rt2800pci.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268
  1. /*
  2. Copyright (C) 2009 Ivo van Doorn <IvDoorn@gmail.com>
  3. Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
  4. Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
  5. Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
  6. Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
  7. Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
  8. Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
  9. Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
  10. <http://rt2x00.serialmonkey.com>
  11. This program is free software; you can redistribute it and/or modify
  12. it under the terms of the GNU General Public License as published by
  13. the Free Software Foundation; either version 2 of the License, or
  14. (at your option) any later version.
  15. This program is distributed in the hope that it will be useful,
  16. but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. GNU General Public License for more details.
  19. You should have received a copy of the GNU General Public License
  20. along with this program; if not, write to the
  21. Free Software Foundation, Inc.,
  22. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  23. */
  24. /*
  25. Module: rt2800pci
  26. Abstract: rt2800pci device specific routines.
  27. Supported chipsets: RT2800E & RT2800ED.
  28. */
  29. #include <linux/crc-ccitt.h>
  30. #include <linux/delay.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/init.h>
  33. #include <linux/kernel.h>
  34. #include <linux/module.h>
  35. #include <linux/pci.h>
  36. #include <linux/platform_device.h>
  37. #include <linux/eeprom_93cx6.h>
  38. #include "rt2x00.h"
  39. #include "rt2x00pci.h"
  40. #include "rt2x00soc.h"
  41. #include "rt2800lib.h"
  42. #include "rt2800.h"
  43. #include "rt2800pci.h"
  44. /*
  45. * Allow hardware encryption to be disabled.
  46. */
  47. static int modparam_nohwcrypt = 0;
  48. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  49. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  50. static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
  51. {
  52. unsigned int i;
  53. u32 reg;
  54. /*
  55. * SOC devices don't support MCU requests.
  56. */
  57. if (rt2x00_is_soc(rt2x00dev))
  58. return;
  59. for (i = 0; i < 200; i++) {
  60. rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
  61. if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
  62. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
  63. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
  64. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
  65. break;
  66. udelay(REGISTER_BUSY_DELAY);
  67. }
  68. if (i == 200)
  69. ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
  70. rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
  71. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
  72. }
  73. #ifdef CONFIG_RT2800PCI_SOC
  74. static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  75. {
  76. u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
  77. memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
  78. }
  79. #else
  80. static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  81. {
  82. }
  83. #endif /* CONFIG_RT2800PCI_SOC */
  84. #ifdef CONFIG_RT2800PCI_PCI
  85. static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  86. {
  87. struct rt2x00_dev *rt2x00dev = eeprom->data;
  88. u32 reg;
  89. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  90. eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
  91. eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
  92. eeprom->reg_data_clock =
  93. !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
  94. eeprom->reg_chip_select =
  95. !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
  96. }
  97. static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  98. {
  99. struct rt2x00_dev *rt2x00dev = eeprom->data;
  100. u32 reg = 0;
  101. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
  102. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
  103. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
  104. !!eeprom->reg_data_clock);
  105. rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
  106. !!eeprom->reg_chip_select);
  107. rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
  108. }
  109. static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  110. {
  111. struct eeprom_93cx6 eeprom;
  112. u32 reg;
  113. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  114. eeprom.data = rt2x00dev;
  115. eeprom.register_read = rt2800pci_eepromregister_read;
  116. eeprom.register_write = rt2800pci_eepromregister_write;
  117. switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
  118. {
  119. case 0:
  120. eeprom.width = PCI_EEPROM_WIDTH_93C46;
  121. break;
  122. case 1:
  123. eeprom.width = PCI_EEPROM_WIDTH_93C66;
  124. break;
  125. default:
  126. eeprom.width = PCI_EEPROM_WIDTH_93C86;
  127. break;
  128. }
  129. eeprom.reg_data_in = 0;
  130. eeprom.reg_data_out = 0;
  131. eeprom.reg_data_clock = 0;
  132. eeprom.reg_chip_select = 0;
  133. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  134. EEPROM_SIZE / sizeof(u16));
  135. }
  136. static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  137. {
  138. return rt2800_efuse_detect(rt2x00dev);
  139. }
  140. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  141. {
  142. rt2800_read_eeprom_efuse(rt2x00dev);
  143. }
  144. #else
  145. static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  146. {
  147. }
  148. static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  149. {
  150. return 0;
  151. }
  152. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  153. {
  154. }
  155. #endif /* CONFIG_RT2800PCI_PCI */
  156. /*
  157. * Firmware functions
  158. */
  159. static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
  160. {
  161. return FIRMWARE_RT2860;
  162. }
  163. static int rt2800pci_check_firmware(struct rt2x00_dev *rt2x00dev,
  164. const u8 *data, const size_t len)
  165. {
  166. u16 fw_crc;
  167. u16 crc;
  168. /*
  169. * Only support 8kb firmware files.
