vmalloc.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/vmalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/highmem.h>
  14. #include <linux/slab.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/debugobjects.h>
  20. #include <linux/kallsyms.h>
  21. #include <linux/list.h>
  22. #include <linux/rbtree.h>
  23. #include <linux/radix-tree.h>
  24. #include <linux/rcupdate.h>
  25. #include <linux/bootmem.h>
  26. #include <asm/atomic.h>
  27. #include <asm/uaccess.h>
  28. #include <asm/tlbflush.h>
  29. /*** Page table manipulation functions ***/
  30. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  31. {
  32. pte_t *pte;
  33. pte = pte_offset_kernel(pmd, addr);
  34. do {
  35. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  36. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  37. } while (pte++, addr += PAGE_SIZE, addr != end);
  38. }
  39. static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  40. {
  41. pmd_t *pmd;
  42. unsigned long next;
  43. pmd = pmd_offset(pud, addr);
  44. do {
  45. next = pmd_addr_end(addr, end);
  46. if (pmd_none_or_clear_bad(pmd))
  47. continue;
  48. vunmap_pte_range(pmd, addr, next);
  49. } while (pmd++, addr = next, addr != end);
  50. }
  51. static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  52. {
  53. pud_t *pud;
  54. unsigned long next;
  55. pud = pud_offset(pgd, addr);
  56. do {
  57. next = pud_addr_end(addr, end);
  58. if (pud_none_or_clear_bad(pud))
  59. continue;
  60. vunmap_pmd_range(pud, addr, next);
  61. } while (pud++, addr = next, addr != end);
  62. }
  63. static void vunmap_page_range(unsigned long addr, unsigned long end)
  64. {
  65. pgd_t *pgd;
  66. unsigned long next;
  67. BUG_ON(addr >= end);
  68. pgd = pgd_offset_k(addr);
  69. do {
  70. next = pgd_addr_end(addr, end);
  71. if (pgd_none_or_clear_bad(pgd))
  72. continue;
  73. vunmap_pud_range(pgd, addr, next);
  74. } while (pgd++, addr = next, addr != end);
  75. }
  76. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  77. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  78. {
  79. pte_t *pte;
  80. /*
  81. * nr is a running index into the array which helps higher level
  82. * callers keep track of where we're up to.
  83. */
  84. pte = pte_alloc_kernel(pmd, addr);
  85. if (!pte)
  86. return -ENOMEM;
  87. do {
  88. struct page *page = pages[*nr];
  89. if (WARN_ON(!pte_none(*pte)))
  90. return -EBUSY;
  91. if (WARN_ON(!page))
  92. return -ENOMEM;
  93. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  94. (*nr)++;
  95. } while (pte++, addr += PAGE_SIZE, addr != end);
  96. return 0;
  97. }
  98. static int vmap_pmd_range(pud_t *pud, unsigned long addr,
  99. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  100. {
  101. pmd_t *pmd;
  102. unsigned long next;
  103. pmd = pmd_alloc(&init_mm, pud, addr);
  104. if (!pmd)
  105. return -ENOMEM;
  106. do {
  107. next = pmd_addr_end(addr, end);
  108. if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
  109. return -ENOMEM;
  110. } while (pmd++, addr = next, addr != end);
  111. return 0;
  112. }
  113. static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
  114. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  115. {
  116. pud_t *pud;
  117. unsigned long next;
  118. pud = pud_alloc(&init_mm, pgd, addr);
  119. if (!pud)
  120. return -ENOMEM;
  121. do {
  122. next = pud_addr_end(addr, end);
  123. if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
  124. return -ENOMEM;
  125. } while (pud++, addr = next, addr != end);
  126. return 0;
  127. }
  128. /*
  129. * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
  130. * will have pfns corresponding to the "pages" array.
  131. *
  132. * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
  133. */
  134. static int vmap_page_range(unsigned long start, unsigned long end,
  135. pgprot_t prot, struct page **pages)
  136. {
  137. pgd_t *pgd;
  138. unsigned long next;
  139. unsigned long addr = start;
  140. int err = 0;
  141. int nr = 0;
  142. BUG_ON(addr >= end);
  143. pgd = pgd_offset_k(addr);
  144. do {
  145. next = pgd_addr_end(addr, end);
  146. err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
  147. if (err)
  148. break;
  149. } while (pgd++, addr = next, addr != end);
  150. flush_cache_vmap(start, end);
  151. if (unlikely(err))
  152. return err;
  153. return nr;
  154. }
  155. static inline int is_vmalloc_or_module_addr(const void *x)
  156. {
  157. /*
  158. * ARM, x86-64 and sparc64 put modules in a special place,
  159. * and fall back on vmalloc() if that fails. Others
  160. * just put it in the vmalloc space.
  161. */
  162. #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
  163. unsigned long addr = (unsigned long)x;
  164. if (addr >= MODULES_VADDR && addr < MODULES_END)
  165. return 1;
  166. #endif
  167. return is_vmalloc_addr(x);
  168. }
  169. /*
  170. * Walk a vmap address to the struct page it maps.
  171. */
  172. struct page *vmalloc_to_page(const void *vmalloc_addr)
  173. {
  174. unsigned long addr = (unsigned long) vmalloc_addr;
  175. struct page *page = NULL;
  176. pgd_t *pgd = pgd_offset_k(addr);
  177. /*
  178. * XXX we might need to change this if we add VIRTUAL_BUG_ON for
  179. * architectures that do not vmalloc module space
  180. */
  181. VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
  182. if (!pgd_none(*pgd)) {
  183. pud_t *pud = pud_offset(pgd, addr);
  184. if (!pud_none(*pud)) {
  185. pmd_t *pmd = pmd_offset(pud, addr);
  186. if (!pmd_none(*pmd)) {
  187. pte_t *ptep, pte;
  188. ptep = pte_offset_map(pmd, addr);
  189. pte = *ptep;
  190. if (pte_present(pte))
  191. page = pte_page(pte);
  192. pte_unmap(ptep);
  193. }
  194. }
  195. }
  196. return page;
  197. }
  198. EXPORT_SYMBOL(vmalloc_to_page);
  199. /*
  200. * Map a vmalloc()-space virtual address to the physical page frame number.
