ring_buffer.c 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534
  1. /*
  2. * Generic ring buffer
  3. *
  4. * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
  5. */
  6. #include <linux/ring_buffer.h>
  7. #include <linux/spinlock.h>
  8. #include <linux/debugfs.h>
  9. #include <linux/uaccess.h>
  10. #include <linux/module.h>
  11. #include <linux/percpu.h>
  12. #include <linux/mutex.h>
  13. #include <linux/sched.h> /* used for sched_clock() (for now) */
  14. #include <linux/init.h>
  15. #include <linux/hash.h>
  16. #include <linux/list.h>
  17. #include <linux/fs.h>
  18. #include "trace.h"
  19. /*
  20. * A fast way to enable or disable all ring buffers is to
  21. * call tracing_on or tracing_off. Turning off the ring buffers
  22. * prevents all ring buffers from being recorded to.
  23. * Turning this switch on, makes it OK to write to the
  24. * ring buffer, if the ring buffer is enabled itself.
  25. *
  26. * There's three layers that must be on in order to write
  27. * to the ring buffer.
  28. *
  29. * 1) This global flag must be set.
  30. * 2) The ring buffer must be enabled for recording.
  31. * 3) The per cpu buffer must be enabled for recording.
  32. *
  33. * In case of an anomaly, this global flag has a bit set that
  34. * will permantly disable all ring buffers.
  35. */
  36. /*
  37. * Global flag to disable all recording to ring buffers
  38. * This has two bits: ON, DISABLED
  39. *
  40. * ON DISABLED
  41. * ---- ----------
  42. * 0 0 : ring buffers are off
  43. * 1 0 : ring buffers are on
  44. * X 1 : ring buffers are permanently disabled
  45. */
  46. enum {
  47. RB_BUFFERS_ON_BIT = 0,
  48. RB_BUFFERS_DISABLED_BIT = 1,
  49. };
  50. enum {
  51. RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
  52. RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
  53. };
  54. static long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
  55. /**
  56. * tracing_on - enable all tracing buffers
  57. *
  58. * This function enables all tracing buffers that may have been
  59. * disabled with tracing_off.
  60. */
  61. void tracing_on(void)
  62. {
  63. set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
  64. }
  65. EXPORT_SYMBOL_GPL(tracing_on);
  66. /**
  67. * tracing_off - turn off all tracing buffers
  68. *
  69. * This function stops all tracing buffers from recording data.
  70. * It does not disable any overhead the tracers themselves may
  71. * be causing. This function simply causes all recording to
  72. * the ring buffers to fail.
  73. */
  74. void tracing_off(void)
  75. {
  76. clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
  77. }
  78. EXPORT_SYMBOL_GPL(tracing_off);
  79. /**
  80. * tracing_off_permanent - permanently disable ring buffers
  81. *
  82. * This function, once called, will disable all ring buffers
  83. * permanenty.
  84. */
  85. void tracing_off_permanent(void)
  86. {
  87. set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
  88. }
  89. #include "trace.h"
  90. /* Up this if you want to test the TIME_EXTENTS and normalization */
  91. #define DEBUG_SHIFT 0
  92. /* FIXME!!! */
  93. u64 ring_buffer_time_stamp(int cpu)
  94. {
  95. u64 time;
  96. preempt_disable_notrace();
  97. /* shift to debug/test normalization and TIME_EXTENTS */
  98. time = sched_clock() << DEBUG_SHIFT;
  99. preempt_enable_no_resched_notrace();
  100. return time;
  101. }
  102. EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
  103. void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
  104. {
  105. /* Just stupid testing the normalize function and deltas */
  106. *ts >>= DEBUG_SHIFT;
  107. }
  108. EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
  109. #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
  110. #define RB_ALIGNMENT_SHIFT 2
  111. #define RB_ALIGNMENT (1 << RB_ALIGNMENT_SHIFT)
  112. #define RB_MAX_SMALL_DATA 28
  113. enum {
  114. RB_LEN_TIME_EXTEND = 8,
  115. RB_LEN_TIME_STAMP = 16,
  116. };
  117. /* inline for ring buffer fast paths */
  118. static inline unsigned
  119. rb_event_length(struct ring_buffer_event *event)
  120. {
  121. unsigned length;
  122. switch (event->type) {
  123. case RINGBUF_TYPE_PADDING:
  124. /* undefined */
  125. return -1;
  126. case RINGBUF_TYPE_TIME_EXTEND:
  127. return RB_LEN_TIME_EXTEND;
  128. case RINGBUF_TYPE_TIME_STAMP:
  129. return RB_LEN_TIME_STAMP;
  130. case RINGBUF_TYPE_DATA:
  131. if (event->len)
  132. length = event->len << RB_ALIGNMENT_SHIFT;
  133. else
  134. length = event->array[0];
  135. return length + RB_EVNT_HDR_SIZE;
  136. default:
  137. BUG();
  138. }
  139. /* not hit */
  140. return 0;
  141. }
  142. /**
  143. * ring_buffer_event_length - return the length of the event
  144. * @event: the event to get the length of
  145. */
  146. unsigned ring_buffer_event_length(struct ring_buffer_event *event)
  147. {
  148. unsigned length = rb_event_length(event);
  149. if (event->type != RINGBUF_TYPE_DATA)
  150. return length;
  151. length -= RB_EVNT_HDR_SIZE;
  152. if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
  153. length -= sizeof(event->array[0]);
  154. return length;
  155. }
  156. EXPORT_SYMBOL_GPL(ring_buffer_event_length);
  157. /* inline for ring buffer fast paths */
  158. static inline void *
  159. rb_event_data(struct ring_buffer_event *event)
  160. {
  161. BUG_ON(event->type != RINGBUF_TYPE_DATA);
  162. /* If length is in len field, then array[0] has the data */
  163. if (event->len)
  164. return (void *)&event->array[0];
  165. /* Otherwise length is in array[0] and array[1] has the data */
  166. return (void *)&event->array[1];
  167. }
  168. /**
  169. * ring_buffer_event_data - return the data of the event
  170. * @event: the event to get the data from
  171. */
  172. void *ring_buffer_event_data(struct ring_buffer_event *event)
  173. {
  174. return rb_event_data(event);
  175. }
  176. EXPORT_SYMBOL_GPL(ring_buffer_event_data);
  177. #define for_each_buffer_cpu(buffer, cpu) \
  178. for_each_cpu(cpu, buffer->cpumask)
  179. #define TS_SHIFT 27
  180. #define TS_MASK ((1ULL << TS_SHIFT) - 1)
  181. #define TS_DELTA_TEST (~TS_MASK)
  182. struct buffer_data_page {
  183. u64 time_stamp; /* page time stamp */
  184. local_t commit; /* write commited index */
  185. unsigned char data[]; /* data of buffer page */
  186. };
  187. struct buffer_page {
  188. local_t write; /* index for next write */
  189. unsigned read; /* index for next read */
  190. struct list_head list; /* list of free pages */
  191. struct buffer_data_page *page; /* Actual data page */
  192. };
  193. static void rb_init_page(struct buffer_data_page *bpage)
  194. {
  195. local_set(&bpage->commit, 0);
  196. }
  197. /*
  198. * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
  199. * this issue out.
  200. */
  201. static inline void free_buffer_page(struct buffer_page *bpage)
  202. {
  203. if (bpage->page)
  204. free_page((unsigned long)bpage->page);
  205. kfree(bpage);
  206. }
  207. /*
  208. * We need to fit the time_stamp delta into 27 bits.
  209. */
  210. static inline int test_time_stamp(u64 delta)
  211. {
  212. if (delta & TS_DELTA_TEST)
  213. return 1;
  214. return 0;
  215. }
  216. #define BUF_PAGE_SIZE (PAGE_SIZE - offsetof(struct buffer_data_page, data))
  217. /*
  218. * head_page == tail_page && head == tail then buffer is empty.
  219. */
  220. struct ring_buffer_per_cpu {
  221. int cpu;
  222. struct ring_buffer *buffer;
  223. spinlock_t reader_lock; /* serialize readers */
  224. raw_spinlock_t lock;
  225. struct lock_class_key lock_key;
  226. struct list_head pages;
  227. struct buffer_page *head_page; /* read from head */
  228. struct buffer_page *tail_page; /* write to tail */
  229. struct buffer_page *commit_page; /* commited pages */
  230. struct buffer_page *reader_page;
  231. unsigned long overrun;
  232. unsigned long entries;
  233. u64 write_stamp;
  234. u64 read_stamp;
  235. atomic_t record_disabled;
  236. };
  237. struct ring_buffer {
  238. unsigned pages;
  239. unsigned flags;
  240. int cpus;
  241. cpumask_var_t cpumask;
  242. atomic_t record_disabled;
  243. struct mutex mutex;
  244. struct ring_buffer_per_cpu **buffers;
  245. };
  246. struct ring_buffer_iter {
  247. struct ring_buffer_per_cpu *cpu_buffer;
  248. unsigned long head;
  249. struct buffer_page *head_page;
  250. u64 read_stamp;
  251. };
  252. /* buffer may be either ring_buffer or ring_buffer_per_cpu */
  253. #define RB_WARN_ON(buffer, cond) \
  254. ({ \
  255. int _____ret = unlikely(cond); \
  256. if (_____ret) { \
  257. atomic_inc(&buffer->record_disabled); \
  258. WARN_ON(1); \
  259. } \
  260. _____ret; \
  261. })
  262. /**
  263. * check_pages - integrity check of buffer pages
  264. * @cpu_buffer: CPU buffer with pages to test
  265. *
  266. * As a safty measure we check to make sure the data pages have not
  267. * been corrupted.