  170. */
  171. if (len != 8192)
  172. return FW_BAD_LENGTH;
  173. /*
  174. * The last 2 bytes in the firmware array are the crc checksum itself,
  175. * this means that we should never pass those 2 bytes to the crc
  176. * algorithm.
  177. */
  178. fw_crc = (data[len - 2] << 8 | data[len - 1]);
  179. /*
  180. * Use the crc ccitt algorithm.
  181. * This will return the same value as the legacy driver which
  182. * used bit ordering reversion on the both the firmware bytes
  183. * before input input as well as on the final output.
  184. * Obviously using crc ccitt directly is much more efficient.
  185. */
  186. crc = crc_ccitt(~0, data, len - 2);
  187. /*
  188. * There is a small difference between the crc-itu-t + bitrev and
  189. * the crc-ccitt crc calculation. In the latter method the 2 bytes
  190. * will be swapped, use swab16 to convert the crc to the correct
  191. * value.
  192. */
  193. crc = swab16(crc);
  194. return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
  195. }
  196. static int rt2800pci_load_firmware(struct rt2x00_dev *rt2x00dev,
  197. const u8 *data, const size_t len)
  198. {
  199. unsigned int i;
  200. u32 reg;
  201. /*
  202. * Wait for stable hardware.
  203. */
  204. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  205. rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
  206. if (reg && reg != ~0)
  207. break;
  208. msleep(1);
  209. }
  210. if (i == REGISTER_BUSY_COUNT) {
  211. ERROR(rt2x00dev, "Unstable hardware.\n");
  212. return -EBUSY;
  213. }
  214. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
  215. rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
  216. /*
  217. * Disable DMA, will be reenabled later when enabling
  218. * the radio.
  219. */
  220. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  221. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  222. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  223. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  224. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  225. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  226. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  227. /*
  228. * enable Host program ram write selection
  229. */
  230. reg = 0;
  231. rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
  232. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
  233. /*
  234. * Write firmware to device.
  235. */
  236. rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
  237. data, len);
  238. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
  239. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
  240. /*
  241. * Wait for device to stabilize.
  242. */
  243. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  244. rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
  245. if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
  246. break;
  247. msleep(1);
  248. }
  249. if (i == REGISTER_BUSY_COUNT) {
  250. ERROR(rt2x00dev, "PBF system register not ready.\n");
  251. return -EBUSY;
  252. }
  253. /*
  254. * Disable interrupts
  255. */
  256. rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
  257. /*
  258. * Initialize BBP R/W access agent
  259. */
  260. rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
  261. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  262. return 0;
  263. }
  264. /*
  265. * Initialization functions.
  266. */
  267. static bool rt2800pci_get_entry_state(struct queue_entry *entry)
  268. {
  269. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  270. u32 word;
  271. if (entry->queue->qid == QID_RX) {
  272. rt2x00_desc_read(entry_priv->desc, 1, &word);
  273. return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
  274. } else {
  275. rt2x00_desc_read(entry_priv->desc, 1, &word);
  276. return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
  277. }
  278. }
  279. static void rt2800pci_clear_entry(struct queue_entry *entry)
  280. {
  281. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  282. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  283. u32 word;
  284. if (entry->queue->qid == QID_RX) {
  285. rt2x00_desc_read(entry_priv->desc, 0, &word);
  286. rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
  287. rt2x00_desc_write(entry_priv->desc, 0, word);
  288. rt2x00_desc_read(entry_priv->desc, 1, &word);
  289. rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
  290. rt2x00_desc_write(entry_priv->desc, 1, word);
  291. } else {
  292. rt2x00_desc_read(entry_priv->desc, 1, &word);
  293. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
  294. rt2x00_desc_write(entry_priv->desc, 1, word);
  295. }
  296. }
  297. static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
  298. {
  299. struct queue_entry_priv_pci *entry_priv;
  300. u32 reg;
  301. /*
  302. * Initialize registers.