  201. */
  202. unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
  203. {
  204. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  205. }
  206. EXPORT_SYMBOL(vmalloc_to_pfn);
  207. /*** Global kva allocator ***/
  208. #define VM_LAZY_FREE 0x01
  209. #define VM_LAZY_FREEING 0x02
  210. #define VM_VM_AREA 0x04
  211. struct vmap_area {
  212. unsigned long va_start;
  213. unsigned long va_end;
  214. unsigned long flags;
  215. struct rb_node rb_node; /* address sorted rbtree */
  216. struct list_head list; /* address sorted list */
  217. struct list_head purge_list; /* "lazy purge" list */
  218. void *private;
  219. struct rcu_head rcu_head;
  220. };
  221. static DEFINE_SPINLOCK(vmap_area_lock);
  222. static struct rb_root vmap_area_root = RB_ROOT;
  223. static LIST_HEAD(vmap_area_list);
  224. static struct vmap_area *__find_vmap_area(unsigned long addr)
  225. {
  226. struct rb_node *n = vmap_area_root.rb_node;
  227. while (n) {
  228. struct vmap_area *va;
  229. va = rb_entry(n, struct vmap_area, rb_node);
  230. if (addr < va->va_start)
  231. n = n->rb_left;
  232. else if (addr > va->va_start)
  233. n = n->rb_right;
  234. else
  235. return va;
  236. }
  237. return NULL;
  238. }
  239. static void __insert_vmap_area(struct vmap_area *va)
  240. {
  241. struct rb_node **p = &vmap_area_root.rb_node;
  242. struct rb_node *parent = NULL;
  243. struct rb_node *tmp;
  244. while (*p) {
  245. struct vmap_area *tmp;
  246. parent = *p;
  247. tmp = rb_entry(parent, struct vmap_area, rb_node);
  248. if (va->va_start < tmp->va_end)
  249. p = &(*p)->rb_left;
  250. else if (va->va_end > tmp->va_start)
  251. p = &(*p)->rb_right;
  252. else
  253. BUG();
  254. }
  255. rb_link_node(&va->rb_node, parent, p);
  256. rb_insert_color(&va->rb_node, &vmap_area_root);
  257. /* address-sort this list so it is usable like the vmlist */
  258. tmp = rb_prev(&va->rb_node);
  259. if (tmp) {
  260. struct vmap_area *prev;
  261. prev = rb_entry(tmp, struct vmap_area, rb_node);
  262. list_add_rcu(&va->list, &prev->list);
  263. } else
  264. list_add_rcu(&va->list, &vmap_area_list);
  265. }
  266. static void purge_vmap_area_lazy(void);
  267. /*
  268. * Allocate a region of KVA of the specified size and alignment, within the
  269. * vstart and vend.
  270. */
  271. static struct vmap_area *alloc_vmap_area(unsigned long size,
  272. unsigned long align,
  273. unsigned long vstart, unsigned long vend,
  274. int node, gfp_t gfp_mask)
  275. {
  276. struct vmap_area *va;
  277. struct rb_node *n;
  278. unsigned long addr;
  279. int purged = 0;
  280. BUG_ON(size & ~PAGE_MASK);
  281. va = kmalloc_node(sizeof(struct vmap_area),
  282. gfp_mask & GFP_RECLAIM_MASK, node);
  283. if (unlikely(!va))
  284. return ERR_PTR(-ENOMEM);
  285. retry:
  286. addr = ALIGN(vstart, align);
  287. spin_lock(&vmap_area_lock);
  288. /* XXX: could have a last_hole cache */
  289. n = vmap_area_root.rb_node;
  290. if (n) {
  291. struct vmap_area *first = NULL;
  292. do {
  293. struct vmap_area *tmp;
  294. tmp = rb_entry(n, struct vmap_area, rb_node);
  295. if (tmp->va_end >= addr) {
  296. if (!first && tmp->va_start < addr + size)
  297. first = tmp;
  298. n = n->rb_left;
  299. } else {
  300. first = tmp;
  301. n = n->rb_right;
  302. }
  303. } while (n);
  304. if (!first)
  305. goto found;
  306. if (first->va_end < addr) {
  307. n = rb_next(&first->rb_node);
  308. if (n)
  309. first = rb_entry(n, struct vmap_area, rb_node);
  310. else
  311. goto found;
  312. }
  313. while (addr + size > first->va_start && addr + size <= vend) {
  314. addr = ALIGN(first->va_end + PAGE_SIZE, align);
  315. n = rb_next(&first->rb_node);
  316. if (n)
  317. first = rb_entry(n, struct vmap_area, rb_node);
  318. else
  319. goto found;
  320. }
  321. }
  322. found:
  323. if (addr + size > vend) {
  324. spin_unlock(&vmap_area_lock);
  325. if (!purged) {
  326. purge_vmap_area_lazy();
  327. purged = 1;
  328. goto retry;
  329. }
  330. if (printk_ratelimit())
  331. printk(KERN_WARNING
  332. "vmap allocation for size %lu failed: "
  333. "use vmalloc=<size> to increase size.\n", size);
  334. return ERR_PTR(-EBUSY);
  335. }
  336. BUG_ON(addr & (align-1));
  337. va->va_start = addr;
  338. va->va_end = addr + size;
  339. va->flags = 0;
  340. __insert_vmap_area(va);
  341. spin_unlock(&vmap_area_lock);
  342. return va;
  343. }
  344. static void rcu_free_va(struct rcu_head *head)
  345. {
  346. struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
  347. kfree(va);
  348. }
  349. static void __free_vmap_area(struct vmap_area *va)
  350. {
  351. BUG_ON(RB_EMPTY_NODE(&va->rb_node));
  352. rb_erase(&va->rb_node, &vmap_area_root);
  353. RB_CLEAR_NODE(&va->rb_node);
  354. list_del_rcu(&va->list);
  355. call_rcu(&va->rcu_head, rcu_free_va);
  356. }
  357. /*
  358. * Free a region of KVA allocated by alloc_vmap_area
  359. */
  360. static void free_vmap_area(struct vmap_area *va)
  361. {
  362. spin_lock(&vmap_area_lock);
  363. __free_vmap_area(va);
  364. spin_unlock(&vmap_area_lock);
  365. }
  366. /*
  367. * Clear the pagetable entries of a given vmap_area
  368. */
  369. static void unmap_vmap_area(struct vmap_area *va)
  370. {
  371. vunmap_page_range(va->va_start, va->va_end);
  372. }
  373. static void vmap_debug_free_range(unsigned long start, unsigned long end)
  374. {
  375. /*
  376. * Unmap page tables and force a TLB flush immediately if
  377. * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
  378. * bugs similarly to those in linear kernel virtual address
  379. * space after a page has been freed.
  380. *
  381. * All the lazy freeing logic is still retained, in order to
  382. * minimise intrusiveness of this debugging feature.
  383. *
  384. * This is going to be *slow* (linear kernel virtual address
  385. * debugging doesn't do a broadcast TLB flush so it is a lot
  386. * faster).
  387. */
  388. #ifdef CONFIG_DEBUG_PAGEALLOC
  389. vunmap_page_range(start, end);
  390. flush_tlb_kernel_range(start, end);
  391. #endif
  392. }
  393. /*
  394. * lazy_max_pages is the maximum amount of virtual address space we gather up
  395. * before attempting to purge with a TLB flush.