  268. */
  269. static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
  270. {
  271. struct list_head *head = &cpu_buffer->pages;
  272. struct buffer_page *bpage, *tmp;
  273. if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
  274. return -1;
  275. if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
  276. return -1;
  277. list_for_each_entry_safe(bpage, tmp, head, list) {
  278. if (RB_WARN_ON(cpu_buffer,
  279. bpage->list.next->prev != &bpage->list))
  280. return -1;
  281. if (RB_WARN_ON(cpu_buffer,
  282. bpage->list.prev->next != &bpage->list))
  283. return -1;
  284. }
  285. return 0;
  286. }
  287. static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
  288. unsigned nr_pages)
  289. {
  290. struct list_head *head = &cpu_buffer->pages;
  291. struct buffer_page *bpage, *tmp;
  292. unsigned long addr;
  293. LIST_HEAD(pages);
  294. unsigned i;
  295. for (i = 0; i < nr_pages; i++) {
  296. bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
  297. GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
  298. if (!bpage)
  299. goto free_pages;
  300. list_add(&bpage->list, &pages);
  301. addr = __get_free_page(GFP_KERNEL);
  302. if (!addr)
  303. goto free_pages;
  304. bpage->page = (void *)addr;
  305. rb_init_page(bpage->page);
  306. }
  307. list_splice(&pages, head);
  308. rb_check_pages(cpu_buffer);
  309. return 0;
  310. free_pages:
  311. list_for_each_entry_safe(bpage, tmp, &pages, list) {
  312. list_del_init(&bpage->list);
  313. free_buffer_page(bpage);
  314. }
  315. return -ENOMEM;
  316. }
  317. static struct ring_buffer_per_cpu *
  318. rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
  319. {
  320. struct ring_buffer_per_cpu *cpu_buffer;
  321. struct buffer_page *bpage;
  322. unsigned long addr;
  323. int ret;
  324. cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
  325. GFP_KERNEL, cpu_to_node(cpu));
  326. if (!cpu_buffer)
  327. return NULL;
  328. cpu_buffer->cpu = cpu;
  329. cpu_buffer->buffer = buffer;
  330. spin_lock_init(&cpu_buffer->reader_lock);
  331. cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
  332. INIT_LIST_HEAD(&cpu_buffer->pages);
  333. bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
  334. GFP_KERNEL, cpu_to_node(cpu));
  335. if (!bpage)
  336. goto fail_free_buffer;
  337. cpu_buffer->reader_page = bpage;
  338. addr = __get_free_page(GFP_KERNEL);
  339. if (!addr)
  340. goto fail_free_reader;
  341. bpage->page = (void *)addr;
  342. rb_init_page(bpage->page);
  343. INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
  344. ret = rb_allocate_pages(cpu_buffer, buffer->pages);
  345. if (ret < 0)
  346. goto fail_free_reader;
  347. cpu_buffer->head_page
  348. = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
  349. cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
  350. return cpu_buffer;
  351. fail_free_reader:
  352. free_buffer_page(cpu_buffer->reader_page);
  353. fail_free_buffer:
  354. kfree(cpu_buffer);
  355. return NULL;
  356. }
  357. static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
  358. {
  359. struct list_head *head = &cpu_buffer->pages;
  360. struct buffer_page *bpage, *tmp;
  361. list_del_init(&cpu_buffer->reader_page->list);
  362. free_buffer_page(cpu_buffer->reader_page);
  363. list_for_each_entry_safe(bpage, tmp, head, list) {
  364. list_del_init(&bpage->list);
  365. free_buffer_page(bpage);
  366. }
  367. kfree(cpu_buffer);
  368. }
  369. /*
  370. * Causes compile errors if the struct buffer_page gets bigger
  371. * than the struct page.
  372. */
  373. extern int ring_buffer_page_too_big(void);
  374. /**
  375. * ring_buffer_alloc - allocate a new ring_buffer
  376. * @size: the size in bytes per cpu that is needed.
  377. * @flags: attributes to set for the ring buffer.
  378. *
  379. * Currently the only flag that is available is the RB_FL_OVERWRITE
  380. * flag. This flag means that the buffer will overwrite old data
  381. * when the buffer wraps. If this flag is not set, the buffer will
  382. * drop data when the tail hits the head.
  383. */
  384. struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
  385. {
  386. struct ring_buffer *buffer;
  387. int bsize;
  388. int cpu;
  389. /* Paranoid! Optimizes out when all is well */
  390. if (sizeof(struct buffer_page) > sizeof(struct page))
  391. ring_buffer_page_too_big();
  392. /* keep it in its own cache line */
  393. buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
  394. GFP_KERNEL);
  395. if (!buffer)
  396. return NULL;
  397. if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
  398. goto fail_free_buffer;
  399. buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  400. buffer->flags = flags;
  401. /* need at least two pages */
  402. if (buffer->pages == 1)
  403. buffer->pages++;
  404. cpumask_copy(buffer->cpumask, cpu_possible_mask);
  405. buffer->cpus = nr_cpu_ids;
  406. bsize = sizeof(void *) * nr_cpu_ids;
  407. buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
  408. GFP_KERNEL);
  409. if (!buffer->buffers)
  410. goto fail_free_cpumask;
  411. for_each_buffer_cpu(buffer, cpu) {
  412. buffer->buffers[cpu] =
  413. rb_allocate_cpu_buffer(buffer, cpu);
  414. if (!buffer->buffers[cpu])
  415. goto fail_free_buffers;
  416. }
  417. mutex_init(&buffer->mutex);
  418. return buffer;
  419. fail_free_buffers:
  420. for_each_buffer_cpu(buffer, cpu) {
  421. if (buffer->buffers[cpu])
  422. rb_free_cpu_buffer(buffer->buffers[cpu]);
  423. }
  424. kfree(buffer->buffers);
  425. fail_free_cpumask:
  426. free_cpumask_var(buffer->cpumask);
  427. fail_free_buffer:
  428. kfree(buffer);
  429. return NULL;
  430. }
  431. EXPORT_SYMBOL_GPL(ring_buffer_alloc);
  432. /**
  433. * ring_buffer_free - free a ring buffer.
  434. * @buffer: the buffer to free.
  435. */
  436. void
  437. ring_buffer_free(struct ring_buffer *buffer)
  438. {
  439. int cpu;
  440. for_each_buffer_cpu(buffer, cpu)
  441. rb_free_cpu_buffer(buffer->buffers[cpu]);
  442. free_cpumask_var(buffer->cpumask);
  443. kfree(buffer);
  444. }
  445. EXPORT_SYMBOL_GPL(ring_buffer_free);
  446. static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
  447. static void
  448. rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
  449. {
  450. struct buffer_page *bpage;
  451. struct list_head *p;
  452. unsigned i;
  453. atomic_inc(&cpu_buffer->record_disabled);
  454. synchronize_sched();
  455. for (i = 0; i < nr_pages; i++) {
  456. if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
  457. return;
  458. p = cpu_buffer->pages.next;
  459. bpage = list_entry(p, struct buffer_page, list);
  460. list_del_init(&bpage->list);
  461. free_buffer_page(bpage);
  462. }
  463. if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
  464. return;
  465. rb_reset_cpu(cpu_buffer);
  466. rb_check_pages(cpu_buffer);
  467. atomic_dec(&cpu_buffer->record_disabled);
  468. }
  469. static void
  470. rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
  471. struct list_head *pages, unsigned nr_pages)
  472. {
  473. struct buffer_page *bpage;
  474. struct list_head *p;
  475. unsigned i;
  476. atomic_inc(&cpu_buffer->record_disabled);
  477. synchronize_sched();
  478. for (i = 0; i < nr_pages; i++) {
  479. if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
  480. return;
  481. p = pages->next;
  482. bpage = list_entry(p, struct buffer_page, list);
  483. list_del_init(&bpage->list);
  484. list_add_tail(&bpage->list, &cpu_buffer->pages);
  485. }
  486. rb_reset_cpu(cpu_buffer);
  487. rb_check_pages(cpu_buffer);
  488. atomic_dec(&cpu_buffer->record_disabled);
  489. }
  490. /**
  491. * ring_buffer_resize - resize the ring buffer
  492. * @buffer: the buffer to resize.
  493. * @size: the new size.
  494. *
  495. * The tracer is responsible for making sure that the buffer is
  496. * not being used while changing the size.
  497. * Note: We may be able to change the above requirement by using
  498. * RCU synchronizations.
  499. *
  500. * Minimum size is 2 * BUF_PAGE_SIZE.
  501. *
  502. * Returns -1 on failure.