  303. */
  304. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  305. rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
  306. rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
  307. rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
  308. rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
  309. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  310. rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
  311. rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
  312. rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
  313. rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
  314. entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
  315. rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
  316. rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
  317. rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
  318. rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
  319. entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
  320. rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
  321. rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
  322. rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
  323. rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
  324. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  325. rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
  326. rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
  327. rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
  328. rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
  329. /*
  330. * Enable global DMA configuration
  331. */
  332. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  333. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  334. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  335. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  336. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  337. rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
  338. return 0;
  339. }
  340. /*
  341. * Device state switch handlers.
  342. */
  343. static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  344. enum dev_state state)
  345. {
  346. u32 reg;
  347. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  348. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
  349. (state == STATE_RADIO_RX_ON) ||
  350. (state == STATE_RADIO_RX_ON_LINK));
  351. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  352. }
  353. static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  354. enum dev_state state)
  355. {
  356. int mask = (state == STATE_RADIO_IRQ_ON) ||
  357. (state == STATE_RADIO_IRQ_ON_ISR);
  358. u32 reg;
  359. /*
  360. * When interrupts are being enabled, the interrupt registers
  361. * should clear the register to assure a clean state.
  362. */
  363. if (state == STATE_RADIO_IRQ_ON) {
  364. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  365. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  366. }
  367. rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  368. rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, mask);
  369. rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, mask);
  370. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
  371. rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, mask);
  372. rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, mask);
  373. rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, mask);
  374. rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, mask);
  375. rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, mask);
  376. rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, mask);
  377. rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, mask);
  378. rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, mask);
  379. rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
  380. rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
  381. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
  382. rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
  383. rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, mask);
  384. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, mask);
  385. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, mask);
  386. rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
  387. }
  388. static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
  389. {
  390. u32 reg;
  391. /*
  392. * Reset DMA indexes
  393. */
  394. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  395. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  396. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  397. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  398. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  399. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  400. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  401. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  402. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  403. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  404. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  405. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
  406. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  407. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
  408. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
  409. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  410. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
  411. return 0;
  412. }
  413. static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  414. {
  415. u32 reg;
  416. u16 word;
  417. /*
  418. * Initialize all registers.
  419. */
  420. if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
  421. rt2800pci_init_queues(rt2x00dev) ||
  422. rt2800_init_registers(rt2x00dev) ||
  423. rt2800_wait_wpdma_ready(rt2x00dev) ||
  424. rt2800_init_bbp(rt2x00dev) ||
  425. rt2800_init_rfcsr(rt2x00dev)))
  426. return -EIO;
  427. /*
  428. * Send signal to firmware during boot time.
  429. */
  430. rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0);
  431. /*
  432. * Enable RX.
  433. */
  434. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  435. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
  436. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
  437. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  438. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  439. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
  440. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
  441. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
  442. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  443. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  444. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  445. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
  446. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
  447. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  448. /*
  449. * Initialize LED control
  450. */
  451. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
  452. rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
  453. word & 0xff, (word >> 8) & 0xff);
  454. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
  455. rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
  456. word & 0xff, (word >> 8) & 0xff);
  457. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
  458. rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
  459. word & 0xff, (word >> 8) & 0xff);
  460. return 0;
  461. }
  462. static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  463. {
  464. u32 reg;
  465. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  466. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  467. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  468. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  469. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  470. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  471. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  472. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
  473. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
  474. rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
  475. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
  476. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  477. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  478. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  479. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  480. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  481. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  482. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  483. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  484. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  485. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  486. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  487. /* Wait for DMA, ignore error */
  488. rt2800_wait_wpdma_ready(rt2x00dev);
  489. }
  490. static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
  491. enum dev_state state)
  492. {
  493. /*
  494. * Always put the device to sleep (even when we intend to wakeup!)
  495. * if the device is booting and wasn't asleep it will return
  496. * failure when attempting to wakeup.