  396. *
  397. * There is a tradeoff here: a larger number will cover more kernel page tables
  398. * and take slightly longer to purge, but it will linearly reduce the number of
  399. * global TLB flushes that must be performed. It would seem natural to scale
  400. * this number up linearly with the number of CPUs (because vmapping activity
  401. * could also scale linearly with the number of CPUs), however it is likely
  402. * that in practice, workloads might be constrained in other ways that mean
  403. * vmap activity will not scale linearly with CPUs. Also, I want to be
  404. * conservative and not introduce a big latency on huge systems, so go with
  405. * a less aggressive log scale. It will still be an improvement over the old
  406. * code, and it will be simple to change the scale factor if we find that it
  407. * becomes a problem on bigger systems.
  408. */
  409. static unsigned long lazy_max_pages(void)
  410. {
  411. unsigned int log;
  412. log = fls(num_online_cpus());
  413. return log * (32UL * 1024 * 1024 / PAGE_SIZE);
  414. }
  415. static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
  416. /*
  417. * Purges all lazily-freed vmap areas.
  418. *
  419. * If sync is 0 then don't purge if there is already a purge in progress.
  420. * If force_flush is 1, then flush kernel TLBs between *start and *end even
  421. * if we found no lazy vmap areas to unmap (callers can use this to optimise
  422. * their own TLB flushing).
  423. * Returns with *start = min(*start, lowest purged address)
  424. * *end = max(*end, highest purged address)
  425. */
  426. static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
  427. int sync, int force_flush)
  428. {
  429. static DEFINE_SPINLOCK(purge_lock);
  430. LIST_HEAD(valist);
  431. struct vmap_area *va;
  432. int nr = 0;
  433. /*
  434. * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
  435. * should not expect such behaviour. This just simplifies locking for
  436. * the case that isn't actually used at the moment anyway.
  437. */
  438. if (!sync && !force_flush) {
  439. if (!spin_trylock(&purge_lock))
  440. return;
  441. } else
  442. spin_lock(&purge_lock);
  443. rcu_read_lock();
  444. list_for_each_entry_rcu(va, &vmap_area_list, list) {
  445. if (va->flags & VM_LAZY_FREE) {
  446. if (va->va_start < *start)
  447. *start = va->va_start;
  448. if (va->va_end > *end)
  449. *end = va->va_end;
  450. nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
  451. unmap_vmap_area(va);
  452. list_add_tail(&va->purge_list, &valist);
  453. va->flags |= VM_LAZY_FREEING;
  454. va->flags &= ~VM_LAZY_FREE;
  455. }
  456. }
  457. rcu_read_unlock();
  458. if (nr) {
  459. BUG_ON(nr > atomic_read(&vmap_lazy_nr));
  460. atomic_sub(nr, &vmap_lazy_nr);
  461. }
  462. if (nr || force_flush)
  463. flush_tlb_kernel_range(*start, *end);
  464. if (nr) {
  465. spin_lock(&vmap_area_lock);
  466. list_for_each_entry(va, &valist, purge_list)
  467. __free_vmap_area(va);
  468. spin_unlock(&vmap_area_lock);
  469. }
  470. spin_unlock(&purge_lock);
  471. }
  472. /*
  473. * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
  474. * is already purging.
  475. */
  476. static void try_purge_vmap_area_lazy(void)
  477. {
  478. unsigned long start = ULONG_MAX, end = 0;
  479. __purge_vmap_area_lazy(&start, &end, 0, 0);
  480. }
  481. /*
  482. * Kick off a purge of the outstanding lazy areas.
  483. */
  484. static void purge_vmap_area_lazy(void)
  485. {
  486. unsigned long start = ULONG_MAX, end = 0;
  487. __purge_vmap_area_lazy(&start, &end, 1, 0);
  488. }
  489. /*
  490. * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
  491. * called for the correct range previously.
  492. */
  493. static void free_unmap_vmap_area_noflush(struct vmap_area *va)
  494. {
  495. va->flags |= VM_LAZY_FREE;
  496. atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
  497. if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
  498. try_purge_vmap_area_lazy();
  499. }
  500. /*
  501. * Free and unmap a vmap area
  502. */
  503. static void free_unmap_vmap_area(struct vmap_area *va)
  504. {
  505. flush_cache_vunmap(va->va_start, va->va_end);
  506. free_unmap_vmap_area_noflush(va);
  507. }
  508. static struct vmap_area *find_vmap_area(unsigned long addr)
  509. {
  510. struct vmap_area *va;
  511. spin_lock(&vmap_area_lock);
  512. va = __find_vmap_area(addr);
  513. spin_unlock(&vmap_area_lock);
  514. return va;
  515. }
  516. static void free_unmap_vmap_area_addr(unsigned long addr)
  517. {
  518. struct vmap_area *va;
  519. va = find_vmap_area(addr);
  520. BUG_ON(!va);
  521. free_unmap_vmap_area(va);
  522. }
  523. /*** Per cpu kva allocator ***/
  524. /*
  525. * vmap space is limited especially on 32 bit architectures. Ensure there is
  526. * room for at least 16 percpu vmap blocks per CPU.
  527. */
  528. /*
  529. * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
  530. * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
  531. * instead (we just need a rough idea)
  532. */
  533. #if BITS_PER_LONG == 32
  534. #define VMALLOC_SPACE (128UL*1024*1024)
  535. #else
  536. #define VMALLOC_SPACE (128UL*1024*1024*1024)
  537. #endif
  538. #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
  539. #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
  540. #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
  541. #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
  542. #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
  543. #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
  544. #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
  545. VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
  546. VMALLOC_PAGES / NR_CPUS / 16))
  547. #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
  548. static bool vmap_initialized __read_mostly = false;
  549. struct vmap_block_queue {
  550. spinlock_t lock;
  551. struct list_head free;
  552. struct list_head dirty;
  553. unsigned int nr_dirty;
  554. };
  555. struct vmap_block {
  556. spinlock_t lock;
  557. struct vmap_area *va;
  558. struct vmap_block_queue *vbq;
  559. unsigned long free, dirty;
  560. DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
  561. DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
  562. union {
  563. struct {
  564. struct list_head free_list;
  565. struct list_head dirty_list;
  566. };
  567. struct rcu_head rcu_head;
  568. };
  569. };
  570. /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
  571. static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
  572. /*
  573. * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
  574. * in the free path. Could get rid of this if we change the API to return a
  575. * "cookie" from alloc, to be passed to free. But no big deal yet.
  576. */
  577. static DEFINE_SPINLOCK(vmap_block_tree_lock);
  578. static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
  579. /*
  580. * We should probably have a fallback mechanism to allocate virtual memory
  581. * out of partially filled vmap blocks. However vmap block sizing should be
  582. * fairly reasonable according to the vmalloc size, so it shouldn't be a
  583. * big problem.