  503. */
  504. int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
  505. {
  506. struct ring_buffer_per_cpu *cpu_buffer;
  507. unsigned nr_pages, rm_pages, new_pages;
  508. struct buffer_page *bpage, *tmp;
  509. unsigned long buffer_size;
  510. unsigned long addr;
  511. LIST_HEAD(pages);
  512. int i, cpu;
  513. /*
  514. * Always succeed at resizing a non-existent buffer:
  515. */
  516. if (!buffer)
  517. return size;
  518. size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  519. size *= BUF_PAGE_SIZE;
  520. buffer_size = buffer->pages * BUF_PAGE_SIZE;
  521. /* we need a minimum of two pages */
  522. if (size < BUF_PAGE_SIZE * 2)
  523. size = BUF_PAGE_SIZE * 2;
  524. if (size == buffer_size)
  525. return size;
  526. mutex_lock(&buffer->mutex);
  527. nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  528. if (size < buffer_size) {
  529. /* easy case, just free pages */
  530. if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) {
  531. mutex_unlock(&buffer->mutex);
  532. return -1;
  533. }
  534. rm_pages = buffer->pages - nr_pages;
  535. for_each_buffer_cpu(buffer, cpu) {
  536. cpu_buffer = buffer->buffers[cpu];
  537. rb_remove_pages(cpu_buffer, rm_pages);
  538. }
  539. goto out;
  540. }
  541. /*
  542. * This is a bit more difficult. We only want to add pages
  543. * when we can allocate enough for all CPUs. We do this
  544. * by allocating all the pages and storing them on a local
  545. * link list. If we succeed in our allocation, then we
  546. * add these pages to the cpu_buffers. Otherwise we just free
  547. * them all and return -ENOMEM;
  548. */
  549. if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) {
  550. mutex_unlock(&buffer->mutex);
  551. return -1;
  552. }
  553. new_pages = nr_pages - buffer->pages;
  554. for_each_buffer_cpu(buffer, cpu) {
  555. for (i = 0; i < new_pages; i++) {
  556. bpage = kzalloc_node(ALIGN(sizeof(*bpage),
  557. cache_line_size()),
  558. GFP_KERNEL, cpu_to_node(cpu));
  559. if (!bpage)
  560. goto free_pages;
  561. list_add(&bpage->list, &pages);
  562. addr = __get_free_page(GFP_KERNEL);
  563. if (!addr)
  564. goto free_pages;
  565. bpage->page = (void *)addr;
  566. rb_init_page(bpage->page);
  567. }
  568. }
  569. for_each_buffer_cpu(buffer, cpu) {
  570. cpu_buffer = buffer->buffers[cpu];
  571. rb_insert_pages(cpu_buffer, &pages, new_pages);
  572. }
  573. if (RB_WARN_ON(buffer, !list_empty(&pages))) {
  574. mutex_unlock(&buffer->mutex);
  575. return -1;
  576. }
  577. out:
  578. buffer->pages = nr_pages;
  579. mutex_unlock(&buffer->mutex);
  580. return size;
  581. free_pages:
  582. list_for_each_entry_safe(bpage, tmp, &pages, list) {
  583. list_del_init(&bpage->list);
  584. free_buffer_page(bpage);
  585. }
  586. mutex_unlock(&buffer->mutex);
  587. return -ENOMEM;
  588. }
  589. EXPORT_SYMBOL_GPL(ring_buffer_resize);
  590. static inline int rb_null_event(struct ring_buffer_event *event)
  591. {
  592. return event->type == RINGBUF_TYPE_PADDING;
  593. }
  594. static inline void *
  595. __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
  596. {
  597. return bpage->data + index;
  598. }
  599. static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
  600. {
  601. return bpage->page->data + index;
  602. }
  603. static inline struct ring_buffer_event *
  604. rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
  605. {
  606. return __rb_page_index(cpu_buffer->reader_page,
  607. cpu_buffer->reader_page->read);
  608. }
  609. static inline struct ring_buffer_event *
  610. rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
  611. {
  612. return __rb_page_index(cpu_buffer->head_page,
  613. cpu_buffer->head_page->read);
  614. }
  615. static inline struct ring_buffer_event *
  616. rb_iter_head_event(struct ring_buffer_iter *iter)
  617. {
  618. return __rb_page_index(iter->head_page, iter->head);
  619. }
  620. static inline unsigned rb_page_write(struct buffer_page *bpage)
  621. {
  622. return local_read(&bpage->write);
  623. }
  624. static inline unsigned rb_page_commit(struct buffer_page *bpage)
  625. {
  626. return local_read(&bpage->page->commit);
  627. }
  628. /* Size is determined by what has been commited */
  629. static inline unsigned rb_page_size(struct buffer_page *bpage)
  630. {
  631. return rb_page_commit(bpage);
  632. }
  633. static inline unsigned
  634. rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
  635. {
  636. return rb_page_commit(cpu_buffer->commit_page);
  637. }
  638. static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
  639. {
  640. return rb_page_commit(cpu_buffer->head_page);
  641. }
  642. /*
  643. * When the tail hits the head and the buffer is in overwrite mode,
  644. * the head jumps to the next page and all content on the previous
  645. * page is discarded. But before doing so, we update the overrun
  646. * variable of the buffer.
  647. */
  648. static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
  649. {
  650. struct ring_buffer_event *event;
  651. unsigned long head;
  652. for (head = 0; head < rb_head_size(cpu_buffer);
  653. head += rb_event_length(event)) {
  654. event = __rb_page_index(cpu_buffer->head_page, head);
  655. if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
  656. return;
  657. /* Only count data entries */
  658. if (event->type != RINGBUF_TYPE_DATA)
  659. continue;
  660. cpu_buffer->overrun++;
  661. cpu_buffer->entries--;
  662. }
  663. }
  664. static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
  665. struct buffer_page **bpage)
  666. {
  667. struct list_head *p = (*bpage)->list.next;
  668. if (p == &cpu_buffer->pages)
  669. p = p->next;
  670. *bpage = list_entry(p, struct buffer_page, list);
  671. }
  672. static inline unsigned
  673. rb_event_index(struct ring_buffer_event *event)
  674. {
  675. unsigned long addr = (unsigned long)event;
  676. return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
  677. }
  678. static inline int
  679. rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
  680. struct ring_buffer_event *event)
  681. {
  682. unsigned long addr = (unsigned long)event;
  683. unsigned long index;
  684. index = rb_event_index(event);
  685. addr &= PAGE_MASK;
  686. return cpu_buffer->commit_page->page == (void *)addr &&
  687. rb_commit_index(cpu_buffer) == index;
  688. }
  689. static inline void
  690. rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
  691. struct ring_buffer_event *event)
  692. {
  693. unsigned long addr = (unsigned long)event;
  694. unsigned long index;
  695. index = rb_event_index(event);
  696. addr &= PAGE_MASK;
  697. while (cpu_buffer->commit_page->page != (void *)addr) {
  698. if (RB_WARN_ON(cpu_buffer,
  699. cpu_buffer->commit_page == cpu_buffer->tail_page))
  700. return;
  701. cpu_buffer->commit_page->page->commit =
  702. cpu_buffer->commit_page->write;
  703. rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
  704. cpu_buffer->write_stamp =
  705. cpu_buffer->commit_page->page->time_stamp;
  706. }
  707. /* Now set the commit to the event's index */
  708. local_set(&cpu_buffer->commit_page->page->commit, index);
  709. }
  710. static inline void
  711. rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
  712. {
  713. /*
  714. * We only race with interrupts and NMIs on this CPU.
  715. * If we own the commit event, then we can commit
  716. * all others that interrupted us, since the interruptions
  717. * are in stack format (they finish before they come
  718. * back to us). This allows us to do a simple loop to
  719. * assign the commit to the tail.
  720. */
  721. again:
  722. while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
  723. cpu_buffer->commit_page->page->commit =
  724. cpu_buffer->commit_page->write;
  725. rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
  726. cpu_buffer->write_stamp =
  727. cpu_buffer->commit_page->page->time_stamp;
  728. /* add barrier to keep gcc from optimizing too much */
  729. barrier();
  730. }
  731. while (rb_commit_index(cpu_buffer) !=
  732. rb_page_write(cpu_buffer->commit_page)) {
  733. cpu_buffer->commit_page->page->commit =
  734. cpu_buffer->commit_page->write;
  735. barrier();
  736. }
  737. /* again, keep gcc from optimizing */
  738. barrier();
  739. /*
  740. * If an interrupt came in just after the first while loop
  741. * and pushed the tail page forward, we will be left with
  742. * a dangling commit that will never go forward.
  743. */
  744. if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
  745. goto again;
  746. }
  747. static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
  748. {
  749. cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
  750. cpu_buffer->reader_page->read = 0;
  751. }
  752. static inline void rb_inc_iter(struct ring_buffer_iter *iter)
  753. {
  754. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  755. /*
  756. * The iterator could be on the reader page (it starts there).
  757. * But the head could have moved, since the reader was
  758. * found. Check for this case and assign the iterator
  759. * to the head page instead of next.
  760. */
  761. if (iter->head_page == cpu_buffer->reader_page)
  762. iter->head_page = cpu_buffer->head_page;
  763. else
  764. rb_inc_page(cpu_buffer, &iter->head_page);
  765. iter->read_stamp = iter->head_page->page->time_stamp;
  766. iter->head = 0;
  767. }
  768. /**
  769. * ring_buffer_update_event - update event type and data
  770. * @event: the even to update
  771. * @type: the type of event
  772. * @length: the size of the event field in the ring buffer
  773. *
  774. * Update the type and data fields of the event. The length
  775. * is the actual size that is written to the ring buffer,
  776. * and with this, we can determine what to place into the
  777. * data field.
  778. */
  779. static inline void
  780. rb_update_event(struct ring_buffer_event *event,
  781. unsigned type, unsigned length)
  782. {
  783. event->type = type;
  784. switch (type) {
  785. case RINGBUF_TYPE_PADDING:
  786. break;
  787. case RINGBUF_TYPE_TIME_EXTEND:
  788. event->len =
  789. (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
  790. >> RB_ALIGNMENT_SHIFT;
  791. break;
  792. case RINGBUF_TYPE_TIME_STAMP:
  793. event->len =
  794. (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
  795. >> RB_ALIGNMENT_SHIFT;
  796. break;
  797. case RINGBUF_TYPE_DATA:
  798. length -= RB_EVNT_HDR_SIZE;
  799. if (length > RB_MAX_SMALL_DATA) {
  800. event->len = 0;
  801. event->array[0] = length;
  802. } else
  803. event->len =
  804. (length + (RB_ALIGNMENT-1))
  805. >> RB_ALIGNMENT_SHIFT;
  806. break;
  807. default:
  808. BUG();
  809. }
  810. }
  811. static inline unsigned rb_calculate_event_length(unsigned length)
  812. {
  813. struct ring_buffer_event event; /* Used only for sizeof array */
  814. /* zero length can cause confusions */
  815. if (!length)
  816. length = 1;
  817. if (length > RB_MAX_SMALL_DATA)
  818. length += sizeof(event.array[0]);
  819. length += RB_EVNT_HDR_SIZE;
  820. length = ALIGN(length, RB_ALIGNMENT);
  821. return length;
  822. }
  823. static struct ring_buffer_event *
  824. __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
  825. unsigned type, unsigned long length, u64 *ts)
  826. {
  827. struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
  828. unsigned long tail, write;
  829. struct ring_buffer *buffer = cpu_buffer->buffer;
  830. struct ring_buffer_event *event;
  831. unsigned long flags;
  832. commit_page = cpu_buffer->commit_page;
  833. /* we just need to protect against interrupts */
  834. barrier();
  835. tail_page = cpu_buffer->tail_page;
  836. write = local_add_return(length, &tail_page->write);
  837. tail = write - length;
  838. /* See if we shot pass the end of this buffer page */
  839. if (write > BUF_PAGE_SIZE) {
  840. struct buffer_page *next_page = tail_page;
  841. local_irq_save(flags);
  842. __raw_spin_lock(&cpu_buffer->lock);
  843. rb_inc_page(cpu_buffer, &next_page);
  844. head_page = cpu_buffer->head_page;
  845. reader_page = cpu_buffer->reader_page;
  846. /* we grabbed the lock before incrementing */
  847. if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
  848. goto out_unlock;
  849. /*
  850. * If for some reason, we had an interrupt storm that made
  851. * it all the way around the buffer, bail, and warn
  852. * about it.