  497. */
  498. rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
  499. if (state == STATE_AWAKE) {
  500. rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
  501. rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
  502. }
  503. return 0;
  504. }
  505. static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  506. enum dev_state state)
  507. {
  508. int retval = 0;
  509. switch (state) {
  510. case STATE_RADIO_ON:
  511. /*
  512. * Before the radio can be enabled, the device first has
  513. * to be woken up. After that it needs a bit of time
  514. * to be fully awake and then the radio can be enabled.
  515. */
  516. rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
  517. msleep(1);
  518. retval = rt2800pci_enable_radio(rt2x00dev);
  519. break;
  520. case STATE_RADIO_OFF:
  521. /*
  522. * After the radio has been disabled, the device should
  523. * be put to sleep for powersaving.
  524. */
  525. rt2800pci_disable_radio(rt2x00dev);
  526. rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
  527. break;
  528. case STATE_RADIO_RX_ON:
  529. case STATE_RADIO_RX_ON_LINK:
  530. case STATE_RADIO_RX_OFF:
  531. case STATE_RADIO_RX_OFF_LINK:
  532. rt2800pci_toggle_rx(rt2x00dev, state);
  533. break;
  534. case STATE_RADIO_IRQ_ON:
  535. case STATE_RADIO_IRQ_ON_ISR:
  536. case STATE_RADIO_IRQ_OFF:
  537. case STATE_RADIO_IRQ_OFF_ISR:
  538. rt2800pci_toggle_irq(rt2x00dev, state);
  539. break;
  540. case STATE_DEEP_SLEEP:
  541. case STATE_SLEEP:
  542. case STATE_STANDBY:
  543. case STATE_AWAKE:
  544. retval = rt2800pci_set_state(rt2x00dev, state);
  545. break;
  546. default:
  547. retval = -ENOTSUPP;
  548. break;
  549. }
  550. if (unlikely(retval))
  551. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  552. state, retval);
  553. return retval;
  554. }
  555. /*
  556. * TX descriptor initialization
  557. */
  558. static void rt2800pci_write_tx_data(struct queue_entry* entry,
  559. struct txentry_desc *txdesc)
  560. {
  561. __le32 *txwi = (__le32 *) entry->skb->data;
  562. rt2800_write_txwi(txwi, txdesc);
  563. }
  564. static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  565. struct sk_buff *skb,
  566. struct txentry_desc *txdesc)
  567. {
  568. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  569. struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
  570. __le32 *txd = entry_priv->desc;
  571. u32 word;
  572. /*
  573. * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
  574. * must contains a TXWI structure + 802.11 header + padding + 802.11
  575. * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
  576. * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
  577. * data. It means that LAST_SEC0 is always 0.
  578. */
  579. /*
  580. * Initialize TX descriptor
  581. */
  582. rt2x00_desc_read(txd, 0, &word);
  583. rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
  584. rt2x00_desc_write(txd, 0, word);
  585. rt2x00_desc_read(txd, 1, &word);
  586. rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len);
  587. rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
  588. !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  589. rt2x00_set_field32(&word, TXD_W1_BURST,
  590. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  591. rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
  592. rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
  593. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
  594. rt2x00_desc_write(txd, 1, word);
  595. rt2x00_desc_read(txd, 2, &word);
  596. rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
  597. skbdesc->skb_dma + TXWI_DESC_SIZE);
  598. rt2x00_desc_write(txd, 2, word);
  599. rt2x00_desc_read(txd, 3, &word);
  600. rt2x00_set_field32(&word, TXD_W3_WIV,
  601. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
  602. rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
  603. rt2x00_desc_write(txd, 3, word);
  604. /*
  605. * Register descriptor details in skb frame descriptor.
  606. */
  607. skbdesc->desc = txd;
  608. skbdesc->desc_len = TXD_DESC_SIZE;
  609. }
  610. /*
  611. * TX data initialization
  612. */
  613. static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  614. const enum data_queue_qid queue_idx)
  615. {
  616. struct data_queue *queue;
  617. unsigned int idx, qidx = 0;
  618. if (queue_idx > QID_HCCA && queue_idx != QID_MGMT)
  619. return;
  620. queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  621. idx = queue->index[Q_INDEX];
  622. if (queue_idx == QID_MGMT)
  623. qidx = 5;
  624. else
  625. qidx = queue_idx;
  626. rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx);
  627. }
  628. static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
  629. const enum data_queue_qid qid)
  630. {
  631. u32 reg;
  632. if (qid == QID_BEACON) {
  633. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
  634. return;
  635. }
  636. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  637. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE));
  638. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK));
  639. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI));
  640. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO));
  641. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  642. }
  643. /*
  644. * RX control handlers
  645. */
  646. static void rt2800pci_fill_rxdone(struct queue_entry *entry,
  647. struct rxdone_entry_desc *rxdesc)
  648. {
  649. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  650. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  651. __le32 *rxd = entry_priv->desc;
  652. u32 word;
  653. rt2x00_desc_read(rxd, 3, &word);
  654. if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
  655. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  656. /*
  657. * Unfortunately we don't know the cipher type used during
  658. * decryption. This prevents us from correct providing
  659. * correct statistics through debugfs.