  584. */
  585. static unsigned long addr_to_vb_idx(unsigned long addr)
  586. {
  587. addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
  588. addr /= VMAP_BLOCK_SIZE;
  589. return addr;
  590. }
  591. static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
  592. {
  593. struct vmap_block_queue *vbq;
  594. struct vmap_block *vb;
  595. struct vmap_area *va;
  596. unsigned long vb_idx;
  597. int node, err;
  598. node = numa_node_id();
  599. vb = kmalloc_node(sizeof(struct vmap_block),
  600. gfp_mask & GFP_RECLAIM_MASK, node);
  601. if (unlikely(!vb))
  602. return ERR_PTR(-ENOMEM);
  603. va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
  604. VMALLOC_START, VMALLOC_END,
  605. node, gfp_mask);
  606. if (unlikely(IS_ERR(va))) {
  607. kfree(vb);
  608. return ERR_PTR(PTR_ERR(va));
  609. }
  610. err = radix_tree_preload(gfp_mask);
  611. if (unlikely(err)) {
  612. kfree(vb);
  613. free_vmap_area(va);
  614. return ERR_PTR(err);
  615. }
  616. spin_lock_init(&vb->lock);
  617. vb->va = va;
  618. vb->free = VMAP_BBMAP_BITS;
  619. vb->dirty = 0;
  620. bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
  621. bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
  622. INIT_LIST_HEAD(&vb->free_list);
  623. INIT_LIST_HEAD(&vb->dirty_list);
  624. vb_idx = addr_to_vb_idx(va->va_start);
  625. spin_lock(&vmap_block_tree_lock);
  626. err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
  627. spin_unlock(&vmap_block_tree_lock);
  628. BUG_ON(err);
  629. radix_tree_preload_end();
  630. vbq = &get_cpu_var(vmap_block_queue);
  631. vb->vbq = vbq;
  632. spin_lock(&vbq->lock);
  633. list_add(&vb->free_list, &vbq->free);
  634. spin_unlock(&vbq->lock);
  635. put_cpu_var(vmap_cpu_blocks);
  636. return vb;
  637. }
  638. static void rcu_free_vb(struct rcu_head *head)
  639. {
  640. struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
  641. kfree(vb);
  642. }
  643. static void free_vmap_block(struct vmap_block *vb)
  644. {
  645. struct vmap_block *tmp;
  646. unsigned long vb_idx;
  647. spin_lock(&vb->vbq->lock);
  648. if (!list_empty(&vb->free_list))
  649. list_del(&vb->free_list);
  650. if (!list_empty(&vb->dirty_list))
  651. list_del(&vb->dirty_list);
  652. spin_unlock(&vb->vbq->lock);
  653. vb_idx = addr_to_vb_idx(vb->va->va_start);
  654. spin_lock(&vmap_block_tree_lock);
  655. tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
  656. spin_unlock(&vmap_block_tree_lock);
  657. BUG_ON(tmp != vb);
  658. free_unmap_vmap_area_noflush(vb->va);
  659. call_rcu(&vb->rcu_head, rcu_free_vb);
  660. }
  661. static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
  662. {
  663. struct vmap_block_queue *vbq;
  664. struct vmap_block *vb;
  665. unsigned long addr = 0;
  666. unsigned int order;
  667. BUG_ON(size & ~PAGE_MASK);
  668. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  669. order = get_order(size);
  670. again:
  671. rcu_read_lock();
  672. vbq = &get_cpu_var(vmap_block_queue);
  673. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  674. int i;
  675. spin_lock(&vb->lock);
  676. i = bitmap_find_free_region(vb->alloc_map,
  677. VMAP_BBMAP_BITS, order);
  678. if (i >= 0) {
  679. addr = vb->va->va_start + (i << PAGE_SHIFT);
  680. BUG_ON(addr_to_vb_idx(addr) !=
  681. addr_to_vb_idx(vb->va->va_start));
  682. vb->free -= 1UL << order;
  683. if (vb->free == 0) {
  684. spin_lock(&vbq->lock);
  685. list_del_init(&vb->free_list);
  686. spin_unlock(&vbq->lock);
  687. }
  688. spin_unlock(&vb->lock);
  689. break;
  690. }
  691. spin_unlock(&vb->lock);
  692. }
  693. put_cpu_var(vmap_cpu_blocks);
  694. rcu_read_unlock();
  695. if (!addr) {
  696. vb = new_vmap_block(gfp_mask);
  697. if (IS_ERR(vb))
  698. return vb;
  699. goto again;
  700. }
  701. return (void *)addr;
  702. }
  703. static void vb_free(const void *addr, unsigned long size)
  704. {
  705. unsigned long offset;
  706. unsigned long vb_idx;
  707. unsigned int order;
  708. struct vmap_block *vb;
  709. BUG_ON(size & ~PAGE_MASK);
  710. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  711. flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
  712. order = get_order(size);
  713. offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
  714. vb_idx = addr_to_vb_idx((unsigned long)addr);
  715. rcu_read_lock();
  716. vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
  717. rcu_read_unlock();
  718. BUG_ON(!vb);
  719. spin_lock(&vb->lock);
  720. bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
  721. if (!vb->dirty) {
  722. spin_lock(&vb->vbq->lock);
  723. list_add(&vb->dirty_list, &vb->vbq->dirty);
  724. spin_unlock(&vb->vbq->lock);
  725. }
  726. vb->dirty += 1UL << order;
  727. if (vb->dirty == VMAP_BBMAP_BITS) {
  728. BUG_ON(vb->free || !list_empty(&vb->free_list));
  729. spin_unlock(&vb->lock);
  730. free_vmap_block(vb);
  731. } else
  732. spin_unlock(&vb->lock);
  733. }
  734. /**
  735. * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
  736. *
  737. * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
  738. * to amortize TLB flushing overheads. What this means is that any page you
  739. * have now, may, in a former life, have been mapped into kernel virtual
  740. * address by the vmap layer and so there might be some CPUs with TLB entries
  741. * still referencing that page (additional to the regular 1:1 kernel mapping).
  742. *
  743. * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
  744. * be sure that none of the pages we have control over will have any aliases
  745. * from the vmap layer.
