. * address family and port.
  986. *
  987. * Specifying 0 for the address family or port is effectively a
  988. * wild-card, and will result in matching the first transport in the
  989. * service's list that has a matching class name.
  990. */
  991. struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
  992. struct net *net, const sa_family_t af,
  993. const unsigned short port)
  994. {
  995. struct svc_xprt *xprt;
  996. struct svc_xprt *found = NULL;
  997. /* Sanity check the args */
  998. if (serv == NULL || xcl_name == NULL)
  999. return found;
  1000. spin_lock_bh(&serv->sv_lock);
  1001. list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
  1002. if (xprt->xpt_net != net)
  1003. continue;
  1004. if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
  1005. continue;
  1006. if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
  1007. continue;
  1008. if (port != 0 && port != svc_xprt_local_port(xprt))
  1009. continue;
  1010. found = xprt;
  1011. svc_xprt_get(xprt);
  1012. break;
  1013. }
  1014. spin_unlock_bh(&serv->sv_lock);
  1015. return found;
  1016. }
  1017. EXPORT_SYMBOL_GPL(svc_find_xprt);
  1018. static int svc_one_xprt_name(const struct svc_xprt *xprt,
  1019. char *pos, int remaining)
  1020. {
  1021. int len;
  1022. len = snprintf(pos, remaining, "%s %u\n",
  1023. xprt->xpt_class->xcl_name,
  1024. svc_xprt_local_port(xprt));
  1025. if (len >= remaining)
  1026. return -ENAMETOOLONG;
  1027. return len;
  1028. }
  1029. /**
  1030. * svc_xprt_names - format a buffer with a list of transport names
  1031. * @serv: pointer to an RPC service
  1032. * @buf: pointer to a buffer to be filled in
  1033. * @buflen: length of buffer to be filled in
  1034. *
  1035. * Fills in @buf with a string containing a list of transport names,
  1036. * each name terminated with '\n'.
  1037. *
  1038. * Returns positive length of the filled-in string on success; otherwise
  1039. * a negative errno value is returned if an error occurs.
  1040. */
  1041. int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
  1042. {
  1043. struct svc_xprt *xprt;
  1044. int len, totlen;
  1045. char *pos;
  1046. /* Sanity check args */
  1047. if (!serv)
  1048. return 0;
  1049. spin_lock_bh(&serv->sv_lock);
  1050. pos = buf;
  1051. totlen = 0;
  1052. list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
  1053. len = svc_one_xprt_name(xprt, pos, buflen - totlen);
  1054. if (len < 0) {
  1055. *buf = '\0';
  1056. totlen = len;
  1057. }
  1058. if (len <= 0)
  1059. break;
  1060. pos += len;
  1061. totlen += len;
  1062. }
  1063. spin_unlock_bh(&serv->sv_lock);
  1064. return totlen;
  1065. }
  1066. EXPORT_SYMBOL_GPL(svc_xprt_names);
  1067. /*----------------------------------------------------------------------------*/
  1068. static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
  1069. {
  1070. unsigned int pidx = (unsigned int)*pos;
  1071. struct svc_serv *serv = m->private;
  1072. dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
  1073. if (!pidx)
  1074. return SEQ_START_TOKEN;
  1075. return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
  1076. }
  1077. static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
  1078. {
  1079. struct svc_pool *pool = p;
  1080. struct svc_serv *serv = m->private;
  1081. dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
  1082. if (p == SEQ_START_TOKEN) {
  1083. pool = &serv->sv_pools[0];
  1084. } else {
  1085. unsigned int pidx = (pool - &serv->sv_pools[0]);
  1086. if (pidx < serv->sv_nrpools-1)
  1087. pool = &serv->sv_pools[pidx+1];
  1088. else
  1089. pool = NULL;
  1090. }
  1091. ++*pos;
  1092. return pool;
  1093. }
  1094. static void svc_pool_stats_stop(struct seq_file *m, void *p)
  1095. {
  1096. }
  1097. static int svc_pool_stats_show(struct seq_file *m, void *p)
  1098. {
  1099. struct svc_pool *pool = p;
  1100. if (p == SEQ_START_TOKEN) {
  1101. seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
  1102. return 0;
  1103. }
  1104. seq_printf(m, "%u %lu %lu %lu %lu\n",
  1105. pool->sp_id,
  1106. pool->sp_stats.packets,
  1107. pool->sp_stats.sockets_queued,
  1108. pool->sp_stats.threads_woken,
  1109. pool->sp_stats.threads_timedout);
  1110. return 0;
  1111. }
  1112. static const struct seq_operations svc_pool_stats_seq_ops = {
  1113. .start = svc_pool_stats_start,
  1114. .next = svc_pool_stats_next,
  1115. .stop = svc_pool_stats_stop,
  1116. .show = svc_pool_stats_show,
  1117. };
  1118. int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
  1119. {
  1120. int err;
  1121. err = seq_open(file, &svc_pool_stats_seq_ops);
  1122. if (!err)
  1123. ((struct seq_file *) file->private_data)->private = serv;
  1124. return err;
  1125. }
  1126. EXPORT_SYMBOL(svc_pool_stats_open);
  1127. /*----------------------------------------------------------------------------*/