  660. */
  661. rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
  662. if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
  663. /*
  664. * Hardware has stripped IV/EIV data from 802.11 frame during
  665. * decryption. Unfortunately the descriptor doesn't contain
  666. * any fields with the EIV/IV data either, so they can't
  667. * be restored by rt2x00lib.
  668. */
  669. rxdesc->flags |= RX_FLAG_IV_STRIPPED;
  670. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  671. rxdesc->flags |= RX_FLAG_DECRYPTED;
  672. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  673. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  674. }
  675. if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
  676. rxdesc->dev_flags |= RXDONE_MY_BSS;
  677. if (rt2x00_get_field32(word, RXD_W3_L2PAD))
  678. rxdesc->dev_flags |= RXDONE_L2PAD;
  679. /*
  680. * Process the RXWI structure that is at the start of the buffer.
  681. */
  682. rt2800_process_rxwi(entry, rxdesc);
  683. /*
  684. * Set RX IDX in register to inform hardware that we have handled
  685. * this entry and it is available for reuse again.
  686. */
  687. rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
  688. }
  689. /*
  690. * Interrupt functions.
  691. */
  692. static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
  693. {
  694. struct data_queue *queue;
  695. struct queue_entry *entry;
  696. __le32 *txwi;
  697. struct txdone_entry_desc txdesc;
  698. u32 word;
  699. u32 reg;
  700. int wcid, ack, pid, tx_wcid, tx_ack, tx_pid;
  701. u16 mcs, real_mcs;
  702. int i;
  703. /*
  704. * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
  705. * at most X times and also stop processing once the TX_STA_FIFO_VALID
  706. * flag is not set anymore.
  707. *
  708. * The legacy drivers use X=TX_RING_SIZE but state in a comment
  709. * that the TX_STA_FIFO stack has a size of 16. We stick to our
  710. * tx ring size for now.
  711. */
  712. for (i = 0; i < TX_ENTRIES; i++) {
  713. rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
  714. if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
  715. break;
  716. wcid = rt2x00_get_field32(reg, TX_STA_FIFO_WCID);
  717. ack = rt2x00_get_field32(reg, TX_STA_FIFO_TX_ACK_REQUIRED);
  718. pid = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE);
  719. /*
  720. * Skip this entry when it contains an invalid
  721. * queue identication number.
  722. */
  723. if (pid <= 0 || pid > QID_RX)
  724. continue;
  725. queue = rt2x00queue_get_queue(rt2x00dev, pid - 1);
  726. if (unlikely(!queue))
  727. continue;
  728. /*
  729. * Inside each queue, we process each entry in a chronological
  730. * order. We first check that the queue is not empty.
  731. */
  732. if (rt2x00queue_empty(queue))
  733. continue;
  734. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  735. /* Check if we got a match by looking at WCID/ACK/PID
  736. * fields */
  737. txwi = (__le32 *) entry->skb->data;
  738. rt2x00_desc_read(txwi, 1, &word);
  739. tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
  740. tx_ack = rt2x00_get_field32(word, TXWI_W1_ACK);
  741. tx_pid = rt2x00_get_field32(word, TXWI_W1_PACKETID);
  742. if ((wcid != tx_wcid) || (ack != tx_ack) || (pid != tx_pid))
  743. WARNING(rt2x00dev, "invalid TX_STA_FIFO content\n");
  744. /*
  745. * Obtain the status about this packet.