  746. */
  747. void vm_unmap_aliases(void)
  748. {
  749. unsigned long start = ULONG_MAX, end = 0;
  750. int cpu;
  751. int flush = 0;
  752. if (unlikely(!vmap_initialized))
  753. return;
  754. for_each_possible_cpu(cpu) {
  755. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  756. struct vmap_block *vb;
  757. rcu_read_lock();
  758. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  759. int i;
  760. spin_lock(&vb->lock);
  761. i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
  762. while (i < VMAP_BBMAP_BITS) {
  763. unsigned long s, e;
  764. int j;
  765. j = find_next_zero_bit(vb->dirty_map,
  766. VMAP_BBMAP_BITS, i);
  767. s = vb->va->va_start + (i << PAGE_SHIFT);
  768. e = vb->va->va_start + (j << PAGE_SHIFT);
  769. vunmap_page_range(s, e);
  770. flush = 1;
  771. if (s < start)
  772. start = s;
  773. if (e > end)
  774. end = e;
  775. i = j;
  776. i = find_next_bit(vb->dirty_map,
  777. VMAP_BBMAP_BITS, i);
  778. }
  779. spin_unlock(&vb->lock);
  780. }
  781. rcu_read_unlock();
  782. }
  783. __purge_vmap_area_lazy(&start, &end, 1, flush);
  784. }
  785. EXPORT_SYMBOL_GPL(vm_unmap_aliases);
  786. /**
  787. * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
  788. * @mem: the pointer returned by vm_map_ram
  789. * @count: the count passed to that vm_map_ram call (cannot unmap partial)
  790. */
  791. void vm_unmap_ram(const void *mem, unsigned int count)
  792. {
  793. unsigned long size = count << PAGE_SHIFT;
  794. unsigned long addr = (unsigned long)mem;
  795. BUG_ON(!addr);
  796. BUG_ON(addr < VMALLOC_START);
  797. BUG_ON(addr > VMALLOC_END);
  798. BUG_ON(addr & (PAGE_SIZE-1));
  799. debug_check_no_locks_freed(mem, size);
  800. vmap_debug_free_range(addr, addr+size);
  801. if (likely(count <= VMAP_MAX_ALLOC))
  802. vb_free(mem, size);
  803. else
  804. free_unmap_vmap_area_addr(addr);
  805. }
  806. EXPORT_SYMBOL(vm_unmap_ram);
  807. /**
  808. * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
  809. * @pages: an array of pointers to the pages to be mapped
  810. * @count: number of pages
  811. * @node: prefer to allocate data structures on this node
  812. * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  813. *
  814. * Returns: a pointer to the address that has been mapped, or %NULL on failure
  815. */
  816. void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
  817. {
  818. unsigned long size = count << PAGE_SHIFT;
  819. unsigned long addr;
  820. void *mem;
  821. if (likely(count <= VMAP_MAX_ALLOC)) {
  822. mem = vb_alloc(size, GFP_KERNEL);
  823. if (IS_ERR(mem))
  824. return NULL;
  825. addr = (unsigned long)mem;
  826. } else {
  827. struct vmap_area *va;
  828. va = alloc_vmap_area(size, PAGE_SIZE,
  829. VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
  830. if (IS_ERR(va))
  831. return NULL;
  832. addr = va->va_start;
  833. mem = (void *)addr;
  834. }
  835. if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
  836. vm_unmap_ram(mem, count);
  837. return NULL;
  838. }
  839. return mem;
  840. }
  841. EXPORT_SYMBOL(vm_map_ram);
  842. void __init vmalloc_init(void)
  843. {
  844. struct vmap_area *va;
  845. struct vm_struct *tmp;
  846. int i;
  847. for_each_possible_cpu(i) {
  848. struct vmap_block_queue *vbq;
  849. vbq = &per_cpu(vmap_block_queue, i);
  850. spin_lock_init(&vbq->lock);
  851. INIT_LIST_HEAD(&vbq->free);
  852. INIT_LIST_HEAD(&vbq->dirty);
  853. vbq->nr_dirty = 0;
  854. }
  855. /* Import existing vmlist entries. */
  856. for (tmp = vmlist; tmp; tmp = tmp->next) {
  857. va = alloc_bootmem(sizeof(struct vmap_area));
  858. va->flags = tmp->flags | VM_VM_AREA;
  859. va->va_start = (unsigned long)tmp->addr;
  860. va->va_end = va->va_start + tmp->size;
  861. __insert_vmap_area(va);
  862. }
  863. vmap_initialized = true;
  864. }
  865. void unmap_kernel_range(unsigned long addr, unsigned long size)
  866. {
  867. unsigned long end = addr + size;
  868. vunmap_page_range(addr, end);
  869. flush_tlb_kernel_range(addr, end);
  870. }
  871. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
  872. {
  873. unsigned long addr = (unsigned long)area->addr;
  874. unsigned long end = addr + area->size - PAGE_SIZE;
  875. int err;
  876. err = vmap_page_range(addr, end, prot, *pages);
  877. if (err > 0) {
  878. *pages += err;
  879. err = 0;
  880. }
  881. return err;
  882. }
  883. EXPORT_SYMBOL_GPL(map_vm_area);
  884. /*** Old vmalloc interfaces ***/
  885. DEFINE_RWLOCK(vmlist_lock);
  886. struct vm_struct *vmlist;
  887. static struct vm_struct *__get_vm_area_node(unsigned long size,
  888. unsigned long flags, unsigned long start, unsigned long end,
  889. int node, gfp_t gfp_mask, void *caller)
  890. {
  891. static struct vmap_area *va;
  892. struct vm_struct *area;
  893. struct vm_struct *tmp, **p;
  894. unsigned long align = 1;
  895. BUG_ON(in_interrupt());
  896. if (flags & VM_IOREMAP) {
  897. int bit = fls(size);
  898. if (bit > IOREMAP_MAX_ORDER)
  899. bit = IOREMAP_MAX_ORDER;
  900. else if (bit < PAGE_SHIFT)
  901. bit = PAGE_SHIFT;
  902. align = 1ul << bit;
  903. }
  904. size = PAGE_ALIGN(size);
  905. if (unlikely(!size))
  906. return NULL;
  907. area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
  908. if (unlikely(!area))
  909. return NULL;
  910. /*
  911. * We always allocate a guard page.
  912. */
  913. size += PAGE_SIZE;
  914. va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
  915. if (IS_ERR(va)) {
  916. kfree(area);
  917. return NULL;
  918. }
  919. area->flags = flags;
  920. area->addr = (void *)va->va_start;
  921. area->size = size;
  922. area->pages = NULL;
  923. area->nr_pages = 0;
  924. area->phys_addr = 0;
  925. area->caller = caller;
  926. va->private = area;
  927. va->flags |= VM_VM_AREA;
  928. write_lock(&vmlist_lock);
  929. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  930. if (tmp->addr >= area->addr)
  931. break;
  932. }
  933. area->next = *p;
  934. *p = area;
  935. write_unlock(&vmlist_lock);
  936. return area;
  937. }
  938. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  939. unsigned long start, unsigned long end)
  940. {
  941. return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
  942. __builtin_return_address(0));
  943. }
  944. EXPORT_SYMBOL_GPL(__get_vm_area);
  945. /**
  946. * get_vm_area - reserve a contiguous kernel virtual area
  947. * @size: size of the area
  948. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  949. *
  950. * Search an area of @size in the kernel virtual mapping area,
  951. * and reserved it for out purposes. Returns the area descriptor
  952. * on success or %NULL on failure.
  953. */
  954. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  955. {
  956. return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
  957. -1, GFP_KERNEL, __builtin_return_address(0));
  958. }
  959. struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
  960. void *caller)
  961. {
  962. return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
  963. -1, GFP_KERNEL, caller);
  964. }
  965. struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
  966. int node, gfp_t gfp_mask)
  967. {
  968. return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
  969. gfp_mask, __builtin_return_address(0));
  970. }
  971. static struct vm_struct *find_vm_area(const void *addr)
  972. {
  973. struct vmap_area *va;
  974. va = find_vmap_area((unsigned long)addr);
  975. if (va && va->flags & VM_VM_AREA)
  976. return va->private;
  977. return NULL;
  978. }
  979. /**
  980. * remove_vm_area - find and remove a continuous kernel virtual area
  981. * @addr: base address
  982. *
  983. * Search for the kernel VM area starting at @addr, and remove it.