  853. */
  854. if (unlikely(next_page == commit_page)) {
  855. WARN_ON_ONCE(1);
  856. goto out_unlock;
  857. }
  858. if (next_page == head_page) {
  859. if (!(buffer->flags & RB_FL_OVERWRITE))
  860. goto out_unlock;
  861. /* tail_page has not moved yet? */
  862. if (tail_page == cpu_buffer->tail_page) {
  863. /* count overflows */
  864. rb_update_overflow(cpu_buffer);
  865. rb_inc_page(cpu_buffer, &head_page);
  866. cpu_buffer->head_page = head_page;
  867. cpu_buffer->head_page->read = 0;
  868. }
  869. }
  870. /*
  871. * If the tail page is still the same as what we think
  872. * it is, then it is up to us to update the tail
  873. * pointer.
  874. */
  875. if (tail_page == cpu_buffer->tail_page) {
  876. local_set(&next_page->write, 0);
  877. local_set(&next_page->page->commit, 0);
  878. cpu_buffer->tail_page = next_page;
  879. /* reread the time stamp */
  880. *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
  881. cpu_buffer->tail_page->page->time_stamp = *ts;
  882. }
  883. /*
  884. * The actual tail page has moved forward.
  885. */
  886. if (tail < BUF_PAGE_SIZE) {
  887. /* Mark the rest of the page with padding */
  888. event = __rb_page_index(tail_page, tail);
  889. event->type = RINGBUF_TYPE_PADDING;
  890. }
  891. if (tail <= BUF_PAGE_SIZE)
  892. /* Set the write back to the previous setting */
  893. local_set(&tail_page->write, tail);
  894. /*
  895. * If this was a commit entry that failed,
  896. * increment that too
  897. */
  898. if (tail_page == cpu_buffer->commit_page &&
  899. tail == rb_commit_index(cpu_buffer)) {
  900. rb_set_commit_to_write(cpu_buffer);
  901. }
  902. __raw_spin_unlock(&cpu_buffer->lock);
  903. local_irq_restore(flags);
  904. /* fail and let the caller try again */
  905. return ERR_PTR(-EAGAIN);
  906. }
  907. /* We reserved something on the buffer */
  908. if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
  909. return NULL;
  910. event = __rb_page_index(tail_page, tail);
  911. rb_update_event(event, type, length);
  912. /*
  913. * If this is a commit and the tail is zero, then update
  914. * this page's time stamp.
  915. */
  916. if (!tail && rb_is_commit(cpu_buffer, event))
  917. cpu_buffer->commit_page->page->time_stamp = *ts;
  918. return event;
  919. out_unlock:
  920. /* reset write */
  921. if (tail <= BUF_PAGE_SIZE)
  922. local_set(&tail_page->write, tail);
  923. __raw_spin_unlock(&cpu_buffer->lock);
  924. local_irq_restore(flags);
  925. return NULL;
  926. }
  927. static int
  928. rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  929. u64 *ts, u64 *delta)
  930. {
  931. struct ring_buffer_event *event;
  932. static int once;
  933. int ret;
  934. if (unlikely(*delta > (1ULL << 59) && !once++)) {
  935. printk(KERN_WARNING "Delta way too big! %llu"
  936. " ts=%llu write stamp = %llu\n",
  937. (unsigned long long)*delta,
  938. (unsigned long long)*ts,
  939. (unsigned long long)cpu_buffer->write_stamp);
  940. WARN_ON(1);
  941. }
  942. /*
  943. * The delta is too big, we to add a
  944. * new timestamp.
  945. */
  946. event = __rb_reserve_next(cpu_buffer,
  947. RINGBUF_TYPE_TIME_EXTEND,
  948. RB_LEN_TIME_EXTEND,
  949. ts);
  950. if (!event)
  951. return -EBUSY;
  952. if (PTR_ERR(event) == -EAGAIN)
  953. return -EAGAIN;
  954. /* Only a commited time event can update the write stamp */
  955. if (rb_is_commit(cpu_buffer, event)) {
  956. /*
  957. * If this is the first on the page, then we need to
  958. * update the page itself, and just put in a zero.
  959. */
  960. if (rb_event_index(event)) {
  961. event->time_delta = *delta & TS_MASK;
  962. event->array[0] = *delta >> TS_SHIFT;
  963. } else {
  964. cpu_buffer->commit_page->page->time_stamp = *ts;
  965. event->time_delta = 0;
  966. event->array[0] = 0;
  967. }
  968. cpu_buffer->write_stamp = *ts;
  969. /* let the caller know this was the commit */
  970. ret = 1;
  971. } else {
  972. /* Darn, this is just wasted space */
  973. event->time_delta = 0;
  974. event->array[0] = 0;
  975. ret = 0;
  976. }
  977. *delta = 0;
  978. return ret;
  979. }
  980. static struct ring_buffer_event *
  981. rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
  982. unsigned type, unsigned long length)
  983. {
  984. struct ring_buffer_event *event;
  985. u64 ts, delta;
  986. int commit = 0;
  987. int nr_loops = 0;
  988. again:
  989. /*
  990. * We allow for interrupts to reenter here and do a trace.
  991. * If one does, it will cause this original code to loop
  992. * back here. Even with heavy interrupts happening, this
  993. * should only happen a few times in a row. If this happens
  994. * 1000 times in a row, there must be either an interrupt
  995. * storm or we have something buggy.
  996. * Bail!
  997. */
  998. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
  999. return NULL;
  1000. ts = ring_buffer_time_stamp(cpu_buffer->cpu);
  1001. /*
  1002. * Only the first commit can update the timestamp.
  1003. * Yes there is a race here. If an interrupt comes in
  1004. * just after the conditional and it traces too, then it
  1005. * will also check the deltas. More than one timestamp may
  1006. * also be made. But only the entry that did the actual
  1007. * commit will be something other than zero.
  1008. */
  1009. if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
  1010. rb_page_write(cpu_buffer->tail_page) ==
  1011. rb_commit_index(cpu_buffer)) {
  1012. delta = ts - cpu_buffer->write_stamp;
  1013. /* make sure this delta is calculated here */
  1014. barrier();
  1015. /* Did the write stamp get updated already? */
  1016. if (unlikely(ts < cpu_buffer->write_stamp))
  1017. delta = 0;
  1018. if (test_time_stamp(delta)) {
  1019. commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
  1020. if (commit == -EBUSY)
  1021. return NULL;
  1022. if (commit == -EAGAIN)
  1023. goto again;
  1024. RB_WARN_ON(cpu_buffer, commit < 0);
  1025. }
  1026. } else
  1027. /* Non commits have zero deltas */
  1028. delta = 0;
  1029. event = __rb_reserve_next(cpu_buffer, type, length, &ts);
  1030. if (PTR_ERR(event) == -EAGAIN)
  1031. goto again;
  1032. if (!event) {
  1033. if (unlikely(commit))
  1034. /*
  1035. * Ouch! We needed a timestamp and it was commited. But
  1036. * we didn't get our event reserved.
  1037. */
  1038. rb_set_commit_to_write(cpu_buffer);
  1039. return NULL;
  1040. }
  1041. /*
  1042. * If the timestamp was commited, make the commit our entry
  1043. * now so that we will update it when needed.
  1044. */
  1045. if (commit)
  1046. rb_set_commit_event(cpu_buffer, event);
  1047. else if (!rb_is_commit(cpu_buffer, event))
  1048. delta = 0;
  1049. event->time_delta = delta;
  1050. return event;
  1051. }
  1052. static DEFINE_PER_CPU(int, rb_need_resched);
  1053. /**
  1054. * ring_buffer_lock_reserve - reserve a part of the buffer
  1055. * @buffer: the ring buffer to reserve from
  1056. * @length: the length of the data to reserve (excluding event header)
  1057. * @flags: a pointer to save the interrupt flags
  1058. *
  1059. * Returns a reseverd event on the ring buffer to copy directly to.
  1060. * The user of this interface will need to get the body to write into
  1061. * and can use the ring_buffer_event_data() interface.
  1062. *
  1063. * The length is the length of the data needed, not the event length
  1064. * which also includes the event header.
  1065. *
  1066. * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
  1067. * If NULL is returned, then nothing has been allocated or locked.