  746. */
  747. txdesc.flags = 0;
  748. rt2x00_desc_read(txwi, 0, &word);
  749. mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
  750. real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS);
  751. /*
  752. * Ralink has a retry mechanism using a global fallback
  753. * table. We setup this fallback table to try the immediate
  754. * lower rate for all rates. In the TX_STA_FIFO, the MCS field
  755. * always contains the MCS used for the last transmission, be
  756. * it successful or not.
  757. */
  758. if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS)) {
  759. /*
  760. * Transmission succeeded. The number of retries is
  761. * mcs - real_mcs
  762. */
  763. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  764. txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
  765. } else {
  766. /*
  767. * Transmission failed. The number of retries is
  768. * always 7 in this case (for a total number of 8
  769. * frames sent).
  770. */
  771. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  772. txdesc.retry = 7;
  773. }
  774. /*
  775. * the frame was retried at least once
  776. * -> hw used fallback rates
  777. */
  778. if (txdesc.retry)
  779. __set_bit(TXDONE_FALLBACK, &txdesc.flags);
  780. rt2x00lib_txdone(entry, &txdesc);
  781. }
  782. }
  783. static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
  784. {
  785. struct ieee80211_conf conf = { .flags = 0 };
  786. struct rt2x00lib_conf libconf = { .conf = &conf };
  787. rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
  788. }
  789. static irqreturn_t rt2800pci_interrupt_thread(int irq, void *dev_instance)
  790. {
  791. struct rt2x00_dev *rt2x00dev = dev_instance;
  792. u32 reg = rt2x00dev->irqvalue[0];
  793. /*
  794. * 1 - Pre TBTT interrupt.
  795. */
  796. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
  797. rt2x00lib_pretbtt(rt2x00dev);
  798. /*
  799. * 2 - Beacondone interrupt.
  800. */
  801. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
  802. rt2x00lib_beacondone(rt2x00dev);
  803. /*
  804. * 3 - Rx ring done interrupt.
  805. */
  806. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
  807. rt2x00pci_rxdone(rt2x00dev);
  808. /*
  809. * 4 - Tx done interrupt.
  810. */
  811. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
  812. rt2800pci_txdone(rt2x00dev);
  813. /*
  814. * 5 - Auto wakeup interrupt.
  815. */
  816. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
  817. rt2800pci_wakeup(rt2x00dev);
  818. /* Enable interrupts again. */
  819. rt2x00dev->ops->lib->set_device_state(rt2x00dev,
  820. STATE_RADIO_IRQ_ON_ISR);
  821. return IRQ_HANDLED;
  822. }
  823. static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
  824. {
  825. struct rt2x00_dev *rt2x00dev = dev_instance;
  826. u32 reg;
  827. /* Read status and ACK all interrupts */
  828. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  829. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  830. if (!reg)
  831. return IRQ_NONE;
  832. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  833. return IRQ_HANDLED;
  834. /* Store irqvalue for use in the interrupt thread. */
  835. rt2x00dev->irqvalue[0] = reg;
  836. /* Disable interrupts, will be enabled again in the interrupt thread. */
  837. rt2x00dev->ops->lib->set_device_state(rt2x00dev,
  838. STATE_RADIO_IRQ_OFF_ISR);
  839. return IRQ_WAKE_THREAD;
  840. }
  841. /*
  842. * Device probe functions.
  843. */
  844. static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  845. {
  846. /*
  847. * Read EEPROM into buffer
  848. */
  849. if (rt2x00_is_soc(rt2x00dev))
  850. rt2800pci_read_eeprom_soc(rt2x00dev);
  851. else if (rt2800pci_efuse_detect(rt2x00dev))
  852. rt2800pci_read_eeprom_efuse(rt2x00dev);
  853. else
  854. rt2800pci_read_eeprom_pci(rt2x00dev);
  855. return rt2800_validate_eeprom(rt2x00dev);
  856. }
  857. static const struct rt2800_ops rt2800pci_rt2800_ops = {
  858. .register_read = rt2x00pci_register_read,
  859. .register_read_lock = rt2x00pci_register_read, /* same for PCI */
  860. .register_write = rt2x00pci_register_write,
  861. .register_write_lock = rt2x00pci_register_write, /* same for PCI */
  862. .register_multiread = rt2x00pci_register_multiread,
  863. .register_multiwrite = rt2x00pci_register_multiwrite,
  864. .regbusy_read = rt2x00pci_regbusy_read,
  865. .drv_init_registers = rt2800pci_init_registers,
  866. };
  867. static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  868. {
  869. int retval;
  870. rt2x00dev->priv = (void *)&rt2800pci_rt2800_ops;
  871. /*
  872. * Allocate eeprom data.