  984. * This function returns the found VM area, but using it is NOT safe
  985. * on SMP machines, except for its size or flags.
  986. */
  987. struct vm_struct *remove_vm_area(const void *addr)
  988. {
  989. struct vmap_area *va;
  990. va = find_vmap_area((unsigned long)addr);
  991. if (va && va->flags & VM_VM_AREA) {
  992. struct vm_struct *vm = va->private;
  993. struct vm_struct *tmp, **p;
  994. vmap_debug_free_range(va->va_start, va->va_end);
  995. free_unmap_vmap_area(va);
  996. vm->size -= PAGE_SIZE;
  997. write_lock(&vmlist_lock);
  998. for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
  999. ;
  1000. *p = tmp->next;
  1001. write_unlock(&vmlist_lock);
  1002. return vm;
  1003. }
  1004. return NULL;
  1005. }
  1006. static void __vunmap(const void *addr, int deallocate_pages)
  1007. {
  1008. struct vm_struct *area;
  1009. if (!addr)
  1010. return;
  1011. if ((PAGE_SIZE-1) & (unsigned long)addr) {
  1012. WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
  1013. return;
  1014. }
  1015. area = remove_vm_area(addr);
  1016. if (unlikely(!area)) {
  1017. WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  1018. addr);
  1019. return;
  1020. }
  1021. debug_check_no_locks_freed(addr, area->size);
  1022. debug_check_no_obj_freed(addr, area->size);
  1023. if (deallocate_pages) {
  1024. int i;
  1025. for (i = 0; i < area->nr_pages; i++) {
  1026. struct page *page = area->pages[i];
  1027. BUG_ON(!page);
  1028. __free_page(page);
  1029. }
  1030. if (area->flags & VM_VPAGES)
  1031. vfree(area->pages);
  1032. else
  1033. kfree(area->pages);
  1034. }
  1035. kfree(area);
  1036. return;
  1037. }
  1038. /**
  1039. * vfree - release memory allocated by vmalloc()
  1040. * @addr: memory base address
  1041. *
  1042. * Free the virtually continuous memory area starting at @addr, as
  1043. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  1044. * NULL, no operation is performed.
  1045. *
  1046. * Must not be called in interrupt context.
  1047. */
  1048. void vfree(const void *addr)
  1049. {
  1050. BUG_ON(in_interrupt());
  1051. __vunmap(addr, 1);
  1052. }
  1053. EXPORT_SYMBOL(vfree);
  1054. /**
  1055. * vunmap - release virtual mapping obtained by vmap()
  1056. * @addr: memory base address
  1057. *
  1058. * Free the virtually contiguous memory area starting at @addr,
  1059. * which was created from the page array passed to vmap().
  1060. *
  1061. * Must not be called in interrupt context.
  1062. */
  1063. void vunmap(const void *addr)
  1064. {
  1065. BUG_ON(in_interrupt());
  1066. __vunmap(addr, 0);
  1067. }
  1068. EXPORT_SYMBOL(vunmap);
  1069. /**
  1070. * vmap - map an array of pages into virtually contiguous space
  1071. * @pages: array of page pointers
  1072. * @count: number of pages to map
  1073. * @flags: vm_area->flags
  1074. * @prot: page protection for the mapping
  1075. *
  1076. * Maps @count pages from @pages into contiguous kernel virtual
  1077. * space.
  1078. */
  1079. void *vmap(struct page **pages, unsigned int count,
  1080. unsigned long flags, pgprot_t prot)
  1081. {
  1082. struct vm_struct *area;
  1083. if (count > num_physpages)
  1084. return NULL;
  1085. area = get_vm_area_caller((count << PAGE_SHIFT), flags,
  1086. __builtin_return_address(0));
  1087. if (!area)
  1088. return NULL;
  1089. if (map_vm_area(area, prot, &pages)) {
  1090. vunmap(area->addr);
  1091. return NULL;
  1092. }
  1093. return area->addr;
  1094. }
  1095. EXPORT_SYMBOL(vmap);
  1096. static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
  1097. int node, void *caller);
  1098. static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  1099. pgprot_t prot, int node, void *caller)
  1100. {
  1101. struct page **pages;
  1102. unsigned int nr_pages, array_size, i;
  1103. nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
  1104. array_size = (nr_pages * sizeof(struct page *));
  1105. area->nr_pages = nr_pages;
  1106. /* Please note that the recursion is strictly bounded. */
  1107. if (array_size > PAGE_SIZE) {
  1108. pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
  1109. PAGE_KERNEL, node, caller);
  1110. area->flags |= VM_VPAGES;
  1111. } else {
  1112. pages = kmalloc_node(array_size,
  1113. (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
  1114. node);
  1115. }
  1116. area->pages = pages;
  1117. area->caller = caller;
  1118. if (!area->pages) {
  1119. remove_vm_area(area->addr);
  1120. kfree(area);
  1121. return NULL;
  1122. }
  1123. for (i = 0; i < area->nr_pages; i++) {
  1124. struct page *page;
  1125. if (node < 0)
  1126. page = alloc_page(gfp_mask);
  1127. else
  1128. page = alloc_pages_node(node, gfp_mask, 0);
  1129. if (unlikely(!page)) {
  1130. /* Successfully allocated i pages, free them in __vunmap() */
  1131. area->nr_pages = i;
  1132. goto fail;
  1133. }
  1134. area->pages[i] = page;
  1135. }
  1136. if (map_vm_area(area, prot, &pages))
  1137. goto fail;
  1138. return area->addr;
  1139. fail:
  1140. vfree(area->addr);
  1141. return NULL;
  1142. }
  1143. void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
  1144. {
  1145. return __vmalloc_area_node(area, gfp_mask, prot, -1,
  1146. __builtin_return_address(0));
  1147. }
  1148. /**
  1149. * __vmalloc_node - allocate virtually contiguous memory
  1150. * @size: allocation size
  1151. * @gfp_mask: flags for the page level allocator
  1152. * @prot: protection mask for the allocated pages
  1153. * @node: node to use for allocation or -1
  1154. * @caller: caller's return address
  1155. *
  1156. * Allocate enough pages to cover @size from the page level
  1157. * allocator with @gfp_mask flags. Map them into contiguous
  1158. * kernel virtual space, using a pagetable protection of @prot.