  1068. */
  1069. struct ring_buffer_event *
  1070. ring_buffer_lock_reserve(struct ring_buffer *buffer,
  1071. unsigned long length,
  1072. unsigned long *flags)
  1073. {
  1074. struct ring_buffer_per_cpu *cpu_buffer;
  1075. struct ring_buffer_event *event;
  1076. int cpu, resched;
  1077. if (ring_buffer_flags != RB_BUFFERS_ON)
  1078. return NULL;
  1079. if (atomic_read(&buffer->record_disabled))
  1080. return NULL;
  1081. /* If we are tracing schedule, we don't want to recurse */
  1082. resched = ftrace_preempt_disable();
  1083. cpu = raw_smp_processor_id();
  1084. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1085. goto out;
  1086. cpu_buffer = buffer->buffers[cpu];
  1087. if (atomic_read(&cpu_buffer->record_disabled))
  1088. goto out;
  1089. length = rb_calculate_event_length(length);
  1090. if (length > BUF_PAGE_SIZE)
  1091. goto out;
  1092. event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
  1093. if (!event)
  1094. goto out;
  1095. /*
  1096. * Need to store resched state on this cpu.
  1097. * Only the first needs to.
  1098. */
  1099. if (preempt_count() == 1)
  1100. per_cpu(rb_need_resched, cpu) = resched;
  1101. return event;
  1102. out:
  1103. ftrace_preempt_enable(resched);
  1104. return NULL;
  1105. }
  1106. EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
  1107. static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
  1108. struct ring_buffer_event *event)
  1109. {
  1110. cpu_buffer->entries++;
  1111. /* Only process further if we own the commit */
  1112. if (!rb_is_commit(cpu_buffer, event))
  1113. return;
  1114. cpu_buffer->write_stamp += event->time_delta;
  1115. rb_set_commit_to_write(cpu_buffer);
  1116. }
  1117. /**
  1118. * ring_buffer_unlock_commit - commit a reserved
  1119. * @buffer: The buffer to commit to
  1120. * @event: The event pointer to commit.
  1121. * @flags: the interrupt flags received from ring_buffer_lock_reserve.
  1122. *
  1123. * This commits the data to the ring buffer, and releases any locks held.
  1124. *
  1125. * Must be paired with ring_buffer_lock_reserve.
  1126. */
  1127. int ring_buffer_unlock_commit(struct ring_buffer *buffer,
  1128. struct ring_buffer_event *event,
  1129. unsigned long flags)
  1130. {
  1131. struct ring_buffer_per_cpu *cpu_buffer;
  1132. int cpu = raw_smp_processor_id();
  1133. cpu_buffer = buffer->buffers[cpu];
  1134. rb_commit(cpu_buffer, event);
  1135. /*
  1136. * Only the last preempt count needs to restore preemption.
  1137. */
  1138. if (preempt_count() == 1)
  1139. ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
  1140. else
  1141. preempt_enable_no_resched_notrace();
  1142. return 0;
  1143. }
  1144. EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
  1145. /**
  1146. * ring_buffer_write - write data to the buffer without reserving
  1147. * @buffer: The ring buffer to write to.
  1148. * @length: The length of the data being written (excluding the event header)
  1149. * @data: The data to write to the buffer.
  1150. *
  1151. * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
  1152. * one function. If you already have the data to write to the buffer, it
  1153. * may be easier to simply call this function.
  1154. *
  1155. * Note, like ring_buffer_lock_reserve, the length is the length of the data
  1156. * and not the length of the event which would hold the header.
  1157. */
  1158. int ring_buffer_write(struct ring_buffer *buffer,
  1159. unsigned long length,
  1160. void *data)
  1161. {
  1162. struct ring_buffer_per_cpu *cpu_buffer;
  1163. struct ring_buffer_event *event;
  1164. unsigned long event_length;
  1165. void *body;
  1166. int ret = -EBUSY;
  1167. int cpu, resched;
  1168. if (ring_buffer_flags != RB_BUFFERS_ON)
  1169. return -EBUSY;
  1170. if (atomic_read(&buffer->record_disabled))
  1171. return -EBUSY;
  1172. resched = ftrace_preempt_disable();
  1173. cpu = raw_smp_processor_id();
  1174. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1175. goto out;
  1176. cpu_buffer = buffer->buffers[cpu];
  1177. if (atomic_read(&cpu_buffer->record_disabled))
  1178. goto out;
  1179. event_length = rb_calculate_event_length(length);
  1180. event = rb_reserve_next_event(cpu_buffer,
  1181. RINGBUF_TYPE_DATA, event_length);
  1182. if (!event)
  1183. goto out;
  1184. body = rb_event_data(event);
  1185. memcpy(body, data, length);
  1186. rb_commit(cpu_buffer, event);
  1187. ret = 0;
  1188. out:
  1189. ftrace_preempt_enable(resched);
  1190. return ret;
  1191. }
  1192. EXPORT_SYMBOL_GPL(ring_buffer_write);
  1193. static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
  1194. {
  1195. struct buffer_page *reader = cpu_buffer->reader_page;
  1196. struct buffer_page *head = cpu_buffer->head_page;
  1197. struct buffer_page *commit = cpu_buffer->commit_page;
  1198. return reader->read == rb_page_commit(reader) &&
  1199. (commit == reader ||
  1200. (commit == head &&
  1201. head->read == rb_page_commit(commit)));
  1202. }
  1203. /**
  1204. * ring_buffer_record_disable - stop all writes into the buffer
  1205. * @buffer: The ring buffer to stop writes to.
  1206. *
  1207. * This prevents all writes to the buffer. Any attempt to write
  1208. * to the buffer after this will fail and return NULL.
  1209. *
  1210. * The caller should call synchronize_sched() after this.
  1211. */
  1212. void ring_buffer_record_disable(struct ring_buffer *buffer)
  1213. {
  1214. atomic_inc(&buffer->record_disabled);
  1215. }
  1216. EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
  1217. /**
  1218. * ring_buffer_record_enable - enable writes to the buffer
  1219. * @buffer: The ring buffer to enable writes
  1220. *
  1221. * Note, multiple disables will need the same number of enables
  1222. * to truely enable the writing (much like preempt_disable).
  1223. */
  1224. void ring_buffer_record_enable(struct ring_buffer *buffer)
  1225. {
  1226. atomic_dec(&buffer->record_disabled);
  1227. }
  1228. EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
  1229. /**
  1230. * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
  1231. * @buffer: The ring buffer to stop writes to.
  1232. * @cpu: The CPU buffer to stop
  1233. *
  1234. * This prevents all writes to the buffer. Any attempt to write
  1235. * to the buffer after this will fail and return NULL.
  1236. *
  1237. * The caller should call synchronize_sched() after this.
  1238. */
  1239. void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
  1240. {
  1241. struct ring_buffer_per_cpu *cpu_buffer;
  1242. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1243. return;
  1244. cpu_buffer = buffer->buffers[cpu];
  1245. atomic_inc(&cpu_buffer->record_disabled);
  1246. }
  1247. EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
  1248. /**
  1249. * ring_buffer_record_enable_cpu - enable writes to the buffer
  1250. * @buffer: The ring buffer to enable writes
  1251. * @cpu: The CPU to enable.
  1252. *
  1253. * Note, multiple disables will need the same number of enables
  1254. * to truely enable the writing (much like preempt_disable).
  1255. */
  1256. void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
  1257. {
  1258. struct ring_buffer_per_cpu *cpu_buffer;
  1259. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1260. return;
  1261. cpu_buffer = buffer->buffers[cpu];
  1262. atomic_dec(&cpu_buffer->record_disabled);
  1263. }
  1264. EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
  1265. /**
  1266. * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
  1267. * @buffer: The ring buffer
  1268. * @cpu: The per CPU buffer to get the entries from.
  1269. */
  1270. unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
  1271. {
  1272. struct ring_buffer_per_cpu *cpu_buffer;
  1273. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1274. return 0;
  1275. cpu_buffer = buffer->buffers[cpu];
  1276. return cpu_buffer->entries;
  1277. }
  1278. EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
  1279. /**
  1280. * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
  1281. * @buffer: The ring buffer
  1282. * @cpu: The per CPU buffer to get the number of overruns from
  1283. */
  1284. unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
  1285. {
  1286. struct ring_buffer_per_cpu *cpu_buffer;
  1287. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1288. return 0;
  1289. cpu_buffer = buffer->buffers[cpu];
  1290. return cpu_buffer->overrun;
  1291. }
  1292. EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
  1293. /**
  1294. * ring_buffer_entries - get the number of entries in a buffer
  1295. * @buffer: The ring buffer
  1296. *
  1297. * Returns the total number of entries in the ring buffer
  1298. * (all CPU entries)
  1299. */
  1300. unsigned long ring_buffer_entries(struct ring_buffer *buffer)
  1301. {
  1302. struct ring_buffer_per_cpu *cpu_buffer;
  1303. unsigned long entries = 0;
  1304. int cpu;
  1305. /* if you care about this being correct, lock the buffer */
  1306. for_each_buffer_cpu(buffer, cpu) {
  1307. cpu_buffer = buffer->buffers[cpu];
  1308. entries += cpu_buffer->entries;
  1309. }
  1310. return entries;
  1311. }
  1312. EXPORT_SYMBOL_GPL(ring_buffer_entries);
  1313. /**
  1314. * ring_buffer_overrun_cpu - get the number of overruns in buffer
  1315. * @buffer: The ring buffer
  1316. *
  1317. * Returns the total number of overruns in the ring buffer
  1318. * (all CPU entries)
  1319. */
  1320. unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
  1321. {
  1322. struct ring_buffer_per_cpu *cpu_buffer;
  1323. unsigned long overruns = 0;
  1324. int cpu;
  1325. /* if you care about this being correct, lock the buffer */
  1326. for_each_buffer_cpu(buffer, cpu) {
  1327. cpu_buffer = buffer->buffers[cpu];
  1328. overruns += cpu_buffer->overrun;
  1329. }
  1330. return overruns;
  1331. }
  1332. EXPORT_SYMBOL_GPL(ring_buffer_overruns);
  1333. static void rb_iter_reset(struct ring_buffer_iter *iter)
  1334. {
  1335. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1336. /* Iterator usage is expected to have record disabled */
  1337. if (list_empty(&cpu_buffer->reader_page->list)) {
  1338. iter->head_page = cpu_buffer->head_page;
  1339. iter->head = cpu_buffer->head_page->read;
  1340. } else {
  1341. iter->head_page = cpu_buffer->reader_page;
  1342. iter->head = cpu_buffer->reader_page->read;
  1343. }
  1344. if (iter->head)
  1345. iter->read_stamp = cpu_buffer->read_stamp;
  1346. else
  1347. iter->read_stamp = iter->head_page->page->time_stamp;
  1348. }
  1349. /**
  1350. * ring_buffer_iter_reset - reset an iterator
  1351. * @iter: The iterator to reset
  1352. *
  1353. * Resets the iterator, so that it will start from the beginning
  1354. * again.