  873. */
  874. retval = rt2800pci_validate_eeprom(rt2x00dev);
  875. if (retval)
  876. return retval;
  877. retval = rt2800_init_eeprom(rt2x00dev);
  878. if (retval)
  879. return retval;
  880. /*
  881. * Initialize hw specifications.
  882. */
  883. retval = rt2800_probe_hw_mode(rt2x00dev);
  884. if (retval)
  885. return retval;
  886. /*
  887. * This device has multiple filters for control frames
  888. * and has a separate filter for PS Poll frames.
  889. */
  890. __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
  891. __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
  892. /*
  893. * This device has a pre tbtt interrupt and thus fetches
  894. * a new beacon directly prior to transmission.
  895. */
  896. __set_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags);
  897. /*
  898. * This device requires firmware.
  899. */
  900. if (!rt2x00_is_soc(rt2x00dev))
  901. __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
  902. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  903. __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
  904. if (!modparam_nohwcrypt)
  905. __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
  906. __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
  907. /*
  908. * Set the rssi offset.
  909. */
  910. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  911. return 0;
  912. }
  913. static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
  914. .irq_handler = rt2800pci_interrupt,
  915. .irq_handler_thread = rt2800pci_interrupt_thread,
  916. .probe_hw = rt2800pci_probe_hw,
  917. .get_firmware_name = rt2800pci_get_firmware_name,
  918. .check_firmware = rt2800pci_check_firmware,
  919. .load_firmware = rt2800pci_load_firmware,
  920. .initialize = rt2x00pci_initialize,
  921. .uninitialize = rt2x00pci_uninitialize,
  922. .get_entry_state = rt2800pci_get_entry_state,
  923. .clear_entry = rt2800pci_clear_entry,
  924. .set_device_state = rt2800pci_set_device_state,
  925. .rfkill_poll = rt2800_rfkill_poll,
  926. .link_stats = rt2800_link_stats,
  927. .reset_tuner = rt2800_reset_tuner,
  928. .link_tuner = rt2800_link_tuner,
  929. .write_tx_desc = rt2800pci_write_tx_desc,
  930. .write_tx_data = rt2800pci_write_tx_data,
  931. .write_beacon = rt2800_write_beacon,
  932. .kick_tx_queue = rt2800pci_kick_tx_queue,
  933. .kill_tx_queue = rt2800pci_kill_tx_queue,
  934. .fill_rxdone = rt2800pci_fill_rxdone,
  935. .config_shared_key = rt2800_config_shared_key,
  936. .config_pairwise_key = rt2800_config_pairwise_key,
  937. .config_filter = rt2800_config_filter,
  938. .config_intf = rt2800_config_intf,
  939. .config_erp = rt2800_config_erp,
  940. .config_ant = rt2800_config_ant,
  941. .config = rt2800_config,
  942. };
  943. static const struct data_queue_desc rt2800pci_queue_rx = {
  944. .entry_num = RX_ENTRIES,
  945. .data_size = AGGREGATION_SIZE,
  946. .desc_size = RXD_DESC_SIZE,
  947. .priv_size = sizeof(struct queue_entry_priv_pci),
  948. };
  949. static const struct data_queue_desc rt2800pci_queue_tx = {
  950. .entry_num = TX_ENTRIES,
  951. .data_size = AGGREGATION_SIZE,
  952. .desc_size = TXD_DESC_SIZE,
  953. .priv_size = sizeof(struct queue_entry_priv_pci),
  954. };
  955. static const struct data_queue_desc rt2800pci_queue_bcn = {
  956. .entry_num = 8 * BEACON_ENTRIES,
  957. .data_size = 0, /* No DMA required for beacons */
  958. .desc_size = TXWI_DESC_SIZE,
  959. .priv_size = sizeof(struct queue_entry_priv_pci),
  960. };
  961. static const struct rt2x00_ops rt2800pci_ops = {
  962. .name = KBUILD_MODNAME,
  963. .max_sta_intf = 1,
  964. .max_ap_intf = 8,
  965. .eeprom_size = EEPROM_SIZE,
  966. .rf_size = RF_SIZE,
  967. .tx_queues = NUM_TX_QUEUES,
  968. .extra_tx_headroom = TXWI_DESC_SIZE,
  969. .rx = &rt2800pci_queue_rx,
  970. .tx = &rt2800pci_queue_tx,
  971. .bcn = &rt2800pci_queue_bcn,
  972. .lib = &rt2800pci_rt2x00_ops,
  973. .hw = &rt2800_mac80211_ops,
  974. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  975. .debugfs = &rt2800_rt2x00debug,
  976. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  977. };
  978. /*
  979. * RT2800pci module information.