  1159. */
  1160. static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
  1161. int node, void *caller)
  1162. {
  1163. struct vm_struct *area;
  1164. size = PAGE_ALIGN(size);
  1165. if (!size || (size >> PAGE_SHIFT) > num_physpages)
  1166. return NULL;
  1167. area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
  1168. node, gfp_mask, caller);
  1169. if (!area)
  1170. return NULL;
  1171. return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
  1172. }
  1173. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  1174. {
  1175. return __vmalloc_node(size, gfp_mask, prot, -1,
  1176. __builtin_return_address(0));
  1177. }
  1178. EXPORT_SYMBOL(__vmalloc);
  1179. /**
  1180. * vmalloc - allocate virtually contiguous memory
  1181. * @size: allocation size
  1182. * Allocate enough pages to cover @size from the page level
  1183. * allocator and map them into contiguous kernel virtual space.
  1184. *
  1185. * For tight control over page level allocator and protection flags
  1186. * use __vmalloc() instead.
  1187. */
  1188. void *vmalloc(unsigned long size)
  1189. {
  1190. return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1191. -1, __builtin_return_address(0));
  1192. }
  1193. EXPORT_SYMBOL(vmalloc);
  1194. /**
  1195. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  1196. * @size: allocation size
  1197. *
  1198. * The resulting memory area is zeroed so it can be mapped to userspace
  1199. * without leaking data.
  1200. */
  1201. void *vmalloc_user(unsigned long size)
  1202. {
  1203. struct vm_struct *area;
  1204. void *ret;
  1205. ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
  1206. PAGE_KERNEL, -1, __builtin_return_address(0));
  1207. if (ret) {
  1208. area = find_vm_area(ret);
  1209. area->flags |= VM_USERMAP;
  1210. }
  1211. return ret;
  1212. }
  1213. EXPORT_SYMBOL(vmalloc_user);
  1214. /**
  1215. * vmalloc_node - allocate memory on a specific node
  1216. * @size: allocation size
  1217. * @node: numa node
  1218. *
  1219. * Allocate enough pages to cover @size from the page level
  1220. * allocator and map them into contiguous kernel virtual space.
  1221. *
  1222. * For tight control over page level allocator and protection flags
  1223. * use __vmalloc() instead.
  1224. */
  1225. void *vmalloc_node(unsigned long size, int node)
  1226. {
  1227. return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1228. node, __builtin_return_address(0));
  1229. }
  1230. EXPORT_SYMBOL(vmalloc_node);
  1231. #ifndef PAGE_KERNEL_EXEC
  1232. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  1233. #endif
  1234. /**
  1235. * vmalloc_exec - allocate virtually contiguous, executable memory
  1236. * @size: allocation size
  1237. *
  1238. * Kernel-internal function to allocate enough pages to cover @size
  1239. * the page level allocator and map them into contiguous and
  1240. * executable kernel virtual space.
  1241. *
  1242. * For tight control over page level allocator and protection flags
  1243. * use __vmalloc() instead.
  1244. */
  1245. void *vmalloc_exec(unsigned long size)
  1246. {
  1247. return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
  1248. -1, __builtin_return_address(0));
  1249. }
  1250. #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
  1251. #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
  1252. #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
  1253. #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
  1254. #else
  1255. #define GFP_VMALLOC32 GFP_KERNEL
  1256. #endif
  1257. /**
  1258. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  1259. * @size: allocation size
  1260. *
  1261. * Allocate enough 32bit PA addressable pages to cover @size from the
  1262. * page level allocator and map them into contiguous kernel virtual space.
  1263. */
  1264. void *vmalloc_32(unsigned long size)
  1265. {
  1266. return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL,
  1267. -1, __builtin_return_address(0));
  1268. }
  1269. EXPORT_SYMBOL(vmalloc_32);
  1270. /**
  1271. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  1272. * @size: allocation size
  1273. *
  1274. * The resulting memory area is 32bit addressable and zeroed so it can be
  1275. * mapped to userspace without leaking data.
  1276. */
  1277. void *vmalloc_32_user(unsigned long size)
  1278. {
  1279. struct vm_struct *area;
  1280. void *ret;
  1281. ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
  1282. -1, __builtin_return_address(0));
  1283. if (ret) {
  1284. area = find_vm_area(ret);
  1285. area->flags |= VM_USERMAP;
  1286. }
  1287. return ret;
  1288. }
  1289. EXPORT_SYMBOL(vmalloc_32_user);
  1290. long vread(char *buf, char *addr, unsigned long count)
  1291. {
  1292. struct vm_struct *tmp;
  1293. char *vaddr, *buf_start = buf;
  1294. unsigned long n;
  1295. /* Don't allow overflow */
  1296. if ((unsigned long) addr + count < count)
  1297. count = -(unsigned long) addr;
  1298. read_lock(&vmlist_lock);
  1299. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1300. vaddr = (char *) tmp->addr;
  1301. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1302. continue;
  1303. while (addr < vaddr) {
  1304. if (count == 0)
  1305. goto finished;
  1306. *buf = '\0';
  1307. buf++;
  1308. addr++;
  1309. count--;
  1310. }
  1311. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1312. do {
  1313. if (count == 0)
  1314. goto finished;
  1315. *buf = *addr;
  1316. buf++;
  1317. addr++;
  1318. count--;
  1319. } while (--n > 0);
  1320. }
  1321. finished:
  1322. read_unlock(&vmlist_lock);
  1323. return buf - buf_start;
  1324. }
  1325. long vwrite(char *buf, char *addr, unsigned long count)
  1326. {
  1327. struct vm_struct *tmp;
  1328. char *vaddr, *buf_start = buf;
  1329. unsigned long n;
  1330. /* Don't allow overflow */
  1331. if ((unsigned long) addr + count < count)
  1332. count = -(unsigned long) addr;
  1333. read_lock(&vmlist_lock);
  1334. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1335. vaddr = (char *) tmp->addr;
  1336. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1337. continue;
  1338. while (addr < vaddr) {
  1339. if (count == 0)
  1340. goto finished;
  1341. buf++;
  1342. addr++;
  1343. count--;
  1344. }
  1345. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1346. do {
  1347. if (count == 0)
  1348. goto finished;
  1349. *addr = *buf;
  1350. buf++;
  1351. addr++;
  1352. count--;
  1353. } while (--n > 0);
  1354. }
  1355. finished:
  1356. read_unlock(&vmlist_lock);
  1357. return buf - buf_start;
  1358. }
  1359. /**
  1360. * remap_vmalloc_range - map vmalloc pages to userspace
  1361. * @vma: vma to cover (map full range of vma)
  1362. * @addr: vmalloc memory
  1363. * @pgoff: number of pages into addr before first page to map
  1364. *
  1365. * Returns: 0 for success, -Exxx on failure
  1366. *
  1367. * This function checks that addr is a valid vmalloc'ed area, and
  1368. * that it is big enough to cover the vma. Will return failure if
  1369. * that criteria isn't met.