  1355. */
  1356. void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
  1357. {
  1358. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1359. unsigned long flags;
  1360. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1361. rb_iter_reset(iter);
  1362. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1363. }
  1364. EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
  1365. /**
  1366. * ring_buffer_iter_empty - check if an iterator has no more to read
  1367. * @iter: The iterator to check
  1368. */
  1369. int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
  1370. {
  1371. struct ring_buffer_per_cpu *cpu_buffer;
  1372. cpu_buffer = iter->cpu_buffer;
  1373. return iter->head_page == cpu_buffer->commit_page &&
  1374. iter->head == rb_commit_index(cpu_buffer);
  1375. }
  1376. EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
  1377. static void
  1378. rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  1379. struct ring_buffer_event *event)
  1380. {
  1381. u64 delta;
  1382. switch (event->type) {
  1383. case RINGBUF_TYPE_PADDING:
  1384. return;
  1385. case RINGBUF_TYPE_TIME_EXTEND:
  1386. delta = event->array[0];
  1387. delta <<= TS_SHIFT;
  1388. delta += event->time_delta;
  1389. cpu_buffer->read_stamp += delta;
  1390. return;
  1391. case RINGBUF_TYPE_TIME_STAMP:
  1392. /* FIXME: not implemented */
  1393. return;
  1394. case RINGBUF_TYPE_DATA:
  1395. cpu_buffer->read_stamp += event->time_delta;
  1396. return;
  1397. default:
  1398. BUG();
  1399. }
  1400. return;
  1401. }
  1402. static void
  1403. rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
  1404. struct ring_buffer_event *event)
  1405. {
  1406. u64 delta;
  1407. switch (event->type) {
  1408. case RINGBUF_TYPE_PADDING:
  1409. return;
  1410. case RINGBUF_TYPE_TIME_EXTEND:
  1411. delta = event->array[0];
  1412. delta <<= TS_SHIFT;
  1413. delta += event->time_delta;
  1414. iter->read_stamp += delta;
  1415. return;
  1416. case RINGBUF_TYPE_TIME_STAMP:
  1417. /* FIXME: not implemented */
  1418. return;
  1419. case RINGBUF_TYPE_DATA:
  1420. iter->read_stamp += event->time_delta;
  1421. return;
  1422. default:
  1423. BUG();
  1424. }
  1425. return;
  1426. }
  1427. static struct buffer_page *
  1428. rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
  1429. {
  1430. struct buffer_page *reader = NULL;
  1431. unsigned long flags;
  1432. int nr_loops = 0;
  1433. local_irq_save(flags);
  1434. __raw_spin_lock(&cpu_buffer->lock);
  1435. again:
  1436. /*
  1437. * This should normally only loop twice. But because the
  1438. * start of the reader inserts an empty page, it causes
  1439. * a case where we will loop three times. There should be no
  1440. * reason to loop four times (that I know of).
  1441. */
  1442. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
  1443. reader = NULL;
  1444. goto out;
  1445. }
  1446. reader = cpu_buffer->reader_page;
  1447. /* If there's more to read, return this page */
  1448. if (cpu_buffer->reader_page->read < rb_page_size(reader))
  1449. goto out;
  1450. /* Never should we have an index greater than the size */
  1451. if (RB_WARN_ON(cpu_buffer,
  1452. cpu_buffer->reader_page->read > rb_page_size(reader)))
  1453. goto out;
  1454. /* check if we caught up to the tail */
  1455. reader = NULL;
  1456. if (cpu_buffer->commit_page == cpu_buffer->reader_page)
  1457. goto out;
  1458. /*
  1459. * Splice the empty reader page into the list around the head.
  1460. * Reset the reader page to size zero.
  1461. */
  1462. reader = cpu_buffer->head_page;
  1463. cpu_buffer->reader_page->list.next = reader->list.next;
  1464. cpu_buffer->reader_page->list.prev = reader->list.prev;
  1465. local_set(&cpu_buffer->reader_page->write, 0);
  1466. local_set(&cpu_buffer->reader_page->page->commit, 0);
  1467. /* Make the reader page now replace the head */
  1468. reader->list.prev->next = &cpu_buffer->reader_page->list;
  1469. reader->list.next->prev = &cpu_buffer->reader_page->list;
  1470. /*
  1471. * If the tail is on the reader, then we must set the head
  1472. * to the inserted page, otherwise we set it one before.
  1473. */
  1474. cpu_buffer->head_page = cpu_buffer->reader_page;
  1475. if (cpu_buffer->commit_page != reader)
  1476. rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
  1477. /* Finally update the reader page to the new head */
  1478. cpu_buffer->reader_page = reader;
  1479. rb_reset_reader_page(cpu_buffer);
  1480. goto again;
  1481. out:
  1482. __raw_spin_unlock(&cpu_buffer->lock);
  1483. local_irq_restore(flags);
  1484. return reader;
  1485. }
  1486. static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
  1487. {
  1488. struct ring_buffer_event *event;
  1489. struct buffer_page *reader;
  1490. unsigned length;
  1491. reader = rb_get_reader_page(cpu_buffer);
  1492. /* This function should not be called when buffer is empty */
  1493. if (RB_WARN_ON(cpu_buffer, !reader))
  1494. return;
  1495. event = rb_reader_event(cpu_buffer);
  1496. if (event->type == RINGBUF_TYPE_DATA)
  1497. cpu_buffer->entries--;
  1498. rb_update_read_stamp(cpu_buffer, event);
  1499. length = rb_event_length(event);
  1500. cpu_buffer->reader_page->read += length;
  1501. }
  1502. static void rb_advance_iter(struct ring_buffer_iter *iter)
  1503. {
  1504. struct ring_buffer *buffer;
  1505. struct ring_buffer_per_cpu *cpu_buffer;
  1506. struct ring_buffer_event *event;
  1507. unsigned length;
  1508. cpu_buffer = iter->cpu_buffer;
  1509. buffer = cpu_buffer->buffer;
  1510. /*
  1511. * Check if we are at the end of the buffer.
  1512. */
  1513. if (iter->head >= rb_page_size(iter->head_page)) {
  1514. if (RB_WARN_ON(buffer,
  1515. iter->head_page == cpu_buffer->commit_page))
  1516. return;
  1517. rb_inc_iter(iter);
  1518. return;
  1519. }
  1520. event = rb_iter_head_event(iter);
  1521. length = rb_event_length(event);
  1522. /*
  1523. * This should not be called to advance the header if we are
  1524. * at the tail of the buffer.
  1525. */
  1526. if (RB_WARN_ON(cpu_buffer,
  1527. (iter->head_page == cpu_buffer->commit_page) &&
  1528. (iter->head + length > rb_commit_index(cpu_buffer))))
  1529. return;
  1530. rb_update_iter_read_stamp(iter, event);
  1531. iter->head += length;
  1532. /* check for end of page padding */
  1533. if ((iter->head >= rb_page_size(iter->head_page)) &&
  1534. (iter->head_page != cpu_buffer->commit_page))
  1535. rb_advance_iter(iter);
  1536. }
  1537. static struct ring_buffer_event *
  1538. rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
  1539. {
  1540. struct ring_buffer_per_cpu *cpu_buffer;
  1541. struct ring_buffer_event *event;
  1542. struct buffer_page *reader;
  1543. int nr_loops = 0;
  1544. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1545. return NULL;
  1546. cpu_buffer = buffer->buffers[cpu];
  1547. again:
  1548. /*
  1549. * We repeat when a timestamp is encountered. It is possible
  1550. * to get multiple timestamps from an interrupt entering just
  1551. * as one timestamp is about to be written. The max times
  1552. * that this can happen is the number of nested interrupts we
  1553. * can have. Nesting 10 deep of interrupts is clearly
  1554. * an anomaly.
  1555. */
  1556. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
  1557. return NULL;
  1558. reader = rb_get_reader_page(cpu_buffer);
  1559. if (!reader)
  1560. return NULL;
  1561. event = rb_reader_event(cpu_buffer);
  1562. switch (event->type) {
  1563. case RINGBUF_TYPE_PADDING:
  1564. RB_WARN_ON(cpu_buffer, 1);
  1565. rb_advance_reader(cpu_buffer);
  1566. return NULL;
  1567. case RINGBUF_TYPE_TIME_EXTEND:
  1568. /* Internal data, OK to advance */
  1569. rb_advance_reader(cpu_buffer);
  1570. goto again;
  1571. case RINGBUF_TYPE_TIME_STAMP:
  1572. /* FIXME: not implemented */
  1573. rb_advance_reader(cpu_buffer);
  1574. goto again;
  1575. case RINGBUF_TYPE_DATA:
  1576. if (ts) {
  1577. *ts = cpu_buffer->read_stamp + event->time_delta;
  1578. ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
  1579. }
  1580. return event;
  1581. default:
  1582. BUG();
  1583. }
  1584. return NULL;
  1585. }
  1586. EXPORT_SYMBOL_GPL(ring_buffer_peek);
  1587. static struct ring_buffer_event *
  1588. rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
  1589. {
  1590. struct ring_buffer *buffer;
  1591. struct ring_buffer_per_cpu *cpu_buffer;
  1592. struct ring_buffer_event *event;
  1593. int nr_loops = 0;
  1594. if (ring_buffer_iter_empty(iter))
  1595. return NULL;
  1596. cpu_buffer = iter->cpu_buffer;
  1597. buffer = cpu_buffer->buffer;
  1598. again:
  1599. /*
  1600. * We repeat when a timestamp is encountered. It is possible
  1601. * to get multiple timestamps from an interrupt entering just
  1602. * as one timestamp is about to be written. The max times
  1603. * that this can happen is the number of nested interrupts we
  1604. * can have. Nesting 10 deep of interrupts is clearly
  1605. * an anomaly.