  980. */
  981. #ifdef CONFIG_RT2800PCI_PCI
  982. static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
  983. { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
  984. { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
  985. { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
  986. { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
  987. { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
  988. { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
  989. { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
  990. { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
  991. { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
  992. { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
  993. { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
  994. { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
  995. #ifdef CONFIG_RT2800PCI_RT30XX
  996. { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
  997. { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
  998. { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
  999. { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1000. #endif
  1001. #ifdef CONFIG_RT2800PCI_RT35XX
  1002. { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1003. { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1004. { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1005. { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1006. { PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1007. #endif
  1008. { 0, }
  1009. };
  1010. #endif /* CONFIG_RT2800PCI_PCI */
  1011. MODULE_AUTHOR(DRV_PROJECT);
  1012. MODULE_VERSION(DRV_VERSION);
  1013. MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
  1014. MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
  1015. #ifdef CONFIG_RT2800PCI_PCI
  1016. MODULE_FIRMWARE(FIRMWARE_RT2860);
  1017. MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
  1018. #endif /* CONFIG_RT2800PCI_PCI */
  1019. MODULE_LICENSE("GPL");
  1020. #ifdef CONFIG_RT2800PCI_SOC
  1021. static int rt2800soc_probe(struct platform_device *pdev)
  1022. {
  1023. return rt2x00soc_probe(pdev, &rt2800pci_ops);
  1024. }
  1025. static struct platform_driver rt2800soc_driver = {
  1026. .driver = {
  1027. .name = "rt2800_wmac",
  1028. .owner = THIS_MODULE,
  1029. .mod_name = KBUILD_MODNAME,
  1030. },
  1031. .probe = rt2800soc_probe,
  1032. .remove = __devexit_p(rt2x00soc_remove),
  1033. .suspend = rt2x00soc_suspend,
  1034. .resume = rt2x00soc_resume,
  1035. };
  1036. #endif /* CONFIG_RT2800PCI_SOC */
  1037. #ifdef CONFIG_RT2800PCI_PCI
  1038. static struct pci_driver rt2800pci_driver = {
  1039. .name = KBUILD_MODNAME,
  1040. .id_table = rt2800pci_device_table,
  1041. .probe = rt2x00pci_probe,
  1042. .remove = __devexit_p(rt2x00pci_remove),
  1043. .suspend = rt2x00pci_suspend,
  1044. .resume = rt2x00pci_resume,
  1045. };
  1046. #endif /* CONFIG_RT2800PCI_PCI */
  1047. static int __init rt2800pci_init(void)
  1048. {
  1049. int ret = 0;
  1050. #ifdef CONFIG_RT2800PCI_SOC
  1051. ret = platform_driver_register(&rt2800soc_driver);
  1052. if (ret)
  1053. return ret;
  1054. #endif
  1055. #ifdef CONFIG_RT2800PCI_PCI
  1056. ret = pci_register_driver(&rt2800pci_driver);
  1057. if (ret) {
  1058. #ifdef CONFIG_RT2800PCI_SOC
  1059. platform_driver_unregister(&rt2800soc_driver);
  1060. #endif
  1061. return ret;
  1062. }
  1063. #endif
  1064. return ret;
  1065. }
  1066. static void __exit rt2800pci_exit(void)
  1067. {
  1068. #ifdef CONFIG_RT2800PCI_PCI
  1069. pci_unregister_driver(&rt2800pci_driver);
  1070. #endif
  1071. #ifdef CONFIG_RT2800PCI_SOC
  1072. platform_driver_unregister(&rt2800soc_driver);
  1073. #endif
  1074. }
  1075. module_init(rt2800pci_init);
  1076. module_exit(rt2800pci_exit);