  1370. *
  1371. * Similar to remap_pfn_range() (see mm/memory.c)
  1372. */
  1373. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  1374. unsigned long pgoff)
  1375. {
  1376. struct vm_struct *area;
  1377. unsigned long uaddr = vma->vm_start;
  1378. unsigned long usize = vma->vm_end - vma->vm_start;
  1379. if ((PAGE_SIZE-1) & (unsigned long)addr)
  1380. return -EINVAL;
  1381. area = find_vm_area(addr);
  1382. if (!area)
  1383. return -EINVAL;
  1384. if (!(area->flags & VM_USERMAP))
  1385. return -EINVAL;
  1386. if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
  1387. return -EINVAL;
  1388. addr += pgoff << PAGE_SHIFT;
  1389. do {
  1390. struct page *page = vmalloc_to_page(addr);
  1391. int ret;
  1392. ret = vm_insert_page(vma, uaddr, page);
  1393. if (ret)
  1394. return ret;
  1395. uaddr += PAGE_SIZE;
  1396. addr += PAGE_SIZE;
  1397. usize -= PAGE_SIZE;
  1398. } while (usize > 0);
  1399. /* Prevent "things" like memory migration? VM_flags need a cleanup... */
  1400. vma->vm_flags |= VM_RESERVED;
  1401. return 0;
  1402. }
  1403. EXPORT_SYMBOL(remap_vmalloc_range);
  1404. /*
  1405. * Implement a stub for vmalloc_sync_all() if the architecture chose not to
  1406. * have one.
  1407. */
  1408. void __attribute__((weak)) vmalloc_sync_all(void)
  1409. {
  1410. }
  1411. static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
  1412. {
  1413. /* apply_to_page_range() does all the hard work. */
  1414. return 0;
  1415. }
  1416. /**
  1417. * alloc_vm_area - allocate a range of kernel address space
  1418. * @size: size of the area
  1419. *
  1420. * Returns: NULL on failure, vm_struct on success
  1421. *
  1422. * This function reserves a range of kernel address space, and
  1423. * allocates pagetables to map that range. No actual mappings
  1424. * are created. If the kernel address space is not shared
  1425. * between processes, it syncs the pagetable across all
  1426. * processes.
  1427. */
  1428. struct vm_struct *alloc_vm_area(size_t size)
  1429. {
  1430. struct vm_struct *area;
  1431. area = get_vm_area_caller(size, VM_IOREMAP,
  1432. __builtin_return_address(0));
  1433. if (area == NULL)
  1434. return NULL;
  1435. /*
  1436. * This ensures that page tables are constructed for this region
  1437. * of kernel virtual address space and mapped into init_mm.
  1438. */
  1439. if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
  1440. area->size, f, NULL)) {
  1441. free_vm_area(area);
  1442. return NULL;
  1443. }
  1444. /* Make sure the pagetables are constructed in process kernel
  1445. mappings */
  1446. vmalloc_sync_all();
  1447. return area;
  1448. }
  1449. EXPORT_SYMBOL_GPL(alloc_vm_area);
  1450. void free_vm_area(struct vm_struct *area)
  1451. {
  1452. struct vm_struct *ret;
  1453. ret = remove_vm_area(area->addr);
  1454. BUG_ON(ret != area);
  1455. kfree(area);
  1456. }
  1457. EXPORT_SYMBOL_GPL(free_vm_area);
  1458. #ifdef CONFIG_PROC_FS
  1459. static void *s_start(struct seq_file *m, loff_t *pos)
  1460. {
  1461. loff_t n = *pos;
  1462. struct vm_struct *v;
  1463. read_lock(&vmlist_lock);
  1464. v = vmlist;
  1465. while (n > 0 && v) {
  1466. n--;
  1467. v = v->next;
  1468. }
  1469. if (!n)
  1470. return v;
  1471. return NULL;
  1472. }
  1473. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  1474. {
  1475. struct vm_struct *v = p;
  1476. ++*pos;
  1477. return v->next;
  1478. }
  1479. static void s_stop(struct seq_file *m, void *p)
  1480. {
  1481. read_unlock(&vmlist_lock);
  1482. }
  1483. static void show_numa_info(struct seq_file *m, struct vm_struct *v)
  1484. {
  1485. if (NUMA_BUILD) {
  1486. unsigned int nr, *counters = m->private;
  1487. if (!counters)
  1488. return;
  1489. memset(counters, 0, nr_node_ids * sizeof(unsigned int));
  1490. for (nr = 0; nr < v->nr_pages; nr++)
  1491. counters[page_to_nid(v->pages[nr])]++;
  1492. for_each_node_state(nr, N_HIGH_MEMORY)
  1493. if (counters[nr])
  1494. seq_printf(m, " N%u=%u", nr, counters[nr]);
  1495. }
  1496. }
  1497. static int s_show(struct seq_file *m, void *p)
  1498. {
  1499. struct vm_struct *v = p;
  1500. seq_printf(m, "0x%p-0x%p %7ld",
  1501. v->addr, v->addr + v->size, v->size);
  1502. if (v->caller) {
  1503. char buff[KSYM_SYMBOL_LEN];
  1504. seq_putc(m, ' ');
  1505. sprint_symbol(buff, (unsigned long)v->caller);
  1506. seq_puts(m, buff);
  1507. }
  1508. if (v->nr_pages)
  1509. seq_printf(m, " pages=%d", v->nr_pages);
  1510. if (v->phys_addr)
  1511. seq_printf(m, " phys=%lx", v->phys_addr);
  1512. if (v->flags & VM_IOREMAP)
  1513. seq_printf(m, " ioremap");
  1514. if (v->flags & VM_ALLOC)
  1515. seq_printf(m, " vmalloc");
  1516. if (v->flags & VM_MAP)
  1517. seq_printf(m, " vmap");
  1518. if (v->flags & VM_USERMAP)
  1519. seq_printf(m, " user");
  1520. if (v->flags & VM_VPAGES)
  1521. seq_printf(m, " vpages");
  1522. show_numa_info(m, v);
  1523. seq_putc(m, '\n');
  1524. return 0;
  1525. }
  1526. static const struct seq_operations vmalloc_op = {
  1527. .start = s_start,
  1528. .next = s_next,
  1529. .stop = s_stop,
  1530. .show = s_show,
  1531. };
  1532. static int vmalloc_open(struct inode *inode, struct file *file)
  1533. {
  1534. unsigned int *ptr = NULL;
  1535. int ret;
  1536. if (NUMA_BUILD)
  1537. ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
  1538. ret = seq_open(file, &vmalloc_op);
  1539. if (!ret) {
  1540. struct seq_file *m = file->private_data;
  1541. m->private = ptr;
  1542. } else
  1543. kfree(ptr);
  1544. return ret;
  1545. }
  1546. static const struct file_operations proc_vmalloc_operations = {
  1547. .open = vmalloc_open,
  1548. .read = seq_read,
  1549. .llseek = seq_lseek,
  1550. .release = seq_release_private,
  1551. };
  1552. static int __init proc_vmalloc_init(void)
  1553. {
  1554. proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
  1555. return 0;
  1556. }
  1557. module_init(proc_vmalloc_init);
  1558. #endif