  1606. */
  1607. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
  1608. return NULL;
  1609. if (rb_per_cpu_empty(cpu_buffer))
  1610. return NULL;
  1611. event = rb_iter_head_event(iter);
  1612. switch (event->type) {
  1613. case RINGBUF_TYPE_PADDING:
  1614. rb_inc_iter(iter);
  1615. goto again;
  1616. case RINGBUF_TYPE_TIME_EXTEND:
  1617. /* Internal data, OK to advance */
  1618. rb_advance_iter(iter);
  1619. goto again;
  1620. case RINGBUF_TYPE_TIME_STAMP:
  1621. /* FIXME: not implemented */
  1622. rb_advance_iter(iter);
  1623. goto again;
  1624. case RINGBUF_TYPE_DATA:
  1625. if (ts) {
  1626. *ts = iter->read_stamp + event->time_delta;
  1627. ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
  1628. }
  1629. return event;
  1630. default:
  1631. BUG();
  1632. }
  1633. return NULL;
  1634. }
  1635. EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
  1636. /**
  1637. * ring_buffer_peek - peek at the next event to be read
  1638. * @buffer: The ring buffer to read
  1639. * @cpu: The cpu to peak at
  1640. * @ts: The timestamp counter of this event.
  1641. *
  1642. * This will return the event that will be read next, but does
  1643. * not consume the data.
  1644. */
  1645. struct ring_buffer_event *
  1646. ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
  1647. {
  1648. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1649. struct ring_buffer_event *event;
  1650. unsigned long flags;
  1651. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1652. event = rb_buffer_peek(buffer, cpu, ts);
  1653. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1654. return event;
  1655. }
  1656. /**
  1657. * ring_buffer_iter_peek - peek at the next event to be read
  1658. * @iter: The ring buffer iterator
  1659. * @ts: The timestamp counter of this event.
  1660. *
  1661. * This will return the event that will be read next, but does
  1662. * not increment the iterator.
  1663. */
  1664. struct ring_buffer_event *
  1665. ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
  1666. {
  1667. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1668. struct ring_buffer_event *event;
  1669. unsigned long flags;
  1670. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1671. event = rb_iter_peek(iter, ts);
  1672. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1673. return event;
  1674. }
  1675. /**
  1676. * ring_buffer_consume - return an event and consume it
  1677. * @buffer: The ring buffer to get the next event from
  1678. *
  1679. * Returns the next event in the ring buffer, and that event is consumed.
  1680. * Meaning, that sequential reads will keep returning a different event,
  1681. * and eventually empty the ring buffer if the producer is slower.
  1682. */
  1683. struct ring_buffer_event *
  1684. ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
  1685. {
  1686. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1687. struct ring_buffer_event *event;
  1688. unsigned long flags;
  1689. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1690. return NULL;
  1691. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1692. event = rb_buffer_peek(buffer, cpu, ts);
  1693. if (!event)
  1694. goto out;
  1695. rb_advance_reader(cpu_buffer);
  1696. out:
  1697. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1698. return event;
  1699. }
  1700. EXPORT_SYMBOL_GPL(ring_buffer_consume);
  1701. /**
  1702. * ring_buffer_read_start - start a non consuming read of the buffer
  1703. * @buffer: The ring buffer to read from
  1704. * @cpu: The cpu buffer to iterate over
  1705. *
  1706. * This starts up an iteration through the buffer. It also disables
  1707. * the recording to the buffer until the reading is finished.
  1708. * This prevents the reading from being corrupted. This is not
  1709. * a consuming read, so a producer is not expected.
  1710. *
  1711. * Must be paired with ring_buffer_finish.
  1712. */
  1713. struct ring_buffer_iter *
  1714. ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
  1715. {
  1716. struct ring_buffer_per_cpu *cpu_buffer;
  1717. struct ring_buffer_iter *iter;
  1718. unsigned long flags;
  1719. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1720. return NULL;
  1721. iter = kmalloc(sizeof(*iter), GFP_KERNEL);
  1722. if (!iter)
  1723. return NULL;
  1724. cpu_buffer = buffer->buffers[cpu];
  1725. iter->cpu_buffer = cpu_buffer;
  1726. atomic_inc(&cpu_buffer->record_disabled);
  1727. synchronize_sched();
  1728. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1729. __raw_spin_lock(&cpu_buffer->lock);
  1730. rb_iter_reset(iter);
  1731. __raw_spin_unlock(&cpu_buffer->lock);
  1732. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1733. return iter;
  1734. }
  1735. EXPORT_SYMBOL_GPL(ring_buffer_read_start);
  1736. /**
  1737. * ring_buffer_finish - finish reading the iterator of the buffer
  1738. * @iter: The iterator retrieved by ring_buffer_start
  1739. *
  1740. * This re-enables the recording to the buffer, and frees the
  1741. * iterator.
  1742. */
  1743. void
  1744. ring_buffer_read_finish(struct ring_buffer_iter *iter)
  1745. {
  1746. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1747. atomic_dec(&cpu_buffer->record_disabled);
  1748. kfree(iter);
  1749. }
  1750. EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
  1751. /**
  1752. * ring_buffer_read - read the next item in the ring buffer by the iterator
  1753. * @iter: The ring buffer iterator
  1754. * @ts: The time stamp of the event read.
  1755. *
  1756. * This reads the next event in the ring buffer and increments the iterator.
  1757. */
  1758. struct ring_buffer_event *
  1759. ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
  1760. {
  1761. struct ring_buffer_event *event;
  1762. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1763. unsigned long flags;
  1764. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1765. event = rb_iter_peek(iter, ts);
  1766. if (!event)
  1767. goto out;
  1768. rb_advance_iter(iter);
  1769. out:
  1770. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1771. return event;
  1772. }
  1773. EXPORT_SYMBOL_GPL(ring_buffer_read);
  1774. /**
  1775. * ring_buffer_size - return the size of the ring buffer (in bytes)
  1776. * @buffer: The ring buffer.
  1777. */
  1778. unsigned long ring_buffer_size(struct ring_buffer *buffer)
  1779. {
  1780. return BUF_PAGE_SIZE * buffer->pages;
  1781. }
  1782. EXPORT_SYMBOL_GPL(ring_buffer_size);
  1783. static void
  1784. rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
  1785. {
  1786. cpu_buffer->head_page
  1787. = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
  1788. local_set(&cpu_buffer->head_page->write, 0);
  1789. local_set(&cpu_buffer->head_page->page->commit, 0);
  1790. cpu_buffer->head_page->read = 0;
  1791. cpu_buffer->tail_page = cpu_buffer->head_page;
  1792. cpu_buffer->commit_page = cpu_buffer->head_page;
  1793. INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
  1794. local_set(&cpu_buffer->reader_page->write, 0);
  1795. local_set(&cpu_buffer->reader_page->page->commit, 0);
  1796. cpu_buffer->reader_page->read = 0;
  1797. cpu_buffer->overrun = 0;
  1798. cpu_buffer->entries = 0;
  1799. cpu_buffer->write_stamp = 0;
  1800. cpu_buffer->read_stamp = 0;
  1801. }
  1802. /**
  1803. * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
  1804. * @buffer: The ring buffer to reset a per cpu buffer of
  1805. * @cpu: The CPU buffer to be reset
  1806. */
  1807. void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
  1808. {
  1809. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1810. unsigned long flags;
  1811. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1812. return;
  1813. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1814. __raw_spin_lock(&cpu_buffer->lock);
  1815. rb_reset_cpu(cpu_buffer);
  1816. __raw_spin_unlock(&cpu_buffer->lock);
  1817. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1818. }
  1819. EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
  1820. /**
  1821. * ring_buffer_reset - reset a ring buffer
  1822. * @buffer: The ring buffer to reset all cpu buffers
  1823. */
  1824. void ring_buffer_reset(struct ring_buffer *buffer)
  1825. {
  1826. int cpu;
  1827. for_each_buffer_cpu(buffer, cpu)
  1828. ring_buffer_reset_cpu(buffer, cpu);
  1829. }
  1830. EXPORT_SYMBOL_GPL(ring_buffer_reset);
  1831. /**
  1832. * rind_buffer_empty - is the ring buffer empty?
  1833. * @buffer: The ring buffer to test
  1834. */
  1835. int ring_buffer_empty(struct ring_buffer *buffer)
  1836. {
  1837. struct ring_buffer_per_cpu *cpu_buffer;
  1838. int cpu;
  1839. /* yes this is racy, but if you don't like the race, lock the buffer */
  1840. for_each_buffer_cpu(buffer, cpu) {
  1841. cpu_buffer = buffer->buffers[cpu];
  1842. if (!rb_per_cpu_empty(cpu_buffer))
  1843. return 0;
  1844. }
  1845. return 1;
  1846. }
  1847. EXPORT_SYMBOL_GPL(ring_buffer_empty);
  1848. /**
  1849. * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
  1850. * @buffer: The ring buffer
  1851. * @cpu: The CPU buffer to test
  1852. */
  1853. int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
  1854. {
  1855. struct ring_buffer_per_cpu *cpu_buffer;
  1856. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  1857. return 1;
  1858. cpu_buffer = buffer->buffers[cpu];
  1859. return rb_per_cpu_empty(cpu_buffer);
  1860. }
  1861. EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
  1862. /**
  1863. * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
  1864. * @buffer_a: One buffer to swap with
  1865. * @buffer_b: The other buffer to swap with
  1866. *
  1867. * This function is useful for tracers that want to take a "snapshot"
  1868. * of a CPU buffer and has another back up buffer lying around.
  1869. * it is expected that the tracer handles the cpu buffer not being
  1870. * used at the moment.
  1871. */
  1872. int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
  1873. struct ring_buffer *buffer_b, int cpu)
  1874. {
  1875. struct ring_buffer_per_cpu *cpu_buffer_a;
  1876. struct ring_buffer_per_cpu *cpu_buffer_b;
  1877. if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
  1878. !cpumask_test_cpu(cpu, buffer_b->cpumask))
  1879. return -EINVAL;
  1880. /* At least make sure the two buffers are somewhat the same */
  1881. if (buffer_a->pages != buffer_b->pages)
  1882. return -EINVAL;
  1883. cpu_buffer_a = buffer_a->buffers[cpu];
  1884. cpu_buffer_b = buffer_b->buffers[cpu];
  1885. /*
  1886. * We can't do a synchronize_sched here because this
  1887. * function can be called in atomic context.
  1888. * Normally this will be called from the same CPU as cpu.
  1889. * If not it's up to the caller to protect this.
  1890. */
  1891. atomic_inc(&cpu_buffer_a->record_disabled);
  1892. atomic_inc(&cpu_buffer_b->record_disabled);
  1893. buffer_a->buffers[cpu] = cpu_buffer_b;
  1894. buffer_b->buffers[cpu] = cpu_buffer_a;
  1895. cpu_buffer_b->buffer = buffer_a;
  1896. cpu_buffer_a->buffer = buffer_b;
  1897. atomic_dec(&cpu_buffer_a->record_disabled);
  1898. atomic_dec(&cpu_buffer_b->record_disabled);
  1899. return 0;
  1900. }
  1901. EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
  1902. static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
  1903. struct buffer_data_page *bpage)
  1904. {
  1905. struct ring_buffer_event *event;
  1906. unsigned long head;
  1907. __raw_spin_lock(&cpu_buffer->lock);
  1908. for (head = 0; head < local_read(&bpage->commit);
  1909. head += rb_event_length(event)) {
  1910. event = __rb_data_page_index(bpage, head);
  1911. if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
  1912. return;
  1913. /* Only count data entries */
  1914. if (event->type != RINGBUF_TYPE_DATA)
  1915. continue;
  1916. cpu_buffer->entries--;
  1917. }
  1918. __raw_spin_unlock(&cpu_buffer->lock);
  1919. }
  1920. /**
  1921. * ring_buffer_alloc_read_page - allocate a page to read from buffer
  1922. * @buffer: the buffer to allocate for.
  1923. *
  1924. * This function is used in conjunction with ring_buffer_read_page.
  1925. * When reading a full page from the ring buffer, these functions
  1926. * can be used to speed up the process. The calling function should
  1927. * allocate a few pages first with this function. Then when it
  1928. * needs to get pages from the ring buffer, it passes the result
  1929. * of this function into ring_buffer_read_page, which will swap
  1930. * the page that was allocated, with the read page of the buffer.
  1931. *
  1932. * Returns:
  1933. * The page allocated, or NULL on error.
  1934. */
  1935. void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
  1936. {
  1937. unsigned long addr;
  1938. struct buffer_data_page *bpage;
  1939. addr = __get_free_page(GFP_KERNEL);
  1940. if (!addr)
  1941. return NULL;
  1942. bpage = (void *)addr;
  1943. return bpage;
  1944. }
  1945. /**
  1946. * ring_buffer_free_read_page - free an allocated read page
  1947. * @buffer: the buffer the page was allocate for
  1948. * @data: the page to free
  1949. *
  1950. * Free a page allocated from ring_buffer_alloc_read_page.
  1951. */
  1952. void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
  1953. {
  1954. free_page((unsigned long)data);
  1955. }
  1956. /**
  1957. * ring_buffer_read_page - extract a page from the ring buffer
  1958. * @buffer: buffer to extract from
  1959. * @data_page: the page to use allocated from ring_buffer_alloc_read_page
  1960. * @cpu: the cpu of the buffer to extract
  1961. * @full: should the extraction only happen when the page is full.
  1962. *
  1963. * This function will pull out a page from the ring buffer and consume it.
  1964. * @data_page must be the address of the variable that was returned
  1965. * from ring_buffer_alloc_read_page. This is because the page might be used
  1966. * to swap with a page in the ring buffer.
  1967. *
  1968. * for example:
  1969. * rpage = ring_buffer_alloc_page(buffer);
  1970. * if (!rpage)
  1971. * return error;
  1972. * ret = ring_buffer_read_page(buffer, &rpage, cpu, 0);
  1973. * if (ret)
  1974. * process_page(rpage);
  1975. *
  1976. * When @full is set, the function will not return true unless
  1977. * the writer is off the reader page.
  1978. *
  1979. * Note: it is up to the calling functions to handle sleeps and wakeups.
  1980. * The ring buffer can be used anywhere in the kernel and can not
  1981. * blindly call wake_up. The layer that uses the ring buffer must be
  1982. * responsible for that.
  1983. *
  1984. * Returns:
  1985. * 1 if data has been transferred
  1986. * 0 if no data has been transferred.
  1987. */
  1988. int ring_buffer_read_page(struct ring_buffer *buffer,
  1989. void **data_page, int cpu, int full)
  1990. {
  1991. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1992. struct ring_buffer_event *event;
  1993. struct buffer_data_page *bpage;
  1994. unsigned long flags;
  1995. int ret = 0;
  1996. if (!data_page)
  1997. return 0;
  1998. bpage = *data_page;
  1999. if (!bpage)
  2000. return 0;
  2001. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  2002. /*
  2003. * rb_buffer_peek will get the next ring buffer if
  2004. * the current reader page is empty.
  2005. */
  2006. event = rb_buffer_peek(buffer, cpu, NULL);
  2007. if (!event)
  2008. goto out;
  2009. /* check for data */
  2010. if (!local_read(&cpu_buffer->reader_page->page->commit))
  2011. goto out;
  2012. /*
  2013. * If the writer is already off of the read page, then simply
  2014. * switch the read page with the given page. Otherwise
  2015. * we need to copy the data from the reader to the writer.
  2016. */
  2017. if (cpu_buffer->reader_page == cpu_buffer->commit_page) {
  2018. unsigned int read = cpu_buffer->reader_page->read;
  2019. if (full)
  2020. goto out;
  2021. /* The writer is still on the reader page, we must copy */
  2022. bpage = cpu_buffer->reader_page->page;
  2023. memcpy(bpage->data,
  2024. cpu_buffer->reader_page->page->data + read,
  2025. local_read(&bpage->commit) - read);
  2026. /* consume what was read */
  2027. cpu_buffer->reader_page += read;
  2028. } else {
  2029. /* swap the pages */
  2030. rb_init_page(bpage);
  2031. bpage = cpu_buffer->reader_page->page;
  2032. cpu_buffer->reader_page->page = *data_page;
  2033. cpu_buffer->reader_page->read = 0;
  2034. *data_page = bpage;
  2035. }
  2036. ret = 1;
  2037. /* update the entry counter */
  2038. rb_remove_entries(cpu_buffer, bpage);
  2039. out:
  2040. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  2041. return ret;
  2042. }
  2043. static ssize_t
  2044. rb_simple_read(struct file *filp, char __user *ubuf,
  2045. size_t cnt, loff_t *ppos)
  2046. {
  2047. long *p = filp->private_data;
  2048. char buf[64];
  2049. int r;
  2050. if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
  2051. r = sprintf(buf, "permanently disabled\n");
  2052. else
  2053. r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
  2054. return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  2055. }
  2056. static ssize_t
  2057. rb_simple_write(struct file *filp, const char __user *ubuf,
  2058. size_t cnt, loff_t *ppos)
  2059. {
  2060. long *p = filp->private_data;
  2061. char buf[64];
  2062. long val;
  2063. int ret;
  2064. if (cnt >= sizeof(buf))
  2065. return -EINVAL;
  2066. if (copy_from_user(&buf, ubuf, cnt))
  2067. return -EFAULT;
  2068. buf[cnt] = 0;
  2069. ret = strict_strtoul(buf, 10, &val);
  2070. if (ret < 0)
  2071. return ret;
  2072. if (val)
  2073. set_bit(RB_BUFFERS_ON_BIT, p);
  2074. else
  2075. clear_bit(RB_BUFFERS_ON_BIT, p);
  2076. (*ppos)++;
  2077. return cnt;
  2078. }
  2079. static struct file_operations rb_simple_fops = {
  2080. .open = tracing_open_generic,
  2081. .read = rb_simple_read,
  2082. .write = rb_simple_write,
  2083. };
  2084. static __init int rb_init_debugfs(void)
  2085. {
  2086. struct dentry *d_tracer;
  2087. struct dentry *entry;
  2088. d_tracer = tracing_init_dentry();
  2089. entry = debugfs_create_file("tracing_on", 0644, d_tracer,
  2090. &ring_buffer_flags, &rb_simple_fops);
  2091. if (!entry)
  2092. pr_warning("Could not create debugfs 'tracing_on' entry\n");
  2093. return 0;
  2094. }
  2095. fs_initcall(rb_init_debugfs);